1
|
Moradi-Sardareh H, Esmaeili F, Momtahan S, Tehrani SS, Paknejad M. A double-edged sword effect of silver nanoparticles on angiogenesis in 4T1 breast cancer-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03516-7. [PMID: 39549061 DOI: 10.1007/s00210-024-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are increasingly known to have anticancer effects, but few studies have examined their adverse effects, so the underlying mechanisms are not yet fully understood. The current study investigated the critical influence of AgNPs on angiogenesis in 4T1 breast cancer-bearing mice. METHODS The sub-lethal dose of AgNPs (0.25 mg/kg) was carried out. Female BALB/c mice (N = 35) were divided into 7 groups; normal control, cancer control, AgNPs control (one dose of (0.25 mg/kg) AgNPs), single dose AgNPs before cancer, single dose AgNPs after cancer, 5 doses AgNPs after cancer, and doxorubicin. 4T1 breast cancer cell induction was performed subcutaneously on the left flank. Intraperitoneal (IP) administration of AgNPs and doxorubicin was carried out for all studied groups. RESULTS Weight gain was normal in all study groups except the doxorubicin-treated group. Administering AgNPs before cancer induction promotes tumorigenesis, raises MMP-2 and MMP-9 activity, and increases CD31 and Ki67 expression. The cancer control group experienced the same outcomes. On the other hand, depending on the administered doses, the injection of AgNPs after tumor induction resulted in a notable decrease in tumor volume. In the doxorubicin-treated group, similar results were observed, while a dose of AgNPs before cancer induction lead to increasing tumor volume compared to the cancer control group. The differences of biochemical markers including LDH, ALP, AST, ALT, BUN, and Cr between different groups were not significant. Significant differences were seen among all studied groups except doxorubicin and single dose AgNPs before cancer groups for serum TAC levels. CONCLUSIONS It appears that AgNPs are considered a double-edged sword in the fight against cancer. AgNPs not only have anti-cancer effects on tumor size and angiogenesis, but they also might have cancer-stimulating roles. To confirm this conclusion, more detailed investigations are needed.
Collapse
Affiliation(s)
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtahan
- Department of Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Zhang Y, Zhang Z, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J Nanobiotechnology 2024; 22:428. [PMID: 39030581 PMCID: PMC11264740 DOI: 10.1186/s12951-024-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Zhenyu Zhang
- Department of Emergency, Xiang'An Hospital of Xiamen University, Xiamen, 361104, Fujian, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Arambula-Maldonado R, Mequanint K. Osteogenic Differentiation Potential of iMSCs on GelMA-BG-MWCNT Nanocomposite Hydrogels. Biomimetics (Basel) 2024; 9:338. [PMID: 38921218 PMCID: PMC11201442 DOI: 10.3390/biomimetics9060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The ability of bone biomaterials to promote osteogenic differentiation is crucial for the repair and regeneration of osseous tissue. The development of a temporary bone substitute is of major importance in enhancing the growth and differentiation of human-derived stem cells into an osteogenic lineage. In this study, nanocomposite hydrogels composed of gelatin methacryloyl (GelMA), bioactive glass (BG), and multiwall carbon nanotubes (MWCNT) were developed to create a bone biomaterial that mimics the structural and electrically conductive nature of bone that can promote the differentiation of human-derived stem cells. GelMA-BG-MWCNT nanocomposite hydrogels supported mesenchymal stem cells derived from human induced pluripotent stem cells, hereinafter named iMSCs. Cell adhesion was improved upon coating nanocomposite hydrogels with fibronectin and was further enhanced when seeding pre-differentiated iMSCs. Osteogenic differentiation and mature mineralization were promoted in GelMA-BG-MWCNT nanocomposite hydrogels and were most evidently observed in the 70-30-2 hydrogels, which could be due to the stiff topography characteristic from the addition of MWCNT. Overall, the results of this study showed that GelMA-BG-MWCNT nanocomposite hydrogels coated with fibronectin possessed a favorable environment in which pre-differentiated iMSCs could better attach, proliferate, and further mature into an osteogenic lineage, which was crucial for the repair and regeneration of bone.
Collapse
Affiliation(s)
- Rebeca Arambula-Maldonado
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada
| |
Collapse
|
5
|
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, Azadmehr A. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon 2024; 10:e30898. [PMID: 38803919 PMCID: PMC11128882 DOI: 10.1016/j.heliyon.2024.e30898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Background The initiator of cytokine storm in Coronavirus disease (COVID-19) is still unknown. We recently suggested a complex interaction of matrix metalloproteinases (MMPs), Fas ligand (FasL), and viral entry factors could be responsible for the cytokine outrage In COVID-19. We explored the molecular dynamics of FasL/MMP7-9 in COVID-19 conditions in silico and provide neuroimmune insights for future. Methods We enrolled and analyzed a clinical cohort of COVID-19 patients, and recorded their blood Na + levels and temperature at admission. A blood-like molecular dynamics simulation (MDS) box was then built. Four conditions were studied; MMP7/FasL (healthy), MMP7/FasL (COVID-19), MMP9-FasL (healthy), and MMP9/FasL (COVID-19). MDS was performed by GROningen MAchine for Chemical Simulation (GROMACS). We analyzed bonds, short-range energies, and free binding energies to draw conclusions on the interaction of MMP7/MMP9 and FasL to gain insights into COVID-19 immunopathology. Genevestigator was used study RNA-seq/microarray expression data of MMPs in the cells of immune and nervous systems. Finally, epitopes of MMP/FasL complexes were identified as drug targets by machine learning (ML) tools. Results MMP7-FasL (Healthy), MMP7-FasL (COVID-19), MMP9-FasL (Healthy), and MMP9-FasL (COVID-19) systems showed 0, 1, 4, and 2 salt bridges, indicating MMP9 had more salt bridges. Moreover, in both COVID-19 and normal conditions, the number of interacting residues and surface area was higher for MMP9 compared to MMP7 group. The COVID-19 MMP9-FasL group had more H-bonds compared to MMP7-FasL group (12 vs. 7). 15 epitopes for FasL-MMP9 and 10 epitopes for FasL-MMP7 were detected. Extended MD simulation for 100 ns confirmed stronger binding of MMP9 based on Molecular Mechanics Generalized Borne Surface analysis (MM-GBSA) and Coul and Leonard-Jones (LJ) short-range energies. Conclusions MMP9 interacts stronger than MMP7 with FasL, however, both molecules maintained strong interaction through the MDS. We suggested epitopes for MMP-FasL complexes as valuable therapeutic targets in COVID-19. These data could be utilized in future immune drug and protein design and repurposing efforts.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossein Khanmirzaei
- School of Medicine, Tehran University of Medical Sciences, Babol, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ramzankhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Mazandaran, Iran
- Department of Immunology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Oka Y, Abe-Sato K, Tabuse H, Yasukawa Y, Yahara T, Nishimoto T, Kamitani M, Fukunaga T, Ochiai N, Kumasaka-Abe T, Hitaka K, Gunji E, Ohara H, Takeda T, Kojima N, Asami T. Discovery of TP0628103: A Highly Potent and Selective MMP-7 Inhibitor with Reduced OATP-Mediated Clearance Designed by Shifting Isoelectric Points. J Med Chem 2024; 67:1406-1420. [PMID: 38214909 DOI: 10.1021/acs.jmedchem.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CLtot) of the biologically active lead compound was very high. Because our studies revealed that hepatic uptake by organic anion transporting polypeptide (OATP) was responsible for the high CLtot, we found a novel approach to reducing their uptake based on isoelectric point (IP) values as an indicator for substrate recognition by OATP1B1/1B3. Our "IP shift strategy" to adjust the IP values culminated in the discovery of TP0628103 (18), which is characterized by reduced in vitro OATP-mediated hepatic uptake and in vivo CLtot. Our in vitro-in vivo extrapolation of OATP-mediated clearance and the "IP shift strategy" provide crucial insights for a new medicinal chemistry approach to reducing the systemic clearance of OATP1B1/1B3 substrates.
Collapse
Affiliation(s)
- Yusuke Oka
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kumi Abe-Sato
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Hideaki Tabuse
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yoshifumi Yasukawa
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tohru Yahara
- Drug Metabolism and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tomohiro Nishimoto
- Drug Metabolism and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Takuya Fukunaga
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Nagahiro Ochiai
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tomoko Kumasaka-Abe
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Emi Gunji
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Hiroki Ohara
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Takuya Takeda
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Taiji Asami
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
7
|
Zhao L, Leung LL, Morser J. Methods to Investigate Thrombin Cleavage of Osteopontin (OPN). Methods Mol Biol 2024; 2747:95-117. [PMID: 38038935 DOI: 10.1007/978-1-0716-3589-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Osteopontin (OPN) is a matricellular protein containing binding sites for a variety of ligands including an RGD sequence for binding to αvβ3 integrins. OPN is a conserved substrate for thrombin, the effector protease of the coagulation cascade. Thrombin cleaves OPN at a single site revealing new functionalities such as a previously cryptic α4β1 and α9β1 integrin-binding site. That integrin-binding site is abolished upon treatment with a basic carboxypeptidase. The thrombin cleavage of OPN has been demonstrated to play a role in regulating tumor growth.This report describes methods for production of full-length OPN as well as the enzymatically cleaved OPN fragments resulting from thrombin and carboxypeptidase treatments. Quantification procedures for the various OPN proteins are described as well as functional assays on mouse melanoma and myeloid cell lines.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence L Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Salati NA, Sharma M, Rao NN, Shetty SS, Radhakrishnan RA. Role of osteopontin in oral epithelial dysplasia, oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:706-714. [PMID: 38304518 PMCID: PMC10829450 DOI: 10.4103/jomfp.jomfp_492_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 02/03/2024] Open
Abstract
Background Inflammatory cells and cytokines in the chronically injured mucosa promote fibrosis in the oral submucous fibrosis (OSF) fibrotic milieu. Osteopontin (OPN) is a wound-healing mediator that upregulates the inflammatory response and is involved in the malignancy and fibrosis of multiple organ systems. Objectives We investigated the expression of OPN in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs) to determine its role in the malignant transformation and fibrosis of oral tissues. The expression of OPN in OPMDs and OSCCs was compared and correlated, and the role of OPN as a fibrotic mediator in OSF was explained. Study Design A total of 30 cases of normal mucosa and OPMDs (mild dysplasia, severe dysplasia, OSF and OSCCs) were studied by purposive sampling. In these groups, OPN immunoreactivity was examined and correlated with clinical findings. Results In mild dysplasia, OPN expression was restricted to the basal cell layer with moderate staining intensity. In severe dysplasia, it was extremely intense and extended throughout the epithelium. In the OSF, OPN expression was moderate in the perinuclear areas of the basal cell layer. The expression of OPN was very strong in OSCC. A flow diagram explaining the profibrotic role of OPN in OSF has been provided. Conclusion A positive role of OPN in both pathogenesis and malignant transformation of OPMDs and OSCC has been demonstrated.
Collapse
Affiliation(s)
- Nasir A. Salati
- Department of Oral and Maxillofacial Pathology, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, Haryana, India
| | - Nirmala N. Rao
- Former Dean, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha S. Shetty
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu A. Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
11
|
Zhang Y, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts. Part Fibre Toxicol 2023; 20:22. [PMID: 37217992 PMCID: PMC10201731 DOI: 10.1186/s12989-023-00532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis. METHODS A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation. RESULTS Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system. CONCLUSIONS Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
12
|
Osuka K, Ohmichi Y, Ohmichi M, Honma S, Suzuki C, Aoyama M, Iwami K, Watanabe Y, Miyachi S. Angiogenesis in the Outer Membrane of Chronic Subdural Hematomas through Thrombin-Cleaved Osteopontin and the Integrin α9 and Integrin β1 Signaling Pathways. Biomedicines 2023; 11:biomedicines11051440. [PMID: 37239111 DOI: 10.3390/biomedicines11051440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND A chronic subdural hematoma (CSDH) is considered to be an inflammatory and angiogenic disease. The CSDH outer membrane, which contains inflammatory cells, plays an important role in CSDH development. Osteopontin (OPN) is an extracellular matrix protein that is cleaved by thrombin, generating the N-terminal half of OPN, which is prominently involved in integrin signal transduction. We explored the expression of the N-terminal half of OPN in CSDH fluid and the expression of integrins α9 and β1 and the downstream components of the angiogenic signaling pathways in the outer membrane of CSDHs. METHODS Twenty samples of CSDH fluid and eight samples of CSDH outer membrane were collected from patients suffering from CSDHs. The concentrations of the N-terminal half of OPN in CSDH fluid samples were measured using ELISA kits. The expression levels of integrins α9 and β1, vinculin, talin-1, focal adhesion kinase (FAK), paxillin, α-actin, Src and β-actin were examined by Western blot analysis. The expression levels of integrins α9 and β1, FAK and paxillin were also examined by immunohistochemistry. We investigated whether CSDH fluid could activate FAK in cultured endothelial cells in vitro. RESULTS The concentration of the N-terminal half of OPN in CSDH fluid was significantly higher than that in the serum. Western blot analysis confirmed the presence of these molecules. In addition, integrins α9 and β1, FAK and paxillin were localized in the endothelial cells of vessels within the CSDH outer membrane. FAK was significantly phosphorylated immediately after treatment with CSDH fluid. CONCLUSION Our data suggest that the N-terminal half of OPN in CSDH fluid promotes neovascularization in endothelial cells through integrins α9 and β1. The N-terminal half of OPN, which is part of the extracellular matrix, plays a critical role in the promotion of CSDHs.
Collapse
Affiliation(s)
- Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute 480-1195, Japan
| | - Yusuke Ohmichi
- Department of Anatomy II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Mika Ohmichi
- Department of Anatomy II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Satoru Honma
- Department of Anatomy II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Chiharu Suzuki
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute 480-1195, Japan
| | - Masahiro Aoyama
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute 480-1195, Japan
| | - Kenichiro Iwami
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute 480-1195, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawa Gakuen, Machida 194-8543, Japan
| | - Shigeru Miyachi
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute 480-1195, Japan
| |
Collapse
|
13
|
Sinha SK, Mellody M, Carpio MB, Damoiseaux R, Nicholas SB. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023; 11:1356. [PMID: 37239027 PMCID: PMC10216241 DOI: 10.3390/biomedicines11051356] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Osteopontin (OPN) is a ubiquitously expressed protein with a wide range of physiological functions, including roles in bone mineralization, immune regulation, and wound healing. OPN has been implicated in the pathogenesis of several forms of chronic kidney disease (CKD) where it promotes inflammation and fibrosis and regulates calcium and phosphate metabolism. OPN expression is increased in the kidneys, blood, and urine of patients with CKD, particularly in those with diabetic kidney disease and glomerulonephritis. The full-length OPN protein is cleaved by various proteases, including thrombin, matrix metalloproteinase (MMP)-3, MMP-7, cathepsin-D, and plasmin, producing N-terminal OPN (ntOPN), which may have more detrimental effects in CKD. Studies suggest that OPN may serve as a biomarker in CKD, and while more research is needed to fully evaluate and validate OPN and ntOPN as CKD biomarkers, the available evidence suggests that they are promising candidates for further investigation. Targeting OPN may be a potential treatment strategy. Several studies show that inhibition of OPN expression or activity can attenuate kidney injury and improve kidney function. In addition to its effects on kidney function, OPN has been linked to cardiovascular disease, which is a major cause of morbidity and mortality in patients with CKD.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Division of Endocrinology, Molecular Medicine and Metabolism, Charles R. Drew University of Science and Medicine, Los Angeles, CA 90059, USA
| | - Michael Mellody
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA;
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
14
|
Zuardi LR, Silva CLA, Rego EM, Carneiro GV, Spriano S, Nanci A, de Oliveira PT. Influence of a Physiologically Formed Blood Clot on Pre-Osteoblastic Cells Grown on a BMP-7-Coated Nanoporous Titanium Surface. Biomimetics (Basel) 2023; 8:biomimetics8010123. [PMID: 36975353 PMCID: PMC10046195 DOI: 10.3390/biomimetics8010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Titanium (Ti) nanotopography modulates the osteogenic response to exogenous bone morphogenetic protein 7 (BMP-7) in vitro, supporting enhanced alkaline phosphatase mRNA expression and activity, as well as higher osteopontin (OPN) mRNA and protein levels. As the biological effects of OPN protein are modulated by its proteolytic cleavage by serum proteases, this in vitro study evaluated the effects on osteogenic cells in the presence of a physiological blood clot previously formed on a BMP-7-coated nanostructured Ti surface obtained by chemical etching (Nano-Ti). Pre-osteoblastic MC3T3-E1 cells were cultured during 5 days on recombinant mouse (rm) BMP-7-coated Nano-Ti after it was implanted in adult female C57BI/6 mouse dorsal dermal tissue for 18 h. Nano-Ti without blood clot or with blood clot at time 0 were used as the controls. The presence of blood clots tended to inhibit the expression of key osteoblast markers, except for Opn, and rmBMP-7 functionalization resulted in a tendency towards relatively greater osteoblastic differentiation, which was corroborated by runt-related transcription factor 2 (RUNX2) amounts. Undetectable levels of OPN and phosphorylated suppressor of mothers against decapentaplegic (SMAD) 1/5/9 were noted in these groups, and the cleaved form of OPN was only detected in the blood clot immediately prior to cell plating. In conclusion, the strategy to mimic in vitro the initial interfacial in vivo events by forming a blood clot on a Ti nanoporous surface resulted in the inhibition of pre-osteoblastic differentiation, which was minimally reverted with an rmBMP-7 coating.
Collapse
Affiliation(s)
- Leonardo Raphael Zuardi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Cleide Lúcia Araújo Silva
- Haematology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-060, SP, Brazil
| | - Eduardo Magalhães Rego
- Haematology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-060, SP, Brazil
| | - Giovana Vacilotto Carneiro
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Antonio Nanci
- Faculté de médecine dentaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
- Correspondence: ; Tel.: +55-16-99623-3663
| |
Collapse
|
15
|
Kennon AM, Stewart JA. Paracrine Signals in Calcified Conditioned Media Elicited Differential Responses in Primary Aortic Vascular Smooth Muscle Cells and in Adventitial Fibroblasts. Int J Mol Sci 2023; 24:ijms24043599. [PMID: 36835011 PMCID: PMC9961433 DOI: 10.3390/ijms24043599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Our goal was to determine if paracrine signals from different aortic layers can impact other cell types in the diabetic microenvironment, specifically medial vascular smooth muscle cells (VSMCs) and adventitial fibroblasts (AFBs). The diabetic hyperglycemic aorta undergoes mineral dysregulation, causing cells to be more responsive to chemical messengers eliciting vascular calcification. Advanced glycation end-products (AGEs)/AGE receptors (RAGEs) signaling has been implicated in diabetes-mediated vascular calcification. To elucidate responses shared between cell types, pre-conditioned calcified media from diabetic and non-diabetic VSMCs and AFBs were collected to treat cultured murine diabetic, non-diabetic, diabetic RAGE knockout (RKO), and non-diabetic RKO VSMCs and AFBs. Calcium assays, western blots, and semi-quantitative cytokine/chemokine profile kits were used to determine signaling responses. VSMCs responded to non-diabetic more than diabetic AFB calcified pre-conditioned media. AFB calcification was not significantly altered when VSMC pre-conditioned media was used. No significant changes in VSMCs signaling markers due to treatments were reported; however, genotypic differences existed. Losses in AFB α-smooth muscle actin were observed with diabetic pre-conditioned VSMC media treatment. Superoxide dismutase-2 (SOD-2) increased with non-diabetic calcified + AGE pre-conditioned VSMC media, while same treatment decreased diabetic AFBs levels. Overall, non-diabetic and diabetic pre-conditioned media elicited different responses from VSMCs and AFBs.
Collapse
Affiliation(s)
- Amber M. Kennon
- Department of Investigational Cancer, Division of Cancer Medicine, U.T.M.D Anderson Cancer Center, Houston, TX 77030, USA
| | - James A. Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-(662)-915-2309
| |
Collapse
|
16
|
Intrauterine botulinum toxin A administration promotes endometrial regeneration mediated by IGFBP3-dependent OPN proteolytic cleavage in thin endometrium. Cell Mol Life Sci 2023; 80:26. [PMID: 36602651 PMCID: PMC9816300 DOI: 10.1007/s00018-022-04684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023]
Abstract
Adequate endometrial growth is a critical factor for successful embryo implantation and pregnancy maintenance. We previously reported the efficacy of intrauterine administration of botulinum toxin A (BoTA) in improving the endometrial angiogenesis and the rates of embryo implantation. Here, we further evaluated its potent therapeutic effects on the uterine structural and functional repair and elucidated underlying molecular regulatory mechanisms. This study demonstrated that a murine model of thin endometrium was successfully established by displaying dramatically decreased endometrial thickness and the rates of embryo implantation compared to normal endometrium. Interestingly, the expressions of insulin-like growth factor binding protein-3 (IGFBP3) and an active 35 kDa-form of osteopontin (OPN) were significantly reduced in thin endometrium, which were almost fully restored by intrauterine BoTA administration. Neutralization of BoTA-induced IGFBP3 subsequently suppressed proteolytic cleavage of OPN, exhibiting un-recovered endometrial thickness even in the presence of BoTA administration, suggesting that BoTA-induced endometrial regeneration might be mediated by IGFBP3-dependent OPN proteolytic cleavage. Our findings suggest that intrauterine BoTA administration improves the endometrial environment in our murine model with thin endometrium by increasing endometrial receptivity and angiogenesis in a manner dependent on the regulatory effect of IGFBP3 on OPN proteolytic cleavage, proposing BoTA as an efficient therapeutic strategy for the patients with thin endometrium.
Collapse
|
17
|
Balzamino BO, Esposito G, Marino R, Calissano P, Latina V, Amadoro G, Keller F, Cacciamani A, Micera A. Morphological and biomolecular targets in retina and vitreous from Reelin-deficient mice (Reeler): Potential implications for age-related macular degeneration in Alzheimer’s dementia. Front Aging Neurosci 2022; 14:1015359. [DOI: 10.3389/fnagi.2022.1015359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
The neurosensory retina is an outgrowth of the Central Nervous System (CNS), and the eye is considered “a window to the brain.” Reelin glycoprotein is directly involved in neurodevelopment, in synaptic plasticity, learning and memory. Consequently, abnormal Reelin signaling has been associated with brain neurodegeneration but its contributing role in ocular degeneration is still poorly explored. To this aim, experimental procedures were assayed on vitreous or retinas obtained from Reeler mice (knockout for Reelin protein) at different postnatal days (p) p14, p21 and p28. At p28, a significant increase in the expression of Amyloid Precursor Protein (APP) and its amyloidogenic peptide (Aβ1-42 along with truncated tau fragment (i.e., NH2htau)- three pathological hallmarks of Alzheimer’s disease (AD)-were found in Reeler mice when compared to their age-matched wild-type controls. Likewise, several inflammatory mediators, such as Interleukins, or crucial biomarkers of oxidative stress were also found to be upregulated in Reeler mice by using different techniques such as ELLA assay, microchip array or real-time PCR. Taken together, these findings suggest that a dysfunctional Reelin signaling enables the expression of key pathological features which are classically associated with AD neurodegenerative processes. Thus, this work suggests that Reeler mouse might be a suitable animal model to study not only the pathophysiology of developmental processes but also several neurodegenerative diseases, such as AD and Age-related Macular Degeneration (AMD), characterized by accumulation of APP and/or Aβ1-42, NH2htau and inflammatory markers.
Collapse
|
18
|
Tabuse H, Abe-Sato K, Kanazawa H, Yashiro M, Tamura Y, Kamitani M, Hitaka K, Gunji E, Mitani A, Kojima N, Oka Y. Discovery of Highly Potent and Selective Matrix Metalloproteinase-7 Inhibitors by Hybridizing the S1' Subsite Binder with Short Peptides. J Med Chem 2022; 65:13253-13263. [PMID: 36137271 DOI: 10.1021/acs.jmedchem.2c01088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1' subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes.
Collapse
Affiliation(s)
- Hideaki Tabuse
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kumi Abe-Sato
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Harumi Kanazawa
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Miyoko Yashiro
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yunoshin Tamura
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Emi Gunji
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Akiko Mitani
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yusuke Oka
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
19
|
Sekiguchi K, Matsuda A, Yamada M, Matsumoto S, Sakurazawa N, Kawano Y, Yamada T, Miyashita M, Yoshida H. The utility of serum osteopontin levels for predicting postoperative complications after colorectal cancer surgery. Int J Clin Oncol 2022; 27:1706-1716. [PMID: 35951171 DOI: 10.1007/s10147-022-02225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/19/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND/AIM Osteopontin (OPN) is a secretory glycoprotein, which is expressed not only in osteoblasts, but immune cells including macrophages and activated T cells. Its pleiotropic immune functions, such as bone remodeling, cancer progression, immune response, and inflammation have been reported previously. However, the association between OPN and postoperative complications (POC) after colorectal cancer (CRC) surgery has not been studied, so far. METHODS Peripheral blood samples were collected before (pre) and immediately after surgery (post), and on postoperative days (POD) 1, 3, 5, and 7. Serum OPN levels were measured by ELISA. In total, 78 patients who underwent elective CRC surgery were divided into the No-POC (n = 54) and POC (n = 24) groups. RESULTS The POC group had significantly higher OPN levels than the No-POC group throughout the postoperative observation period. The maximum OPN levels from pre- to postsurgical samples showed the best predictive potential for POCs (cut off: 20.75 ng/mL, area under the curve: 0.724) and were correlated with length of postoperative stays. OPN values were significantly correlated with C-reactive protein on POD3 and were identified as an independent predictive marker for POCs (odds ratio: 3.88, 95% CI: 1.175-12.798, P = 0.026). The severity of POCs was reflected in increased OPN levels. CONCLUSION Increased postoperative OPN was associated with increased postoperative inflammatory host responses and POC after CRC surgery. Serum OPN level may be a useful biomarker for early prediction of POC and it may provide additional information for treatment decisions to prevent POC.
Collapse
Affiliation(s)
- Kumiko Sekiguchi
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan.,Department of Surgery, Nippon Medical School Tama Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan
| | - Akihisa Matsuda
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan. .,Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Marina Yamada
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan.,Faculty of Medical Science, Nippon Sport Science University, 1221-1 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Satoshi Matsumoto
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan
| | - Nobuyuki Sakurazawa
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan.,Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Youichi Kawano
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Masao Miyashita
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| |
Collapse
|
20
|
Wang J, Yuan Z, Zhang H, Wu Q, Miao Y, Xu Y, Yu Q, Huang X, Zhang Z, Huang X, Tang Q, Zhang L, Jiang Z. Obeticholic acid aggravates liver injury by up-regulating the liver expression of osteopontin in obstructive cholestasis. Life Sci 2022; 307:120882. [PMID: 35963300 DOI: 10.1016/j.lfs.2022.120882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
AIMS Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients, as it can significantly improve the level of serum alkaline phosphatase. However, OCA-induced liver injury in PBC patients puts them at risk of acute chronic liver failure, thus limiting the clinical application of OCA. Osteopontin (OPN), an extracellular cell matrix molecule, is highly induced in many cholestatic liver diseases. Herein we explored whether liver injury exacerbation by OCA was related to OPN. MAIN METHODS Bile duct ligation (BDL) mice were treated with OCA (40 mg/kg) to evaluate its effect on liver injury and OPN involvement. Enzyme-linked immunosorbent assay, western blot, immunohistochemistry, and other assays were used to detect OPN levels in serum and liver. Immunohistochemistry, and immunofluorescence, among other assays, were used to evaluate the extent of ductular reaction. The extent of fibrosis was also determined using various assays, such as immunohistochemistry, quantitative real-time PCR (qPCR), and hydroxyproline assays. KEY FINDINGS OPN was overexpressed in the liver of BDL mice treated with OCA. OCA induced overexpression of OPN exacerbated ductular reaction, fibrosis, and liver inflammation, and reduced hepatocyte proliferation. SIGNIFICANCE Upon liver injury, OCA upregulates the expression of OPN in the liver and accelerates disease progression. This mechanism helps explain the risk of liver damage associated with OCA.
Collapse
Affiliation(s)
- Jie Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qipeng Wu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yunxia Xu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofei Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ziling Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xinliang Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qianhui Tang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Larochelle J, Yang C, Liu L, Candelario-Jalil E. An Unexplored Role for MMP-7 (Matrix Metalloproteinase-7) in Promoting Gut Permeability After Ischemic Stroke. Stroke 2022; 53:3238-3242. [PMID: 35904018 DOI: 10.1161/strokeaha.122.040144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poststroke infections are common complications of stroke and are highly associated with poor outcomes for patients. Stroke induces profound immunodepression coupled with alterations to autonomic signaling, which together render the body more susceptible to infection from without (nosocomial/community-acquired infection) and from within (commensal bacterial infection). Critical to the hypothesis of commensal infection is the phenomenon of poststroke gut permeability and gut dysbiosis. Few studies have provided adequate explanations for the mechanisms underlying the molecular alterations that produce a more permeable gut and perturbed gut microbiota after stroke. A dysregulation in the production of matrix MMP-7 (metalloproteinase-7) may play a critical role in the progression of gut permeability after stroke. By cleaving junctional and extracellular matrix proteins, MMP-7 is capable of compromising gut barrier integrity. Because of MMP-7's unique abundance in the small intestine and its capacity to be induced in states of bacterial invasion and inflammation, along with its unique degradative capability, MMP-7 may be crucially important to the progression of gut permeability after ischemic stroke.
Collapse
Affiliation(s)
- Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville
| | | |
Collapse
|
22
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
23
|
Yang HT, Li LL, Li SN, Wu JT, Chen K, Song WF, Zhang GB, Ma JF, Fu HX, Cao S, Gao CY, Hu J. MicroRNA-155 inhibition attenuates myocardial infarction-induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation. Cardiovasc Diagn Ther 2022; 12:325-339. [PMID: 35800355 PMCID: PMC9253173 DOI: 10.21037/cdt-21-743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND Degradation of pro-inflammatory macrophage-mediated connexin 43 (Cx43) plays an important role in post-myocardial infarction (MI) arrhythmogenesis, microRNA (miR)-155 produced by macrophages has been shown to mediate post-MI effects. We hypothesized that miR-155 inhibition attenuated MI-induced Cx43 degradation by reducing pro-inflammatory macrophage activation. METHODS MI was induced by permanent ligation of the left anterior descending coronary artery in male C57BL/6 mice. Lipopolysaccharide (LPS)-stimulated mice bone marrow-derived macrophages (BMDMs) and hypoxia-induced neonatal rat cardiomyocytes (NRCMs) were used in vitro models. qRT-PCR, Western-blot and immunofluorescence were used to analyze relevant indicators. RESULTS The expression levels of miR-155, interleukin-1 beta (IL-1β), and matrix metalloproteinase (MMP)7 were higher in MI mice and LPS-treated BMDMs than in the sham/control groups, treatment with a miR-155 antagomir reversed these effects. Moreover, miR-155 inhibition reduced ventricular arrhythmias incidence and improved cardiac function in MI mice. Cx43 expression was decreased in MI mice and hypoxia-exposed NRCMs, and hypoxia-induced Cx43 degradation in NRCMs was reduced by application of conditioned medium from LPS-induced BMDMs treated with the miR-155 antagomir, but increased by conditioned medium from BMDMs treated with a miR-155 agomir. Importantly, NRCMs cultured in conditioned medium from LPS-induced BMDMs transfected with small interfering RNA against IL-1β and MMP7 showed decreased hypoxia-mediated Cx43 degradation, and this effect also was diminished by BMDM treatment with the miR-155 agomir. Additionally, siRNA-mediated suppressor of cytokine signaling 1 (SOCS1) knockdown in LPS-induced BMDMs promoted Cx43 degradation in hypoxia-exposed NRCMs, and the effect was reduced by the miR-155 inhibition. CONCLUSIONS MiR-155 inhibition attenuated post-MI Cx43 degradation by reducing macrophage-mediated IL-1β and MMP7 expression through the SOCS1/nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Li Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Nan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jin-Tao Wu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Feng Song
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Bao Zhang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Fang Ma
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Xia Fu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Cao
- Department of Ultrasound, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan-Yu Gao
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Hu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Rosmus DD, Lange C, Ludwig F, Ajami B, Wieghofer P. The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Biomedicines 2022; 10:biomedicines10040840. [PMID: 35453590 PMCID: PMC9027630 DOI: 10.3390/biomedicines10040840] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future.
Collapse
Affiliation(s)
| | - Clemens Lange
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Muenster, Germany
| | - Franziska Ludwig
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
| | - Bahareh Ajami
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, Augsburg University, 86159 Augsburg, Germany
- Correspondence:
| |
Collapse
|
25
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
26
|
Yang X, Yin H, Peng L, Zhang D, Li K, Cui F, Xia C, Huang H, Li Z. The Global Status and Trends of Enteropeptidase: A Bibliometric Study. Front Med (Lausanne) 2022; 9:779722. [PMID: 35223895 PMCID: PMC8866687 DOI: 10.3389/fmed.2022.779722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundEnteropeptidase (EP) is a type II transmembrane serine protease and a physiological activator of trypsinogen. Extensive studies related to EP have been conducted to date. However, no bibliometric analysis has systematically investigated this theme. Our study aimed to visualize the current landscape and frontier trends of scientific achievements on EP, provide an overview of the past 120 years and insights for researchers and clinicians to facilitate future collaborative research and clinical intervention.MethodsQuantitative analysis of publications relating to EP from 1900 to 2020 was interpreted and graphed through the Science Citation Index Expanded of Web of Science Core Collection (limited to SCIE). Microsoft office 2019, GraphPad Prism 8, VOSviewer, and R-bibliometrix were used to conduct the bibliometric analysis.ResultsFrom 1900 to 2020, a total of 1,034 publications were retrieved. The USA had the largest number of publications, making the greatest contribution to the topic (n = 260, 25.15%). Active collaborations between countries/regions were also enrolled. Grant and Hermontaylor were perhaps the most impactful researchers in the landscape of EP. Protein Expression and Purification and the Journal of Biological Chemistry were the most prevalent (79/1,034, 7.64%) and cited journals (n = 2,626), respectively. Using the top 15 citations and co-citations achievements clarified the theoretical basis of the EP research field. Important topics mainly include the structure of EP, the affective factors for activating substrates by EP, EP-related disorders, and inhibitors of EP.ConclusionBased on the bibliometric analysis, we have gained a comprehensive analysis of the global status and research frontiers of studies investigating EP, which provides some guidance and reference for researchers and clinicians engaged in EP research.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hua Yin
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Haojie Huang
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- Zhaoshen Li
| |
Collapse
|
27
|
Orlov EE, Nesterenko AM, Korotkova DD, Parshina EA, Martynova NY, Zaraisky AG. Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos. Dev Cell 2021; 57:95-111.e12. [PMID: 34919801 DOI: 10.1016/j.devcel.2021.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/01/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.
Collapse
Affiliation(s)
- Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Federal Center of Brain Research and Neurotechnology, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Elena A Parshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
28
|
Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM, Ricke WA. Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 2021; 22:ijms222212461. [PMID: 34830342 PMCID: PMC8617904 DOI: 10.3390/ijms222212461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Asha Jain
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kegan O. Skalitzky
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elise Schroeder
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Ruetten
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Cadena
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristen S. Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M. Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
29
|
Hansakon A, Png CW, Zhang Y, Angkasekwinai P. Macrophage-Derived Osteopontin Influences the Amplification of Cryptococcus neoformans-Promoting Type 2 Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:2107-2117. [PMID: 34526375 DOI: 10.4049/jimmunol.2100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
A multifunctional glycoprotein, osteopontin (OPN), can modulate the function of macrophages, resulting in either protective or deleterious effects in various inflammatory diseases and infection in the lungs. Although macrophages play the critical roles in mediating host defenses against cryptococcosis or cryptococcal pathogenesis, the involvement of macrophage-derived OPN in pulmonary infection caused by fungus Cryptococcus has not been elucidated. Thus, our current study aimed to investigate the contribution of OPN to the regulation of host immune response and macrophage function using a mouse model of pulmonary cryptococcosis. We found that OPN was predominantly expressed in alveolar macrophages during C. neoformans infection. Systemic treatment of OPN during C. neoformans infection resulted in an enhanced pulmonary fungal load and an early onset of type 2 inflammation within the lung, as indicated by the increase of pulmonary eosinophil infiltration, type 2 cytokine production, and M2-associated gene expression. Moreover, CRISPR/Cas9-mediated OPN knockout murine macrophages had enhanced ability to clear the intracellular fungus and altered macrophage phenotype from pathogenic M2 to protective M1. Altogether, our data suggested that macrophage-derived OPN contributes to the elaboration of C. neoformans-induced type 2 immune responses and polarization of M2s that promote fungal survival and proliferation within macrophages.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.,Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore; and
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand; .,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
30
|
Künzel SR, Hoffmann M, Weber S, Künzel K, Kämmerer S, Günscht M, Klapproth E, Rausch JS, Sadek MS, Kolanowski T, Meyer-Roxlau S, Piorkowski C, Tugtekin SM, Rose-John S, Yin X, Mayr M, Kuhlmann JD, Wimberger P, Grützmann K, Herzog N, Küpper JH, O’Reilly M, Kabir SN, Sommerfeld LC, Guan K, Wielockx B, Fabritz L, Nattel S, Ravens U, Dobrev D, Wagner M, El-Armouche A. Diminished PLK2 Induces Cardiac Fibrosis and Promotes Atrial Fibrillation. Circ Res 2021; 129:804-820. [PMID: 34433292 PMCID: PMC8487716 DOI: 10.1161/circresaha.121.319425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stephan R. Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K.)
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Silvio Weber
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Mario Günscht
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Johanna S.E. Rausch
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Mirna S. Sadek
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Tomasz Kolanowski
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Stefanie Meyer-Roxlau
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| | - Christopher Piorkowski
- Department of Rhythmology (C.P., M.W.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
| | - Sems M. Tugtekin
- Department of Cardiac Surgery (S.M.T.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
| | - Stefan Rose-John
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel (S.R.-J.)
| | - Xiaoke Yin
- The James Black Centre, King’s College, University of London (X.Y., M.M.)
| | - Manuel Mayr
- The James Black Centre, King’s College, University of London (X.Y., M.M.)
- Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden (M.M.)
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden (J.D.K., P.W.)
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg (J.D.K., P.W.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden (J.D.K., P.W.)
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg (J.D.K., P.W.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
| | - Konrad Grützmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
| | - Natalie Herzog
- Brandenburg University of Technology, Senftenberg (N.H., J.-H.K.)
| | | | - Molly O’Reilly
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
| | - S. Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
| | - Laura C. Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg (L.F., L.C.S.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- Department of Rhythmology (C.P., M.W.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
- Department of Cardiac Surgery (S.M.T.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel (S.R.-J.)
- The James Black Centre, King’s College, University of London (X.Y., M.M.)
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden (J.D.K., P.W.)
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg (J.D.K., P.W.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden (J.D.K., P.W., K.G.)
- Brandenburg University of Technology, Senftenberg (N.H., J.-H.K.)
- Institute of Cardiovascular Sciences, University of Birmingham (M.O., S.N.K., L.C.S.)
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden (B.W.)
- Department of Cardiology, University Hospitals Birmingham (L.F.)
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada (S.N., D.D.)
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad Krotzingen, Freiburg im Breisgau (U.R.)
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen (S.N., D.D.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université (S.N.)
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine (D.D.)
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K.)
- Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden (M.M.)
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg (L.F., L.C.S.)
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden (B.W.)
| | - Larissa Fabritz
- Department of Cardiology, University Hospitals Birmingham (L.F.)
- University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg (L.F., L.C.S.)
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada (S.N., D.D.)
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen (S.N., D.D.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université (S.N.)
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts Herzzentrum, Freiburg Bad Krotzingen, Freiburg im Breisgau (U.R.)
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Quebec, Canada (S.N., D.D.)
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen (S.N., D.D.)
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine (D.D.)
| | - Michael Wagner
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
- Department of Rhythmology (C.P., M.W.), Clinic for Internal Medicine and Cardiology, Heart Center Dresden GmbH, Dresden, Technische Universität Dresden
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden (S.R.K., M.H., S.W., K.K., S.K., M.G., E.K., J.S.E.R., M.S.S., T.K., S.M.-R., K.G., M.W., A.E.-A.)
| |
Collapse
|
31
|
Hattori T, Iwasaki-Hozumi H, Bai G, Chagan-Yasutan H, Shete A, Telan EF, Takahashi A, Ashino Y, Matsuba T. Both Full-Length and Protease-Cleaved Products of Osteopontin Are Elevated in Infectious Diseases. Biomedicines 2021; 9:biomedicines9081006. [PMID: 34440210 PMCID: PMC8394573 DOI: 10.3390/biomedicines9081006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Circulating full-length osteopontin (FL-OPN) is elevated in plasma from patients with various infectious diseases, such as adult T-cell leukemia, Mycobacterium tuberculosis (TB), hepatitis virus infection, leptospirosis, acquired immune deficiency syndrome (AIDS), AIDS/TB, and coronavirus disease 2019 (COVID-19). Proteolysis of OPN by thrombin, matrix metalloproteases, caspase 8/3, cathepsin D, plasmin, and enterokinase generates various cleaved OPNs with a variety of bioactivities by binding to different target cells. Moreover, OPN is susceptible to gradual proteolysis. During inflammation, one of the cleaved fragments, N-terminal thrombin-cleaved OPN (trOPN or OPN-Arg168 [OPN-R]), induces dendritic cell (DC) adhesion. Further cleavage by carboxypeptidase B2 or carboxypeptidase N removes Arg168 from OPN-R to OPN-Leu167 (OPN-L). Consequently, OPN-L decreases DC adhesion. In particular, the differences in plasma level over time are observed between FL-OPN and its cleaved OPNs during inflammation. We found that the undefined OPN levels (mixture of FL-OPN and cleaved OPN) were elevated in plasma and reflected the pathology of TB and COVID-19 rather than FL-OPN. These infections are associated with elevated levels of various proteases. Inhibition of the cleavage or the activities of cleaved products may improve the outcome of the therapy. Research on the metabolism of OPN is expected to create new therapies against infectious diseases.
Collapse
Affiliation(s)
- Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Correspondence: ; Tel./Fax: +81-866-22-9469
| | - Hiroko Iwasaki-Hozumi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Haorile Chagan-Yasutan
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Ashwnini Shete
- ICMR-National AIDS Research Institute, 73 G-Block, MIDC, Bhosari, Pune 411026, India;
| | - Elizabeth Freda Telan
- STD AIDS Cooperative Central Laboratory, San Lazaro Hospital, Manila 1003, Philippines;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Takashi Matsuba
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka 882-8508, Japan;
| |
Collapse
|
32
|
Slovacek H, Khanna R, Poredos P, Jezovnik M, Hoppensteadt D, Fareed J, Hopkinson W. Interrelationship of Osteopontin, MMP-9 and ADAMTS4 in Patients With Osteoarthritis Undergoing Total Joint Arthroplasty. Clin Appl Thromb Hemost 2021; 26:1076029620964864. [PMID: 33350314 PMCID: PMC7758646 DOI: 10.1177/1076029620964864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by loss of articular cartilage, inflammation and pain, which sometimes necessitates total joint arthroplasty (TJA). Profiling biomarkers of cartilage degradation and inflammation is a promising area of research to understand the pathogenesis of OA. This study aims to report the post-operative fluctuations of 3 biomarkers of OA, osteopontin (OPN), matrix metalloproteinase-9 (MMP-9), and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4), in patients undergoing TJA to further define the interaction among these biomarkers and delineate their role in OA pathogenesis. OPN is an extracellular matrix (ECM) glycoprotein with increased activity in OA and joint damage and is upregulated by either inflammation or cleavage by MMPs and thrombin. MMP-9 is known to cleave OPN and is upregulated by inflammatory markers, such as IL-1, IL-6 and CRP. ADAMTS4 is an enzyme that degrades aggrecan, a major component of cartilage. These biomarkers were measured in deidentified blood samples collected on the day of surgery, 1 day post-operatively, and day 5-7 post-operatively. MMP-9 and OPN levels were significantly elevated at all times, and ADAMTS4 was significantly decreased at baseline versus controls. OPN and ADAMTS4 inversely fluctuated post-operatively, indicating an interrelation between these 2 biomarkers. This study suggests that the upregulation of MMP-9 and therefore OPN then results in the downregulation of ADAMTS4. The relationship between OPN and thrombin also highlights the importance of monitoring for thrombotic complications. These biomarkers, along with thrombin-mediated cleavage products, may be helpful in the prognostic management of OA patients.
Collapse
Affiliation(s)
- Hannah Slovacek
- Department of Pathology and Laboratory Medicine, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Rajan Khanna
- Department of Pathology and Laboratory Medicine, 25815Loyola University Medical Center, Maywood, IL, USA
| | - Pavel Poredos
- Medical Clinic Division of Vascular Medicine, 37663Ljubljana University Medical Center, Ljubljana, Slovenia
| | - Mateja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, 12340University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jawed Fareed
- Cardiovascular Research Institute, 2456Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - William Hopkinson
- Health Sciences Division, Orthopaedic Surgery and Rehabilitation Department, 2456Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
33
|
Fujisawa Y, Matsuda K, Uehara T. Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signal-regulated kinase (ERK) pathway. Biol Chem 2021; 401:1071-1080. [PMID: 32924371 DOI: 10.1515/hsz-2020-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a phenomenon in which parenchyma is replaced with fibrous tissue. Persistent inflammation accompanied by dysregulation of cytokine production and repeated cycles of inflammation-associated tissue-repair induces fibrosis in various organs including the liver, lung, and kidney. In idiopathic pulmonary fibrosis, production of interleukin (IL)-6 and osteopontin (OPN) are dysregulated. Fibrosis leads to qualitative rather than quantitative changes of fibroblasts at the sites of tissue repair, and this leads to enlargement of fibrotic foci. These fibroblasts are immunohistochemically positive for OPN; however, the effect of overexpressed OPN in fibroblasts is not fully understood yet. In this study, we investigated the effect of OPN on IL-6 secretion and on migration and proliferation of fibroblasts. Lung fibroblasts overexpressing exogenous OPN showed that OPN was linked to the enhancement of cell migration through increased IL-6 secretion via the extracellular signal-regulated kinase (ERK) pathway. These results suggest that OPN may exert its pro-fibrotic functions, such as enhancement of fibroblasts migration by cooperating with chemoattractant IL-6, and may be involved in enlargement of fibrotic foci.
Collapse
Affiliation(s)
- Yu Fujisawa
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-28621, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-28621, Nagano, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| |
Collapse
|
34
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
35
|
Kennon AM, Stewart JA. RAGE Differentially Altered in vitro Responses in Vascular Smooth Muscle Cells and Adventitial Fibroblasts in Diabetes-Induced Vascular Calcification. Front Physiol 2021; 12:676727. [PMID: 34163373 PMCID: PMC8215351 DOI: 10.3389/fphys.2021.676727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The Advanced Glycation End-Products (AGE)/Receptor for AGEs (RAGE) signaling pathway exacerbates diabetes-mediated vascular calcification (VC) in vascular smooth muscle cells (VSMCs). Other cell types are involved in VC, such as adventitial fibroblasts (AFBs). We hope to elucidate some of the mechanisms responsible for differential signaling in diabetes-mediated VC with this work. This work utilizes RAGE knockout animals and in vitro calcification to measure calcification and protein responses. Our calcification data revealed that VSMCs calcification was AGE/RAGE dependent, yet AFBs calcification was not an AGE-mediated RAGE response. Protein expression data showed VSMCs lost their phenotype marker, α-smooth muscle actin, and had a higher RAGE expression over non-diabetics. RAGE knockout (RKO) VSMCs did not show changes in phenotype markers. P38 MAPK, a downstream RAGE-associated signaling molecule, had significantly increased activation with calcification in both diabetic and diabetic RKO VSMCs. AFBs showed a loss in myofibroblast marker, α-SMA, due to calcification treatment. RAGE expression decreased in calcified diabetic AFBs, and P38 MAPK activation significantly increased in diabetic and diabetic RKO AFBs. These findings point to potentially an alternate receptor mediating the calcification response in the absence of RAGE. Overall, VSMCs and AFBs respond differently to calcification and the application of AGEs.
Collapse
Affiliation(s)
- Amber M Kennon
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| | - James A Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, MS, United States
| |
Collapse
|
36
|
Jiang X, Zhang F, Ji X, Dong F, Yu H, Xue M, Qiu Y, Yang F, Hu X, Bao Z. Lipid-injured hepatocytes release sOPN to improve macrophage migration via CD44 engagement and pFak-NFκB signaling. Cytokine 2021; 142:155474. [PMID: 33647584 DOI: 10.1016/j.cyto.2021.155474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The key characteristics in the pathogenesis of nonalcoholic steatohepatitis (NASH) are hepatic lipotoxicity, inflammatory cell infiltration (activated macrophages, in part), and varying degrees of fibrosis. The fatty acid palmitate (PA) can cause hepatocyte cellular dysfunction, but whether and how this process contributes to macrophage-associated inflammation is not well understood. This study aimed to explore whether lipid-injured hepatocytes result in the secretion of osteopontin (sOPN), and how sOPN induces macrophage migration to steatosis hepatocytes. METHODS Human hepatocellular carcinoma HepG2 cells were incubated with PA to establish the lipotoxicity in hepatocytes model in vitro. The released sOPN was isolated, characterized, and applied to macrophage-like cells differentiated from the human monocytic cell line THP-1 cells. C57BL/6 mice were fed either chow or a diet high in fructose-fat-glucose (FFG) to induce NASH in vivo. Some NASH model mice were also given siSPP1 for two weeks to inhibit the expression of OPN. Related tissues were collected and analyzed by histology, immunofluorescence, ELISA, qRT-PCR, and western blotting. RESULTS PA upregulated OPN expression and release in human hepatocytes, which drove the migration of macrophages. Incubation of HepG2 cells with palmitate increased mRNA expression and secretion of OPN in cell culture supernatants. Compared with the BSA and siSPP1 groups, treatment with the supernatant derived from PA-treated hepatocytes promoted macrophage migration and activation. The sOPN induction of macrophage migration occurred via CD44 engagement and activation of the pFak-NFκB signaling pathway. Likewise, administration of siSPP1 to NASH mice inhibited the expression and release of OPN, which was associated with decreased liver dysfunction, inflammatory cell infiltration, and even fibrosis. CONCLUSIONS sOPN, which is released from lipid-injured hepatocytes, emerges as a cytokine driving the migration of macrophages, contributing to an inflammatory response in NASH.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Fan Zhang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Xueying Ji
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Fangyuan Dong
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Huiyuan Yu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Mengjuan Xue
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Yixuan Qiu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Fan Yang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Xiaona Hu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China.
| | - Zhijun Bao
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, PR China; National Clinical Research Center for Ageing and Medicine (Huashan), Shanghai 200040, PR China.
| |
Collapse
|
37
|
Bai G, Furushima D, Niki T, Matsuba T, Maeda Y, Takahashi A, Hattori T, Ashino Y. High Levels of the Cleaved Form of Galectin-9 and Osteopontin in the Plasma Are Associated with Inflammatory Markers That Reflect the Severity of COVID-19 Pneumonia. Int J Mol Sci 2021; 22:ijms22094978. [PMID: 34067072 PMCID: PMC8125627 DOI: 10.3390/ijms22094978] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman's correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.
Collapse
Affiliation(s)
- Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Daisuke Furushima
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kagawa 761-0793, Japan;
| | - Takashi Matsuba
- Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan;
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Yosuke Maeda
- Viral Section, Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Miyagi 982-8502, Japan
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| |
Collapse
|
38
|
Niazy N, Barth M, Selig JI, Feichtner S, Shakiba B, Candan A, Albert A, Preuß K, Lichtenberg A, Akhyari P. Degeneration of Aortic Valves in a Bioreactor System with Pulsatile Flow. Biomedicines 2021; 9:biomedicines9050462. [PMID: 33922670 PMCID: PMC8145810 DOI: 10.3390/biomedicines9050462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease is the most common valvular heart disease in industrialized countries. Pulsatile pressure, sheer and bending stress promote initiation and progression of aortic valve degeneration. The aim of this work is to establish an ex vivo model to study the therein involved processes. Ovine aortic roots bearing aortic valve leaflets were cultivated in an elaborated bioreactor system with pulsatile flow, physiological temperature, and controlled pressure and pH values. Standard and pro-degenerative treatment were studied regarding the impact on morphology, calcification, and gene expression. In particular, differentiation, matrix remodeling, and degeneration were also compared to a static cultivation model. Bioreactor cultivation led to shrinking and thickening of the valve leaflets compared to native leaflets while gross morphology and the presence of valvular interstitial cells were preserved. Degenerative conditions induced considerable leaflet calcification. In comparison to static cultivation, collagen gene expression was stable under bioreactor cultivation, whereas expression of hypoxia-related markers was increased. Osteopontin gene expression was differentially altered compared to protein expression, indicating an enhanced protein turnover. The present ex vivo model is an adequate and effective system to analyze aortic valve degeneration under controlled physiological conditions without the need of additional growth factors.
Collapse
Affiliation(s)
- Naima Niazy
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Sabine Feichtner
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Babak Shakiba
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Asya Candan
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Alexander Albert
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
- Department of Cardiovascular Surgery, Klinikum Dortmund gGmbH, Beurhausstraße 40, 44137 Dortmund, Germany
| | - Karlheinz Preuß
- Faculty of Biotechnology, Bioprocessing, Modulation and Simulation, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany;
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
- Correspondence:
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| |
Collapse
|
39
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
40
|
Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, Han H, Nieto N. Osteopontin Takes Center Stage in Chronic Liver Disease. Hepatology 2021; 73:1594-1608. [PMID: 32986864 PMCID: PMC8106357 DOI: 10.1002/hep.31582] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) was first identified in 1986. The prefix osteo- means bone; however, OPN is expressed in other tissues, including liver. The suffix -pontin means bridge and denotes the role of OPN as a link protein within the extracellular matrix. While OPN has well-established physiological roles, multiple "omics" analyses suggest that it is also involved in chronic liver disease. In this review, we provide a summary of the OPN gene and protein structure and regulation. We outline the current knowledge on how OPN is involved in hepatic steatosis in the context of alcoholic liver disease and non-alcoholic fatty liver disease. We describe the mechanisms whereby OPN participates in inflammation and liver fibrosis and discuss current research on its role in hepatocellular carcinoma and cholangiopathies. To conclude, we highlight important points to consider when doing research on OPN and provide direction for making progress on how OPN contributes to chronic liver disease.
Collapse
Affiliation(s)
- Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL,Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
41
|
Butti R, Kumar TVS, Nimma R, Banerjee P, Kundu IG, Kundu GC. Osteopontin Signaling in Shaping Tumor Microenvironment Conducive to Malignant Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:419-441. [PMID: 34664250 DOI: 10.1007/978-3-030-73119-9_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Context-dependent reciprocal crosstalk between cancer and surrounding stromal cells in the tumor microenvironment is imperative for the regulation of various hallmarks of cancer. A myriad of growth factors, chemokines, and their receptors aids in the interaction between cancer cells and tumor microenvironmental components. Osteopontin is a chemokine-like protein, overexpressed in different types of cancers. Osteopontin plays a crucial role in orchestrating dialogue between cancer and stromal cells. Osteopontin, in tumor microenvironment, is produced in tumor as well as stromal cells. Tumor-derived osteopontin regulates proliferation, migration, activation, and differentiation of different types of stromal cells. Osteopontin secreted from tumor cells regulates the generation of cancer-associated fibroblasts from resident fibroblasts and mesenchymal stem cells. Osteopontin also shapes immunosuppressive tumor microenvironment by controlling regulatory T cells and tumor-associated macrophages. Moreover, secretion of osteopontin from tumor stroma has been highly documented. Stromal cell-derived osteopontin induces epithelial-to-mesenchymal transition, angiogenesis, metastasis, and cancer stem cell enrichment. Tumor- or stroma-derived osteopontin mainly functions through binding with cell surface receptors, integrins and CD44, and activates downstream signaling events like PI-3 kinase/Akt and MAPK pathways. Presumably, disrupting the communication between the tumor cells and surrounding microenvironment by targeting osteopontin-regulated signaling using specific antibodies, small-molecule inhibitors, and chemotherapeutic agents is a novel therapeutic strategy for clinical management of cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Totakura V S Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Ipsita G Kundu
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Institute of Eminence, Hyderabad, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India. .,School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, India.
| |
Collapse
|
42
|
Nomden M, Beljaars L, Verkade HJ, Hulscher JBF, Olinga P. Current Concepts of Biliary Atresia and Matrix Metalloproteinase-7: A Review of Literature. Front Med (Lausanne) 2020; 7:617261. [PMID: 33409288 PMCID: PMC7779410 DOI: 10.3389/fmed.2020.617261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Biliary atresia (BA) is a rare cholangiopathy of infancy in which the bile ducts obliterate, leading to profound cholestasis and liver fibrosis. BA is hypothesized to be caused by a viral insult that leads to over-activation of the immune system. Patients with BA are surgically treated with a Kasai portoenterostomy (KPE), which aims to restore bile flow from the liver to the intestines. After KPE, progressive liver fibrosis is often observed in BA patients, even despite surgical success and clearance of their jaundice. The innate immune response is involved during the initial damage to the cholangiocytes and further differentiation of the adaptive immune response into a T-helper 1 cell (Th1) response. Multiple studies have shown that there is continuing elevation of involved cytokines that can lead to the progressive liver fibrosis. However, the mechanism by which the progressive injury occurs is not fully elucidated. Recently, matrix metalloproteinase-7 (MMP-7) has been investigated to be used as a biomarker to diagnose BA. MMPs are involved in extracellular matrix (ECM) turnover, but also have non-ECM related functions. The role of MMP-7 and other MMPs in liver fibrosis is just starting to be elucidated. Multiple studies have shown that serum MMP-7 measurements are able to accurately diagnose BA in a cohort of cholestatic patients while hepatic MMP-7 expression correlated with BA-related liver fibrosis. While the mechanism by which MMP-7 can be involved in the pathophysiology of BA is unclear, MMP-7 has been investigated in other fibrotic pathologies such as renal and idiopathic pulmonary fibrosis. MMP-7 is involved in Wnt/β-catenin signaling, reducing cell-to-cell contact by shedding of E-cadherin, amplifying inflammation and fibrosis via osteopontin (OPN) and TNF-α while it also appears to play a role in induction of angiogenesis This review aims to describe the current understandings of the pathophysiology of BA. Subsequently, we describe how MMP-7 is involved in other pathologies, such as renal and pulmonary fibrosis. Then, we propose how MMP-7 can potentially be involved in BA. By doing this, we aim to describe the putative role of MMP-7 as a prognostic biomarker in BA and to provide possible new therapeutic and research targets that can be investigated in the future.
Collapse
Affiliation(s)
- Mark Nomden
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Leonie Beljaars
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Henkjan J Verkade
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
43
|
Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers (Basel) 2020; 12:cancers12113379. [PMID: 33203146 PMCID: PMC7698217 DOI: 10.3390/cancers12113379] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anti-PD-1/PD-L1 and anti-CTLA-4-based immune checkpoint blockade (ICB) immunotherapy have recently emerged as a breakthrough in human cancer treatment. Durable efficacy has been achieved in many types of human cancers. However, not all human cancers respond to current ICB immunotherapy and only a fraction of the responsive cancers exhibit efficacy. Osteopontin (OPN) expression is highly elevated in human cancers and functions as a tumor promoter. Emerging data suggest that OPN may also regulate immune cell function in the tumor microenvironment. This review aims at OPN function in human cancer progression and new findings of OPN as a new immune checkpoint. We propose that OPN compensates PD-L1 function to promote tumor immune evasion, which may underlie human cancer non-response to current ICB immunotherapy. Abstract OPN is a multifunctional phosphoglycoprotein expressed in a wide range of cells, including osteoclasts, osteoblasts, neurons, epithelial cells, T, B, NK, NK T, myeloid, and innate lymphoid cells. OPN plays an important role in diverse biological processes and is implicated in multiple diseases such as cardiovascular, diabetes, kidney, proinflammatory, fibrosis, nephrolithiasis, wound healing, and cancer. In cancer patients, overexpressed OPN is often detected in the tumor microenvironment and elevated serum OPN level is correlated with poor prognosis. Initially identified in activated T cells and termed as early T cell activation gene, OPN links innate cells to adaptive cells in immune response to infection and cancer. Recent single cell RNA sequencing revealed that OPN is primarily expressed in tumor cells and tumor-infiltrating myeloid cells in human cancer patients. Emerging experimental data reveal a key role of OPN is tumor immune evasion through regulating macrophage polarization, recruitment, and inhibition of T cell activation in the tumor microenvironment. Therefore, in addition to its well-established direct tumor cell promotion function, OPN also acts as an immune checkpoint to negatively regulate T cell activation. The OPN protein level is highly elevated in peripheral blood of human cancer patients. OPN blockade immunotherapy with OPN neutralization monoclonal antibodies (mAbs) thus represents an attractive approach in human cancer immunotherapy.
Collapse
|
44
|
Elevated S100A9 expression in chronic rhinosinusitis coincides with elevated MMP production and proliferation in vitro. Sci Rep 2020; 10:16350. [PMID: 33005006 PMCID: PMC7530678 DOI: 10.1038/s41598-020-73480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a common condition associated with inflammation and tissue remodeling of the nose and paranasal sinuses, frequently occurring with nasal polyps and allergies. Here we investigate inflammation and the protease profile in nasal tissues and plasma from control non-CRS patients and CRS patients. Gene expression for several cytokines, proteases, and antiproteases was quantified in nasal tissue from non-CRS and CRS subjects with nasal polyps. Elevated expression of S100A9, IL1A, MMP3, MMP7, MMP11, MMP25, MMP28, and CTSK was observed in tissue from CRS subjects with nasal polyps compared to control tissue. Tissue protein analysis confirmed elevated levels of these targets compared to controls, and increased MMP3 and MMP7 observed in CRS subjects with nasal polyps compared to CRS subjects without polyps. Plasma concentrations of MMP3 and MMP7 were elevated in the CRS groups compared to controls. The nasal cell line, CCL-30, was exposed to S100A9 protein, resulting in increased MMP3, MMP7, and CTSK gene expression and elevated proliferation. Silencing MMP3 significantly reduced S100A9-mediated cell proliferation. Therefore, the elevated expression of S100A9 and MMPs are observed in CRS nasal tissue and S100A9 stimulated MMP3 responses to contribute to elevated nasal cell proliferation.
Collapse
|
45
|
Prostate cancer-derived MMP-3 controls intrinsic cell growth and extrinsic angiogenesis. Neoplasia 2020; 22:511-521. [PMID: 32896761 PMCID: PMC7481881 DOI: 10.1016/j.neo.2020.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Bone metastatic prostate cancer significantly impacts patient quality of life and overall survival, and despite available therapies, it is presently incurable with an unmet need for improved treatment options. As mediators of tumor progression, matrix metalloproteinases (MMPs) can degrade extracellular matrix components and regulate growth factor and cytokine bioactivity. Depending on tissue context, MMPs can either promote or inhibit tumorigenesis. Therefore, it is essential to study individual MMPs in specific cancer contexts and microenvironments to support the design and application of selective MMP inhibitors. Here we report that tumor-derived MMP-3 contributes to bone metastatic prostate cancer progression via intrinsic and extrinsic routes. MMP-3 ablation in prostate cancer cell lines significantly reduced in vitro growth combined with lowered AKT and ERK phosphorylation and total VEGFR1 and FGFR3 protein levels. In vivo, MMP-3 ablated tumors grew at a slower rate and were significantly less vascularized. Quantitative PCR analyses of wild type and MMP-3 silenced prostate cancer cells also demonstrate downregulation of a wide array of angiogenic factors. The extrinsic role for MMP-3 in angiogenesis was supported by in vitro endothelial tube formation assays where the lack of MMP-3 in prostate cancer conditioned media resulted in slower rates of tube formation. Taken together, our results suggest that tumor-derived MMP-3 contributes to prostate cancer growth in bone. These data indicate that selective inhibition of MMP-3 and/or targeting MMP generated products could be efficacious for the treatment of prostate to bone metastases.
Collapse
|
46
|
Gou X, Xue Y, Zheng H, Yang G, Chen S, Chen Z, Yuan G. Gelatinases Cleave Dentin Sialoprotein Intracellularly. Front Physiol 2020; 11:686. [PMID: 32670089 PMCID: PMC7330055 DOI: 10.3389/fphys.2020.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Dentin sialoprotein (DSP), the NH2-terminal fragment of dentin sialophosphoprotein (DSPP), is essential for dentin formation and further processed into small fragments inside the odontoblasts. Gelatinases, including matrix metalloproteinases 9 (MMP9) and MMP2, were able to cleave DSP(P) in tooth structures. We hypothesized that gelatinases may also cleave DSP intracellularly in the odontoblasts. In this study, the co-expression and physical interaction between DSP and gelatinases were proved by double immunofluorescence and in situ proximity ligation assay (PLA). Intracellular enzymatic activity of gelatinases was verified by gelatin zymography and in situ zymography. To confirm whether DSP was cleaved by active gelatinases intracellularly, lysates of wild-type (WT) odontoblastic cells treated with a MMP2 inhibitor or a MMP9 inhibitor or a MMP general inhibitor and of Mmp9-/- odontoblastic cells were analyzed by western blotting. Compared with the WT odontoblastic cells without inhibitor treatment, all these groups exhibited significantly higher ratios of high molecular weight to low molecular weight band density. FURIN was verified to be co-localized and physically interacted with MMP9 by double immunofluorescence and in situ PLA. The ratio of proMMP9 to activated MMP9 inside the odontoblastic cells were increased when function of endogenous FURIN was inhibited. And overexpressed proMMP9 was intracellularly cleaved by FURIN in the HEK293E cells, which was completely blocked by the mutation of proMMP9 with R96TPR99 substituted by A96AAA99. Taken together, these results indicate that DSP is intracellularly processed by gelatinases, and FURIN is involved in the intracellular activation of proMMP9 through cleavage of its R96TPR99 motif.
Collapse
Affiliation(s)
- Xiaohui Gou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiwen Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Osteopontin and Integrin Mediated Modulation of Post-Synapses in HIV Envelope Glycoprotein Exposed Hippocampal Neurons. Brain Sci 2020; 10:brainsci10060346. [PMID: 32512754 PMCID: PMC7349055 DOI: 10.3390/brainsci10060346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/13/2023] Open
Abstract
The advent of Human Immunodeficiency Virus (HIV) antiretrovirals have reduced the severity of HIV related neurological comorbidities but they nevertheless remain prevalent. Synaptic degeneration due to the action of several viral factors released from infected brain myeloid and glia cells and inflammatory cytokines has been attributed to the manifestation of a range of cognitive and behavioral deficits. The contributions of specific pro-inflammatory factors and their interplay with viral factors in the setting of treatment and persistence are incompletely understood. Exposure of neurons to chemokine receptor-4(CXCR4)-tropic HIV-1 envelope glycoprotein (Env) can lead to post-synaptic degradation of dendritic spines. The contribution of members of the extracellular matrix (ECM) and specifically, of perineuronal nets (PNN) toward synaptic degeneration, is not fully known, even though these structures are found to be disrupted in post-mortem HIV-infected brains. Osteopontin (Opn, gene name SPP1), a cytokine-like protein, is found in abundance in the HIV-infected brain. In this study, we investigated the role of Opn and its ECM integrin receptors, β1- and β3 integrin in modifying neuronal synaptic sculpting. We found that in hippocampal neurons incubated with HIV-1 Env protein and recombinant Opn, post-synaptic-95 (PSD-95) puncta were significantly increased and distributed to dendritic spines when compared to Env-only treated neurons. This effect was mediated through β3 integrin, as silencing of this receptor abrogated the increase in post-synaptic spines. Silencing of β1 integrin, however, did not block the increase of post-synaptic spines in hippocampal cultures treated with Opn. However, a decrease in the PNN to βIII-tubulin ratio was found, indicating an increased capacity to support spine growth. From these results, we conclude that one of the mechanisms by which Opn counters the damaging impact of the HIV Env protein on hippocampal post-synaptic plasticity is through complex interactions between Opn and components of the ECM which activate downstream protective signaling pathways that help maintain the potential for effective post-synaptic plasticity.
Collapse
|
48
|
Roque W, Boni A, Martinez-Manzano J, Romero F. A Tale of Two Proteolytic Machines: Matrix Metalloproteinases and the Ubiquitin-Proteasome System in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21113878. [PMID: 32485920 PMCID: PMC7312171 DOI: 10.3390/ijms21113878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the activation of fibroblasts and the irreversible deposition of connective tissue matrices that leads to altered pulmonary architecture and physiology. Multiple factors have been implicated in the pathogenesis of lung fibrosis, including genetic and environmental factors that cause abnormal activation of alveolar epithelial cells, leading to the development of complex profibrotic cascade activation and extracellular matrix (ECM) deposition. One class of proteinases that is thought to be important in the regulation of the ECM are the matrix metalloproteinases (MMPs). MMPs can be up- and down- regulated in idiopathic pulmonary fibrosis (IPF) lungs and their role depends upon their location and function. Furthermore, alterations in the ubiquitin-proteosome system (UPS), a major intracellular protein degradation complex, have been described in aging and IPF lungs. UPS alterations could potentially lead to the abnormal accumulation and deposition of ECM. A better understanding of the specific roles MMPs and UPS play in the pathophysiology of pulmonary fibrosis could potentially drive to the development of novel biomarkers that can be as diagnostic and therapeutic targets. In this review, we describe how MMPs and UPS alter ECM composition in IPF lungs and mouse models of pulmonary fibrosis, thereby influencing the alveolar epithelial and mesenchymal cell behavior. Finally, we discuss recent findings that associate MMPs and UPS interplay with the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Alexandra Boni
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Jose Martinez-Manzano
- Brigham and Women’s Hospital—Pulmonary and Critical Care Medicine, Boston, MA 02115, USA;
| | - Freddy Romero
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
49
|
Nitta A. [Novel molecules-related drug dependence in mice]. Nihon Yakurigaku Zasshi 2020; 155:140-144. [PMID: 32378630 DOI: 10.1254/fpj.19127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Shati/Nat8l and TMEM168 were identified from nucleus accumbens (NAcc), which received continuous methamphetamine treatments. Shati/Nat8l is a synthetic enzyme that produces N-acetylaspartate (NAA) from L-aspartate and acetyl-coenzyme NAA is converted into N-acetylaspartylglutamate (NAAG) by NAAG synthetase (NAAGS). NAAG works as a highly selective endogenous agonist for the metabotropic glutamate type 3 receptor (mGluR3). We attempted to microinjection of adeno associated virus (AAV) including Shati/Nat8l into mice NAcc. These NAcc-Shati/Nat8l mice showed attenuation of the pharmacological effects of methamphetamine. NAcc-Shati or TMEM168 mice were also produced by AAV strategy and these mice also attenuated the methamphetamine-induced hyper locomotion and place preference test. TMEM168 interacts with osteopontin in NAcc of mice and cultured cells. Further, osteopontin it self has suppressive effects of methamphetamine. TMEM168 enhances anxiety in the elevated-plus maze and light-dark box test. The anxiety is recovered by the treatment of antianxiety drug diazepam. There our serial studies demonstrate that investigation of drug dependence-related molecule could lead to new pathway for new target for psychiatric disease.
Collapse
Affiliation(s)
- Atsumi Nitta
- Department of Pharmaceutical Therapy & Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
50
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|