1
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Motafeghi F, Mortazavi P, Mahdavi M, Shokrzadeh M. Cellular effects of epsilon toxin on the cell viability and oxidative stress of normal and lung cancer cells. Microb Pathog 2022; 169:105649. [PMID: 35738467 DOI: 10.1016/j.micpath.2022.105649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Clostridium perfringens is a type of gram-positive anaerobic bacilli. C.perfringens produces many toxins, of which epsilon (ε) is one of the major ones. The mechanism of epsilon's toxicity is located in the lipid of cell membrane tissues. Epsilon toxin is known as a bioterrorism agent. Inhalation of these aerosols can destroy pulmonary vascular endothelial cells and cause lung injury, which increases vascular permeability and pulmonary edema. METHODS In this study, we investigated the toxicity of epsilon toxin by using the MTT assay, evaluated oxidative stress effects such as ROS and LPO using the DCFH and TBA reagents, and measured the GSH of the normal and lung cancer cells by using the DTNB reagent. RESULTS The result showed that 1 μg/ml of epsilon toxin caused mitochondrial disorder and reduced the growth of the normal cell line. This toxin also induced ROS and damage to lipid membranes. Furthermore, the same effect occurred in the lung cancer cell, and the epsilon toxin inhibited cancer cell proliferation. CONCLUSION This toxin causes toxicity by binding to lipid membranes. As the present study results have confirmed, epsilon toxin inhibits mitochondrial function and induces ROS and lipid membrane damage.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Mortazavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Mahdavi
- Student Research Committee, Ramsar International Branch, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology. Cells 2022; 11:cells11050903. [PMID: 35269525 PMCID: PMC8909277 DOI: 10.3390/cells11050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating β-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space—what has been discovered and what remains unknown—toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.
Collapse
|
4
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
5
|
Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, Beloglazova N, Tsilla V, Sas B, Madder A, De Saeger S, Uyttendaele M. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Compr Rev Food Sci Food Saf 2020; 19:1605-1657. [DOI: 10.1111/1541-4337.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Jelena Jovanovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Silvia Monteiro
- Laboratorio Analises, Instituto Superior TecnicoUniversidade de Lisboa Lisbon Portugal
| | - Marlies Decleer
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mirjana Andjelkovic
- Operational Directorate Food, Medicines and Consumer SafetyService for Chemical Residues and Contaminants Brussels Belgium
| | - Astrid Foubert
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Natalia Beloglazova
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
- Nanotechnology Education and Research CenterSouth Ural State University Chelyabinsk Russia
| | - Varvara Tsilla
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Annemieke Madder
- Laboratorium for Organic and Biomimetic Chemistry, Department of Organic and Macromolecular ChemistryGhent University Ghent Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| |
Collapse
|
6
|
Effects of Claudin-1 on the Action of Clostridium perfringens Enterotoxin in Caco-2 Cells. Toxins (Basel) 2019; 11:toxins11100582. [PMID: 31601044 PMCID: PMC6832201 DOI: 10.3390/toxins11100582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) contributes to diarrhea and an often-lethal enterotoxemia. CPE action starts when it binds to claudin receptors, forming a small complex (90 kDa). Six small complexes then oligomerize to create prepores, followed by insertion of beta-hairpins from CPE to form beta-barrel pores named CH-1 or CH-2. Of the ~27 members of the human claudin protein family, only some bind CPE. However, both receptor claudins and the nonreceptor claudin-1 (CLDN-1) are associated with the small and CH-1/CH-2 CPE complexes. Therefore, this study evaluated whether claudin-1 affects CPE action by generating a CLDN-1 null mutant in Caco-2 cells using CRISPR-Cas9. Compared to wild-type Caco-2 cells, paracellular permeability of the CLDN-1 mutant was significantly enhanced, suggesting that claudin-1 may reduce CPE absorption during enterotoxemia. The CLDN-1 mutant was also markedly more sensitive than wild-type Caco-2 cells to apically-applied CPE. The mechanism behind this increased sensitivity involved higher CPE binding by the CLDN-1 mutant vs. wild-type Caco-2 cells, which led to more CH-1/CH-2 complex formation. However, the CH-1/CH-2 complexes formed by the CLDN-1 mutant were less stable or trypsin resistant than those of wild-type cells. These results indicate that, although a nonreceptor, CLDN-1 positively and negatively influences CPE action.
Collapse
|
7
|
Abstract
In humans and livestock, Clostridium perfringens is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of C. perfringens. This article primarily focuses on the C. perfringens type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce C. perfringens enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The cpe gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when C. perfringens sporulates in the intestines. Beyond type F strains, C. perfringens type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. C. perfringens is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.
Collapse
|
8
|
Uzal FA, Navarro MA, Li J, Freedman JC, Shrestha A, McClane BA. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe 2018; 53:11-20. [PMID: 29883627 DOI: 10.1016/j.anaerobe.2018.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
Several enteric clostridial diseases can affect humans and animals. Of these, the enteric infections caused by Clostridium perfringens and Clostridium difficile are amongst the most prevalent and they are reviewed here. C. perfringens type A strains encoding alpha toxin (CPA) are frequently associated with enteric disease of many animal mammalian species, but their role in these diseased mammals remains to be clarified. C. perfringens type B encoding CPA, beta (CPB) and epsilon (ETX) toxins causes necro-hemorrhagic enteritis, mostly in sheep, and these strains have been recently suggested to be involved in multiple sclerosis in humans, although evidence of this involvement is lacking. C. perfringens type C strains encode CPA and CPB and cause necrotizing enteritis in humans and animals, while CPA and ETX producing type D strains of C. perfringens produce enterotoxemia in sheep, goats and cattle, but are not known to cause spontaneous disease in humans. The role of C. perfringens type E in animal or human disease remains poorly defined. The newly revised toxinotype F encodes CPA and enterotoxin (CPE), the latter being responsible for food poisoning in humans, and the less prevalent antibiotic associated and sporadic diarrhea. The role of these strains in animal disease has not been fully described and remains controversial. Another newly created toxinotype, G, encodes CPA and necrotic enteritis toxin B-like (NetB), and is responsible for avian necrotic enteritis, but has not been associated with human disease. C. difficile produces colitis and/or enterocolitis in humans and multiple animal species. The main virulence factors of this microorganism are toxins A, B and an ADP-ribosyltransferase (CDT). Other clostridia causing enteric diseases in humans and/or animals are Clostridium spiroforme, Clostridium piliforme, Clostridium colinum, Clostridium sordellii, Clostridium chauvoei, Clostridium septicum, Clostridium botulinum, Clostridium butyricum and Clostridium neonatale. The zoonotic transmission of some, but not all these clostridsial species, has been demonstrated.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA, USA.
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Eichner M, Augustin C, Fromm A, Piontek A, Walther W, Bücker R, Fromm M, Krause G, Schulzke JD, Günzel D, Piontek J. In Colon Epithelia, Clostridium perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins Which are Apically Accessible Due to Tight Junction Derangement. J Infect Dis 2017; 217:147-157. [DOI: 10.1093/infdis/jix485] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Miriam Eichner
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| | - Christian Augustin
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| | - Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Roland Bücker
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dorothee Günzel
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| | - Jörg Piontek
- Institute of Clinical Physiology, Charité—Universitätsmedizin Berlin, Germany
| |
Collapse
|
11
|
The Potential Therapeutic Agent Mepacrine Protects Caco-2 Cells against Clostridium perfringens Enterotoxin Action. mSphere 2017; 2:mSphere00352-17. [PMID: 28875177 PMCID: PMC5577654 DOI: 10.1128/msphere.00352-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases. Clostridium perfringens enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors. However, that study did not assess whether mepacrine inactivates CPE or, instead, inhibits a step in CPE action. Furthermore, CPE action in host cells is complex, involving the toxin binding to receptors, receptor-bound CPE oligomerizing into a prepore on the membrane surface, and β-hairpins in the CPE prepore inserting into the membrane to form a pore that induces cell death. Therefore, the current study evaluated the ability of mepacrine to protect cells from CPE. This drug was found to reduce CPE-induced cytotoxicity in Caco-2 cells. This protection did not involve mepacrine inactivation of CPE, indicating that mepacrine affects one or more steps in CPE action. Western blotting then demonstrated that mepacrine decreases CPE pore levels in Caco-2 cells. This mepacrine-induced reduction in CPE pore levels did not involve CPE binding inhibition but rather an increase in CPE monomer dissociation due to mepacrine interactions with Caco-2 membranes. In addition, mepacrine was also shown to inhibit CPE pores when already present in Caco-2 cells. These in vitro studies, which identified two mepacrine-sensitive steps in CPE-induced cytotoxicity, add support to further testing of the therapeutic potential of mepacrine against CPE-mediated disease. IMPORTANCEClostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases.
Collapse
|
12
|
Poormontaseri M, Hosseinzadeh S, Shekarforoush SS, Kalantari T. The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type a in Caco-2 cell culture. BMC Microbiol 2017; 17:150. [PMID: 28676033 PMCID: PMC5496268 DOI: 10.1186/s12866-017-1051-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/16/2017] [Indexed: 01/22/2023] Open
Abstract
Background Some Bacillus strains have recently been identified for potential use as probiotics and food additives. The present study evaluated the antimicrobial effects of Bacillus subtilis ATCC 6633 and its metabolite on the enterotoxin and vegetative cells, spore and germinated spore of Clostridium perfringens type A in Caco-2 cells. Results We used flow cytometry and MTT assays to evaluate the cytotoxicity effect of treatments. According to the results, the most cell survival was found in the 4% crude antimicrobial substance (CAS) with the vegetative form of C. perfringens among co-cultured groups. Furthermore, the apoptosis and necrosis in co-cultured groups were significantly decreased (P < 0.05). Conclusion The present results suggested the crucial role of the current probiotic in the control of various forms of C. perfringens type A which was investigated for the first time. Also, the majority of treatments showed higher cell viability in flow cytometry compared to the MTT assay. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1051-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Poormontaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, P.O. Box: 71441-69155, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, P.O. Box: 71441-69155, Shiraz, Iran.
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, P.O. Box: 71441-69155, Shiraz, Iran
| | - Tahereh Kalantari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Abstract
Clostridium perfringens enterotoxin (CPE) binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s) from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s) in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease. In susceptible host cells, Clostridium perfringens enterotoxin (CPE) binds to claudin receptors and then forms pores that result in cell death. Using cocultures of CPE receptor-expressing sensitive cells mixed with CPE-insensitive cells lacking receptors for this toxin, the current study determined that CPE-treated sensitive cells release soluble cytotoxic factors, one of which may be a 10- to 30-kDa serine protease, to cause apoptotic death of cells that are themselves CPE insensitive. These findings suggest a novel bystander killing mechanism by which a pore-forming toxin may extend its damage to affect cells not directly responsive to that toxin. If confirmed to occur in vivo by future studies, this bystander killing effect may have significance during CPE-mediated disease and could impact the translational use of CPE for purposes such as cancer therapy.
Collapse
|
14
|
Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch 2016; 469:77-90. [DOI: 10.1007/s00424-016-1902-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
|
15
|
Shrestha A, Uzal FA, McClane BA. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe 2016; 41:18-26. [PMID: 27090847 DOI: 10.1016/j.anaerobe.2016.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 01/30/2023]
Abstract
Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernadino Branch, School of Veterinary Medicine, University of California-Davis, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, Rood JI. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections. Vet Microbiol 2015; 179:23-33. [PMID: 25770894 DOI: 10.1016/j.vetmic.2015.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
Abstract
The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA.
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jackie K Cheung
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Theoret
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jorge P Garcia
- Department of Large Animal Medicine, School of Veterinary Medicine, National University of the Center of Buenos Aires Province, Tandil, Argentina
| | - Robert J Moore
- Department of Microbiology, Monash University, Clayton, Victoria, Australia; School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia; Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Julian I Rood
- Department of Microbiology, Monash University, Clayton, Victoria, Australia; Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| |
Collapse
|
17
|
A synthetic peptide corresponding to the extracellular loop 2 region of claudin-4 protects against Clostridium perfringens enterotoxin in vitro and in vivo. Infect Immun 2014; 82:4778-88. [PMID: 25156725 DOI: 10.1128/iai.02453-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) action starts when the toxin binds to claudin receptors. Claudins contain two extracellular loop domains, with the second loop (ECL-2) being slightly smaller than the first. CPE has been shown to bind to ECL-2 in receptor claudins. We recently demonstrated that Caco-2 cells (a naturally CPE-sensitive enterocyte-like cell line) can be protected from CPE-induced cytotoxicity by preincubating the enterotoxin with soluble full-length recombinant claudin-4 (rclaudin-4), which is a CPE receptor, but not with recombinant nonreceptor claudins, such as rclaudin-1. The current study evaluated whether a synthetic peptide corresponding to the claudin-4 ECL-2 sequence can similarly inhibit CPE action in vitro and in vivo. Significant protection of Caco-2 cells was also observed using either rclaudin-4 or the claudin-4 ECL-2 peptide in both a preincubation assay and a coincubation assay. This inhibitory effect was specific, since rclaudin-1 and a synthetic peptide based on the claudin-1 ECL-2 offered no protection to Caco-2 cells. However, the claudin-4 ECL-2 peptide was unable to neutralize cytotoxicity if CPE had already bound to Caco-2 cells. When the study was repeated in vivo using a rabbit small intestinal loop assay, preincubation or coincubation of CPE with the claudin-4 ECL-2 peptide significantly and specifically inhibited the development of CPE-induced luminal fluid accumulation and histologic lesions in rabbit small intestinal loops. No similar in vivo protection from CPE was afforded by the claudin-1 ECL-2 peptide. These results suggest that claudin-4 ECL-2 peptides should be further investigated for their potential therapeutic application against CPE-associated disease.
Collapse
|
18
|
Romanov V, Whyard TC, Waltzer WC, Gabig TG. A claudin 3 and claudin 4-targeted Clostridium perfringens protoxin is selectively cytotoxic to PSA-producing prostate cancer cells. Cancer Lett 2014; 351:260-4. [PMID: 24952257 DOI: 10.1016/j.canlet.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Prostate cancer is the second leading cause of non-cutaneous cancer-related death in males, and effective strategies for treatment of metastatic disease are currently limited. The tight junction proteins, claudin 3 and claudin 4, serve as cell-surface receptors for the pore-forming Clostridium perfringens enterotoxin [CPE]. Most prostate cancer cells overexpress claudin 3 and claudin 4, and claudins are aberrantly distributed over the plasma membrane, making these cells particularly sensitive to cytolysis by CPE. Prostate cancer cells secrete PSA locally that is proteolytically active; however, circulating PSA is inactivated via binding to protease inhibitors. To overcome systemic toxicity of CPE, a modified protoxin was constructed with a tethered ligand attached to the C-terminus connected by a flexible linker containing a PSA-specific protease cleavage site. This engineered protoxin selectively and efficiently lyses PSA-producing prostate cancer cells whereas CLDN3 and CLDN4 positive cells that do not express PSA are resistant to cytolysis.
Collapse
Affiliation(s)
- Victor Romanov
- Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Terry C Whyard
- Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Wayne C Waltzer
- Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Theodore G Gabig
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, United States.
| |
Collapse
|
19
|
|
20
|
Abstract
In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract.
Collapse
|
21
|
Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. mBio 2013; 4:mBio.00594-12. [PMID: 23322640 PMCID: PMC3551551 DOI: 10.1128/mbio.00594-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) contributes to several important human gastrointestinal (GI) diseases. This toxin and its derivatives are also being explored for translational applications, i.e., cancer therapy or drug delivery. Some, but not all, members of the 24-member claudin (Cldn) family of mammalian tight junction proteins can serve as CPE receptors. Among the human Cldns (hCldns), hCldn-3 and -4 are known to convey CPE sensitivity when expressed by fibroblast transfectants. However, other Cldns are also reportedly expressed in the intestines, where they might contribute to natural CPE-mediated GI disease, and in other organs, where they might react with CPE-based therapeutics. Therefore, the current study assessed whether two additional hCldns beside hCldn-3 and -4 are also functional CPE receptors. Using Cldn-expressing transfectants, hCldn-8 and -14 were shown to convey CPE-mediated cytotoxicity at pathophysiologically relevant concentrations of this toxin, although ~2-to-10-fold less efficiently than hCldn-4. Site-directed mutagenesis then demonstrated that the N146 residue in hCldn-14 and the S151 residue in hCldn-8 are largely responsible for modulating the weaker CPE binding properties of hCldn-8 and -14 versus hCldn-4, which broadens understanding of Cldn:CPE binding interactions. Since Cldn-8 and -14 are reportedly expressed in mammalian intestines, the current results support the possibility that these two hCldns contribute to natural CPE-mediated gastrointestinal disease and could be CPE-based therapeutic targets for cancers overexpressing those claudins. However, these results also suggest caution during therapeutic use of CPE, which might trigger toxic side effects in normal human tissues producing hCldn-8 or -14, as well as in those producing hCldn-3 or -4. IMPORTANCE Clostridium perfringens enterotoxin (CPE) is responsible for the gastrointestinal symptoms of the second-most-common bacterial food-borne illness and is also being explored for use as a cancer therapeutic or for increasing drug delivery. Until now, the only known human CPE receptors were claudin-3 and -4. This work shows that human claudin-8 and -14 can also bind CPE and convey cytotoxicity, although slightly less efficiently than claudin-3 and -4. The claudin-8 and -14 residues responsible for this weaker CPE binding were identified, shedding new light on CPE:claudin interactions. Clostridium perfringens enterotoxin (CPE) is responsible for the gastrointestinal symptoms of the second-most-common bacterial food-borne illness and is also being explored for use as a cancer therapeutic or for increasing drug delivery. Until now, the only known human CPE receptors were claudin-3 and -4. This work shows that human claudin-8 and -14 can also bind CPE and convey cytotoxicity, although slightly less efficiently than claudin-3 and -4. The claudin-8 and -14 residues responsible for this weaker CPE binding were identified, shedding new light on CPE:claudin interactions.
Collapse
|
22
|
Regulation of Tight Junctions for Therapeutic Advantages. CANCER METASTASIS - BIOLOGY AND TREATMENT 2013. [DOI: 10.1007/978-94-007-6028-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Infect Immun 2012; 80:4078-88. [PMID: 22966051 DOI: 10.1128/iai.00069-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal symptoms of the second most common bacterial food-borne illness. Previous studies suggested that a region named TM1, which has amphipathic characteristics and spans from amino acids 81 to 106 of the native CPE protein, forms a β-hairpin involved in β-barrel pore formation. To further explore the potential role of TM1 in pore formation, the single Cys naturally present in CPE at residue 186 was first altered to alanine by mutagenesis; the resultant rCPE variant, named C186A, was shown to retain cytotoxic properties. Cys-scanning mutagenesis was then performed in which individual Cys mutations were introduced into each TM1 residue of the C186A variant. When those Cys variants were characterized, three variants were identified that exhibit reduced cytotoxicity despite possessing binding and oligomerization abilities similar to those of the C186A variant from which they were derived. Pronase challenge experiments suggested that the reduced cytotoxicity of those two Cys variants, i.e., the F91C and F95C variants, which model to the tip of the β-hairpin, was attributable to a lessened ability of these variants to insert into membranes after oligomerization. In contrast, another Cys variant, i.e., the G103C variant, with impaired cytotoxicity apparently inserted into membranes after oligomerization but could not form a pore with a fully functional channel. Collectively, these results support the TM1 region forming a β-hairpin as an important step in CPE insertion and pore formation. Furthermore, this work identifies the first amino acid residues specifically involved in those two steps in CPE action.
Collapse
|
24
|
Uzal FA, McClane BA. Animal models to study the pathogenesis of enterotoxigenic Clostridium perfringens infections. Microbes Infect 2012; 14:1009-16. [PMID: 22713745 DOI: 10.1016/j.micinf.2012.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Rabbits, mice, rats, non-human primates, sheep and cattle have been used to study the effect of Clostridium perfringens enterotoxin (CPE). CPE produces mostly necrosis of the small intestinal epithelium along with fluid accumulation in rabbits and mice. In the latter, CPE can bind to internal organs such as the liver, which induces lethal potassium levels in blood.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA.
| | | |
Collapse
|
25
|
Popoff MR. Multifaceted interactions of bacterial toxins with the gastrointestinal mucosa. Future Microbiol 2011; 6:763-97. [PMID: 21797691 DOI: 10.2217/fmb.11.58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The digestive tract is one of the ecosystems that harbors the largest number and greatest variety of bacteria. Among them, certain bacteria have developed various strategies, including the synthesis of virulence factors such as toxins, to interact with the intestinal mucosa, and are responsible for various pathologies. A large variety of bacterial toxins of different sizes, structures and modes of action are able to interact with the gastrointestinal mucosa. Some toxins, termed enterotoxins, directly stimulate fluid secretion in enterocytes or cause their death, whereas other toxins pass through the intestinal barrier and disseminate by the general circulation to remote organs or tissues, where they are active. After recognition of a membrane receptor on target cells, toxins can act at the cell membrane by transducing a signal across the membrane in a hormone-like manner, by pore formation or by damaging membrane compounds. Other toxins can enter the cells and modify an intracellular target leading to a disregulation of certain physiological processes or disorganization of some structural architectures and cell death. Toxins are fascinating molecules, which mimic or interfere with eukaryotic physiological processes. Thereby, they have permitted the identification and characterization of new natural hormones or regulatory pathways. Besides use as protective antigens in vaccines, toxins offer multiple possibilities in pharmacology, such as immune modulation or specific delivery of a protein of interest into target cells.
Collapse
Affiliation(s)
- M R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 757245 Paris cedex 15, France.
| |
Collapse
|
26
|
Abstract
Clostridium perfringens enterotoxin (CPE), a single polypeptide of approximately 35 kDa in size, is -associated with type A food poisoning and such non-foodborne gastrointestinal diseases as antibiotic-associated diarrhea and sporadic diarrhea. CPE action begins with binding of the toxin to a claudin -receptor, forming a ∼90 kDa small complex that then rapidly oligomerizes into a hexamer of ∼450 kDa termed CH-1 (CPE hexamer-1). CH-1 is essentially a pore through which calcium gains entry to the cytoplasm, altering cell permeability and resulting in cell death by oncosis or apoptosis. Additionally, tight junctions are disrupted, allowing CPE access to the basolateral membrane so it can produce additional CH-1 -complexes and also the CH-2 complex (∼600 kDa) that contains occludin. We have recently demonstrated the presence of claudins-3 and -4 in both the CH-1 and CH-2 CPE complexes formed after CPE treatment naturally sensitive Caco-2 cells. Interestingly, claudin-1, which binds CPE poorly (if at all), was also present in these complexes.
Collapse
|
27
|
Gao Z, Xu X, McClane B, Zeng Q, Litkouhi B, Welch WR, Berkowitz RS, Mok SC, Garner EIO. C terminus of Clostridium perfringens enterotoxin downregulates CLDN4 and sensitizes ovarian cancer cells to Taxol and Carboplatin. Clin Cancer Res 2010; 17:1065-74. [PMID: 21123456 DOI: 10.1158/1078-0432.ccr-10-1644] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE We have previously shown that CLDN4 (encoding claudin-4), a cell tight junction (TJ) protein, is highly expressed in human epithelial ovarian carcinomas (EOC) but undetectable in normal ovaries. CLDN4 has been identified as a specific receptor for C terminus of Clostridium perfringens enterotoxin (C-CPE), a nontoxic molecule that may disrupt TJ barrier function and enhance cellular absorption. The purpose of this study was to determine the potential clinical applications of C-CPE and its effects on CLDN4 expression in EOC. EXPERIMENTAL DESIGN Using a 3-dimensional culture model and monolayer culture of EOC cells, we examined the effects of C-CPE on CLDN4 expression by quantitative real-time PCR, immunofluorescence, and Western blot. The synergistic effect of C-CPE to clinically relevant chemotherapies (Taxol and Carboplatin) was observed in EOC culture and xenograft mice. Furthermore, we determined through oligonucleotide microarray analysis that the transcript profile alterations dysregulated as a consequence of C-CPE treatment. RESULTS C-CPE treatment decreased protein expression and relocated CLDN4 from cell-cell contact regions to the cytoplasm. Particularly, C-CPE sensitized EOC cells to chemotherapeutic administration at low dosages and significantly inhibited tumor growth in a nontoxic manner. Furthermore, we provided genome-wide molecular evidence that C-CPE treatment is involved in the stimulation of the ubiquitin-proteasome pathway and the inhibition of cell metabolism in EOC cells. CONCLUSIONS The addition of C-CPE can enhance the effectiveness of Taxol or Carboplatin and significantly inhibited EOC cell growth in a CLDN4-dependent manner, suggesting that C-CPE may have promising therapeutic potential for EOC.
Collapse
Affiliation(s)
- Zhijian Gao
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Enteroaggregative Escherichia coli (EAEC) is responsible for inflammatory diarrhea in diverse populations, but its mechanisms of pathogenesis have not been fully elucidated. We have used a previously characterized polarized intestinal T84 cell model to investigate the effects of infection with EAEC strain 042 on tight junction integrity. We find that infection with strain 042 induces a decrease in transepithelial electrical resistance (TER) compared to uninfected controls and to cells infected with commensal E. coli strain HS. When the infection was limited after 3 h by washing and application of gentamicin, we observed that the TER of EAEC-infected monolayers continued to decline, and they remained low even as long as 48 h after the infection. Cells infected with the afimbrial mutant strain 042aafA exhibited TER measurements similar to those seen in uninfected monolayers, implicating the aggregative adherence fimbriae II (AAF/II) as necessary for barrier dysfunction. Infection with wild-type strain 042 induced aberrant localization of the tight junction proteins claudin-1 and, to a lesser degree, occludin. EAEC-infected T84 cells exhibited irregular shapes, and some cells became elongated and/or enlarged; these effects were not observed after infection with commensal E. coli strain HS or 042aafA. The effects on tight junctions were also observed with AAF/I-producing strain JM221, and an afimbrial mutant was similarly deficient in inducing barrier dysfunction. Our results show that EAEC induces epithelial barrier dysfunction in vitro and implicates the AAF adhesins in this phenotype.
Collapse
|
29
|
On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2010; 2:1336-56. [PMID: 22069641 PMCID: PMC3153257 DOI: 10.3390/toxins2061336] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 05/21/2010] [Accepted: 06/04/2010] [Indexed: 02/01/2023] Open
Abstract
Clostridium perfringens causes one of the most common foodborne illnesses, which is largely mediated by the Clostridium perfringens enterotoxin (CPE). The toxin consists of two functional domains. The N-terminal region mediates the cytotoxic effect through pore formation in the plasma membrane of the mammalian host cell. The C-terminal region (cCPE) binds to the second extracellular loop of a subset of claudins. Claudin-3 and claudin-4 have been shown to be receptors for CPE with very high affinity. The toxin binds with weak affinity to claudin-1 and -2 but contribution of these weak binding claudins to CPE-mediated disease is questionable. cCPE is not cytotoxic, however, it is a potent modulator of tight junctions. This review describes recent progress in the molecular characterization of the cCPE-claudin interaction using mutagenesis, in vitro binding assays and permeation studies. The results promote the development of recombinant cCPE-proteins and CPE-based peptidomimetics to modulate tight junctions for improved drug delivery or to treat tumors overexpressing claudins.
Collapse
|
30
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
31
|
Saeki R, Kondoh M, Kakutani H, Tsunoda SI, Mochizuki Y, Hamakubo T, Tsutsumi Y, Horiguchi Y, Yagi K. A novel tumor-targeted therapy using a claudin-4-targeting molecule. Mol Pharmacol 2009; 76:918-26. [PMID: 19638534 DOI: 10.1124/mol.109.058412] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carcinogenesis is often accompanied by dysfunctional tight junction (TJs), resulting in the loss of cellular polarity. Claudin, a tetra-transmembrane protein, plays a pivotal role in the barrier and fence functions of TJs. Claudin-4 is deregulated in various cancers, including breast, prostate, ovarian, and gastric cancer. Claudin-4 may be a promising target molecule for tumor therapy, but the claudin-targeting strategy has never been fully developed. In the present study, we prepared a claudin-4-targeting molecule by fusion of the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) with the protein synthesis inhibitory factor (PSIF) derived from Pseudomonas aeruginosa exotoxin. PSIF was not cytotoxic to claudin-4-expressing cells, whereas C-CPE-PSIF was cytotoxic. Cells that express claudin-1, -2, and -5 were less sensitive to C-CPE-PSIF. Pretreatment of the cells with C-CPE attenuated C-CPE-PSIF-induced cytotoxicity, and mutation of C-CPE in the claudin-4-binding residues attenuated the cytotoxicity of C-CPE-PSIF. TJ-undeveloped cells were more sensitive to C-CPE-PSIF than TJ-developed cells. It is noteworthy that polarized epithelial cells are sensitive to C-CPE-PSIF applied to the basal side, whereas the cells were less sensitive to C-CPE-PSIF applied to the apical side. Intratumoral injection of C-CPE-PSIF reduced tumor growth. This is the first report to indicate that a claudin-4-targeting strategy may be a promising method to overcome the malignant tumors.
Collapse
Affiliation(s)
- Rie Saeki
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124:3-20; quiz 21-2. [PMID: 19560575 PMCID: PMC4266989 DOI: 10.1016/j.jaci.2009.05.038] [Citation(s) in RCA: 1165] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.
Collapse
Affiliation(s)
- Katherine R. Groschwitz
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Simon P. Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
33
|
Evidence that membrane rafts are not required for the action of Clostridium perfringens enterotoxin. Infect Immun 2008; 76:5677-85. [PMID: 18809663 DOI: 10.1128/iai.00854-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The action of bacterial pore-forming toxins typically involves membrane rafts for binding, oligomerization, and/or cytotoxicity. Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin with a unique, multistep mechanism of action that involves the formation of complexes containing tight junction proteins that include claudins and, sometimes, occludin. Using sucrose density gradient centrifugation, this study evaluated whether the CPE complexes reside in membrane rafts and what role raft microdomains play in complex formation and CPE-induced cytotoxicity. Western blot analysis revealed that the small CPE complex and the CPE hexamer 1 (CH-1) complex, which is sufficient for CPE-induced cytotoxicity, both localize outside of rafts. The CH-2 complex was also found mainly in nonraft fractions, although a small pool of raft-associated CH-2 complex that was sensitive to cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD) was detected. Pretreatment of Caco-2 cells with MbetaCD had no appreciable effect on CPE-induced cytotoxicity. Claudin-4 was localized to Triton X-100-soluble gradient fractions of control or CPE-treated Caco-2 cells, indicating a raft-independent association for this CPE receptor. In contrast, occludin was present in raft fractions of control Caco-2 cells. Treatment with either MbetaCD or CPE caused most occludin molecules to shift out of lipid rafts, possibly due (at least in part) to the association of occludin with the CH-2 complex. Collectively, these results suggest that CPE is a unique pore-forming toxin for which membrane rafts are not required for binding, oligomerization/pore formation, or cytotoxicity.
Collapse
|
34
|
Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect Immun 2008; 76:3793-800. [PMID: 18505809 DOI: 10.1128/iai.00460-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the symptoms of a very common food poisoning. To assess whether CPE-induced cytotoxicity is necessary for enterotoxicity, a rabbit ileal loop model was used to compare the in vivo effects of native CPE or recombinant CPE (rCPE), both of which are cytotoxic, with those of the noncytotoxic rCPE variants rCPE D48A and rCPE(168-319). Both CPE and rCPE elicited significant fluid accumulation in rabbit ileal loops, along with severe mucosal damage that starts at villus tips and then progressively affects the entire villus, including necrosis of epithelium and lamina propria, villus blunting and fusion, and transmural edema and hemorrhage. Similar treatment of ileal loops with either of the noncytotoxic rCPE variants produced no visible histologic damage or fluid transport changes. Immunohistochemistry revealed strong CPE or rCPE(168-319) binding to villus tips, which correlated with the abundant presence of claudin-4, a known CPE receptor, in this villus region. These results support (i) cytotoxicity being necessary for CPE-induced enterotoxicity, (ii) the CPE sensitivity of villus tips being at least partially attributable to the abundant presence of receptors in this villus region, and (iii) claudin-4 being an important intestinal receptor for CPE. Finally, rCPE(168-319) was able to partially inhibit CPE-induced histologic damage, suggesting that noncytotoxic rCPE variants might be useful for protecting against some intestinal effects of CPE.
Collapse
|
35
|
McClane BA, Chakrabarti G. New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe 2007; 10:107-14. [PMID: 16701507 DOI: 10.1016/j.anaerobe.2003.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 11/10/2003] [Indexed: 12/28/2022]
Abstract
Clostridium perfringens type A isolates producing the 35 kDa enterotoxin (CPE) are an important cause of food poisoning, human non-foodborne gastrointestinal (GI) disease, and some veterinary GI diseases. Studies using CPE knock-out mutants confirmed the importance of enterotoxin expression for the enteric virulence of CPE-positive type A isolates. CPE action involves formation of a series of complexes in mammalian plasma membranes. One such CPE-containing complex (of approximately 155 kDa) is important for the induction of plasma membrane permeability alterations, which are responsible for killing enterotoxin-treated mammalian cells. Those membrane permeability changes damage the epithelium, allowing the enterotoxin to interact with the tight junction (TJ) protein occludin. CPE:occludin interactions result in formation of an approximately 200 kDa CPE complex and internalization of occludin into the cytoplasm. That removal of occludin (and possibly other proteins) damages TJs and disrupts the normal paracellular permeability barrier of the intestinal epithelium, which may contribute to CPE-induced diarrhea. Recent studies demonstrated that low CPE doses kill mammalian cells by inducing a classic apoptotic pathway involving mitochondrial membrane depolarization, cytochrome C release, and caspase 3/7 activation. In contrast, high enterotoxin doses induce oncosis, a proinflammatory event. Thus, inflammation may also contribute to the GI symptoms of patients whose intestines contain high CPE levels. In summary, CPE is a unique, multifunctional toxin with cytotoxic, TJ-damaging, and (probably) proinflammatory activities.
Collapse
Affiliation(s)
- Bruce A McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
36
|
Robertson SL, Smedley JG, Singh U, Chakrabarti G, Van Itallie CM, Anderson JM, McClane BA. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol 2007; 9:2734-55. [PMID: 17587331 DOI: 10.1111/j.1462-5822.2007.00994.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Clostridium perfringens enterotoxin (CPE) binds to host cell receptors, forming a small complex precursor for two large complexes reportedly having molecular masses of approximately 155 or approximately 200 kDa. Formation of the approximately 155 kDa complex causes a Ca(2+) influx that leads to apoptosis or oncosis. CPE complex composition is currently poorly understood, although occludin was identified in the approximately 200 kDa complex. The current study used heteromer gel shift analysis to show both CPE large complexes contain six CPE molecules. Ferguson plots and size exclusion chromatography re-sized the approximately 155 and approximately 200 kDa complexes as approximately 425-500 kDa and approximately 550-660 kDa respectively. Co-immunoprecipitation and electroelution studies demonstrated both CPE-binding and non-CPE-binding claudins are associated with all three CPE complexes in Caco-2 cells and with small complex and approximately 425-500 kDa complex of claudin 4 transfectants. Fibroblast transfectants expressing claudin 4 or C-terminal truncated claudin 4 were CPE-sensitive and formed the approximately 425 kDa complex, indicating claudin-induced cell signalling is not required for CPE action and that expression of a single receptor claudin suffices for approximately 425-500 kDa CPE complex formation. These results identify CPE as a unique toxin that combines with tight junction proteins to form high-molecular-mass hexameric pores and alter membrane permeability.
Collapse
Affiliation(s)
- Susan L Robertson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Smedley JG, Uzal FA, McClane BA. Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect Immun 2007; 75:2381-90. [PMID: 17307943 PMCID: PMC1865780 DOI: 10.1128/iai.01737-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/26/2006] [Accepted: 02/07/2007] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is the etiological agent of the third most common food-borne illness in the United States. The enteropathogenic effects of CPE result from formation of large CPE-containing complexes in eukaryotic cell membranes. Formation of these approximately 155- and approximately 200-kDa complexes coincides with plasma membrane permeability changes in eukaryotic cells, causing a Ca2+ influx that drives cell death pathways. CPE contains a stretch of amino acids (residues 81 to 106) that alternates markedly in side chain polarity (a pattern shared by the transmembrane domains of the beta-barrel pore-forming toxin family). The goal of this study, therefore, was to investigate whether this CPE region is involved in pore formation. Complete deletion of the CPE region from 81 to 106 produced a CPE variant that was noncytotoxic for Caco-2 cells and was unable to form CPE pores. However, this variant maintained the ability to form the approximately 155-kDa large complex. This large complex appears to be a prepore present on the plasma membrane surface since it showed greater susceptibility to proteases, increased complex instability, and a higher degree of dissociation from membranes compared to the large complex formed by recombinant CPE. When a D48A mutation was engineered into this prepore-forming CPE variant, the resultant variant was unable to form any prepore approximately 155-kDa large complex. Collectively these findings reveal a new step in CPE action, whereby receptor binding is followed by formation of a prepore large complex, which then inserts into membranes to form a pore.
Collapse
Affiliation(s)
- James G Smedley
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
38
|
Amimoto K, Noro T, Oishi E, Shimizu M. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology (Reading) 2007; 153:1198-1206. [PMID: 17379729 DOI: 10.1099/mic.0.2006/002287-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An unknown cytotoxin was identified in the culture supernatant of Clostridium perfringens type C. The cytotoxin, named TpeL, which was purified using mAb-based affinity chromatography, had a lethal activity of 62 minimum lethal dose (MLD) mg(-1) in mice and a cytotoxic activity of 6.2x10(5) cytotoxic units (CU) mg(-1) in Vero cells. The nucleotide sequence of TpeL was determined. The entire ORF had a length of 4953 bases, and the same nucleotide sequence was not recorded in the GenBank/EMBL/DDBJ databases. The molecular mass calculated from the deduced amino acid sequence was 191 kDa, and a signal peptide region was not found within the ORF. The deduced amino acid sequence exhibited 30-39 % homology to Clostridium difficile toxins A (TcdA) and B (TcdB), Clostridium sordellii lethal toxin (TcsL) and Clostridium novyi alpha-toxin (TcnA). The amino acid sequence of TpeL is shorter than these toxins, and the homologous region was located at the N-terminal site. Eighteen strains of C. perfringens types A, B and C were surveyed for the presence of the tpeL gene by PCR. The tpeL gene was detected in all type B (one strain) and C strains (five strains), but not in any type A strains (12 strains). TpeL was detected in culture filtrates of the five type C strains by dot-blot analysis, but not in the type B strain. It was concluded that TpeL is a novel toxin similar to the known large clostridial cytotoxins. Furthermore, the data indicated that TpeL is produced by many C. perfringens type C strains.
Collapse
Affiliation(s)
- Katsuhiko Amimoto
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji, Kyoto 611-0041, Japan
| | - Taichi Noro
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji, Kyoto 611-0041, Japan
| | - Eiji Oishi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji, Kyoto 611-0041, Japan
| | - Mitsugu Shimizu
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji, Kyoto 611-0041, Japan
| |
Collapse
|
39
|
Fernández Miyakawa ME, Pistone Creydt V, Uzal FA, McClane BA, Ibarra C. Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect Immun 2006; 73:8407-10. [PMID: 16299340 PMCID: PMC1307077 DOI: 10.1128/iai.73.12.8407-8410.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro, Clostridium perfringens enterotoxin (CPE) binds to human ileal epithelium and induces morphological damage concurrently with reduced short-circuit current, transepithelial resistance, and net water absorption. CPE also binds to the human colon in vitro but causes only slight morphological and transport changes that are not statistically significant.
Collapse
Affiliation(s)
- M E Fernández Miyakawa
- California Animal Health and Food Safety Laboratory-San Bernardino Branch, University of California-Davis, 105 W. Central Avenue, San Bernardino, CA 92408.
| | | | | | | | | |
Collapse
|
40
|
Ivanov AI, Nusrat A, Parkos CA. Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. Bioessays 2005; 27:356-65. [PMID: 15770686 DOI: 10.1002/bies.20203] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tight junctions (TJ) and adherens junctions (AJ) regulate cell-cell adhesion and barrier function of simple polarized epithelia. These junctions are positioned in the apical end of the lateral plasma membrane and form the so-called apical junctional complex (AJC). Although initially seen as purely structural features, the AJC is now known to play important roles in cell differentiation and proliferation. The AJC is a highly dynamic entity, undergoing rapid remodeling during normal epithelial morphogenesis and under pathologic conditions. There is growing evidence that remodeling of the AJC is mediated by internalization of junctional proteins. This review summarizes what is known about endocytic pathways, intracellular destinations and signaling cascades involved in internalization of AJC proteins. Potential biological roles for AJC endocytosis in maintaining functional apical junctions, reversible opening of epithelial barrier and disruption of intercellular adhesion are also discussed.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Room 115, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
41
|
Takahashi A, Kondoh M, Masuyama A, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y. Role of C-terminal regions of the C-terminal fragment of Clostridium perfringens enterotoxin in its interaction with claudin-4. J Control Release 2005; 108:56-62. [PMID: 16091298 DOI: 10.1016/j.jconrel.2005.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
Claudin family proteins, which contain 4 transmembrane domains, play a pivotal role in the barrier function of tight junctions (TJs) in epithelial sheets. We previously found that a modulator of claudin-4, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is a potent enhancer of jejunal drug absorption in rats. But the effects of C-CPE on the barrier function of TJs have never been fully understood. In the present study, we investigated the effects of C-CPE on the barrier function of TJs in Caco-2 monolayer and characterized the functional domain of C-CPE that is responsible for interaction with claudin-4. To evaluate the effects of C-CPE on the barrier function of TJs, we measured transepithelial electric resistance (TER) in Caco-2 monolayer cells seeded onto polycarbonate filters. Treatment of Caco-2 cells with C-CPE resulted in a decrease in TER. But, deletion of the 30 C-terminal amino acids of C-CPE, which is the putative binding domain for claudin, attenuated the decrease in TER values. Moreover, ablation of the 16 C-terminal amino acids of C-CPE also resulted in attenuation of the decrease in TER values. The C-terminal-deleted C-CPEs did not interact with claudin-4 or the extracellular domain 2 of claudin-4, which is the C-CPE binding site. These results suggest that the 16 C-terminal amino acids of C-CPE are responsible for the interaction of C-CPE and claudin-4 following the disruption of TJ barrier function.
Collapse
Affiliation(s)
- Azusa Takahashi
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Chakrabarti G, McClane BA. The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 2005; 7:129-46. [PMID: 15617529 DOI: 10.1111/j.1462-5822.2004.00442.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CaCo-2 cells exhibit apoptosis when treated with low doses of Clostridium perfringens enterotoxin (CPE), but develop oncosis when treated with high CPE doses. This study reports that the presence of extracellular Ca(2+) in treatment buffers is important for normal activation of both those cell death pathways in CPE-treated CaCo-2 cells. Normal development of CPE-induced cell death pathway effects, such as morphologic damage, DNA fragmentation, caspase activation, mitochondrial membrane depolarization and cytochrome c release, was strongly inhibited when CaCo-2 cells were CPE-treated in Ca(2+)-free buffers. When treatment buffers contained Ca(2+), CPE caused a rapid increase in CaCo-2 cell Ca(2+) levels, apparently because of increased Ca(2+) influx through a CPE pore. High CPE doses caused massive changes in cellular Ca(2+) levels that appear responsible for activating oncosis, whereas low CPE doses caused less perturbations in cellular Ca(2+) levels that appear responsible for activating apoptosis. Both CPE-induced apoptosis and oncosis were found to be calmodulin- and calpain-dependent processes. As Ca(2+) levels present in the intestinal lumen resemble those of Ca(2+)-containing treatment buffers used in this study, perturbations in cellular Ca(2+) levels and calpain/calmodulin-dependent processes are also probably important for inducing enterocyte cell death during CPE-mediated gastrointestinal disease.
Collapse
Affiliation(s)
- Ganes Chakrabarti
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
43
|
Masuyama A, Kondoh M, Seguchi H, Takahashi A, Harada M, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y. Role of N-Terminal Amino Acids in the Absorption-Enhancing Effects of the C-Terminal Fragment ofClostridium perfringensEnterotoxin. J Pharmacol Exp Ther 2005; 314:789-95. [PMID: 15870390 DOI: 10.1124/jpet.105.085399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently found that a polypeptide, the C-terminal of Clostridium perfringens enterotoxin (C-CPE), was a novel type of drug absorption enhancer. The C-terminal of C-CPE is thought to play a role in the binding of C-CPE to its receptor, claudin-4; however, the function of the N-terminal of C-CPE is unclear. In the present study, we evaluated the role of the N-terminal domain of C-CPE in jejunal absorption and claudin-4 binding. The treatment of rat jejunum with C-CPE resulted in enhanced absorption of dextran, with a molecular weight of 4000 Da. However, treatment with C-CPE220, which lacks the 36 N-terminal amino acids of C-CPE, did not enhance jejunal absorption. C-CPE had affinity for claudin-4 in rat jejunum lysates and Caco-2 lysates, but C-CPE220 did not. Interaction of C-CPE with the recombinant extracellular domain 2 of human claudin-4 (EC2hCld-4), which is the putative binding site for C-CPE, was observed, but C-CPE220 had no affinity for EC2hCld-4. To investigate the effect of C-CPE220 on the barrier function of tight junctions, we measured transepithelial electric resistance (TER) in C-CPE- or C-CPE220-treated Caco-2 monolayer cells. Although C-CPE decreased TER in Caco-2 monolayer cells, C-CPE220 did not disrupt the barrier function of tight junctions. Together, these results indicate that the 36 N-terminal amino acids of C-CPE may be necessary for the enhanced absorption mediated by C-CPE and play a partial role in binding to claudin-4.
Collapse
Affiliation(s)
- Akane Masuyama
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 2005; 33:537-49. [PMID: 15763720 DOI: 10.1080/03079450400013162] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The incidence of Clostridium perfringens-associated necrotic enteritis in poultry has increased in countries that stopped using antibiotic growth promoters. Necrotic enteritis and the subclinical form of C. perfringens infection in poultry are caused by C. perfringens type A, producing the alpha toxin, and to a lesser extent type C, producing both alpha toxin and beta toxin. Some strains of C. perfringens type A produce an enterotoxin at the moment of sporulation and are responsible for foodborne disease in humans. The mechanisms of colonization of the avian small intestinal tract and the factors involved in toxin production are largely unknown. It is generally accepted, however, that predisposing factors are required for these bacteria to colonize and cause disease in poultry. The best known predisposing factor is mucosal damage, caused by coccidiosis. Diets with high levels of indigestible, water-soluble non-starch polysaccharides, known to increase the viscosity of the intestinal contents, also predispose to necrotic enteritis. Standardized models are being developed for the reproduction of colonization of poultry by C. perfringens and the C. perfringens-associated necrotic enteritis. One such model is a combined infection with Eimeria species and C. perfringens. Few tools and strategies are available for prevention and control of C. perfringens in poultry. Vaccination against the pathogen and the use of probiotic and prebiotic products has been suggested, but are not available for practical use in the field at the present time. The most cost-effective control will probably be achieved by balancing the composition of the feed.
Collapse
Affiliation(s)
- Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Smedley JG, McClane BA. Fine mapping of the N-terminal cytotoxicity region of Clostridium perfringens enterotoxin by site-directed mutagenesis. Infect Immun 2004; 72:6914-23. [PMID: 15557612 PMCID: PMC529159 DOI: 10.1128/iai.72.12.6914-6923.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 07/29/2004] [Accepted: 08/13/2004] [Indexed: 01/19/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) has a unique mechanism of action that results in the formation of large, sodium dodecyl sulfate-resistant complexes involving tight junction proteins; those complexes then induce plasma membrane permeability alterations in host intestinal epithelial cells, leading to cell death and epithelial desquamation. Previous deletion and point mutational studies mapped CPE receptor binding activity to the toxin's extreme C terminus. Those earlier analyses also determined that an N-terminal CPE region between residues D45 and G53 is required for large complex formation and cytotoxicity. To more finely map this N-terminal cytotoxicity region, site-directed mutagenesis was performed with recombinant CPE (rCPE). Alanine-scanning mutagenesis produced one rCPE variant, D48A, that failed to form large complexes or induce cytotoxicity, despite having normal ability to bind and form the small complex. Two saturation variants, D48E and D48N, also had a phenotype resembling that of the D48A variant, indicating that both size and charge are important at CPE residue 48. Another alanine substitution rCPE variant, I51A, was highly attenuated for large complex formation and cytotoxicity, but rCPE saturation variants I51L and I51V displayed a normal large complex formation and cytotoxicity phenotype. Collectively, these mutagenesis results identify a core CPE sequence extending from residues G47 to I51 that directly participates in large complex formation and cytotoxicity.
Collapse
Affiliation(s)
- James G Smedley
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
46
|
Smedley JG, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 2004; 152:183-204. [PMID: 15517462 DOI: 10.1007/s10254-004-0036-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Gram-positive pathogen Clostridium perfringens is a major cause of human and veterinary enteric disease largely because this bacterium can produce several toxins when present inside the gastrointestinal tract. The enteric toxins of C. perfringens share two common features: (1) they are all single polypeptides of modest (approximately 25-35 kDa) size, although lacking in sequence homology, and (2) they generally act by forming pores or channels in plasma membranes of host cells. These enteric toxins include C. perfringens enterotoxin (CPE), which is responsible for the symptoms of a common human food poisoning and acts by forming pores after interacting with intestinal tight junction proteins. Two other C. perfringens enteric toxins, epsilon-toxin (a bioterrorism select agent) and beta-toxin, cause veterinary enterotoxemias when absorbed from the intestines; beta- and epsilon-toxins then apparently act by forming oligomeric pores in intestinal or extra-intestinal target tissues. The action of a newly discovered C. perfringens enteric toxin, beta2 toxin, has not yet been defined but precedent suggests it might also be a pore-former. Experience with other clostridial toxins certainly warrants continued research on these C. perfringens enteric toxins to develop their potential as therapeutic agents and tools for cellular biology.
Collapse
Affiliation(s)
- J G Smedley
- University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
47
|
Chakrabarti G, Zhou X, McClane BA. Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect Immun 2003; 71:4260-70. [PMID: 12874301 PMCID: PMC166005 DOI: 10.1128/iai.71.8.4260-4270.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE), a 35-kDa polypeptide, induces cytotoxic effects in the enterocyte-like CaCo-2 cell culture model. To identify the mammalian cell death pathway(s) mediating CPE-induced cell death, CaCo-2 cultures were treated with either 1 or 10 micro g of CPE per ml. Both CPE doses were found to induce morphological damage and DNA cleavage in CaCo-2 cells. The oncosis inhibitor glycine, but not a broad-spectrum caspase inhibitor, was able to transiently block both of those pathological effects in CaCo-2 cells treated with the higher, but not the lower, CPE dose. Conversely, a caspase 3/7 inhibitor (but not glycine or a caspase 1 inhibitor) blocked morphological damage and DNA cleavage in CaCo-2 cells treated with the lower, but not the higher, CPE dose. Collectively, these results indicate that lower CPE doses cause caspase 3/7-dependent apoptosis, while higher CPE doses induce oncosis. Apoptosis caused by the lower CPE dose was shown to proceed via a classical pathway involving mitochondrial membrane depolarization and cytochrome c release. As the CPE concentrations used in this study for demonstrating apoptosis and oncosis have pathophysiologic relevance, these results suggest that both oncosis and apoptosis may occur in the intestines during CPE-associated gastrointestinal disease.
Collapse
Affiliation(s)
- Ganes Chakrabarti
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
48
|
McClane BA. The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions. Toxicon 2001; 39:1781-91. [PMID: 11595640 DOI: 10.1016/s0041-0101(01)00164-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal symptoms of C. perfringens type A food poisoning and antibiotic-associated diarrhea. The CPE protein consists of a single 35 kDa polypeptide with a C-terminal receptor-binding region and an N-terminal toxicity domain. Under appropriate conditions, CPE can interact with structural components of the epithelial tight junctions, including certain claudins and occludin. Those interactions can affect tight junction structure and function, thereby altering paracellular permeability and (possibly) contributing to CPE-induced diarrhea. However, the tight junction effects of CPE require cellular damage as a prerequisite. CPE induces cellular damage via its cytotoxic activity, which results from plasma membrane permeability alterations caused by formation of a approximately 155 kDa CPE-containing complex that may correspond to a pore. Thus, CPE appears to be a bifunctional toxin that first induces plasma membrane permeability alterations; using the resultant cell damage, CPE then gains access to tight junction proteins and affects tight junction structure and function.
Collapse
Affiliation(s)
- B A McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261-2072, USA.
| |
Collapse
|