1
|
Xiong H, Lin B, Liu J, Lu R, Lin Z, Hang C, Liu W, Zhang L, Ding J, Guo H, Zhang M, Wang S, Gong Z, Xie D, Liu Y, Shi D, Liang D, Liu Z, Chen YH, Yang J. SALL2 regulates neural differentiation of mouse embryonic stem cells through Tuba1a. Cell Death Dis 2024; 15:710. [PMID: 39349437 PMCID: PMC11442768 DOI: 10.1038/s41419-024-07088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
The spalt (Sal) gene family has four members (Sall1-4) in vertebrates, all of which play pivotal roles in various biological processes and diseases. However, the expression and function of SALL2 in development are still less clear. Here, we first charted SALL2 protein expression pattern during mouse embryo development by immunofluorescence, which revealed its dominant expression in the developing nervous system. With the establishment of Sall2 deficient mouse embryonic stem cells (ESCs), the in vitro neural differentiation system was leveraged to interrogate the function of SALL2, which showed impaired neural differentiation of Sall2 knockout (KO) ESCs. Furthermore, neural stem cells (NSCs) could not be derived from Sall2 KO ESCs and the generation of neural tube organoids (NTOs) was greatly inhibited in the absence of SALL2. Meanwhile, transgenic expression of E1 isoform of SALL2 restored the defects of neural differentiation in Sall2 KO ESCs. By chromatin immunoprecipitation sequencing (ChIP-seq), Tuba1a was identified as downstream target of SALL2, whose function in neural differentiation was confirmed by rescuing neural phenotypes of Sall2 KO ESCs when overexpressed. In sum, by elucidating SALL2 expression dynamics during early mouse development and mechanistically characterizing its indispensable role in neural differentiation, this study offers insights into SALL2's function in human nervous system development, associated pathologies stemming from its mutations and relevant therapeutic strategy.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- Department of Anatomy, Histology and Embryology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
2
|
Hermosilla VE, Gyenis L, Rabalski AJ, Armijo ME, Sepúlveda P, Duprat F, Benítez-Riquelme D, Fuentes-Villalobos F, Quiroz A, Hepp MI, Farkas C, Mastel M, González-Chavarría I, Jackstadt R, Litchfield DW, Castro AF, Pincheira R. Casein kinase 2 phosphorylates and induces the SALL2 tumor suppressor degradation in colon cancer cells. Cell Death Dis 2024; 15:223. [PMID: 38493149 PMCID: PMC10944491 DOI: 10.1038/s41419-024-06591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development. It is downregulated in cancer and acts as a tumor suppressor, promoting cell cycle arrest and cell death. Despite its critical functions, information about SALL2 regulation is scarce. Public data indicate that SALL2 is ubiquitinated and phosphorylated in several residues along the protein, but the mechanisms, biological consequences, and enzymes responsible for these modifications remain unknown. Bioinformatic analyses identified several putative phosphorylation sites for Casein Kinase II (CK2) located within a highly conserved C-terminal PEST degradation motif of SALL2. CK2 is a serine/threonine kinase that promotes cell proliferation and survival and is often hyperactivated in cancer. We demonstrated that CK2 phosphorylates SALL2 residues S763, T778, S802, and S806 and promotes SALL2 degradation by the proteasome. Accordingly, pharmacological inhibition of CK2 with Silmitasertib (CX-4945) restored endogenous SALL2 protein levels in SALL2-deficient breast MDA-MB-231, lung H1299, and colon SW480 cancer cells. Silmitasertib induced a methuosis-like phenotype and cell death in SW480 cells. However, the phenotype was significantly attenuated in CRISPr/Cas9-mediated SALL2 knockout SW480 cells. Similarly, Sall2-deficient tumor organoids were more resistant to Silmitasertib-induced cell death, confirming that SALL2 sensitizes cancer cells to CK2 inhibition. We identified a novel CK2-dependent mechanism for SALL2 regulation and provided new insights into the interplay between these two proteins and their role in cell survival and proliferation.
Collapse
Affiliation(s)
- V E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Dept of Orofacial Sciences and Dept of Anatomy, University of California-San Francisco, San Francisco, CA, USA
| | - L Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Odyssey Therapeutics, Boston, MA, USA
| | - M E Armijo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - P Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Duprat
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - D Benítez-Riquelme
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Inmunovirología. Departamento de Microbiologia. Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - C Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - M Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - I González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - D W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - R Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
3
|
Riffo E, Palma M, Hepp MI, Benítez-Riquelme D, Torres VA, Castro AF, Pincheira R. The Sall2 transcription factor promotes cell migration regulating focal adhesion turnover and integrin β1 expression. Front Cell Dev Biol 2022; 10:1031262. [DOI: 10.3389/fcell.2022.1031262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
SALL2/Sall2 is a transcription factor associated with development, neuronal differentiation, and cancer. Interestingly, SALL2/Sall2 deficiency leads to failure of the optic fissure closure and neurite outgrowth, suggesting a positive role for SALL2/Sall2 in cell migration. However, in some cancer cells, SALL2 deficiency is associated with increased cell migration. To further investigate the role of Sall2 in the cell migration process, we used immortalized Sall2 knockout (Sall2−/−) and Sall2 wild-type (Sall2+/+) mouse embryonic fibroblasts (iMEFs). Our results indicated that Sall2 positively regulates cell migration, promoting cell detachment and focal adhesions turnover. Sall2 deficiency decreased cell motility and altered focal adhesion dynamics. Accordingly, restoring Sall2 expression in the Sall2−/− iMEFs by using a doxycycline-inducible Tet-On system recovered cell migratory capabilities and focal adhesion dynamics. In addition, Sall2 promoted the autophosphorylation of Focal Adhesion Kinase (FAK) at Y397 and increased integrin β1 mRNA and its protein expression at the cell surface. We demonstrated that SALL2 increases ITGB1 promoter activity and binds to conserved SALL2-binding sites at the proximal region of the ITGB1 promoter, validated by ChIP experiments. Furthermore, the overexpression of integrin β1 or its blockade generates a cell migration phenotype similar to that of Sall2+/+ or Sall2−/− cells, respectively. Altogether, our data showed that Sall2 promotes cell migration by modulating focal adhesion dynamics, and this phenotype is associated with SALL2/Sall2-transcriptional regulation of integrin β1 expression and FAK autophosphorylation. Since deregulation of cell migration promotes congenital abnormalities, tumor formation, and spread to other tissues, our findings suggest that the SALL2/Sall2-integrin β1 axis could be relevant for those processes.
Collapse
|
4
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
5
|
Ma T, Shi S, Jiang H, Chen X, Xu D, Ding X, Zhang H, Xi Y. A pan-cancer study of spalt-like transcription factors 1/2/3/4 as therapeutic targets. Arch Biochem Biophys 2021; 711:109016. [PMID: 34411579 DOI: 10.1016/j.abb.2021.109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Spalt-like transcription factors (SALLs) are evolutionarily conserved proteins that participate in embryonic development. Four members of the SALL family, SALL1, SALL2, SALL3, and SALL4, are involved in cellular apoptosis, angiogenesis, invasion, and metastasis of tumors. We used the TCGA pan-cancer data to conduct a comprehensive analysis of SALL genes. High heterogeneity in the expression of these genes was observed across various cancers, SALL1 and SALL2 were downregulated, whereas SALL4 was upregulated. Moreover, we verified that SALL4 was commonly associated with survival disadvantage, whereas others were linked to a better prognosis. In renal cancer, SALL1, SALL2, and SALL3 showed downregulation, suggesting that they acted as tumor suppressors. Furthermore, SALLs were associated with immune infiltrate subtypes, with a close association between different degrees of infiltration of stromal cells and immune cells. DNA and RNA analyses in different tumors suggested different degrees of negative or positive correlation with tumor stem cell-like features. Finally, we revealed that SALLs were related to cancer cell resistance. Our results highlight the necessity to further study each SALL gene as a separate entity in specific types of cancer. Although this article showed that SALLs could be promising targets for cancer therapy, it needs further studies to validate the findings.
Collapse
Affiliation(s)
- Ting Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China; Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Shanping Shi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Haizhong Jiang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Xianwu Chen
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Dingli Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xiaoyun Ding
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Hongyan Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, China
| | - Yang Xi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China; Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
6
|
Saraswati S, Martínez P, Graña-Castro O, Blasco MA. Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. ACTA ACUST UNITED AC 2021; 1:269-283. [PMID: 37118410 DOI: 10.1038/s43587-021-00040-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Accumulation of short telomeres is a hallmark of aging. Mutations in telomerase or telomere-binding proteins lead to telomere shortening or dysfunction and are at the origin of human pathologies known as 'telomere syndromes', which are characterized by loss of the regenerative capacity of tissues and fibrotic pathologies. Here, we generated two mouse models of kidney fibrosis, either by combining telomerase deficiency to induce telomere shortening and a low dose of folic acid, or by conditionally deleting Trf1, a component of the shelterin telomere protective complex, from the kidneys. We find that short telomeres sensitize the kidneys to develop fibrosis in response to folic acid and exacerbate the epithelial-to-mesenchymal transition (EMT) program. Trf1 deletion in kidneys led to fibrosis and EMT activation. Our findings suggest that telomere shortening or dysfunction may contribute to pathological, age-associated renal fibrosis by influencing the EMT program.
Collapse
|
7
|
Farkas C, Quiroz A, Alvarez C, Hermosilla V, Aylwin CF, Lomniczi A, Castro AF, Hepp MI, Pincheira R. Characterization of SALL2 Gene Isoforms and Targets Across Cell Types Reveals Highly Conserved Networks. Front Genet 2021; 12:613808. [PMID: 33692826 PMCID: PMC7937961 DOI: 10.3389/fgene.2021.613808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
The SALL2 transcription factor, an evolutionarily conserved gene through vertebrates, is involved in normal development and neuronal differentiation. In disease, SALL2 is associated with eye, kidney, and brain disorders, but mainly is related to cancer. Some studies support a tumor suppressor role and others an oncogenic role for SALL2, which seems to depend on the cancer type. An additional consideration is tissue-dependent expression of different SALL2 isoforms. Human and mouse SALL2 gene loci contain two promoters, each controlling the expression of a different protein isoform (E1 and E1A). Also, several improvements on the human genome assembly and gene annotation through next-generation sequencing technologies reveal correction and annotation of additional isoforms, obscuring dissection of SALL2 isoform-specific transcriptional targets and functions. We here integrated current data of normal/tumor gene expression databases along with ChIP-seq binding profiles to analyze SALL2 isoforms expression distribution and infer isoform-specific SALL2 targets. We found that the canonical SALL2 E1 isoform is one of the lowest expressed, while the E1A isoform is highly predominant across cell types. To dissect SALL2 isoform-specific targets, we analyzed publicly available ChIP-seq data from Glioblastoma tumor-propagating cells and in-house ChIP-seq datasets performed in SALL2 wild-type and E1A isoform knockout HEK293 cells. Another available ChIP-seq data in HEK293 cells (ENCODE Consortium Phase III) overexpressing a non-canonical SALL2 isoform (short_E1A) was also analyzed. Regardless of cell type, our analysis indicates that the SALL2 long E1 and E1A isoforms, but not short_E1A, are mostly contributing to transcriptional control, and reveals a highly conserved network of brain-specific transcription factors (i.e., SALL3, POU3F2, and NPAS3). Our data integration identified a conserved molecular network in which SALL2 regulates genes associated with neural function, cell differentiation, development, and cell adhesion between others. Also, we identified PODXL as a gene that is likely regulated by SALL2 across tissues. Our study encourages the validation of publicly available ChIP-seq datasets to assess a specific gene/isoform’s transcriptional targets. The knowledge of SALL2 isoforms expression and function in different tissue contexts is relevant to understanding its role in disease.
Collapse
Affiliation(s)
- Carlos Farkas
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Aracelly Quiroz
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudia Alvarez
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Viviana Hermosilla
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Matias I Hepp
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Jung SY, Papp JC, Sobel EM, Pellegrini M, Yu H, Zhang ZF. Pro-inflammatory cytokine polymorphisms and interactions with dietary alcohol and estrogen, risk factors for invasive breast cancer using a post genome-wide analysis for gene-gene and gene-lifestyle interaction. Sci Rep 2021; 11:1058. [PMID: 33441805 PMCID: PMC7807068 DOI: 10.1038/s41598-020-80197-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular and genetic immune-related pathways connected to breast cancer and lifestyles in postmenopausal women are not fully characterized. In this study, we explored the role of pro-inflammatory cytokines such as C-reactive protein (CRP) and interleukin-6 (IL-6) in those pathways at the genome-wide level. With single-nucleotide polymorphisms (SNPs) in the biomarkers and lifestyles together, we further constructed risk profiles to improve predictability for breast cancer. Our earlier genome-wide association gene-environment interaction study used large cohort data from the Women's Health Initiative Database for Genotypes and Phenotypes Study and identified 88 SNPs associated with CRP and IL-6. For this study, we added an additional 68 SNPs from previous GWA studies, and together with 48 selected lifestyles, evaluated for the association with breast cancer risk via a 2-stage multimodal random survival forest and generalized multifactor dimensionality reduction methods. Overall and in obesity strata (by body mass index, waist, waist-to-hip ratio, exercise, and dietary fat intake), we identified the most predictive genetic and lifestyle variables. Two SNPs (SALL1 rs10521222 and HLA-DQA1 rs9271608) and lifestyles, including alcohol intake, lifetime cumulative exposure to estrogen, and overall and visceral obesity, are the most common and strongest predictive markers for breast cancer across the analyses. The risk profile that combined those variables presented their synergistic effect on the increased breast cancer risk in a gene-lifestyle dose-dependent manner. Our study may contribute to improved predictability for breast cancer and suggest potential interventions for the women with the risk genotypes and lifestyles to reduce their breast cancer risk.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, 700 Tiverton Ave, 3-264 Factor Building, Los Angeles, CA, 90095, USA.
| | - Jeanette C Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eric M Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Wang Y, Liu J, Liu Z, Chen J, Hu X, Hu Y, Yuan Y, Wu G, Dai Z, Xu Y. Sall2 knockdown exacerbates palmitic acid induced dysfunction and apoptosis of pancreatic NIT-1 beta cells. Biomed Pharmacother 2018; 104:375-382. [PMID: 29783189 DOI: 10.1016/j.biopha.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Spalt-like (Sall) proteins are a class of transcription factors. The role of Sall2 in beta cells remain poorly understood. Here, we aimed to explore whether Sall2 involved in lipotoxicity-mediated dysfunction and apoptosis in pancreatic NIT-1 beta cells. Our results showed that high concentrations of palmitic acid (PA) led to impaired cell viability and decreased Sall2 expression in NIT-1 cells. Knocking down of Sall2 in NIT-1 cells resulted in increased sensitivity to lipotoxicity and caused higher rates of cell apoptosis following PA treatment. Additionally, Sall2 Knockdown impaired insulin synthesis and secretion in response to glucose. Further research indicated Sall2 knockdown attenuate antioxidant capacity and decreased expression level of Peroxiredoxin 2 in NIT-1 cells. These finding implicate that Sall2 may play a significant role in NIT-1 cell function and cell apoptosis under lipotoxic conditions. Therefore, the study of Sall2 in NIT-1 cells provided a new perspective for molecular mechanism of lipotoxicity mediating dysfunction and apoptosis of beta cells.
Collapse
Affiliation(s)
- Ye Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zheng Liu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006,China
| | - Jing Chen
- Department of Integrated Wards, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xuemei Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yimeng Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yin Yuan
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Guijun Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
10
|
E Hermosilla V, Salgado G, Riffo E, Escobar D, Hepp MI, Farkas C, Galindo M, Morín V, García-Robles MA, Castro AF, Pincheira R. SALL2 represses cyclins D1 and E1 expression and restrains G1/S cell cycle transition and cancer-related phenotypes. Mol Oncol 2018; 12:1026-1046. [PMID: 29689621 PMCID: PMC6026872 DOI: 10.1002/1878-0261.12308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022] Open
Abstract
SALL2 is a poorly characterized transcription factor that belongs to the Spalt‐like family involved in development. Mutations on SALL2 have been associated with ocular coloboma and cancer. In cancers, SALL2 is deregulated and is proposed as a tumor suppressor in ovarian cancer. SALL2 has been implicated in stemness, cell death, proliferation, and quiescence. However, mechanisms underlying roles of SALL2 related to cancer remain largely unknown. Here, we investigated the role of SALL2 in cell proliferation using mouse embryo fibroblasts (MEFs) derived from Sall2−/− mice. Compared to Sall2+/+ MEFs, Sall2−/− MEFs exhibit enhanced cell proliferation and faster postmitotic progression through G1 and S phases. Accordingly, Sall2−/− MEFs exhibit higher mRNA and protein levels of cyclins D1 and E1. Chromatin immunoprecipitation and promoter reporter assays showed that SALL2 binds and represses CCND1 and CCNE1 promoters, identifying a novel mechanism by which SALL2 may control cell cycle. In addition, the analysis of tissues from Sall2+/+ and Sall2−/− mice confirmed the inverse correlation between expression of SALL2 and G1‐S cyclins. Consistent with an antiproliferative function of SALL2, immortalized Sall2−/− MEFs showed enhanced growth rate, foci formation, and anchorage‐independent growth, confirming tumor suppressor properties for SALL2. Finally, cancer data analyses show negative correlations between SALL2 and G1‐S cyclins’ mRNA levels in several cancers. Altogether, our results demonstrated that SALL2 is a negative regulator of cell proliferation, an effect mediated in part by repression of G1‐S cyclins’ expression. Our results have implications for the understanding and significance of SALL2 role under physiological and pathological conditions.
Collapse
Affiliation(s)
- Viviana E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Ginessa Salgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Elizabeth Riffo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - David Escobar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Matías I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Violeta Morín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - María A García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Ariel F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| |
Collapse
|
11
|
Hepp MI, Escobar D, Farkas C, Hermosilla VE, Álvarez C, Amigo R, Gutiérrez JL, Castro AF, Pincheira R. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30028-2. [PMID: 29778644 DOI: 10.1016/j.bbagrm.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 11/26/2022]
Abstract
SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi.
Collapse
Affiliation(s)
- Matías I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile.
| | - David Escobar
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Viviana E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Claudia Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Ariel F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Chile.
| |
Collapse
|
12
|
Ma C, Wang F, Han B, Zhong X, Si F, Ye J, Hsueh EC, Robbins L, Kiefer SM, Zhang Y, Hunborg P, Varvares MA, Rauchman M, Peng G. SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. Mol Cancer 2018; 17:78. [PMID: 29625565 PMCID: PMC5889587 DOI: 10.1186/s12943-018-0824-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/11/2018] [Indexed: 01/19/2023] Open
Abstract
Background SALL1 is a multi-zinc finger transcription factor that regulates organogenesis and stem cell development, but the role of SALL1 in tumor biology and tumorigenesis remains largely unknown. Methods We analyzed SALL1 expression levels in human and murine breast cancer cells as well as cancer tissues from different types of breast cancer patients. Using both in vitro co-culture system and in vivo breast tumor models, we investigated how SALL1 expression in breast cancer cells affects tumor cell growth and proliferation, metastasis, and cell fate. Using the gain-of function and loss-of-function strategies, we dissected the molecular mechanism responsible for SALL1 tumor suppressor functions. Results We demonstrated that SALL1 functions as a tumor suppressor in breast cancer, which is significantly down-regulated in the basal like breast cancer and in estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) triple negative breast cancer patients. SALL1 expression in human and murine breast cancer cells inhibited cancer cell growth and proliferation, metastasis, and promoted cell cycle arrest. Knockdown of SALL1 in breast cancer cells promoted cancer cell growth, proliferation, and colony formation. Our studies revealed that tumor suppression was mediated by recruitment of the Nucleosome Remodeling and Deacetylase (NuRD) complex by SALL1, which promoted cancer cell senescence. We further demonstrated that the mechanism of inhibition of breast cancer cell growth and invasion by SALL1-NuRD depends on the p38 MAPK, ERK1/2, and mTOR signaling pathways. Conclusion Our studies indicate that the developmental control gene SALL1 plays a critical role in tumor suppression by recruiting the NuRD complex and thereby inducing cell senescence in breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12943-018-0824-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, Women & Children's Hospital of Linyi, Shandong Medical College, Linyi, 276000, People's Republic of China
| | - Fang Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Bing Han
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoli Zhong
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Fusheng Si
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jian Ye
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eddy C Hsueh
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Lynn Robbins
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA.,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA
| | - Susan M Kiefer
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Yanping Zhang
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Pamela Hunborg
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Mark A Varvares
- Department of Otolaryngology, Saint Louis University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Michael Rauchman
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA. .,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA.
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
13
|
Hermosilla VE, Hepp MI, Escobar D, Farkas C, Riffo EN, Castro AF, Pincheira R. Developmental SALL2 transcription factor: a new player in cancer. Carcinogenesis 2017; 38:680-690. [DOI: 10.1093/carcin/bgx036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
|
14
|
Wu Z, Cheng K, Shi L, Li Z, Negi H, Gao G, Kamle S, Li D. Sal-like protein 2 upregulates p16 expression through a proximal promoter element. Cancer Sci 2015; 106:253-61. [PMID: 25580951 PMCID: PMC4376433 DOI: 10.1111/cas.12606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/22/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Sal-like protein 2 (Sall2), a homeotic transcription factor, is a putative tumor suppressor. We have previously shown that Sall2 activates the transcription of tumor suppressor gene p21 and suppresses tumorigenesis through cell cycle inhibition and induction of apoptosis. To investigate additional Sall2-regulated downstream genes, we analyzed the differences in mRNA expression profiles with and without exogenously expressed Sall2. We identified 1616 Sall2-responsive genes through gene expression arrays. Promoter-reporter assays of p16INK4A and several other tumor-related genes indicated that the Sall2 regulation of these promoters was not significantly different between the two major forms of Sall2 with alternative exon 1 or exon 1A. Additional analysis showed that Sall2-induced p16 promoter activation was Sall2 dose-dependent. Deletion and site-directed mutagenesis of the p16 promoter identified a consensus Sall2 binding site (GGGTGGG) proximal to the p16 transcription start site and was critical for p16 promoter activation. Finally, to confirm the significance of Sall2-activated p16 expression in cell cycle regulation, we co-transfected the SKOV3 cells with a Sall2 expression construct and a p16 minigene and also co-transfected the ES-2 cells with a Sall2 expression construct and the siRNA against p16 for flow cytometry analysis. Our results showed that Sall2 enhanced the p16 minigene blocking of cell cycle progression and p16 knockdown with siRNA abolished most of the Sall2 inhibition of cell cycle progression. These findings indicate that Sall2 targets multiple cell cycle regulators, including p16, through their promoters, adding knowledge to the understanding of Sall2 and p16 gene regulation, and how Sall2 deregulation may promote cancer formation.
Collapse
Affiliation(s)
- Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sung CK, Yim H. The tumor suppressor protein p150Sal2 in carcinogenesis. Tumour Biol 2015; 36:489-94. [DOI: 10.1007/s13277-014-3019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022] Open
|
16
|
Kelberman D, Islam L, Lakowski J, Bacchelli C, Chanudet E, Lescai F, Patel A, Stupka E, Buck A, Wolf S, Beales PL, Jacques TS, Bitner-Glindzicz M, Liasis A, Lehmann OJ, Kohlhase J, Nischal KK, Sowden JC. Mutation of SALL2 causes recessive ocular coloboma in humans and mice. Hum Mol Genet 2014; 23:2511-26. [PMID: 24412933 PMCID: PMC3990155 DOI: 10.1093/hmg/ddt643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice.
Collapse
|
17
|
Farkas C, Martins CP, Escobar D, Hepp MI, Castro AF, Evan G, Gutiérrez JL, Warren R, Donner DB, Pincheira R. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress. PLoS One 2013; 8:e73817. [PMID: 24040083 PMCID: PMC3765348 DOI: 10.1371/journal.pone.0073817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM) knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs) and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.
Collapse
Affiliation(s)
- Carlos Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Promoter methylation of the SALL2 tumor suppressor gene in ovarian cancers. Mol Oncol 2012; 7:419-27. [PMID: 23273547 DOI: 10.1016/j.molonc.2012.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/22/2023] Open
Abstract
The SALL2 gene product and transcription factor p150 were first identified in a search for tumor suppressors targeted for inactivation by the oncogenic mouse polyoma virus. SALL2 has also been identified as a cellular quiescence factor, essential for cells to enter and remain in a state of growth arrest under conditions of serum deprivation. p150 is a transcriptional activator of p21(Cip1/Waf1) and BAX, sharing important growth arrest and proapoptotic properties with p53. It also acts as a repressor of c-myc. Restoration of SALL2 expression in cells derived from a human ovarian carcinoma (OVCA) suppresses growth of the cells in immunodeficient mice. Here we examine the pattern of p150 expression in the normal human ovary, in OVCA-derived cell lines and in primary ovarian carcinomas. Immunohistochemical staining showed that p150 is highly expressed in surface epithelial cells of the normal human ovary. Expression is exclusively from the P2 promoter governing the E1A splice variant of p150. The P2 promoter is CpG-rich and susceptible to methylation silencing. p150 expression was restored in OVCA cell lines following growth in the presence of 5-azacytidine. In a survey of 210 cases of OVCA, roughly 90% across major and minor histological types failed to show expression of the protein. Immunological and biochemical approaches were used to show hypermethylation of the SALL2 P2 promoter in OVCA-derived cell lines and in a majority of primary tumors. These results bring together molecular biological and clinical evidence in support of a role of SALL2 as a suppressor of ovarian cancers.
Collapse
|
19
|
Ma JC, Qian J, Lin J, Qian W, Yang J, Wang CZ, Chai HY, Li Y, Chen Q, Qian Z. Aberrant hypomethylation of SALL4 gene is associated with intermediate and poor karyotypes in acute myeloid leukemia. Clin Biochem 2012. [PMID: 23201546 DOI: 10.1016/j.clinbiochem.2012.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE SALL4 gene has been identified to stimulate the expansion of hematopoietic stem cell (HSCs) and enhance the self-renewal of HSCs. Overexpression of SALL4 has been found in several cancers. The present study was aimed to investigate the methylation status of SALL4 promoter region in acute myeloid leukemia (AML). DESIGNS AND METHODS The methylation status of SALL4 promoter was analyzed in 84 patients with AML using methylation-specific PCR (MSP) and its clinical significance was evaluated. RESULTS Aberrant hypomethylation of SALL4 gene, which was correlated with SALL4 expression, was found in 17.8% (15/84) cases. The patients with SALL4 hypomethylation had significantly older age and higher WBCs than those without SALL4 hypomethylation. The incidence of SALL4 hypomethylation was higher in M1 subtype than in M2 and other subtypes (50%, 26% and 6%, respectively, P=0.001). SALL4 hypomethylation was associated with cytogenetically intermediate and poor groups. Although survival time of the SALL4-hypomethylated AML was shorter than that of SALL4-methylated group (4 months vs 9 months), the difference was not statistically significant (P=0.356). CONCLUSIONS Hypomethylation of SALL4 promoter is a common event and is associated with the intermediate and poor karyotypes in AML.
Collapse
Affiliation(s)
- Ji-chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin J, Qian J, Yao DM, Qian W, Yang J, Wang CZ, Chai HY, Ma JC, Deng ZQ, Li Y, Chen Q. Aberrant hypomethylation of SALL4 gene in patients with myelodysplastic syndrome. Leuk Res 2012; 37:71-5. [PMID: 23122807 DOI: 10.1016/j.leukres.2012.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 12/23/2022]
Abstract
The abnormalities of SALL4 gene, which encodes a zinc-finger transcription factor and is essential for developmental events, have been found to be involved in tumorigenesis. In this study, we investigated the methylation status of the CpG island of SALL4 promoter region in myelodysplastic syndrome (MDS) using methylation-specific PCR (MSP). Aberrant hypomethylation of SALL4 gene was found in 21.7% (18/83) of the cases analyzed. A significantly positive correlation was identified between the level of SALL4 transcript and the status of SALL4 hypomethylation (R=0.641, P<0.001). No correlation was found between SALL4 hypomethylation and clinical parameters. However, the frequency of SALL4 hypomethylation significantly increased in higher risk MDS (14% in Low/Int-1 versus 39% in Int-2/High, P=0.031). The association between SALL4 hypomethylation and the mutations in three methylation modifiers (IDH1, IDH2 and DNMT3A) was not observed. Although the estimated 50% survival time of the SALL4-hypomethylated group was shorter than that of SALL4-methylated group (11.0 months vs. 20.0 months), the difference was not statistically significant (P=0.430). These findings suggest that hypomethylation of SALL4 promoter is a common event in MDS.
Collapse
Affiliation(s)
- Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sung CK, Yim H, Gu H, Li D, Andrews E, Duraisamy S, Li C, Drapkin R, Benjamin T. The polyoma virus large T binding protein p150 is a transcriptional repressor of c-MYC. PLoS One 2012; 7:e46486. [PMID: 23029531 PMCID: PMC3460914 DOI: 10.1371/journal.pone.0046486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 09/02/2012] [Indexed: 11/18/2022] Open
Abstract
p150, product of the SALL2 gene, is a binding partner of the polyoma virus large T antigen and a putative tumor suppressor. p150 binds to the nuclease hypersensitive element of the c-MYC promoter and represses c-MYC transcription. Overexpression of p150 in human ovarian surface epithelial cells leads to decreased expression, and downregulation to increased expression, of c-MYC. c-MYC is repressed upon restoration of p150 to ovarian carcinoma cells. Induction of apoptosis by etoposide results in recruitment of p150 to the c-MYC promoter and to repression of c-MYC. Analysis of data in The Cancer Genome Atlas shows negative correlations between SALL2 and c-MYC expression in four common solid tumor types.
Collapse
Affiliation(s)
- Chang Kyoo Sung
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyungshin Yim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongcang Gu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dawei Li
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Andrews
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sekhar Duraisamy
- Dana Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, United States of America
| | - Cheng Li
- Dana Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, Massachusetts, United States of America
| | - Ronny Drapkin
- Dana Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, United States of America
- Brigham and Women's Hospital, Department of Pathology, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
SALL4, a member of the SALL gene family, is one of the most important transcriptional regulators of stem cells. It is of particular interest to stem cell biologists because it is linked to the self-renewal of both embryonic stem cells (ESCs) and hematopoietic stem cells (HSCs), and it is involved in human leukemia. In ESCs, the Sall4/Oct4/Nanog core transcriptional network governs the self-renewal and pluripotent properties of human and murine ESCs. In normal HSCs and leukemic stem cells (LSCs), SALL4 is linked to three known pathways that are involved in self-renewal: Wnt/β-catenin, Bmi-1, and Pten. Despite the important shared role of SALL4 in self-renewal of HSCs and LSCs, our recent studies obtained through correlating global downstream target genes and unique functional studies in normal versus leukemic cells have demonstrated that SALL4 has differential effects on both pro- and anti-apoptotic pathways in normal and leukemic cells. Targeting SALL4, particularly when combined with the use of ABT-737, a BCL2 antagonist, could lead to leukemic cell-specific apoptosis. This review summarizes our current knowledge on the SALL gene family development, particularly on the role of SALL4 in stem cells, as well as tumorigenesis, especially leukemogenesis.
Collapse
Affiliation(s)
- Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Chai L. The role of HSAL (SALL) genes in proliferation and differentiation in normal hematopoiesis and leukemogenesis. Transfusion 2012; 51 Suppl 4:87S-93S. [PMID: 22074632 DOI: 10.1111/j.1537-2995.2011.03371.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The National Blood Foundation (NBF) support was critical in the author's research career development. The NBF support came in the form of a start-up seed grant that she got from the American Association of Blood Banks, an organization that advances the practice and standards of transfusion medicine and cellular therapies and an organization in which she is a proud member. The NBF grant enabled her to keep up with her transfusion medicine practice while pursuing her passion to be a physician scientist. During its funding period, she was able to obtain critical preliminary bench data and to secure several National Institutes of Health grants with over a million dollars direct cost. In addition, the knowledge gained from the NBF-supported projects is currently being translated into medical practice in her lab by testing on cord blood expansion. She is looking forward to spending the upcoming years of her professional career bridging bedside observations on transfusion medicine with bench experiences and then utilizing that bench-derived knowledge in the practice of transfusion medicine.
Collapse
Affiliation(s)
- Li Chai
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
24
|
Gu H, Li D, Sung CK, Yim H, Troke P, Benjamin T. DNA-binding and regulatory properties of the transcription factor and putative tumor suppressor p150(Sal2). BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:276-83. [PMID: 21362508 DOI: 10.1016/j.bbagrm.2011.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/10/2011] [Accepted: 02/22/2011] [Indexed: 12/26/2022]
Abstract
The product of the SALL2 protein p150(Sal2) is a multi-zinc finger transcription factor with growth arrest and proapoptotic functions that overlap those of p53. Its DNA-binding properties are unknown. We have used a modified SELEX procedure with purified p150(Sal2) and a pool of oligonucleotides of random sequence to identify those that are bound preferentially by p150(Sal2). The consensus sequence for optimal binding in vitro is GGG(T/C)GGG, placing p150(Sal2) among a large group of GC box-binding proteins including the Sp1 family of transcription factors. A triple zinc finger motif in p150(Sal2) similar to that in Sp1 is required for DNA binding. p150(Sal2) and Sp1 show evidence of co-operative binding in vitro and of interaction in vivo. p150(Sal2), a known activator of the CDK inhibitor p21(Cip1/Waf1) (p21), binds to regions of the human p21 promoter that contain variations of the consensus sequence in multiple copies. p150(Sal2) is also shown to bind to the BAX promoter with similar elements and to activate its expression following an apoptotic stimulus. These results demonstrate binding of p150(Sal2) to two natural promoters with GC elements related to the optimal binding sequence defined in vitro and whose regulation is important for suppression of tumor growth.
Collapse
Affiliation(s)
- Hongcang Gu
- Department of pathology NRB-939, Harvard Medical School, 77 Avenue Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sung CK, Dahl J, Yim H, Rodig S, Benjamin TL. Transcriptional and post-translational regulation of the quiescence factor and putative tumor suppressor p150(Sal2). FASEB J 2011; 25:1275-83. [PMID: 21228219 DOI: 10.1096/fj.10-173674] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The evolutionarily conserved SALL genes encode transcription factors with roles in embryonic development. The product of the SALL2 gene was first identified as a binding partner of the mouse polyoma virus large T antigen and later shown to possess tumor suppressor-like functions. Independent studies identified SALL2 as a factor regulating the quiescent state in human fibroblasts. Here, we investigate factors that regulate the expression of SALL2 and turnover of p150(Sal2) in growing vs. resting cells. The transcription factor AP4 increases along with SALL2 in quiescent cells and positively regulates SALL2 expression. TGFβ effectively inhibits expression of SALL2 and its regulator AP4 when added to quiescent fibroblasts. TGFβ repression of SALL2 and AP4 is independent of the induction of connective tissue growth factor (CTGF) by TGFβ. p150(Sal2) disappears rapidly on restoration of serum. In both growing fibroblasts and established ovarian surface epithelial cells, p150(Sal2) undergoes polyubiquitination and proteosomal degradation. A CUL4/DDB1 E3 ligase containing RBBP7 as the p150(Sal2) receptor has been identified as mediating the destruction of p150(Sal2) as cells transition from a quiescent to an actively growing state.
Collapse
Affiliation(s)
- Chang K Sung
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Choudhuri S. Looking back to the future: From the development of the gene concept to toxicogenomics. Toxicol Mech Methods 2009; 19:263-77. [DOI: 10.1080/15376510902855529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21:1638-47. [PMID: 17554387 DOI: 10.1038/sj.leu.2404732] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling plays an important role in stem cell self-renewal and proliferation. Aberrant activation of Wnt signaling and its downstream targets are intimately linked with several types of cancer with colon cancer being the best-studied example. However, recent results also suggest an important role of Wnt signaling in normal as well as leukemic hematopoietic stem cells. Aberrant activation of Wnt signaling and downstream effectors has been demonstrated in acute myeloid leukemia. Here, mutant receptor tyrosine kinases, such as Flt3 and chimeric transcription factors such as promyelocytic leukemia-retinoic acid receptor-alpha and acute myeloid leukemia1-ETO, induce downstream Wnt signaling events. These findings suggest that the Wnt signaling pathway is an important target in several leukemogenic pathways and may provide a novel opportunity for targeting leukemic stem cells.
Collapse
Affiliation(s)
- J-H Mikesch
- Department of Medicine, Hematology and Oncology, University of Muenster, Münster, Germany
| | | | | | | | | |
Collapse
|
28
|
Cui W, Kong NR, Ma Y, Amin HM, Lai R, Chai L. Differential expression of the novel oncogene, SALL4, in lymphoma, plasma cell myeloma, and acute lymphoblastic leukemia. Mod Pathol 2006; 19:1585-92. [PMID: 16998462 DOI: 10.1038/modpathol.3800694] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SALL4, a newly identified zinc-finger transcriptional factor important for embryonic development, is mapped to chromosome 20q13. Previously, we reported that SALL4 was constitutively expressed in acute myeloid leukemia and SALL4 transgenic mice developed acute myeloid leukemia. In this study, we aimed to survey SALL4 protein expression in benign and neoplastic hematopoietic tissues in addition to acute myeloid leukemia using immunostaining with a polyclonal anti-SALL4 antibody. Primary hematological tumors (178) and 15 benign hematopoietic tissues were examined. Reverse transcription-polymerase chain reaction was also performed to detect SALL4 mRNA expression on eight precursor B-cell lymphoblastic leukemia/lymphomas, 10 benign hematopoietic tissues, and seven hematopoietic cancer cell lines. Of the benign tissues, SALL4 expression was detectable only in CD34+ hematopoietic stem/progenitor cells (2/2 at protein level, 3/3 at RNA level). In neoplastic tissues, only precursor B-cell lymphoblastic leukemia/lymphomas had detectable SALL4 (12/16 at protein level, 7/8 at RNA level), similar to that observed in acute myeloid leukemia. Of the seven cell lines examined, only those derived from acute myeloid leukemia and precursor B-cell lymphoblastic leukemia/lymphomas were positive. To conclude, SALL4 expression is normally restricted to CD34+ hematopoietic stem/progenitor cells. The persistence of SALL4 expression in leukemic blasts in precursor B-cell lymphoblastic leukemia/lymphomas resembles to what we observed in acute myeloid leukemia, and correlates with the maturation arrest of these cells. We have shown in our previous study that the constitutive expression of SALL4 in mice can lead to acute myeloid leukemia development. The similar expression pattern of SALL4 in acute myeloid leukemia and B-cell lymphoblastic leukemia/lymphomas suggests that these two disease entities may share similar biological features and/or mechanisms of leukemogenesis. More definite studies to investigate the role of SALL4 in the pathogenesis of B-cell lymphoblastic leukemia/lymphomas are needed in the future to address this question.
Collapse
Affiliation(s)
- Wei Cui
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Böhm J, Sustmann C, Wilhelm C, Kohlhase J. SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2006; 348:898-907. [PMID: 16899215 DOI: 10.1016/j.bbrc.2006.07.124] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
The SALL4 promoter has not yet been characterized. Animal studies showed that SALL4 is downstream of and interacts with TBX5 during limb and heart development, but a direct regulation of SALL4 by TBX5 has not been demonstrated. For other SAL genes, regulation within the Shh, Wnt, and Fgf pathways has been reported. Chicken csal1 expression can be activated by a combination of Fgf4 and Wnt3a or Wnt7a. Murine Sall1 enhances, but Xenopus Xsal2 represses, the canonical Wnt signaling. Here we describe the cloning and functional analysis of the SALL4 promoter. Within a minimal promoter region of 31bp, we identified a consensus TCF/LEF-binding site. The SALL4 promoter was strongly activated not only by LEF1 but also by TCF4E. Mutation of the TCF/LEF-binding site resulted in decreased promoter activation. Our results demonstrate for the first time the direct regulation of a SALL gene by the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Johann Böhm
- Institut für Humangenetik und Anthropologie, Universität Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
30
|
Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM, Lai R, Ritz J, Krause DS, Chai L. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 2006; 108:2726-35. [PMID: 16763212 PMCID: PMC1895586 DOI: 10.1182/blood-2006-02-001594] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SALL4, a human homolog to Drosophila spalt, is a novel zinc finger transcriptional factor essential for development. We cloned SALL4 and its isoforms (SALL4A and SALL4B). Through immunohistochemistry and real-time reverse-transcription-polymerase chain reaction (RT-PCR), we demonstrated that SALL4 was constitutively expressed in human primary acute myeloid leukemia (AML, n = 81), and directly tested the leukemogenic potential of constitutive expression of SALL4 in a murine model. SALL4B transgenic mice developed myelodysplastic syndrome (MDS)-like features and subsequently AML that was transplantable. Increased apoptosis associated with dysmyelopoiesis was evident in transgenic mouse marrow and colony-formation (CFU) assays. Both isoforms could bind to beta-catenin and synergistically enhanced the Wnt/beta-catenin signaling pathway. Our data suggest that the constitutive expression of SALL4 causes MDS/AML, most likely through the Wnt/beta-catenin pathway. Our murine model provides a useful platform to study human MDS/AML transformation, as well as the Wnt/beta-catenin pathway's role in the pathogenesis of leukemia stem cells.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Apoptosis
- Base Sequence
- Cloning, Molecular
- Colony-Forming Units Assay
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Neoplasm Transplantation
- Oncogenes
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wnt Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Yupo Ma
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lauberth SM, Rauchman M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J Biol Chem 2006; 281:23922-31. [PMID: 16707490 DOI: 10.1074/jbc.m513461200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sall1 is a multi-zinc finger transcription factor that represses gene expression and regulates organogenesis. In this report, we further characterize the domain of Sall1 necessary for repression. We show that endogenous Sall1 binds to the nucleosome remodeling and deacetylase corepressor complex (NuRD) and confirm the functionality of the Sall1-associating macromolecular complex by showing that the complex possesses HDAC activity. NuRD is involved in global transcriptional repression and regulation of specific developmental processes. The mechanism by which sequence-specific DNA-binding proteins associate with NuRD is not well understood. We have identified a highly conserved 12-amino acid motif in the transcription factor Sall1 that is sufficient for the recruitment of NuRD. Single amino acid substitutions defined the critical amino acid peptide motif as RRKQXK-PXXF. This motif probably exhibits a more general role in regulating gene expression, since other proteins containing this domain, including all Sall family members and an unrelated zinc finger protein Ebfaz, mediate transcriptional repression and associate with NuRD. These results also have important implications for the pathogenesis of Townes-Brocks, a syndrome caused by SALL1 mutations.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Department of Biochemistry and Molecular Biology, Veterans Affairs Medical Center, Saint Louis University, St. Louis, Missouri 63106, USA
| | | |
Collapse
|
32
|
Chai L, Yang J, Di C, Cui W, Kawakami K, Lai R, Ma Y. Transcriptional activation of the SALL1 by the human SIX1 homeodomain during kidney development. J Biol Chem 2006; 281:18918-26. [PMID: 16670092 DOI: 10.1074/jbc.m600180200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SALL1 is a member of the SAL gene family that encodes a group of putative developmental transcription factors. SALL1 plays a critical role during kidney development as mutations of the human SALL1 gene cause Townes-Brocks syndrome, which is associated with kidney malformation. Deletion of the mouse Sall1 gene results in renal agenesis or severe dysgenesis. To date, little is known about the molecular mechanisms controlling the regulation of SALL1 expression. This report describes the cloning and characterization of the human SALL1 gene promoter. Consensus binding sites were identified for several transcription factors, with multiple sites for WT1 and SIX1. In transient transfection assays, SALL1 promoter activity was higher in HEK-293 human kidney cells and COS-7 monkey kidney cells than in NIH-3T3 fibroblasts, consistent with its role in kidney development. Transcription from the SALL1 promoter was strikingly activated by the SIX1 protein. Utilizing a luciferase reporter gene assay, endogenous or exogenously added SIX1 activated the SALL1 promoter. Overexpression of SIX1 induced a significant increase in the endogenous SIX1 protein. In addition, co-expression of SIX1 and Eya1 resulted in a significant increase in the SALL1 promoter activity when compared with either SIX1 or Eya1 alone. Finally, we demonstrate that SIX1 was able to bind to the SALL1 promoter by retardation assays and that deletion of the putative element of SIX1 significantly diminishes the SALL1 promoter activity response to SIX1 stimulation. Our findings, when taken together, indicate that SALL1 is a likely target gene for SIX1 during kidney development.
Collapse
Affiliation(s)
- Li Chai
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sweetman D, Münsterberg A. The vertebrate spalt genes in development and disease. Dev Biol 2006; 293:285-93. [PMID: 16545361 DOI: 10.1016/j.ydbio.2006.02.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/01/2006] [Accepted: 02/05/2006] [Indexed: 02/02/2023]
Abstract
The spalt proteins are encoded by a family of evolutionarily conserved genes found in species as diverse as Drosophila, C. elegans and vertebrates. In humans, mutations in some of these genes are associated with several congenital disorders which underscores the importance of spalt gene function in embryonic development. Recent studies have begun to cast light on the functions of this family of proteins with increasing understanding of the developmental processes regulated and the molecular mechanisms used. Here we review what is currently known about the role of spalt genes in vertebrate development and human disease.
Collapse
Affiliation(s)
- Dylan Sweetman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|
34
|
Abstract
p150(Sal2), a vertebrate homologue of the Drosophila melanogaster homeotic transcription factor Spalt, has previously been shown to be a binding target of the polyomavirus large T antigen. p150(Sal2) acts as an inhibitor of viral DNA synthesis, and the binding of p150(Sal2) by large T overcomes this inhibition. The present study focuses on the effects of p150(Sal2) on the growth and survival of ovarian carcinoma (OVCA) cells that are deficient in expression of p150(Sal2) and of normal established human ovarian surface epithelial (HOSE) cells which abundantly express the protein. Transient expression of exogenous p150(Sal2) in OVCA cells that show little or no endogenous expression resulted in inhibition of DNA synthesis and colony formation and in increased apoptosis. OVCA cells stably transfected and expressing physiological levels of p150(Sal2) showed reduced tumorigenicity accompanied by increased expression of p21(WAF1/CIP1) (p21) and BAX. Conversely, reduction of endogenous levels of p150(Sal2) in HOSE resulted in reduced p21 expression and increased DNA synthesis. p150(Sal2) bound to the p21 promoter adjacent to the known p53 binding sites and stimulated transcription in the absence of p53. We propose that p150(Sal2), acting in part as a p53-independent regulator of p21 and BAX, can function in some cell types as a regulator of cell growth and survival.
Collapse
Affiliation(s)
- Dawei Li
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
35
|
Toker AS, Teng Y, Ferreira HB, Emmons SW, Chalfie M. The Caenorhabditis elegans spalt-like gene sem-4 restricts touch cell fate by repressing the selector Hox gene egl-5 and the effector gene mec-3. Development 2003; 130:3831-40. [PMID: 12835398 DOI: 10.1242/dev.00398] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the spalt (sal) gene family encode zinc-finger proteins that are putative tumor suppressors and regulate anteroposterior (AP) patterning, cellular identity, and, possibly, cell cycle progression. The mechanism through which sal genes carry out these functions is unclear. The Caenorhabditis elegans sal gene sem-4 controls the fate of several different cell types, including neurons, muscle and hypodermis. Mutation of sem-4 transforms particular tail neurons into touch-neuron-like cells. In wild-type C. elegans, six touch receptor neurons mediate the response of the worm to gentle touch. All six touch neurons normally express the LIM homeobox gene mec-3. A subset, the two PLM cells, also express the Hox gene egl-5, an Abdominal-B homolog, which we find is required for correct mec-3 expression in these cells. The abnormal touch-neuron-like-cells in sem-4 animals express mec-3; we show that a subset also express egl-5. We report: (1) that ectopic expression of sem-4 in normal touch cells represses mec-3 expression and reduces touch cell function; (2) that egl-5 expression is required for both the fate of normal PLM touch neurons in wild-type animals and the fate of a subset of abnormal touch neurons in sem-4 animals, and (3) that SEM-4 specifically binds a shared motif in the mec-3 and egl-5 promoters that mediates repression of these genes in cells in the tail. We conclude that sem-4 represses egl-5 and mec-3 through direct interaction with regulatory sequences in the promoters of these genes, that sem-4 indirectly modulates mec-3 expression through its repression of egl-5 and that this negative regulation is required for proper determination of neuronal fates. We suggest that the mechanism and targets of regulation by sem-4 are conserved throughout the sal gene family: other sal genes might regulate patterning and cellular identity through direct repression of Hox selector genes and effector genes.
Collapse
Affiliation(s)
- Anne S Toker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|