1
|
Wijewantha NV, Battu P, Chen K, Kumar R, Nazarko TY. New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii. Int J Mol Sci 2024; 25:11772. [PMID: 39519320 PMCID: PMC11546884 DOI: 10.3390/ijms252111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Glycogen, a branched polysaccharide organized into glycogen granules (GGs), is delivered from the cytoplasm to the lysosomes of hepatocytes by STBD1-driven selective autophagy (glycophagy). Recently, we developed Komagataella phaffii yeast as a simple model of GG autophagy and found that it proceeds non-selectively under nitrogen starvation conditions. However, another group, using Saccharomyces cerevisiae as a model, found that glycogen is a non-preferred cargo of nitrogen starvation-induced bulk autophagy. To clarify cargo characteristics of K. phaffii GGs, we used the same glycogen synthase-based reporter (Gsy1-GFP) of GG autophagy in K. phaffii as was used in S. cerevisiae. The K. phaffii Gsy1-GFP marked the GGs and reported on their autophagic degradation during nitrogen starvation, as expected. However, unlike in S. cerevisiae, glycogen synthase-marked GGs were delivered to the vacuole and degraded there with the same efficiency as a cytosolic glycogen synthase in glycogen-deficient cells, suggesting that glycogen is a neutral cargo of bulk autophagy in K. phaffii. We verified our findings with a new set of reporters based on the glycogen-binding CBM20 domain of human STBD1. The GFP-CBM20 and mCherry-CBM20 fusion proteins tagged GGs, reported about the autophagy of GGs, and confirmed that GGs in K. phaffii are neither preferred nor non-preferred substrates of bulk autophagy. They are its neutral substrates.
Collapse
Affiliation(s)
| | - Praneetha Battu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Kuangcai Chen
- Imaging Core Facility, Georgia State University, Atlanta, GA 30303, USA;
| | - Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
2
|
Wijewantha NV, Kumar R, Nazarko TY. Glycogen Granules Are Degraded by Non-Selective Autophagy in Nitrogen-Starved Komagataella phaffii. Cells 2024; 13:467. [PMID: 38534311 PMCID: PMC10969688 DOI: 10.3390/cells13060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Autophagy was initially recognized as a bulk degradation process that randomly sequesters and degrades cytoplasmic material in lysosomes (vacuoles in yeast). In recent years, various types of selective autophagy have been discovered. Glycophagy, the selective autophagy of glycogen granules, is one of them. While autophagy of glycogen is an important contributor to Pompe disease, which is characterized by the lysosomal accumulation of glycogen, its selectivity is still a matter of debate. Here, we developed the Komagataella phaffii yeast as a simple model of glycogen autophagy under nitrogen starvation conditions to address the question of its selectivity. For this, we turned the self-glucosylating initiator of glycogen synthesis, Glg1, which is covalently bound to glycogen, into the Glg1-GFP autophagic reporter. Our results revealed that vacuolar delivery of Glg1-GFP and its processing to free GFP were strictly dependent on autophagic machinery and vacuolar proteolysis. Notably, this process was independent of Atg11, the scaffold protein common for many selective autophagy pathways. Importantly, the non-mutated Glg1-GFP (which synthesizes and marks glycogen) and mutated Glg1Y212F-GFP (which does not synthesize glycogen and is degraded by non-selective autophagy as cytosolic Pgk1-GFP) were equally well delivered to the vacuole and had similar levels of released GFP. Therefore, we concluded that glycogen autophagy is a non-selective process in K. phaffii yeast under nitrogen starvation conditions.
Collapse
Affiliation(s)
| | - Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Shiraishi K, Arima Y, Nakamura M, Nakatsuji T, Oku M, Sakai Y. A novel fluorescence-activated cell sorting (FACS)-based screening identified ATG14, the gene required for pexophagy in the methylotrophic yeast. FEMS Yeast Res 2024; 24:foae022. [PMID: 39025789 PMCID: PMC11305268 DOI: 10.1093/femsyr/foae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.
Collapse
Affiliation(s)
- Kosuke Shiraishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yumi Arima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Motoharu Nakamura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takumi Nakatsuji
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahide Oku
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Otani 1-1, Sogabecho Nanjo, Kameoka 621-0023, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Sakai Y, Oku M. ATG and ESCRT control multiple modes of microautophagy. FEBS Lett 2024; 598:48-58. [PMID: 37857501 DOI: 10.1002/1873-3468.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
The discovery of microautophagy, the direct engulfment of cytoplasmic material by the lysosome, dates back to 1966 in a morphological study of mammalian cells by Christian de Duve. Since then, studies on microautophagy have shifted toward the elucidation of the physiological significance of the process. However, in contrast to macroautophagy, studies on the molecular mechanisms of microautophagy have been limited. Only recent studies revealed that ATG proteins involved in macroautophagy are also operative in several types of microautophagy and that ESCRT proteins, responsible for the multivesicular body pathway, play a central role in most microautophagy processes. In this review, we summarize our current knowledge on the function of ATG and ESCRT proteins in microautophagy.
Collapse
Affiliation(s)
- Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | - Masahide Oku
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Japan
| |
Collapse
|
5
|
Abstract
Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410821.e0000 0001 2173 8328Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sidi Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Nitrogen Starvation and Stationary Phase Lipophagy Have Distinct Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21239094. [PMID: 33260464 PMCID: PMC7730393 DOI: 10.3390/ijms21239094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023] Open
Abstract
In yeast, the selective autophagy of intracellular lipid droplets (LDs) or lipophagy can be induced by either nitrogen (N) starvation or carbon limitation (e.g., in the stationary (S) phase). We developed the yeast, Komagataella phaffii (formerly Pichia pastoris), as a new lipophagy model and compared the N-starvation and S-phase lipophagy in over 30 autophagy-related mutants using the Erg6-GFP processing assay. Surprisingly, two lipophagy pathways had hardly overlapping stringent molecular requirements. While the N-starvation lipophagy strictly depended on the core autophagic machinery (Atg1-Atg9, Atg18, and Vps15), vacuole fusion machinery (Vam7 and Ypt7), and vacuolar proteolysis (proteinases A and B), only Atg6 and proteinases A and B were essential for the S-phase lipophagy. The rest of the proteins were only partially required in the S-phase. Moreover, we isolated the prl1 (for the positive regulator of lipophagy 1) mutant affected in the S-phase lipophagy, but not N-starvation lipophagy. The prl1 defect was at a stage of delivery of the LDs from the cytoplasm to the vacuole, further supporting the mechanistically different nature of the two lipophagy pathways. Taken together, our results suggest that N-starvation and S-phase lipophagy have distinct molecular mechanisms.
Collapse
|
7
|
Schuck S. Microautophagy - distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci 2020; 133:133/17/jcs246322. [PMID: 32907930 DOI: 10.1242/jcs.246322] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cytoplasm directly. While macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become clear that microautophagy has a broad range of functions in biosynthetic transport, metabolic adaptation, organelle remodeling and quality control. This Review discusses the selective and non-selective microautophagic processes known in yeast, plants and animals. Based on the molecular mechanisms for the uptake of microautophagic cargo into lytic organelles, I propose to distinguish between fission-type microautophagy, which depends on ESCRT proteins, and fusion-type microautophagy, which requires the core autophagy machinery and SNARE proteins. Many questions remain to be explored, but the functional versatility and mechanistic diversity of microautophagy are beginning to emerge.
Collapse
Affiliation(s)
- Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Sieńko K, Poormassalehgoo A, Yamada K, Goto-Yamada S. Microautophagy in Plants: Consideration of Its Molecular Mechanism. Cells 2020; 9:cells9040887. [PMID: 32260410 PMCID: PMC7226842 DOI: 10.3390/cells9040887] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Microautophagy is a type of autophagy. It is characterized by direct enclosing with the vacuolar/lysosomal membrane, which completes the isolation and uptake of cell components in the vacuole. Several publications present evidence that plants exhibit microautophagy. Plant microautophagy is involved in anthocyanin accumulation in the vacuole, eliminating damaged chloroplasts and degrading cellular components during starvation. However, information on the molecular mechanism of microautophagy is less available than that on the general macroautophagy, because the research focusing on microautophagy has not been widely reported. In yeast and animals, it is suggested that microautophagy can be classified into several types depending on morphology and the requirements of autophagy-related (ATG) genes. This review summarizes the studies on plant microautophagy and discusses possible techniques for a future study in this field while taking into account the information on microautophagy obtained from yeast and animals.
Collapse
|
9
|
Uzor NE, McCullough LD, Tsvetkov AS. Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Front Cell Neurosci 2020; 14:44. [PMID: 32210766 PMCID: PMC7075811 DOI: 10.3389/fncel.2020.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisomes exist in most cells, where they participate in lipid metabolism, as well as scavenging the reactive oxygen species (ROS) that are produced as by-products of their metabolic functions. In certain tissues such as the liver and kidneys, peroxisomes have more specific roles, such as bile acid synthesis in the liver and steroidogenesis in the adrenal glands. In the brain, peroxisomes are critically involved in creating and maintaining the lipid content of cell membranes and the myelin sheath, highlighting their importance in the central nervous system (CNS). This review summarizes the peroxisomal lifecycle, then examines the literature that establishes a link between peroxisomal dysfunction, cellular aging, and age-related disorders that affect the CNS. This review also discusses the gap of knowledge in research on peroxisomes in the CNS.
Collapse
Affiliation(s)
- Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Louise D. McCullough
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
10
|
Rangarajan N, Gordy CL, Askew L, Bevill SM, Elston TC, Errede B, Hurst JH, Kelley JB, Sheetz JB, Suzuki SK, Valentin NH, Young E, Dohlman HG. Systematic analysis of F-box proteins reveals a new branch of the yeast mating pathway. J Biol Chem 2019; 294:14717-14731. [PMID: 31399514 DOI: 10.1074/jbc.ra119.010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
The mating pathway in yeast Saccharomyces cerevisiae has long been used to reveal new mechanisms of signal transduction. The pathway comprises a pheromone receptor, a heterotrimeric G protein, and intracellular effectors of morphogenesis and transcription. Polarized cell growth, in the direction of a potential mating partner, is accomplished by the G-protein βγ subunits and the small G-protein Cdc42. Transcription induction, needed for cell-cell fusion, is mediated by Gβγ and the mitogen-activated protein kinase (MAPK) scaffold protein Ste5. A potential third pathway is initiated by the G-protein α subunit Gpa1. Gpa1 signaling was shown previously to involve the F-box adaptor protein Dia2 and an endosomal effector protein, the phosphatidylinositol 3-kinase Vps34. Vps34 is also required for proper vacuolar sorting and autophagy. Here, using a panel of reporter assays, we demonstrate that mating pheromone stimulates vacuolar targeting of a cytoplasmic reporter protein and that this process depends on Vps34. Through a systematic analysis of F-box deletion mutants, we show that Dia2 is required to sustain pheromone-induced vacuolar targeting. We also found that other F-box proteins selectively regulate morphogenesis (Ydr306, renamed Pfu1) and transcription (Ucc1). These findings point to the existence of a new and distinct branch of the pheromone-signaling pathway, one that likely leads to vacuolar engulfment of cytoplasmic proteins and recycling of cellular contents in preparation for mating.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Claire L Gordy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lauren Askew
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Samantha M Bevill
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jillian H Hurst
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Kelley
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Sheetz
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sara Kimiko Suzuki
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Natalie H Valentin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Everett Young
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Morita K, Hama Y, Izume T, Tamura N, Ueno T, Yamashita Y, Sakamaki Y, Mimura K, Morishita H, Shihoya W, Nureki O, Mano H, Mizushima N. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J Cell Biol 2018; 217:3817-3828. [PMID: 30093494 PMCID: PMC6219718 DOI: 10.1083/jcb.201804132] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Macroautophagy is an intracellular degradation process that requires multiple autophagy-related (ATG) genes. In this study, we performed a genome-wide screen using the autophagic flux reporter GFP-LC3-RFP and identified TMEM41B as a novel ATG gene. TMEM41B is a multispanning membrane protein localized in the endoplasmic reticulum (ER). It has a conserved domain also found in vacuole membrane protein 1 (VMP1), another ER multispanning membrane protein essential for autophagy, yeast Tvp38, and the bacterial DedA family of putative half-transporters. Deletion of TMEM41B blocked the formation of autophagosomes at an early step, causing accumulation of ATG proteins and small vesicles but not elongating autophagosome-like structures. Furthermore, lipid droplets accumulated in TMEM41B-knockout (KO) cells. The phenotype of TMEM41B-KO cells resembled those of VMP1-KO cells. Indeed, TMEM41B and VMP1 formed a complex in vivo and in vitro, and overexpression of VMP1 restored autophagic flux in TMEM41B-KO cells. These results suggest that TMEM41B and VMP1 function together at an early step of autophagosome formation.
Collapse
Affiliation(s)
- Keigo Morita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tamaki Izume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Norito Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yamashita
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaito Mimura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Zheng JX, Li Y, Ding YH, Liu JJ, Zhang MJ, Dong MQ, Wang HW, Yu L. Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy 2017; 13:1870-1883. [PMID: 28820312 DOI: 10.1080/15548627.2017.1359381] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PtdIns3P signaling is critical for dynamic membrane remodeling during autophagosome formation. Proteins in the Atg18/WIPI family are PtdIns3P-binding effectors which can form complexes with proteins in the Atg2 family, and both families are essential for macroautophagy/autophagy. However, little is known about the biophysical properties and biological functions of the Atg2-Atg18/WIPI complex as a whole. Here, we demonstrate that an ortholog of yeast Atg18, mammalian WDR45/WIPI4 has a stronger binding capacity for mammalian ATG2A or ATG2B than the other 3 WIPIs. We purified the full-length Rattus norvegicus ATG2B and found that it could bind to liposomes independently of PtdIns3P or WDR45. We also purified the ATG2B-WDR45 complex and then performed 3-dimensional reconstruction of the complex by single-particle electron microscopy, which revealed a club-shaped heterodimer with an approximate length of 22 nm. Furthermore, we performed cross-linking mass spectrometry and identified a set of highly cross-linked intermolecular and intramolecular lysine pairs. Finally, based on the cross-linking data followed by bioinformatics and mutagenesis analysis, we determined the conserved aromatic H/YF motif in the C terminus of ATG2A and ATG2B that is crucial for complex formation.
Collapse
Affiliation(s)
- Jing-Xiang Zheng
- a State Key Laboratory of Membrane Biology , Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing , China.,b Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science , Tsinghua University , Beijing , China
| | - Yan Li
- c Ministry of Education Key Laboratory of Protein Sciences , Tsinghua-Peking Joint Center for Life Sciences , Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing , China
| | - Yue-He Ding
- d National Institute of Biological Sciences , Beijing , China
| | - Jun-Jie Liu
- b Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science , Tsinghua University , Beijing , China.,c Ministry of Education Key Laboratory of Protein Sciences , Tsinghua-Peking Joint Center for Life Sciences , Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing , China
| | - Mei-Jun Zhang
- d National Institute of Biological Sciences , Beijing , China
| | - Meng-Qiu Dong
- d National Institute of Biological Sciences , Beijing , China
| | - Hong-Wei Wang
- c Ministry of Education Key Laboratory of Protein Sciences , Tsinghua-Peking Joint Center for Life Sciences , Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing , China
| | - Li Yu
- a State Key Laboratory of Membrane Biology , Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing , China
| |
Collapse
|
13
|
Proikas-Cezanne T, Takacs Z, Dönnes P, Kohlbacher O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 2016; 128:207-17. [PMID: 25568150 DOI: 10.1242/jcs.146258] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a pivotal cytoprotective process that secures cellular homeostasis, fulfills essential roles in development, immunity and defence against pathogens, and determines the lifespan of eukaryotic organisms. However, autophagy also crucially contributes to the development of age-related human pathologies, including cancer and neurodegeneration. Macroautophagy (hereafter referred to as autophagy) clears the cytoplasm by stochastic or specific cargo recognition and destruction, and is initiated and executed by autophagy related (ATG) proteins functioning in dynamical hierarchies to form autophagosomes. Autophagosomes sequester cytoplasmic cargo material, including proteins, lipids and organelles, and acquire acidic hydrolases from the lysosomal compartment for cargo degradation. Prerequisite and essential for autophagosome formation is the production of phosphatidylinositol 3-phosphate (PtdIns3P) by phosphatidylinositol 3-kinase class III (PI3KC3, also known as PIK3C3) in complex with beclin 1, p150 (also known as PIK3R4; Vps15 in yeast) and ATG14L. Members of the human WD-repeat protein interacting with phosphoinositides (WIPI) family play an important role in recognizing and decoding the PtdIns3P signal at the nascent autophagosome, and hence function as autophagy-specific PtdIns3P-binding effectors, similar to their ancestral yeast Atg18 homolog. The PtdIns3P effector function of human WIPI proteins appears to be compromised in cancer and neurodegeneration, and WIPI genes and proteins might present novel targets for rational therapies. Here, we summarize the current knowledge on the roles of the four human WIPI proteins, WIPI1-4, in autophagy. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205).
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Spemannstr. 35 - 39, 72076 Tuebingen, Germany
| | - Zsuzsanna Takacs
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Spemannstr. 35 - 39, 72076 Tuebingen, Germany
| | - Pierre Dönnes
- Applied Bioinformatics Group, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, Eberhard Karls University Tuebingen, Sand 14, 72076 Tuebingen, Germany
| | - Oliver Kohlbacher
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Spemannstr. 35 - 39, 72076 Tuebingen, Germany Applied Bioinformatics Group, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, Eberhard Karls University Tuebingen, Sand 14, 72076 Tuebingen, Germany
| |
Collapse
|
14
|
|
15
|
Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 2014; 127:4078-88. [PMID: 25052096 PMCID: PMC4163648 DOI: 10.1242/jcs.154716] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Selective autophagy of damaged or redundant organelles is an important mechanism for maintaining cell homeostasis. We found previously that endoplasmic reticulum (ER) stress in the yeast Saccharomyces cerevisiae causes massive ER expansion and triggers the formation of large ER whorls. Here, we show that stress-induced ER whorls are selectively taken up into the vacuole, the yeast lysosome, by a process termed ER-phagy. Import into the vacuole does not involve autophagosomes but occurs through invagination of the vacuolar membrane, indicating that ER-phagy is topologically equivalent to microautophagy. Even so, ER-phagy requires neither the core autophagy machinery nor several other proteins specifically implicated in microautophagy. Thus, autophagy of ER whorls represents a distinct type of organelle-selective autophagy. Finally, we provide evidence that ER-phagy degrades excess ER membrane, suggesting that it contributes to cell homeostasis by controlling organelle size.
Collapse
Affiliation(s)
- Sebastian Schuck
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Ciara M Gallagher
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Nazarko TY, Ozeki K, Till A, Ramakrishnan G, Lotfi P, Yan M, Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. ACTA ACUST UNITED AC 2014; 204:541-57. [PMID: 24535825 PMCID: PMC3926955 DOI: 10.1083/jcb.201307050] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The acyl-CoA–binding protein Atg37 is a new component of the pexophagic receptor protein complex that regulates the recruitment of Atg11 by Atg30 in the peroxisomal membrane during pexophagy Autophagy is a membrane trafficking pathway that sequesters proteins and organelles into autophagosomes. The selectivity of this pathway is determined by autophagy receptors, such as the Pichia pastoris autophagy-related protein 30 (Atg30), which controls the selective autophagy of peroxisomes (pexophagy) through the assembly of a receptor protein complex (RPC). However, how the pexophagic RPC is regulated for efficient formation of the phagophore, an isolation membrane that sequesters the peroxisome from the cytosol, is unknown. Here we describe a new, conserved acyl-CoA–binding protein, Atg37, that is an integral peroxisomal membrane protein required specifically for pexophagy at the stage of phagophore formation. Atg30 recruits Atg37 to the pexophagic RPC, where Atg37 regulates the recruitment of the scaffold protein, Atg11. Palmitoyl-CoA competes with Atg30 for Atg37 binding. The human orthologue of Atg37, acyl-CoA–binding domain containing protein 5 (ACBD5), is also peroxisomal and is required specifically for pexophagy. We suggest that Atg37/ACBD5 is a new component and positive regulator of the pexophagic RPC.
Collapse
Affiliation(s)
- Taras Y Nazarko
- Section of Molecular Biology, Division of Biological Sciences, and 2 San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
17
|
Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012; 2012:512721. [PMID: 22536249 PMCID: PMC3320016 DOI: 10.1155/2012/512721] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/23/2011] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are single-membrane-bounded organelles present in the majority of eukaryotic cells. Despite the existence of great diversity among different species, cell types, and under different environmental conditions, peroxisomes contain enzymes involved in β-oxidation of fatty acids and the generation, as well as detoxification, of hydrogen peroxide. The exigency of all eukaryotic cells to quickly adapt to different environmental factors requires the ability to precisely and efficiently control peroxisome number and functionality. Peroxisome homeostasis is achieved by the counterbalance between organelle biogenesis and degradation. The selective degradation of superfluous or damaged peroxisomes is facilitated by several tightly regulated pathways. The most prominent peroxisome degradation system uses components of the general autophagy core machinery and is therefore referred to as “pexophagy.” In this paper we focus on recent developments in pexophagy and provide an overview of current knowledge and future challenges in the field. We compare different modes of pexophagy and mention shared and distinct features of pexophagy in yeast model systems, mammalian cells, and other organisms.
Collapse
|
18
|
Velikkakath AKG, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 2012; 23:896-909. [PMID: 22219374 PMCID: PMC3290647 DOI: 10.1091/mbc.e11-09-0785] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an intracellular degradation process that is mediated by autophagosomes. Mammalian Atg2 proteins Atg2A and Atg2B are identified and characterized as essential for autophagy. They are also present on lipid droplets and are involved in regulation of lipid droplet volume and distribution. Macroautophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by the autophagosome and delivered to the lysosome. Autophagosome formation is considered to take place on the endoplasmic reticulum and involves functions of autophagy-related (Atg) proteins. Here, we report the identification and characterization of mammalian Atg2 homologues Atg2A and Atg2B. Simultaneous silencing of Atg2A and Atg2B causes a block in autophagic flux and accumulation of unclosed autophagic structures containing most Atg proteins. Atg2A localizes on the autophagic membrane, as well as on the surface of lipid droplets. The Atg2A region containing amino acids 1723–1829, which shows relatively high conservation among species, is required for localization to both the autophagic membrane and lipid droplet and is also essential for autophagy. Depletion of both Atg2A and Atg2B causes clustering of enlarged lipid droplets in an autophagy-independent manner. These data suggest that mammalian Atg2 proteins function both in autophagosome formation and regulation of lipid droplet morphology and dispersion.
Collapse
Affiliation(s)
- Anoop Kumar G Velikkakath
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
19
|
Sibirny AA. Mechanisms of autophagy and pexophagy in yeasts. BIOCHEMISTRY (MOSCOW) 2011; 76:1279-90. [DOI: 10.1134/s0006297911120017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Nazarko VY, Nazarko TY, Farré JC, Stasyk OV, Warnecke D, Ulaszewski S, Cregg JM, Sibirny AA, Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 2011; 7:375-85. [PMID: 21169734 DOI: 10.4161/auto.7.4.14369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy. However, the role of Atg28 in micropexophagy was unknown. We used the yeast two-hybrid system to search for Atg28 interaction partners from P. pastoris and identified a new Atg protein, named Atg35. The atg35∆ mutant was not affected in macropexophagy, cytoplasm-to-vacuole targeting or general autophagy. However, both Atg28 and Atg35 were required for micropexophagy and for the formation of the micropexophagic apparatus (MIPA). This requirement correlated with a stronger expression of both proteins on methanol and glucose. Atg28 mediated the interaction of Atg35 with Atg17. Trafficking of overexpressed Atg17 from the peripheral ER to the nuclear envelope was required to organize a peri-nuclear structure (PNS), the site of Atg35 colocalization during micropexophagy. In summary, Atg35 is a new Atg protein that relocates to the PNS and specifically regulates MIPA formation during micropexophagy.
Collapse
|
21
|
Manjithaya R, Nazarko TY, Farré JC, Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett 2010; 584:1367-73. [PMID: 20083110 DOI: 10.1016/j.febslet.2010.01.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 12/26/2022]
Abstract
Pexophagy is a selective autophagy process wherein damaged and/or superfluous peroxisomes undergo vacuolar degradation. In methylotropic yeasts, where pexophagy has been studied most extensively, this process occurs by either micro- or macropexophagy: processes analogous to micro- and macroautophagy. Recent studies have identified specific factors and illustrated mechanisms involved in pexophagy. Although mechanistically pexophagy relies heavily on the core autophagic machinery, the latest findings about the role of auxiliary pexophagy factors have highlighted specialized membrane structures required for micropexophagy, and shown how cargo selectivity is achieved and how cargo size dictates the requirement for these factors during pexophagy. These insights and additional observations in the literature provide a framework for an understanding of the physiological role(s) of pexophagy.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
22
|
Nazarko TY, Farré JC, Subramani S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol Biol Cell 2009; 20:3828-39. [PMID: 19605559 DOI: 10.1091/mbc.e09-03-0221] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a major pathway of intracellular degradation mediated by formation of autophagosomes. Recently, autophagy was implicated in the degradation of intracellular bacteria, whose size often exceeds the capacity of normal autophagosomes. However, the adaptations of the autophagic machinery for sequestration of large cargos were unknown. Here we developed a yeast model system to study the effect of cargo size on the requirement of autophagy-related (Atg) proteins. We controlled the size of peroxisomes before their turnover by pexophagy, the selective autophagy of peroxisomes, and found that peroxisome size determines the requirement of Atg11 and Atg26. Small peroxisomes can be degraded without these proteins. However, Atg26 becomes essential for degradation of medium peroxisomes. Additionally, the pexophagy-specific phagophore assembly site, organized by the dual interaction of Atg30 with functionally active Atg11 and Atg17, becomes essential for degradation of large peroxisomes. In contrast, Atg28 is partially required for all autophagy-related pathways independent of cargo size, suggesting it is a component of the core autophagic machinery. As a rule, the larger the cargo, the more cargo-specific Atg proteins become essential for its sequestration.
Collapse
Affiliation(s)
- Taras Y Nazarko
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
23
|
Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Kim SS, Ahn CH, Yoo NJ, Lee SH. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol 2009; 217:702-6. [PMID: 19197948 DOI: 10.1002/path.2509] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence indicates that alterations of autophagy processes are directly involved in the development of many human diseases, including cancers. Autophagy-related gene (ATG) products are main players in the autophagy process. In humans there are 16 known ATG genes, of which four (ATG2B, ATG5, ATG9B and ATG12) have mononucleotide repeats with seven or more nucleotides. Frameshift mutations of genes with mononucleotide repeats are features of cancers with microsatellite instability (MSI). It is not known whether ATG genes with mononucleotide repeats are altered by frameshift mutations in gastric and colorectal carcinomas with MSI. For this, we analysed the mononecleotide repeats in ATG2B, ATG5, ATG9B and ATG12 in 32 gastric carcinomas with high MSI (MSI-H), 13 gastric carcinomas with low MSI (MSI-L), 43 colorectal carcinomas with MSI-H and 15 colorectal carcinomas with MSI-L by a single-strand conformation polymorphism (SSCP) analysis. We found ATG2B, ATG5, ATG9B and ATG12 mutations in 10, 2, 13 and 0 cancers, respectively. The mutations were detected in MSI-H cancers but not in MSI-L cancers. Gastric and colorectal cancers with MSI-H harboured one or more ATG mutations in 28.1% and 27.9%, respectively. Our data indicate that frameshift mutations in ATG genes with mononucleotide repeats are common in gastric and colorectal carcinomas with MSI-H, and suggest that these mutations may contribute to cancer development by deregulating the autophagy process.
Collapse
Affiliation(s)
- Mi Ran Kang
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita SI, Okuno T, Sakai Y, Takano Y. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. THE PLANT CELL 2009; 21:1291-304. [PMID: 19363139 PMCID: PMC2685618 DOI: 10.1105/tpc.108.060996] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 02/15/2009] [Accepted: 03/18/2009] [Indexed: 05/22/2023]
Abstract
The number of peroxisomes in a cell can change rapidly in response to changing environmental and physiological conditions. Pexophagy, a type of selective autophagy, is involved in peroxisome degradation, but its physiological role remains to be clarified. Here, we report that cells of the cucumber anthracnose fungus Colletotrichum orbiculare undergo peroxisome degradation as they infect host plants. We performed a random insertional mutagenesis screen to identify genes involved in cucumber pathogenesis by C. orbiculare. In this screen, we isolated a homolog of Pichia pastoris ATG26, which encodes a sterol glucosyltransferase that enhances pexophagy in this methylotrophic yeast. The C. orbiculare atg26 mutant developed appressoria but exhibited a specific defect in the subsequent host invasion step, implying a relationship between pexophagy and fungal phytopathogenicity. Consistent with this, its peroxisomes are degraded inside vacuoles, accompanied by the formation of autophagosomes during infection-related morphogenesis. The autophagic degradation of peroxisomes was significantly delayed in the appressoria of the atg26 mutant. Functional domain analysis of Atg26 suggested that both the phosphoinositide binding domain and the catalytic domain are required for pexophagy and pathogenicity. In contrast with the atg26 mutant, which is able to form appressoria, the atg8 mutant, which is defective in the entire autophagic pathway, cannot form normal appressoria in the earlier steps of morphogenesis. These results indicate a specific function for Atg26-enhanced pexophagy during host invasion by C. orbiculare.
Collapse
Affiliation(s)
- Makoto Asakura
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem Cell Biol 2009; 131:455-8. [PMID: 19229553 DOI: 10.1007/s00418-009-0564-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Here we discuss the mechanisms for the degradation of excess peroxisomes in mammalian hepatocytes which include (a) autophagy, (b) the action of peroxisomal Lon protease and (c) the membrane disrupting effect of 15-lipoxygenase. A recent study using Atg7 conditional-knock-out mice revealed that 70-80% of excess peroxisomes are degraded by the autophagic process. The remaining 20-30% of excess peroxisomes is most probably degraded by the action of peroxisomal Lon protease. Finally, a selective disruption of the peroxisomal membrane has been shown to be mediated by 15-lipoxygenase activity which is followed by diffusion of matrix proteins into the cytoplasm and cytoplasmic proteolysis.
Collapse
|
26
|
Hughes T, Rusten TE. Origin and evolution of self-consumption: autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:111-8. [PMID: 17977463 DOI: 10.1007/978-0-387-74021-8_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
While misfolded and short-lived proteins are degraded in proteasomes located in the nucleus and cytoplasm, the degradation of organelles and long-lived proteins in the lysosome occurs by the process of autophagy. Central and necessary to the autophagic process are two conserved ubiquitin-like conjugation machineries. These conjugation machineries appear to be specific for autophagy and can together with genetic and morphological data be used to trace the natural history of autophagy. Here we discuss the origin and evolution of autophagy.
Collapse
Affiliation(s)
- Timothy Hughes
- Department of Biochemistry, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
27
|
Schroder LA, Ortiz MV, Dunn WA. The membrane dynamics of pexophagy are influenced by Sar1p in Pichia pastoris. Mol Biol Cell 2008; 19:4888-99. [PMID: 18768759 DOI: 10.1091/mbc.e07-09-0868] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy.
Collapse
Affiliation(s)
- Laura A Schroder
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | |
Collapse
|
28
|
Abstract
Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. At the tip of an autophagic tube vesicles (autophagic bodies) pinch off into thevacuolar lumen for degradation. Formation of autophagic tubes is topologically equivalent to other budding processes directed away from the cytosolic environment, e.g., the invagination of multivesicular endosomes, retroviral budding, piecemeal microautophagy of the nucleus and micropexophagy. This clearly distinguishes microautophagy from other membrane fission events following budding toward the cytosol. Such processes are implicated in transport between organelles like the plasma membrane, the endoplasmic reticulum (ER), and the Golgi. Over many years microautophagy only could be characterized microscopically. Recent studies provided the possibility to study the process in vitro and have identified the first molecules that are involved in microautophagy.
Collapse
|
29
|
Dmytruk KV, Sibirny AA. Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407080017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Schroder LA, Glick BS, Dunn WA. Identification of pexophagy genes by restriction enzyme-mediated integration. Methods Mol Biol 2007; 389:203-218. [PMID: 17951645 DOI: 10.1007/978-1-59745-456-8_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pichia pastoris has proven to be a valuable model for examining the molecular events of the selective degradation of peroxisomes by a process called pexophagy. We have developed a protocol to rapidly identify genes essential for glucose-induced pexophagy. This method utilizes the random integration of a Zeocin resistance cassette vector into the genomic DNA thereby disrupting gene expression. Transformed yeast are selected by growth on Zeocin and pexophagy mutants identified by their inability to degrade the peroxisomal enzyme alcohol oxidase. The Zeocin vector along with flanking genomic DNA is then isolated from the mutants and the disrupted genes identified by sequencing. We have been able to isolate 59 mutants and identify 8 unique genes. The identification of 24 genes in P. pastoris and 7 genes in H. polymorpha have been reported using this approach which has been referred to as restriction-mediated integration.
Collapse
Affiliation(s)
- Laura A Schroder
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainsville, FL, USA
| | | | | |
Collapse
|
31
|
Uttenweiler A, Schwarz H, Neumann H, Mayer A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 2006; 18:166-75. [PMID: 17079729 PMCID: PMC1751332 DOI: 10.1091/mbc.e06-08-0664] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. This occurs by an autophagic tube, a specialized vacuolar membrane invagination that pinches off vesicles into the vacuolar lumen. In this study we have identified the VTC (vacuolar transporter chaperone) complex as required for microautophagy. The VTC complex is present on the ER and vacuoles and at the cell periphery. On induction of autophagy by nutrient limitation the VTC complex is recruited to and concentrated on vacuoles. The VTC complex is inhomogeneously distributed within the vacuolar membranes, showing an enrichment on autophagic tubes. Deletion of the VTC complex blocks microautophagic uptake into vacuoles. The mutants still form autophagic tubes but the production of microautophagic vesicles from their tips is impaired. In line with this, affinity-purified antibodies to the Vtc proteins inhibit microautophagic uptake in a reconstituted system in vitro. Our data suggest that the VTC complex is an important constituent of autophagic tubes and that it is required for scission of microautophagic vesicles from these tubes.
Collapse
Affiliation(s)
- Andreas Uttenweiler
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| | - Heinz Schwarz
- Max-Planck-Institut für Entwicklungsbiologie, 72076 Tübingen, Germany
| | - Heinz Neumann
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| | - Andreas Mayer
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
32
|
Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 2006; 18:106-18. [PMID: 17079731 PMCID: PMC1751328 DOI: 10.1091/mbc.e06-06-0554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.
Collapse
Affiliation(s)
- Taras Y. Nazarko
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Andriy S. Polupanov
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Ravi R. Manjithaya
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
- Department of Metabolic Engineering, Rzeszow University, Cwiklinskiej 2, Rzeszow 3-601, Poland
| |
Collapse
|
33
|
Sakai Y, Oku M, van der Klei IJ, Kiel JAKW. Pexophagy: autophagic degradation of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1767-75. [PMID: 17005271 DOI: 10.1016/j.bbamcr.2006.08.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 12/25/2022]
Abstract
The abundance of peroxisomes within a cell can rapidly decrease by selective autophagic degradation (also designated pexophagy). Studies in yeast species have shown that at least two modes of peroxisome degradation are employed, namely macropexophagy and micropexophagy. During macropexophagy, peroxisomes are individually sequestered by membranes, thus forming a pexophagosome. This structure fuses with the vacuolar membrane, resulting in exposure of the incorporated peroxisome to vacuolar hydrolases. During micropexophagy, a cluster of peroxisomes is enclosed by vacuolar membrane protrusions and/or segmented vacuoles as well as a newly formed membrane structure, the micropexophagy-specific membrane apparatus (MIPA), which mediates the enclosement of the vacuolar membrane. Subsequently, the engulfed peroxisome cluster is degraded. This review discusses the current state of knowledge of pexophagy with emphasis on studies on methylotrophic yeast species.
Collapse
Affiliation(s)
- Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
34
|
Abstract
Autophagy is a degradative transport route conserved among all eukaryotic organisms. During starvation, cytoplasmic components are randomly sequestered into large double-membrane vesicles called autophagosomes and delivered into the lysosome/vacuole where they are destroyed. Cells are able to modulate autophagy in response to their needs, and under certain circumstances, cargoes, such as aberrant protein aggregates, organelles, and bacteria can be selectively and exclusively incorporated into autophagosomes. As a result, this pathway plays an active role in many physiological processes, and it is induced in numerous pathological situations because of its ability to rapidly eliminate unwanted structures. Despite the advances in understanding the functions of autophagy and the identification of several factors, named Atg proteins that mediate it, the mechanism that leads to autophagosome formation is still a mystery. A major challenge in unveiling this process arises from the fact that the origin and the transport mode of the lipids employed to compose these structures is unknown. This compendium will review and analyze the current data about the possible membrane source(s) with a particular emphasis on the yeast Saccharomyces cerevisiae, the leading model organism for the study of autophagosome biogenesis, and on mammalian cells. The information acquired investigating the pathogens that subvert autophagy in order to replicate in the host cells will also be discussed because it could provide important hints for solving this mystery.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
35
|
Iwata JI, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E. Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 2005; 281:4035-41. [PMID: 16332691 DOI: 10.1074/jbc.m512283200] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisomes are degraded by autophagic machinery termed "pexophagy" in yeast; however, whether this is essential for peroxisome degradation in mammals remains unknown. Here we have shown that Atg7, an essential gene for autophagy, plays a pivotal role in the degradation of excess peroxisomes in mammals. Following induction of peroxisomes by a 2-week treatment with phthalate esters in control and Atg7-deficient livers, peroxisomal degradation was monitored within 1 week after discontinuation of phthalate esters. Although most of the excess peroxisomes in the control liver were selectively degraded within 1 week, this rapid removal was exclusively impaired in the mutant liver. Furthermore, morphological analysis revealed that surplus peroxisomes, but not mutant hepatocytes, were surrounded by autophagosomes in the control. Our results indicated that the autophagic machinery is essential for the selective clearance of excess peroxisomes in mammals. This is the first direct evidence for the contribution of autophagic machinery in peroxisomal degradation in mammals.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nair U, Klionsky DJ. Molecular Mechanisms and Regulation of Specific and Nonspecific Autophagy Pathways in Yeast. J Biol Chem 2005; 280:41785-8. [PMID: 16230342 DOI: 10.1074/jbc.r500016200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Usha Nair
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
37
|
Uttenweiler A, Schwarz H, Mayer A. Microautophagic Vacuole Invagination Requires Calmodulin in a Ca2+-independent Function. J Biol Chem 2005; 280:33289-97. [PMID: 16055436 DOI: 10.1074/jbc.m506086200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microautophagy is the uptake of cytosolic compounds by direct invagination of the vacuolar/lysosomal membrane. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. Autophagic tubes are topologically equivalent to the invaginations at multivesicular endosomes. At the tip of an autophagic tube, vesicles (autophagic bodies) pinch off into the vacuolar lumen for degradation. In this study we have identified calmodulin (Cmd1p) as necessary for microautophagy. Temperature-sensitive mutants for Cmd1p displayed reduced frequencies of vacuolar tube formation and/or abnormal tube morphologies. Microautophagic vacuole invagination was sensitive to Cmd1p antagonists as well as to antibodies to Cmd1p. cmd1 mutants with substitutions in the Ca2+-binding domains showed full invagination activity, and vacuolar membrane invagination was independent of the free Ca2+ concentration. Thus, rather than acting as a calcium-triggered switch, Cmd1p has a constitutive Ca2+-independent role in the formation of autophagic tubes. Kinetic analysis indicates that calmodulin is required for autophagic tube formation rather than for the final scission of vesicles from the tip of the tube.
Collapse
Affiliation(s)
- Andreas Uttenweiler
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
38
|
Chang T, Schroder LA, Thomson JM, Klocman AS, Tomasini AJ, Strømhaug PE, Dunn WA. PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris. Mol Biol Cell 2005; 16:4941-53. [PMID: 16079180 PMCID: PMC1237094 DOI: 10.1091/mbc.e05-02-0143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
When Pichia pastoris adapts from methanol to glucose growth, peroxisomes are rapidly sequestered and degraded within the vacuole by micropexophagy. During micropexophagy, sequestering membranes arise from the vacuole to engulf the peroxisomes. Fusion of the sequestering membranes and incorporation of the peroxisomes into the vacuole is mediated by the micropexophagy-specific membrane apparatus (MIPA). In this study, we show the P. pastoris ortholog of Atg9, a novel membrane protein is essential for the formation of the sequestering membranes and assembly of MIPA. During methanol growth, GFP-PpAtg9 localizes to multiple structures situated near the plasma membrane referred as the peripheral compartment (Atg9-PC). On glucose-induced micropexophagy, PpAtg9 traffics from the Atg9-PC to unique perivacuolar structures (PVS) that contain PpAtg11, but lack PpAtg2 and PpAtg8. Afterward, PpAtg9 distributes to the vacuole surface and sequestering membranes. Movement of the PpAtg9 from the Atg9-PC to the PVS requires PpAtg11 and PpVps15. PpAtg2 and PpAtg7 are essential for PpAtg9 trafficking from the PVS to the vacuole and sequestering membranes, whereas trafficking of PpAtg9 proceeds independent of PpAtg1, PpAtg18, and PpVac8. In summary, our data suggest that PpAtg9 transits from the Atg9-PC to the PVS and then to the sequestering membranes that engulf the peroxisomes for degradation.
Collapse
Affiliation(s)
- Tina Chang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Reggiori F, Shintani T, Nair U, Klionsky DJ. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 2005; 1:101-9. [PMID: 16874040 PMCID: PMC1762033 DOI: 10.4161/auto.1.2.1840] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a degradative process conserved among eukaryotic cells. It allows the elimination of cytoplasm including aberrant protein aggregates and damaged organelles. Accordingly, it is implicated in normal developmental processes and also serves a protective role in tumor suppression and elimination of invading pathogens, whereas defects in autophagy are associated with various human diseases including cancer and neurodegeneration. Atg proteins mediate the sequestration event that occurs at the preautophagosomal structure (PAS) by catalyzing the formation of double-membrane vesicles, termed autophagosomes. In Saccharomyces cerevisiae, the integral membrane protein Atg9 that is required for autophagy cycles through the PAS. Here, we demonstrate that Atg9 shuttles between this location and mitochondria. These data support a new model where mitochondria may provide at least part of the autophagosomal lipids and suggest a novel cellular function for this well-studied organelle.
Collapse
Affiliation(s)
- Fulvio Reggiori
- University of Michigan, Life Sciences Institute, Departments of Molecular, Cellular and Developmental Biology and of Biological Chemistry, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Many organisms stringently regulate the number, volume and enzymatic content of peroxisomes (and other organelles). Understanding this regulation requires knowledge of how organelles are assembled and selectively destroyed in response to metabolic cues. In the past decade, considerable progress has been achieved in the elucidation of the roles of genes involved in peroxisome biogenesis, half of which are affected in human peroxisomal disorders. The recent discovery of intermediates and genes in peroxisome turnover by selective autophagy-related processes (pexophagy) opens the door to understanding peroxisome turnover and homeostasis. In this article, we summarize advances in the characterization of genes that are necessary for the transport and delivery of selective and nonselective cargoes to the lysosome or vacuole by autophagy-related processes, with emphasis on peroxisome turnover by micropexophagy.
Collapse
Affiliation(s)
- Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
41
|
Monastryska I, Sjollema K, van der Klei IJ, Kiel JAKW, Veenhuis M. Microautophagy and macropexophagy may occur simultaneously inHansenula polymorpha. FEBS Lett 2004; 568:135-8. [PMID: 15196934 DOI: 10.1016/j.febslet.2004.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 05/05/2004] [Accepted: 05/11/2004] [Indexed: 11/18/2022]
Abstract
We subjected methanol-grown cells of wild type Hansenula polymorpha simultaneously to nitrogen depletion and excess glucose conditions. Both treatments induce the degradation of peroxisomes, either selective (via excess glucose) or non-selective (via nitrogen limitation). Our combined data strongly suggest that both processes occur simultaneously under these conditions. The implications of these findings on studies of autophagy and related transport pathways to the vacuole in yeast are discussed.
Collapse
Affiliation(s)
- Iryna Monastryska
- Laboratory of Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Abstract
Peroxisomes are essential organelles in many eukaryotes. Until recently, the main focus of the investigations concerning these important organelles was to understand the biogenesis of the peroxisome (induction, proliferation and matrix protein import). However, when peroxisomes become redundant they are quickly degraded by highly selective processes known as pexophagy. The first molecular studies on pexophagy have indicated that this process shares many features with certain transport pathways to the vacuole (vacuolar protein sorting, autophagy, cytoplasm-to-vacuole targeting and endocytosis). Nevertheless, recent data demonstrate that in addition to common genes also unique genes are required for these transport processes. The main focus for the future should therefore be on identifying the unique determinants of pexophagy. Earlier results suggest that in the methylotrophic yeast Hansenula polymorpha proteins located on the peroxisome itself are required for pexophagy. Thus, it has become essential to study in detail the role of peroxisomal membrane proteins in the degradation process. This review highlights the main achievements of the last few years, with emphasis on H. polymorpha.
Collapse
Affiliation(s)
- Adriana N Leão
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | |
Collapse
|
43
|
Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A Unified Nomenclature for Yeast Autophagy-Related Genes. Dev Cell 2003; 5:539-45. [PMID: 14536056 DOI: 10.1016/s1534-5807(03)00296-x] [Citation(s) in RCA: 928] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Mukaiyama H, Baba M, Osumi M, Aoyagi S, Kato N, Ohsumi Y, Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 2003; 15:58-70. [PMID: 13679515 PMCID: PMC307527 DOI: 10.1091/mbc.e03-05-0340] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microautophagy is a versatile process in which vacuolar or lysosomal membranes directly sequester cytosolic targets for degradation. Recent genetic evidence suggested that microautophagy uses molecular machineries essential for macroautophagy, but the details of this process are still unknown. In this study, a ubiquitin-like protein Paz2 essential for micropexophagy in the yeast Pichia pastoris has been shown to receive modification through the function of Paz8 and Gsa7, yielding a modified form Paz2-I, similar to the ubiquitin-like lipidation of Aut7 that is essential for macroautophagy in Saccharomyces cerevisiae. We identified a novel membrane structure formed after the onset of micropexophagy, which we suggest is necessary for the sequestration of peroxisomes by the vacuole. Assembly of this newly formed membrane structure, which is followed by localization of Paz2 to it, was found to require a properly functioning Paz2-modification system. We herein show that Paz2 and its modification system conduct micropexophagy through formation of the membrane structure, which explains the convergence between micropexophagy and macroautophagy with regard to de novo membrane formation.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Autophagy is an important constitutive cellular process involved in size regulation, protein turnover and the removal of malformed or superfluous subcellular components. The process involves the sequestration of cytoplasm and organelles into double-membrane autophagic vacuoles for subsequent breakdown within lysosomes. In this work, we demonstrate that the intracellular pathogen Listeria monocytogenes can also be a target for autophagy. If infected macrophages are treated with chloramphenicol after phagosome lysis, the bacteria are internalized from the cell cytoplasm into autophagic vacuoles. The autophagic vacuoles appear to form by fusion of small cytoplasmic vesicles around the bacteria. These vesicular structures immunolabel with antibodies to protein disulphide isomerase, a marker for the rough ER. Internalization of metabolically arrested cytoplasmic L. monocytogenes represents an autophagic process as the vacuoles have double membranes and the process can be inhibited by the autophagy inhibitors 3-methyladenine and wortmannin. Additionally, the rate of internalization can be accelerated under starvation conditions and the vacuoles fuse with the endocytic pathway. Metabolic inhibition of cytoplasmic bacteria prevents them from adapting to the intracellular niche and reveals a host mechanism utilizing the autophagic pathway as a defence against invading pathogens by providing a route for their removal from the cytoplasm and subsequent delivery to the endocytic pathway for degradation.
Collapse
Affiliation(s)
- Kathryn A Rich
- Ahmanson Advanced Electron Microscopy and Imaging Center, House Ear Institute, and Department of Pathology, Keck School of Medicine, USC, Los Angeles, CA, USA
| | | | | |
Collapse
|
46
|
Oku M, Warnecke D, Noda T, Müller F, Heinz E, Mukaiyama H, Kato N, Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J 2003; 22:3231-41. [PMID: 12839986 PMCID: PMC165655 DOI: 10.1093/emboj/cdg331] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fungal sterol glucosyltransferases, which synthesize sterol glucoside (SG), contain a GRAM domain as well as a pleckstrin homology and a catalytic domain. The GRAM domain is suggested to play a role in membrane traffic and pathogenesis, but its significance in any biological processes has never been experimentally demonstrated. We describe herein that sterol glucosyltransferase (Ugt51/Paz4) is essential for pexophagy (peroxisome degradation), but not for macroautophagy in the methylotrophic yeast Pichia pastoris. By expressing truncated forms of this protein, we determined the individual contributions of each of these domains to pexophagy. During micropexophagy, the glucosyltransferase was associated with a recently identified membrane structure: the micropexophagic apparatus. A single amino acid substitution within the GRAM domain abolished this association as well as micropexophagy. This result shows that GRAM is essential for proper protein association with its target membrane. In contrast, deletion of the catalytic domain did not impair protein localization, but abolished pexophagy, suggesting that SG synthesis is required for this process.
Collapse
Affiliation(s)
- Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Macroautophagy is an intracellular degradation system for the majority of proteins and some organelles. The molecular mechanism of autophagy has been extensively studied using the yeast, Saccharomyces cerevisiae, during these past 10 years. These studies suggested that the molecular machinery of autophagosome formation is well conserved from yeast to higher eukaryotes. Identification and characterization of the mammalian counterparts of the yeast autophagy proteins has facilitated our understanding of mammalian autophagy, particularly of autophagosome formation. These findings are now being applied to studies on the physiological roles of autophagy in mammals.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Cell Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
48
|
Khalfan WA, Klionsky DJ. Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 2002; 14:468-75. [PMID: 12383798 DOI: 10.1016/s0955-0674(02)00343-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autophagy is a vacuolar trafficking pathway that targets subcellular constituents to the vacuole for degradation and recycling. In nutrient-rich conditions in yeast, a different vacuolar trafficking pathway, the cytoplasm to vacuole targeting (Cvt) pathway, transports the resident hydrolase aminopeptidase I to the vacuole, using many of the same molecular components as autophagy. The Cvt pathway is constitutive, whereas autophagy is induced by starvation. Recent studies have laid important groundwork for understanding the signaling mechanism that induces autophagy. Another key advance has been the identification of two novel conjugation systems that function in vesicle formation in both pathways. Finally, many autophagy- and Cvt-specific gene products, including those involved in lipid modification, vesicle expansion and cargo specificity, have been shown to localize to a novel perivacuolar membrane compartment. Additional analysis of this location will help in further dissecting the early events of vesicle formation and identifying the source of the sequestering membrane.
Collapse
Affiliation(s)
- Waheeda A Khalfan
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
49
|
Current awareness on yeast. Yeast 2002; 19:651-8. [PMID: 11967835 DOI: 10.1002/yea.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Current awareness on yeast. Yeast 2002; 19:565-72. [PMID: 11921105 DOI: 10.1002/yea.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|