1
|
Soliman RH, Johnston JG, Gohar EY, Taylor CM, Pollock DM. Greater natriuretic response to ENaC inhibition in male versus female Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R418-R427. [PMID: 31913682 DOI: 10.1152/ajpregu.00060.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genes for the epithelial sodium channel (ENaC) subunits are expressed in a circadian manner, but whether this results in time-of-day differences in activity is not known. Recent data show that protein expression of ENaC subunits is higher in kidneys from female rats, yet females are more efficient in excreting an acute salt load. Thus, our in vivo study determined whether there is a time-of-day difference as well as a sex difference in the response to ENaC inhibition by benzamil. Our results showed that the natriuretic and diuretic responses to a single dose of benzamil were significantly greater in male compared with female rats whether given at the beginning of the inactive period [Zeitgeber time 0 (ZT0), 7 AM] or active period (ZT12, 7 PM). However, the response to benzamil was not significantly different between ZT0 and ZT12 dosing in either male or female rats. There was no difference in renal cortical α-ENaC protein abundance between ZT0 and ZT12 or males and females. Given previous reports of flow-induced stimulation of endothelin-1 (ET-1) production and sex differences in the renal endothelin system, we measured urinary ET-1 excretion to assess the effects of increased urine flow on intrarenal ET-1. ET-1 excretion was significantly increased following benzamil administration in both sexes, but this increase was significantly greater in females. These results support the hypothesis that ENaC activity is less prominent in maintaining Na+ balance in females independent of renal ET-1. Because ENaC subunit genes and protein expression vary by time of day and are greater in female rat kidneys, this suggests a clear disconnect between ENaC expression and channel activity.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jermaine G Johnston
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eman Y Gohar
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Abstract
BACKGROUND Salt is important in the pathogenesis of hypertension (HT). Salt-sensitive hypertension (SSH) accounts for about half of all HT cases. In SSH, sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) activity is impaired. Impaired Na+/K+-ATPase activity in the lens epithelium results in cortical opacities in the peripheral equator of the lens. We investigated the sensitivity of cortical lens opacities in detecting SSH. METHODS The study included 191 SSH and 159 non-SSH, salt-resistant HT (SRH) patients (350 HT patients total), aged 40-80 years. One hundred twenty-four sex- and age-matched patients without a HT diagnosis made up the control group. Daily salt intake of all groups was calculated from 24-hr urinary Na excretion. SSH was diagnosed when the difference in mean arterial blood pressure values obtained during high- and low-Na diets was ≥10%. Non-SSH, SRH was diagnosed when the difference was <10%.Two researchers examined the presence of cortical lens opacities biomicroscopically using the diffuse, direct, Scheimpflug, and retroillumination from fundus methods. RESULTS Total lens opacity was predictive of SSH among all cases (P < 0.001), with a sensitivity and specificity of 75.4% [95% confidence interval (CI): 68.6-81.3] and 83.6% (95% CI: 77.0-89.0), respectively. Its positive and negative predictive values were 84.7% (95% CI: 79.4-88.8) and 73.9% (95% CI: 68.6-78.5), respectively. CONCLUSIONS Lens opacities can be used as a finding that can be easily observed in the detection of SSH and excess salt intake.
Collapse
Affiliation(s)
- Şahbender Koç
- 1 Keçiören Education and Training Hospital, University of Health Sciences, Ankara, Turkey
| | | |
Collapse
|
3
|
Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 2016; 310:R877-84. [PMID: 27009050 PMCID: PMC4896079 DOI: 10.1152/ajpregu.00425.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Inhibition of the renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in treatment of chronic kidney diseases (CKD). However, reversal of the course of CKD or at least long-term stabilization of renal function are often difficult to achieve, and many patients still progress to end-stage renal disease. New treatments are needed to enhance protective actions of RAAS inhibitors (RAASis), such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), and improve prognosis in CKD patients. Inhibition of endothelin (ET) system in combination with established RAASis may represent such an approach. There are complex interactions between both systems and similarities in their renal physiological and pathophysiological actions that provide theoretical rationale for combined inhibition. This view is supported by some experimental studies in models of both diabetic and nondiabetic CKD showing that a combination of RAASis with ET receptor antagonists (ERAs) ameliorate proteinuria, renal structural changes, and molecular markers of glomerulosclerosis, renal fibrosis, or inflammation more effectively than RAASis or ERAs alone. Practically all clinical studies exploring the effects of RAASis and ERAs combination in nephroprotection have thus far applied add-on designs, in which an ERA is added to baseline treatment with ACEIs or ARBs. These studies, conducted mostly in patients with diabetic nephropathy, have shown that ERAs effectively reduce residual proteinuria in patients with baseline RAASis treatment. Long-term studies are currently being conducted to determine whether promising antiproteinuric effects of the dual blockade will be translated in long-term nephroprotection with acceptable safety profile.
Collapse
|
4
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Thai TL, Yu L, Galarza-Paez L, Wu MM, Lam HYC, Bao HF, Duke BJ, Al-Khalili O, Ma HP, Liu B, Eaton DC. The Polarized Effect of Intracellular Calcium on the Renal Epithelial Sodium Channel Occurs as a Result of Subcellular Calcium Signaling Domains Maintained by Mitochondria. J Biol Chem 2015; 290:28805-11. [PMID: 26451045 DOI: 10.1074/jbc.m115.668293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/27/2022] Open
Abstract
The renal epithelial sodium channel (ENaC) provides regulated sodium transport in the distal nephron. The effects of intracellular calcium ([Ca(2+)]i) on this channel are only beginning to be elucidated. It appears from previous studies that the [Ca(2+)]i increases downstream of ATP administration may have a polarized effect on ENaC, where apical application of ATP and the subsequent [Ca(2+)]i increase have an inhibitory effect on the channel, whereas basolateral ATP and [Ca(2+)]i have a stimulatory effect. We asked whether this polarized effect of ATP is, in fact, reflective of a polarized effect of increased [Ca(2+)]i on ENaC and what underlying mechanism is responsible. We began by performing patch clamp experiments in which ENaC activity was measured during apical or basolateral application of ionomycin to increase [Ca(2+)]i near the apical or basolateral membrane, respectively. We found that ENaC does indeed respond to increased [Ca(2+)]i in a polarized fashion, with apical increases being inhibitory and basolateral increases stimulating channel activity. In other epithelial cell types, mitochondria sequester [Ca(2+)]i, creating [Ca(2+)]i signaling microdomains within the cell that are dependent on mitochondrial localization. We found that mitochondria localize in bands just beneath the apical and basolateral membranes in two different cortical collecting duct principal cell lines and in cortical collecting duct principal cells in mouse kidney tissue. We found that inhibiting mitochondrial [Ca(2+)]i uptake destroyed the polarized response of ENaC to [Ca(2+)]i. Overall, our data suggest that ENaC is regulated by [Ca(2+)]i in a polarized fashion and that this polarization is maintained by mitochondrial [Ca(2+)]i sequestration.
Collapse
Affiliation(s)
- Tiffany L Thai
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Ling Yu
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Laura Galarza-Paez
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Ming Ming Wu
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Ho Yin Colin Lam
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Hui Fang Bao
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Billie Jeanne Duke
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Otor Al-Khalili
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - He-Ping Ma
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Bingchen Liu
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Douglas C Eaton
- From the Department of Physiology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
6
|
Drummond HA, Stec DE. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension. ACTA ACUST UNITED AC 2015; 1:1-9. [PMID: 27928552 DOI: 10.17554/j.issn.2410-0579.2015.01.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| | - David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| |
Collapse
|
7
|
Abstract
The amiloride-sensitive epithelial Na(+) channel (ENaC) is a key player in the regulation of Na(+) homeostasis. Its functional activity is under continuous control by a variety of signaling molecules, including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na(+) levels associated with the abnormal regulation of blood volume, blood pressure, and lung fluid balance, uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na(+) and fluid homeostasis in organs where endothelins are known to act: the kidneys, lung, and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells, and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter.
Collapse
Affiliation(s)
- Andrey Sorokin
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
8
|
Rosas OR, Torrado AI, Santiago JM, Rodriguez AE, Salgado IK, Miranda JD. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue. Neural Regen Res 2015; 9:2164-73. [PMID: 25657738 PMCID: PMC4316450 DOI: 10.4103/1673-5374.147949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jose M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, PR, USA
| | - Ana E Rodriguez
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
9
|
Xu W, Hong SJ, Zeitchek M, Cooper G, Jia S, Xie P, Qureshi HA, Zhong A, Porterfield MD, Galiano RD, Surmeier DJ, Mustoe TA. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin. J Invest Dermatol 2014; 135:796-806. [PMID: 25371970 DOI: 10.1038/jid.2014.477] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 02/03/2023]
Abstract
Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Garry Cooper
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hannan A Qureshi
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marshall D Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Reichetzeder C, Tsuprykov O, Hocher B. Endothelin receptor antagonists in clinical research — Lessons learned from preclinical and clinical kidney studies. Life Sci 2014; 118:141-8. [DOI: 10.1016/j.lfs.2014.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/18/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
|
11
|
Matsuki K, Hathaway CK, Lawrence MG, Smithies O, Kakoki M. The role of transforming growth factor β1 in the regulation of blood pressure. Curr Hypertens Rev 2014; 10:223-38. [PMID: 25801626 PMCID: PMC4842018 DOI: 10.2174/157340211004150319123313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/21/2023]
Abstract
Although human association studies suggest a link between polymorphisms in the gene encoding transforming growth factor (TGF) β1 and differing blood pressure levels, a causative mechanism for this correlation remains elusive. Recently we have generated a series of mice with graded expression of TGFβ1, ranging from approximately 10% to 300% compared to normal. We have found that blood pressure and plasma volume are negatively regulated by TGFβ1. Of note, the 10% hypomorph exhibits primary aldosteronism and markedly impaired urinary excretion of water and electrolytes. We here review previous literature highlighting the importance of TGFβ signaling as a natriuretic system, which we postulate is a causative mechanism explaining how polymorphisms in TGFβ1 could influence blood pressure levels.
Collapse
Affiliation(s)
| | | | | | | | - Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB #7525, 701 Brinkhous-Bullitt Building, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
12
|
Kohan DE. Role of collecting duct endothelin in control of renal function and blood pressure. Am J Physiol Regul Integr Comp Physiol 2013; 305:R659-68. [PMID: 23986358 DOI: 10.1152/ajpregu.00345.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Over 26,000 manuscripts have been published dealing with endothelins since their discovery 25 years ago. These peptides, and particularly endothelin-1 (ET-1), are expressed by, bind to, and act on virtually every cell type in the body, influencing multiple biological functions. Among these actions, the effects of ET-1 on arterial pressure and volume homeostasis have been most extensively studied. While ET-1 modulates arterial pressure through regulation of multiple organ systems, the peptide's actions in the kidney in general, and the collecting duct in particular, are of unique importance. The collecting duct produces large amounts of ET-1 that bind in an autocrine manner to endothelin A and B receptors, causing inhibition of Na(+) and water reabsorption; absence of collecting duct ET-1 or its receptors is associated with marked salt-sensitive hypertension. Collecting duct ET-1 production is stimulated by Na(+) and water loading through local mechanisms that include sensing of salt and other solute delivery as well as shear stress. Thus the collecting duct ET-1 system exists, at least in part, to detect alterations in, and maintain homeostasis for, extracellular fluid volume. Derangements in collecting duct ET-1 production may contribute to the pathogenesis of genetic hypertension. Blockade of endothelin receptors causes fluid retention due, in large part, to inhibition of the action of ET-1 in the collecting duct; this side effect has substantially limited the clinical utility of this class of drugs. Herein, the biology of the collecting duct ET-1 system is reviewed, with particular emphasis on key issues and questions that need addressing.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
13
|
Kourti P, Zarogiannis SG, Liakopoulos V, Karioti A, Eleftheriadis T, Hatzoglou C, Gourgoulianis K, Molyvdas PA, Stefanidis I. Endothelin-1 acutely reduces the permeability of visceral sheep peritoneum in vitro through both endothelin-A and endothelin-B receptors. Artif Organs 2013; 37:308-12. [PMID: 23369074 DOI: 10.1111/j.1525-1594.2012.01565.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mesothelium is an important part of the peritoneal barrier for water and ion transport, essential for effective peritoneal dialysis (PD). Peritoneal fibrosis has been associated with PD treatment failure. Endothelin-1 (ET-1) is a potent vasoactive peptide, involved in pathologic fibrotic processes. Its action is mediated mainly by endothelin type A (ETA ) and type B (ETB ) receptors. The aim of this study was to investigate, by Ussing chamber experiments, the effect of ET-1 on the transmesothelial electrical resistance (RTM ) of the isolated visceral sheep peritoneum. Intact sheets of visceral peritoneum were obtained from 40 adult sheep and mounted in Ussing-type chambers. ET-1 (10(-7) M), BQ-123 (ETA receptor antagonist; 10(-6) M), BQ-788 (ETB receptor antagonist; 10(-6) M), and their combinations were added on the apical and the basolateral side of the peritoneum. RTM was measured before and serially after addition of the substances, and changes were registered as percentage (ΔRTM %). RTM increased within 1 min after addition of ET-1 apically (ΔRTM 65.03 ± 15.87%; P < 0.05) or basolaterally (ΔRTM 85.5 ± 20.86%; P < 0.05). BQ-123 and BQ-788 and their combination significantly reduced (P < 0.05) the effect of ET-1 to a similar degree in all cases. These results clearly indicate that ET-1 reduces ionic permeability of the visceral sheep peritoneum in vitro. Additionally, it is obvious that this inhibitory effect is mediated through both ETA and ETB receptors.
Collapse
Affiliation(s)
- Panagiota Kourti
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Drummond HA. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension. Front Physiol 2012; 3:341. [PMID: 22973231 PMCID: PMC3428779 DOI: 10.3389/fphys.2012.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
Pressure-induced constriction (also known as the “myogenic response”) is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
15
|
Stow LR, Voren GE, Gumz ML, Wingo CS, Cain BD. Dexamethasone stimulates endothelin-1 gene expression in renal collecting duct cells. Steroids 2012; 77:360-6. [PMID: 22209709 PMCID: PMC3303981 DOI: 10.1016/j.steroids.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 01/28/2023]
Abstract
Aldosterone stimulates the endothelin-1 gene (Edn1) in renal collecting duct (CD) cells by a mechanism involving the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The goal of the present study was to determine if the synthetic glucocorticoid dexamethasone affected Edn1 gene expression and to characterize GR binding patterns to an element in the Edn1 promoter. Dexamethasone (1μM) induced a 4-fold increase in Edn1 mRNA in mIMCD-3 inner medullary CD cells. Similar results were obtained from cortical collecting duct-derived mpkCCD(c14) cells. RU486 inhibition of GR completely blocked dexamethasone action on Edn1. Similarly, 24h transfection of siRNA against GR reduced Edn1 expression by approximately 50%. However, blockade of MR with either spironolactone or siRNA had little effect on dexamethasone induction of Edn1. Cotransfection of MR and GR siRNAs together had no additive effect compared to GR-siRNA alone. The results indicate that dexamethasone acts on Edn1 exclusively through GR and not MR. DNA affinity purification studies revealed that either dexamethasone or aldosterone resulted in GR binding to the same hormone response element in the Edn1Edn1 promoter. The Edn1 hormone response element contains three important sequence segments. Mutational analysis revealed that one of these segments is particularly important for modulating MR and GR binding to the Edn1 hormone response element.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Gene Expression/drug effects
- Glucocorticoids/pharmacology
- Hormone Antagonists/pharmacology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mifepristone/pharmacology
- Mineralocorticoid Receptor Antagonists
- Mutation
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spironolactone/pharmacology
Collapse
Affiliation(s)
- Lisa R. Stow
- Department of Medicine, University of Florida Gainesville, Florida 32610
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - George E. Voren
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - Michelle L. Gumz
- Department of Medicine, University of Florida Gainesville, Florida 32610
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - Charles S. Wingo
- Department of Medicine, University of Florida Gainesville, Florida 32610
- North Florida/South Georgia VA Medical Center, Gainesville Florida 32608
| | - Brian D. Cain
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
- CORRESPONDENCE addressed to Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610,
| |
Collapse
|
16
|
Bugaj V, Mironova E, Kohan DE, Stockand JD. Collecting duct-specific endothelin B receptor knockout increases ENaC activity. Am J Physiol Cell Physiol 2011; 302:C188-94. [PMID: 21918182 DOI: 10.1152/ajpcell.00301.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.
Collapse
Affiliation(s)
- Vladislav Bugaj
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
18
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
19
|
Kong L, Deng Z, Shen H, Zhang Y. Src family kinase inhibitor PP2 efficiently inhibits cervical cancer cell proliferation through down-regulating phospho-Src-Y416 and phospho-EGFR-Y1173. Mol Cell Biochem 2010; 348:11-9. [PMID: 21052789 DOI: 10.1007/s11010-010-0632-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/18/2010] [Indexed: 11/26/2022]
Abstract
Tyrosine (Y) kinases inhibitors have been approved for targeted treatment of cancer. However, their clinical use is limited to some cancers and the mechanism of their action remains unclear. Previous study has indicated that PP2, a selective inhibitor of the Src family of non-receptor tyrosine kinases (nRTK), efficiently repressed cervical cancer growth in vitro and in vivo. In this regard, our aims are to explore the mechanism of PP2 on cervical cancer cell growth inhibition by investigating the suppressive divergence among PP1, PP2, and a negative control compound PP3. MTT results showed that three compounds had different inhibitory effects on proliferation of two cervical cancer cells, HeLa and SiHa, and PP2 was most efficient in a time- and dose-dependent manner. Moreover, we found 10 μM PP2 down-regulated pSrc-Y416 (P < 0.05), pEGFR-Y845 (P < 0.05), and -Y1173 (P < 0.05) expression levels, while 10 μM PP1 down-regulated pSrc-Y416 (P < 0.05) and pEGFR-Y845 (P < 0.05), but not pEGFR-Y1173; 10 μM PP3 down-regulated only pEGFR-Y1173 (P < 0.05). PP2 could modulate cell cycle arrest by up-regulating p21(Cip1) and p27(Kip1) in both HeLa and SiHa cells and down-regulating expression of cyclin A, and cyclin dependent kinase-2, -4 (Cdk-2, -4) in HeLa and of cyclin B and Cdk-2 in SiHa. Our results indicate that Src pathway and EGFR pathway play different roles in the proliferation of cervical cancer cells and PP2 efficiently reduces cervical cancer cell proliferation by reduction of both Src and EGFR activity.
Collapse
Affiliation(s)
- Lu Kong
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
20
|
Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 2010; 460:1-17. [PMID: 20401730 DOI: 10.1007/s00424-010-0827-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na(+) channel (ENaC) is the rate-limiting step that governs Na(+) absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na(+), and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP(2). In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.
Collapse
|
21
|
Pavlov TS, Chahdi A, Ilatovskaya DV, Levchenko V, Vandewalle A, Pochynyuk O, Sorokin A, Staruschenko A. Endothelin-1 inhibits the epithelial Na+ channel through betaPix/14-3-3/Nedd4-2. J Am Soc Nephrol 2010; 21:833-43. [PMID: 20338996 DOI: 10.1681/asn.2009080885] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) mediate sodium reabsorption in the cortical collecting duct (CCD), but the regulatory pathways that modulate the activity of these channels are incompletely understood. Here, we observed that endothelin-1 (ET-1) attenuates ENaC activity acutely by reducing the channel's open probability and chronically by decreasing the number of channels in the plasma membrane. To investigate whether beta1Pix, a signaling protein activated by ET-1, mediates ENaC activity, we reconstituted ENaC in CHO cells with or without coexpressed beta1Pix and found that beta1Pix negatively regulates ENaC. Knockdown of betaPix in native principal cells abolished the ET-1-induced decrease in ENaC channel number. Furthermore, we found that betaPix does not decrease ENaC activity through its guanine nucleotide exchange factor (GEF) activity for Rac1 and Cdc42. Instead, coexpression of beta1Pix mutant constructs revealed that beta1Pix affects ENaC activity through binding 14-3-3 proteins. Coimmunoprecipitation experiments supported a physical interaction between beta1Pix and 14-3-3beta in cultured principal cells. Coexpression of 14-3-3beta increased ENaC activity in CHO cells, but concomitant expression of beta1Pix attenuated this increase. Recruitment of 14-3-3beta by beta1Pix impaired the interaction of 14-3-3beta with the ubiquitin ligase Nedd4-2, thereby promoting ubiquitination and degradation of ENaC. Taken together, these results suggest that the inhibitory effects of chronic ET-1 on ENaC result from betaPix interacting with the 14-3-3/Nedd4-2 pathway.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Reisenauer MR, Anderson M, Huang L, Zhang Z, Zhou Q, Kone BC, Morris AP, Lesage GD, Dryer SE, Zhang W. AF17 competes with AF9 for binding to Dot1a to up-regulate transcription of epithelial Na+ channel alpha. J Biol Chem 2010; 284:35659-69. [PMID: 19864429 DOI: 10.1074/jbc.m109.038448] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We previously reported that Dot1a.AF9 complex represses transcription of the epithelial Na(+) channel subunit alpha (alpha-ENaC) gene in mouse inner medullary collecting duct mIMCD3 cells and mouse kidney. Aldosterone relieves this repression by down-regulating the complex through various mechanisms. Whether these mechanisms are sufficient and conserved in human cells or can be applied to other aldosterone-regulated genes remains largely unknown. Here we demonstrate that human embryonic kidney 293T cells express the three ENaC subunits and all of the ENaC transcriptional regulators examined. These cells respond to aldosterone and display benzamil-sensitive Na(+) currents, as measured by whole-cell patch clamping. We also show that AF17 and AF9 competitively bind to the same domain of Dot1a in multiple assays and have antagonistic effects on expression of an alpha-ENaC promoter-luciferase construct. Overexpression of Dot1a or AF9 decreased mRNA expression of the ENaC subunits and their transcriptional regulators and reduced benzamil-sensitive Na(+) currents. AF17 overexpression caused the opposite effects, accompanied by redirection of Dot1a from the nucleus to the cytoplasm and reduction in histone H3 K79 methylation. The nuclear export inhibitor leptomycin B blocked the effect of AF17 overexpression on H3 K79 hypomethylation. RNAi-mediated knockdown of AF17 yielded nuclear enrichment of Dot1a and histone H3 K79 hypermethylation. As with AF9, AF17 displays nuclear and cytoplasmic co-localization with Sgk1. Therefore, AF17 competes with AF9 to bind Dot1a, decreases Dot1a nuclear expression by possibly facilitating its nuclear export, and relieves Dot1a.AF9-mediated repression of alpha-ENaC and other target genes.
Collapse
Affiliation(s)
- Mary Rose Reisenauer
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS. Aldosterone modulates steroid receptor binding to the endothelin-1 gene (edn1). J Biol Chem 2009; 284:30087-96. [PMID: 19638349 DOI: 10.1074/jbc.m109.030718] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone and endothelin-1 (ET-1) act on collecting duct cells of the kidney and are important regulators of renal sodium transport and cardiovascular physiology. We recently identified the ET-1 gene (edn1) as a novel aldosterone-induced transcript. However, aldosterone action on edn1 has not been characterized at the present time. In this report, we show that aldosterone stimulated edn1 mRNA in acutely isolated rat inner medullary collecting duct cells ex vivo and ET-1 peptide in rat inner medulla in vivo. Aldosterone induction of edn1 mRNA occurred in cortical, outer medullary, and inner medullary collecting duct cells in vitro. Inspection of the edn1 promoter revealed two putative hormone response elements. Levels of heterogeneous nuclear RNA synthesis demonstrated that edn1 mRNA stimulation occurred at the level of transcription. RNA knockdowns corroborated pharmacological studies and demonstrated both mineralocorticoid receptor and glucocorticoid receptor participated in this response. Aldosterone resulted in dose-dependent nuclear translocation and binding of mineralocorticoid receptor and glucocorticoid receptor to the edn1 hormone response elements. Hormone receptors mediated the association of chromatin remodeling complexes, histone modification, and RNA polymerase II at the edn1 promoter. Direct interaction between aldosterone and ET-1 has important implications for renal and cardiovascular function.
Collapse
Affiliation(s)
- Lisa R Stow
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Berger MM, Rozendal CS, Schieber C, Dehler M, Zügel S, Bardenheuer HJ, Bärtsch P, Mairbäurl H. The effect of endothelin-1 on alveolar fluid clearance and pulmonary edema formation in the rat. Anesth Analg 2009; 108:225-31. [PMID: 19095854 DOI: 10.1213/ane.0b013e31818881a8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Endothelin-1 (ET-1) is thought to play a pivotal role in pulmonary edema formation. The underlying mechanisms remain uncertain but may include alterations in capillary pressure and vascular permeability. There are no studies investigating whether ET-1 also affects alveolar fluid clearance which is the primary mechanism for the resolution of pulmonary edema. Therefore, we performed this study to clarify effects of ET-1 on alveolar reabsorption and fluid balance in the rat lung. METHODS Alveolar fluid clearance was measured in fluid instilled rat lungs using a 5% albumin solution with or without ET-1 (10(-7) M) and/or amiloride (100 microM). Net alveolar fluid balance, time course of edema formation, pulmonary capillary pressure, and alveolar permeability to albumin were measured in the isolated, ventilated, constant pressure perfused rat lung with or without ET-1 (0.8 nM) added to the perfusate. RESULTS In the fluid-instilled lung, ET-1 reduced alveolar fluid clearance by about 65%, an effect that was related to a decrease in amiloride-sensitive transepithelial Na(+) transport (P < 0.001). The ET-1-induced inhibition was completely prevented by the endothelin B receptor antagonist BQ788 (P = 0.006), whereas the endothelin A receptor antagonist BQ123 had no effect (P = 0.663). In the isolated, ventilated, perfused rat lung ET-1 caused a net accumulation of alveolar fluid by about 20% (P = 0.011 vs control), whereas lungs of control rats cleared about 20% of the instilled fluid. ET-1 increased pulmonary capillary pressure (+9.4 cm H(2)O), decreased perfusate flow (-81%), accelerated lung weight gain and reduced lung survival time (P < 0.001). Permeability to albumin was not significantly affected by ET-1 (P = 0.24). CONCLUSION ET-1 inhibits alveolar fluid clearance of anesthetized rats by inhibition of amiloride-sensitive epithelial Na(+) channels. The inhibitory effect of ET-1 results from activation of the endothelin B receptor. These findings suggest a mechanism by which ET-1, in addition to increasing capillary pressure, contributes to pulmonary edema formation.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 2008; 19:1845-54. [PMID: 18753254 DOI: 10.1681/asn.2008020225] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epithelial Na+ channel (ENaC) transports Na+ across tight epithelia, including the distal nephron. Different paradigms of ENaC regulation include extrinsic and intrinsic factors that affect the expression, single-channel properties, and intracellular trafficking of the channel. In particular, recent discoveries highlight new findings regarding proteolytic processing, ubiquitination, and recycling of the channel. Understanding the regulation of this channel is critical to the understanding of various clinical phenomena, including normal physiology and several diseases of kidney and lung epithelia, such as blood pressure (BP) control, edema, and airway fluid clearance. Significant progress has been achieved in this active field of research. Although ENaC is classically thought to be a mediator of BP and volume status through Na+ reabsorption in the distal nephron, several studies in animal models highlight important roles for ENaC in lung pathophysiology, including in cystic fibrosis. The purpose of this review is to highlight the various modes and mechanisms of ENaC regulation, with a focus on more recent studies and their clinical implications.
Collapse
Affiliation(s)
- Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
26
|
Bugaj V, Pochynyuk O, Mironova E, Vandewalle A, Medina JL, Stockand JD. Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct. Am J Physiol Renal Physiol 2008; 295:F1063-70. [PMID: 18667482 DOI: 10.1152/ajprenal.90321.2008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We used patch-clamp electrophysiology to investigate regulation of the epithelial Na+ channel (ENaC) by endothelin-1 (ET-1) in isolated, split-open rat collecting ducts. ET-1 significantly decreases ENaC open probability by about threefold within 5 min. ET-1 decreases ENaC activity through basolateral membrane ETB but not ETA receptors. In rat collecting duct, we find no role for phospholipase C or protein kinase C in the rapid response of ENaC to ET-1. ET-1, although, does activate src family tyrosine kinases and their downstream MAPK1/2 effector cascade in renal principal cells. Both src kinases and MAPK1/2 signaling are necessary for ET-1-dependent decreases in ENaC open probability in the split-open collecting duct. We conclude that ET-1 in a physiologically relevant manner rapidly suppresses ENaC activity in native, mammalian principal cells. These findings may provide a potential mechanism for the natriuresis observed in vivo in response to ET-1, as well as a potential cause for the salt-sensitive hypertension found in animals with impaired endothelin signaling.
Collapse
Affiliation(s)
- Vladislav Bugaj
- Department of Physiology 7756, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
27
|
Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 2008; 23:23-31. [PMID: 18268362 DOI: 10.1152/physiol.00034.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myogenic constriction is a vasoconstriction of blood vessels to increases in perfusion pressure. In renal preglomerular vasculature, it is an established mechanism of renal blood flow autoregulation. Recently, myogenic constriction has been identified as an important protective mechanism, preventing the transmission of systemic pressure to the fragile glomerular vasculature. Although the signal transduction pathways mediating vasoconstriction are well known, how the increases in pressure trigger vasoconstriction is unclear. The response is initiated by pressure-induced stretch of the vessel wall and thus is dependent on mechanical signaling. The identity of the sensor detecting VSMC stretch is unknown. Previous studies have considered the role of extracellular matrix-integrin interactions, ion conduction units (channels and/or transporters), and the cytoskeleton as pressure detectors. Whether, and how, these structures fit together in VSMCs is poorly understood. However, a model of mechanotransduction in the nematode Caenorhadbditis elegans (C. elegans) has been established that ties together extracellular matrix, ion channels, and cytoskeletal proteins into a large mechanosensing complex. In the C. elegans mechanotransducer model, a family of evolutionarily conserved proteins, referred to as the DEG/ENaC/ASIC family, form the ion-conducting pore of the mechanotransducer. Members of this protein family are expressed in VSMC where they may participate in pressure detection. This review will address how the C. elegans mechanotransducer model can be used to model pressure detection in mammalian VSMCs and provide a new perspective to pressure detection in VSMCs.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, and Center for Excellence in Cardio-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The connecting tubule is emerging as a nephron segment critical to the regulation of Na+ and K+ excretion and the maintenance of homeostasis for these ions. The segment is difficult to study, however, and much of the available information we have concerning its functions is indirect. Here, we review the major transport mechanisms and transporters found in this segment and outline several unsolved problems in the field. RECENT FINDINGS Recent electrophysiological and immunohistochemical measurements together with theoretical studies provide a more comprehensive view of ion transport in the connecting tubule. New signaling pathways governing Na+ and K+ transport have also been described. SUMMARY Key questions about how Na+ and K+ transport are regulated remain unanswered. Is the connecting tubule the site of final regulation of both Na+ and K+ excretion? If so, how are the transport rates of these two ions independently controlled?
Collapse
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
29
|
Abstract
Endothelin (ET) is a potent vasoconstrictor that is now known to modulate kidney tubule transport, including kidney tubule acidification. Animals undergoing an acid challenge to systemic acid-base status and with some models of chronic metabolic acidosis have increased kidney ET production. Increased ET production/activity contributes to enhanced kidney tubule acidification that facilitates kidney acid excretion in response to an acid challenge to systemic acid-base status. The data to date support a physiologic role for ET in mediating enhanced kidney acidification in response to acid challenges, but do not support an ET role in maintaining kidney tubule acidification in control, non-acid-challenged states. ET increases acidification in both the proximal and distal nephron and appears to exert its effects both directly and indirectly, the latter through modulating the levels and/or activity or other mediators of kidney tubule acidification. ET also contributes to enhanced kidney acidification in some pathophysiologic states and might contribute to some untoward outcomes associated with these conditions. Whether ET should be a therapeutic target in treating and/or preventing some of these untoward outcomes remains an open question. This review supports continued research into the physiologic and possibly pathophysiologic role of ET in settings of increased kidney tubule acidification.
Collapse
Affiliation(s)
- D E Wesson
- Division of Nephrology and Hypertension, Departments of Internal Medicine and Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
30
|
Guggino WB, Stanton BA. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 2006; 7:426-36. [PMID: 16723978 DOI: 10.1038/nrm1949] [Citation(s) in RCA: 332] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-)-selective ion channel, is a prototypic member of the ATP-binding cassette transporter superfamily that is expressed in several organs. In these organs, CFTR assembles into large, dynamic macromolecular complexes that contain signalling molecules, kinases, transport proteins, PDZ-domain-containing proteins, myosin motors, Rab GTPases, and SNAREs. Understanding how these complexes regulate the intracellular trafficking and activity of CFTR provides a unique insight into the aetiology of cystic fibrosis and other diseases.
Collapse
Affiliation(s)
- William B Guggino
- Department of Physiology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
31
|
Kohan DE. The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure. Curr Opin Nephrol Hypertens 2006; 15:34-40. [PMID: 16340664 DOI: 10.1097/01.mnh.0000186852.15889.1a] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Endothelin-1 is a multifunctional peptide that is produced by the kidney and may regulate a variety of renal functions. This review discusses recent developments in understanding the role of the medullary endothelin-1 system in regulating renal salt and water excretion and systemic blood pressure. RECENT FINDINGS The renal medulla is the major site of endothelin-1 synthesis and receptor expression in the kidney. Endothelin-1 in vitro can inhibit sodium or water transport in the collecting duct and thick ascending limb through autocrine pathways. Endothelin-1 also can increase medullary blood flow. These effects of endothelin-1 are partially mediated by nitric oxide and cyclooxygenase metabolites which are produced by most medullary cells. Mice with collecting duct-specific knockout of the endothelin-1 gene have impaired sodium excretion in response to sodium loading and have hypertension which worsens with high salt intake. The mice also have heightened sensitivity to vasopressin and decreased ability to excrete an acute water load. Mice with collecting duct-specific endothelin A receptor knockout have normal blood pressure and sodium excretion, but have reduced vasopressin responsiveness. Medullary endothelin-1 content is reduced in many forms of experimental hypertension. SUMMARY Medullary endothelin-1 regulates renal sodium and water transport and medullary blood flow. In particular, the medullary collecting duct is important in this process, but the medullary endothelin system involves complex interactions, through autocrine and paracrine pathways, between most cell types in the region. Medullary endothelin-1 is fundamentally important in physiologic regulation of renal sodium and water excretion and maintenance of normal systemic blood pressure.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, 1900 East 30 North, Salt Lake City, UT 84132, USA.
| |
Collapse
|
32
|
Helms MN, Chen XJ, Ramosevac S, Eaton DC, Jain L. Dopamine regulation of amiloride-sensitive sodium channels in lung cells. Am J Physiol Lung Cell Mol Physiol 2005; 290:L710-L722. [PMID: 16284210 DOI: 10.1152/ajplung.00486.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport. Therefore, we examined apical and basolateral dopamine's effect on apical, highly selective sodium channels [epithelial sodium channels (ENaC)] in monolayers of an alveolar type 2 cell line (L2). Dopamine increased channel open probability (P(o)) without changing the unitary current. The D(1) receptor blocker SCH-23390 blocked the dopamine effect, but the D(2) receptor blocker sulpiride did not. The dopamine-mediated increase in ENaC activity was not a secondary effect of dopamine stimulation of Na-K-ATPase, since ouabain applied to the basolateral surface to block the activity of Na-K-ATPase did not alter dopamine-mediated ENaC activity. Protein kinase A (PKA) was not responsible for dopamine's effect since a PKA inhibitor, H89, did not reduce dopamine's effect. However, cpt-2-O-Me-cAMP, which selectively binds and activates EPAC (exchange protein activated by cAMP) but not PKA, increased ENaC P(o). An Src inhibitor, PP2, and the phosphatidylinositol-3-kinase inhibitor, LY-294002, blocked dopamine's effect on ENaC. In addition, an MEK blocker, U0126, an inhibitor of phospholipase A(2), and a protein phosphatase inhibitor also blocked the effect of dopamine on ENaC P(o). Finally, since the cAMP-EPAC-Rap1 pathway also activates DARPP32 (32-kDa dopamine response protein phosphatase), we confirmed that dopamine phosphorylates DARPP32, and okadaic acid, which blocks phosphatases (DARPP32), also blocks dopamine's effect. In summary, dopamine increases ENaC activity by a cAMP-mediated alternative signaling pathway involving EPAC and Rap1, signaling molecules usually associated with growth-factor-activated receptors.
Collapse
Affiliation(s)
- My N Helms
- Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
33
|
Ohkita M, Wang Y, Nguyen NDT, Tsai YH, Williams SC, Wiseman RC, Killen PD, Li S, Yanagisawa M, Gariepy CE. Extrarenal ETBPlays a Significant Role in Controlling Cardiovascular Responses to High Dietary Sodium in Rats. Hypertension 2005; 45:940-6. [PMID: 15809364 DOI: 10.1161/01.hyp.0000161878.81141.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin-B receptor (ET(B))-deficient rats have low-renin, salt-sensitive hypertension. We hypothesized this was caused by an absence of renal ET(B) signaling and performed a series of experiments to examine the effect of dietary sodium (Na) on endothelin-1 (ET1) expression and renal function in wild-type (WT) and ET(B)-deficient rats. We found that ET(B) deficiency, but not dietary Na, increases circulating and tissue (kidney and aorta) ET1 levels. Quantitative reverse-transcription polymerase chain reaction reveals that aortic and renal ET1 and endothelin-A receptor (ET(A)) mRNA, however, are similarly increased by dietary Na in ET(B)-WT and ET(B)-deficient rats. We then determined the effect of chronic ET(A) blockade on blood pressure (direct conscious measurements), urinary protein excretion, and creatinine clearance (Crcl). On a Na-deficient diet, ET(B)-deficient rats have mild proteinuria and impaired Crcl. On a high-Na diet, severe hypertension and renal dysfunction develop in ET(B)-deficient rats. Chronic ET(A) blockade prevents hypertension and renal injury. To determine the role of the renal versus the extrarenal endothelin system, we performed renal cross-transplantation. We found that ET(B) deficiency in the body is associated with renal injury and an impaired ability to excrete an Na load. We also found that ET(B) deficiency in the body affects blood pressure response to dietary Na. Expression of ET1 and ET(A) are regulated by dietary Na. ET(B) receptors outside of the kidney, likely by functioning as a clearance receptor for ET1, limit salt-sensitivity in rats.
Collapse
Affiliation(s)
- Mamoru Ohkita
- Department of Pediatrics, University of Michigan, Ann Arbor 48109-0656, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR. Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells. J Biol Chem 2005; 280:17608-16. [PMID: 15753079 DOI: 10.1074/jbc.m501770200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
SRC family kinases are a group of nine cytoplasmic protein tyrosine kinases essential for many cell functions. Some appear to be ubiquitously expressed, whereas others are highly tissue specific. The ability of members of the SRC family to influence ion transport has been recognized for several years. Mounting evidence suggests a broad role for SRC family kinases in the cell response to both hypertonic and hypotonic stress, and in the ensuing regulatory volume increase or decrease. In addition, members of this tyrosine kinase family participate in the mechanotransduction that accompanies cell membrane deformation. Finally, at least one SRC family member operates in concert with the p38 MAPK to regulate tonicity-dependent gene transcription.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology, Mailcode PP262, Oregon Health and Science Univ. 3314 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
36
|
Falin R, Veizis IE, Cotton CU. A role for ERK1/2 in EGF- and ATP-dependent regulation of amiloride-sensitive sodium absorption. Am J Physiol Cell Physiol 2005; 288:C1003-11. [PMID: 15634742 DOI: 10.1152/ajpcell.00213.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor-mediated inhibition of amiloride-sensitive sodium absorption was observed in primary and immortalized murine renal collecting duct cell (mCT12) monolayers. The addition of epidermal growth factor (EGF) to the basolateral bathing solution of polarized monolayers reduced amiloride-sensitive short-circuit current (I(sc)) by 15-25%, whereas the addition of ATP to the apical bathing solution decreased I(sc) by 40-60%. Direct activation of PKC with phorbol 12-myristate 13-acetate (PMA) and mobilization of intracellular calcium with 2,5-di-tert-butyl-hydroquinone (DBHQ) reduced amiloride-sensitive I(sc) in mCT12 monolayers by 46 +/- 4% (n = 8) and 22 +/- 2% (n = 8), respectively. Exposure of mCT12 cells to EGF, ATP, PMA, and DBHQ caused an increase in phosphorylation of p42/p44 (extracellular signal-regulated kinase; ERK1/2). Pretreatment of mCT12 monolayers with an ERK kinase inhibitor (PD-98059; 30 microM) prevented phosphorylation of p42/p44 and significantly reduced EGF, ATP, and PMA-induced inhibition of amiloride-sensitive I(sc). In contrast, pretreatment of monolayers with a PKC inhibitor (bisindolylmaleimide I; GF109203x; 1 microM) almost completely blocked the PMA-induced decrease in I(sc), but did not alter the EGF- or ATP-induced inhibition of I(sc). The DBHQ-mediated decrease in I(sc) was due to inhibition of basolateral Na(+)-K(+)-ATPase, but EGF-, ATP-, and PMA-induced inhibition was most likely due to reduced apical sodium entry (epithelial Na(+) channel activity). The results of these studies demonstrate that acute inhibition of amiloride-sensitive sodium transport by extracelluar ATP and EGF involves ERK1/2 activation and suggests a role for MAP kinase signaling as a negative regulator of electrogenic sodium absorption in epithelia.
Collapse
Affiliation(s)
- Rebecca Falin
- Case Western Reserve Univ., 2109 Adelbert Rd., Cleveland, OH 44106-4948, USA
| | | | | |
Collapse
|
37
|
Tong Q, Stockand JD. Receptor tyrosine kinases mediate epithelial Na(+) channel inhibition by epidermal growth factor. Am J Physiol Renal Physiol 2004; 288:F150-61. [PMID: 15454394 DOI: 10.1152/ajprenal.00261.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidermal growth factor (EGF) decreases Na(+) reabsorption across distal nephron epithelia. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) transport in this portion of the nephron. Abnormal ENaC activity and EGF signaling are both associated with polycystic kidney disease localized to the distal nephron. We tested here whether EGF and other ligands for receptor tyrosine kinases (RTK) decrease ENaC activity. EGF markedly and quickly decreased ENaC activity. The RTK inhibitor erbstatin blocked EGF actions on ENaC and when added alone increased channel activity, uncovering basal suppression by endogenous RTK. The protein tyrosine phosphatase inhibitor vanadate, similar to EGF, decreased ENaC activity. Growth factors and vanadate decreased ENaC activity by decreasing open probability. ENaC was not phosphorylated in response to EGF, indicating that intermediary proteins transduce the inhibitory signal from the EGF receptor (EGFR) to ENaC. We find that neither MAPK 1/2 nor c-Src is signaling intermediaries between EGFR and ENaC. Inhibition of ENaC paralleled decreases in plasma membrane phosphatidylinositol 4,5-bisphosphate levels [PtdIns(4,5)P(2)] and was abolished by clamping PtdIns(4,5)P(2). We conclude that EGF and other ligands for RTK decrease ENaC open probability by decreasing membrane PtdIns(4,5)P(2) levels.
Collapse
Affiliation(s)
- Qiusheng Tong
- Department of Physiology 7756, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
38
|
Mies F, Shlyonsky V, Goolaerts A, Sariban-Sohraby S. Modulation of epithelial Na+ channel activity by long-chain n-3 fatty acids. Am J Physiol Renal Physiol 2004; 287:F850-5. [PMID: 15198929 DOI: 10.1152/ajprenal.00078.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial sodium channel is found in apical membranes of a variety of native epithelial tissues, where it regulates sodium and fluid balance. In vivo, a number of hormones and other endogenous factors, including polyunsaturated fatty acids (PUFAs), regulate these channels. We tested the effects of essential n-3 and n-6 PUFAs on amiloride-sensitive sodium transport in A6 epithelial cells. Eicosapentaenoic acid [EPA; C20:5(n-3)] transiently stimulated amiloride-sensitive open-circuit current (I(Na)) from 4.0 +/- 0.3 to 7.7 +/- 0.3 microA/cm2 within 30 min (P < 0.001). No activation was seen in the presence of 10 microM amiloride. In cell-attached but not in cell-excised patches, EPA acutely increased the open probability of sodium channels from 0.45 +/- 0.08 to 0.63 +/- 0.10 (P = 0.02, paired t-test). n-6 PUFAs, including linoleic acid (C18:2), eicosatetraynoic acid (C20:4), and docosapentanoic acid (C22:5) had no effect, whereas n-3 docosahexanoic acid (C22:6) activated amiloride-sensitive I(Na) in a manner similar to EPA. Activation of I(Na) by EPA was prevented by H-89, a PKA inhibitor. Similarly, PKA activity was stimulated by EPA. Nonspecific stimulation of phosphodiesterase activity by CoCl2 completely prevented the effect of EPA on sodium transport. We conclude that n-3 PUFAs activate epithelial sodium channels downstream of cAMP in a cAMP-dependent pathway also involving PKA.
Collapse
Affiliation(s)
- Frédérique Mies
- Physiology Department, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.
Collapse
Affiliation(s)
- Dmitri Firsov
- Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
40
|
Feranchak AP, Kilic G, Wojtaszek PA, Qadri I, Fitz JG. Volume-sensitive tyrosine kinases regulate liver cell volume through effects on vesicular trafficking and membrane Na+ permeability. J Biol Chem 2003; 278:44632-8. [PMID: 12939281 DOI: 10.1074/jbc.m301958200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In liver cells, the influx of Na+ mediated by nonselective cation (NSC) channels in the plasma membrane contributes importantly to regulation of cell volume. Under basal conditions, channels are closed; but both physiologic (e.g. insulin) and pathologic (e.g. oxidative stress) stimuli that are known to stimulate tyrosine kinases are associated with large increases in membrane Na+ permeability to approximately 80 pA/pF or more. Consequently, the purpose of these studies was to evaluate whether volume-sensitive tyrosine kinases mediate cell volume increases through effects on the activity or distribution of NSC channel proteins. In HTC hepatoma cells, decreases in cell volume evoked by hypertonic exposure increased total cellular tyrosine kinase activity approximately 20-fold. Moreover, hypertonic exposure (320-400 mosM) was followed after a delay by NSC channel activation and partial recovery of cell volume toward basal values (regulatory volume increase (RVI)). The tyrosine kinase inhibitors genistein and erbstatin prevented both NSC channel activation and RVI. Similarly, hypertonic exposure resulted in an increase in p60(c-src) activity, and intracellular dialysis with recombinant p60(c-src) led to activation of NSC currents in the absence of an osmolar gradient. Utilizing FM1-43 fluorescence, exposure to hypertonic media caused a rapid increase in the rate of exocytosis of approximately 40% (p < 0.01), and genistein inhibited both exocytosis and channel activation. These findings indicate that volume-sensitive increases in p60(c-src) and/or related tyrosine kinases play a key role in the regulation of membrane Na+ permeability, suggesting that increases in the NSC conductance may be mediated in part through rapid recruitment of a distinct pool of channel-containing vesicles.
Collapse
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
41
|
Blouquit S, Sari A, Lombet A, D'herbomez M, Naline E, Matran R, Chinet T. Effects of endothelin-1 on epithelial ion transport in human airways. Am J Respir Cell Mol Biol 2003; 29:245-51. [PMID: 12626340 DOI: 10.1165/rcmb.2002-0104oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endothelin-1 (ET-1) exerts many biological effects in airways, including bronchoconstriction, airway mucus secretion, cell proliferation, and inflammation. We investigated the effect of ET-1 on Na absorption and Cl secretion in human bronchial epithelial cells. Addition of 10(-7) M ET-1 had no effect on the inhibition of the short circuit current (Isc) induced by amiloride, a Na channel blocker. Addition of 10(-7) M ET-1 to the apical bath in the presence of amiloride increased Isc in cultured human bronchial epithelial cells studied in Ussing chambers. No effect was observed when ET-1 was added to basolateral bath, indicating that the involved ET-1 receptors are likely present only in the apical membrane of the cells. Use of Cl-free solutions and bumetanide reduced the ET-1-induced increases in Isc, indicating that ET-1 stimulates Cl secretion. The ET-1-induced increase in Isc was prevented by exposure to the ETB receptor antagonist BQ-788 but not to the ETA receptor antagonist BQ-123. ET-1 did not raise intracellular Ca levels, but increased the intracellular concentration of cAMP. These findings indicate that ET-1 is a Cl secretagogue in human airways and acts presumably through apically located ETB receptors and activation of the cAMP pathway.
Collapse
Affiliation(s)
- Sabine Blouquit
- Laboratoire de Biologie et Pharmacologie des Epithéliums Respiratoires, Boulogne, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Terrés AM, Windle HJ, Ardini E, Kelleher DP. Soluble extracts from Helicobacter pylori induce dome formation in polarized intestinal epithelial monolayers in a laminin-dependent manner. Infect Immun 2003; 71:4067-78. [PMID: 12819097 PMCID: PMC162010 DOI: 10.1128/iai.71.7.4067-4078.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori colonizes the stomach at the interface between the mucus layer and the apical pole of gastric epithelial cells. A number of secreted and shed products from the bacteria, such as proteins and lipopolysaccharide, are likely to have a role in the pathogenesis at the epithelial level. To determine the physiological response of transporting polarized epithelia to released soluble factors from the bacterium, we used the T84 cell line. Monolayers of T84 cells were exposed to soluble extracts from H. pylori. The extracts induced rapid "dome" formation as well as an immediate decrease in transepithelial electrical resistance. Domes are fluid-filled blister-like structures unique to polarized epithelia. Their formation has been linked to sodium-transporting events as well as to diminished adherence of the cells to the substrate. H. pylori-induced dome formation in T84 monolayers was exacerbated by amiloride and inhibited by ouabain. Furthermore, it was associated with changes in the expression of the laminin binding alpha 6 beta 4 integrin and the 67-kDa laminin receptor. Domes formed primarily on laminin-coated filters, rather than on fibronectin or collagen matrices, and their formation was inhibited by preincubating the bacterial extract with soluble laminin. This effect was specific to H. pylori and independent of the urease, vacA, cagA, and Lewis phenotype of the strains. These data indicate that released elements from H. pylori can alter the physiological balance and integrity of the epithelium in the absence of an underlying immune response.
Collapse
Affiliation(s)
- A M Terrés
- Department of Clinical Medicine and Dublin Molecular Medicine Centre, Trinity College, Dublin, Ireland.
| | | | | | | |
Collapse
|
43
|
Rothermund L, Traupe T, Dieterich M, Kossmehl P, Yagil C, Yagil Y, Kreutz R. Nephroprotective effects of the endothelin ET(A) receptor antagonist darusentan in salt-sensitive genetic hypertension. Eur J Pharmacol 2003; 468:209-16. [PMID: 12754059 DOI: 10.1016/s0014-2999(03)01714-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We tested the effect of selective endothelin ET(A) receptor blockade on the development renal damage in the Sabra rat model of genetic salt-sensitivity. Animals from the salt-sensitive (SBH/y) and salt-resistant strains (SBN/y) were either salt-loaded with deoxycorticosterone acetate and salt (DOCA) or fed a normal diet. Additional salt-loaded groups were also treated with the selective ET(A) antagonist darusentan (DA). Salt-loading in SBH/y increased systolic blood pressure by 75 mm Hg and urinary albumin excretion 23-fold (P<0.0001). Darusentan attenuated the rise of systolic blood pressure (50%) and urinary albumin excretion (63%, P<0.01, respectively). Salt-loading in SBH/y was associated with significant increased osteopontin mRNA expression as well as glomerulosclerosis and tubulointerstitial damage in the kidney (P<0.05, respectively). This was either significantly reduced or normalized by darusentan (P<0.05, respectively). Thus, darusentan confers a significant renal protection in the Sabra model of salt-sensitive hypertension.
Collapse
MESH Headings
- Albuminuria/complications
- Animals
- Body Weight/drug effects
- Desoxycorticosterone/administration & dosage
- Desoxycorticosterone/pharmacology
- Disease Models, Animal
- Endothelin A Receptor Antagonists
- Endothelin-1/urine
- Hypertension/drug therapy
- Hypertension/genetics
- Kidney
- Kidney Diseases/drug therapy
- Kidney Diseases/prevention & control
- Male
- Organ Size/drug effects
- Osteopontin
- Phenylpropionates/administration & dosage
- Phenylpropionates/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred Strains/genetics
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/drug effects
- Receptor, Endothelin B/metabolism
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/genetics
- Sodium/urine
- Sodium Chloride, Dietary/administration & dosage
- Sodium Chloride, Dietary/adverse effects
Collapse
Affiliation(s)
- Lars Rothermund
- Institut für Klinische Pharmakologie und Toxikologie, Benjamin Franklin Hospital, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|