1
|
Baldión PA, Díaz CA, Betancourt DE. Myricetin Modulates Matrix Metalloproteinases Expression Induced by TEGDMA in Human Odontoblast-Like Cells. J Biomed Mater Res A 2025; 113:e37872. [PMID: 39893556 DOI: 10.1002/jbm.a.37872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
The activity of matrix metalloproteinases (MMPs) plays a crucial role in the aging of the resin-dentin interface. The in situ action of MMP-2 and MMP-9 has been confirmed in the process of dentin-collagen degradation. However, the involvement of dental pulp cells in MMP secretion as a response to oxidative stress induced by contact with resin monomers has not been fully elucidated. Myricetin (MYR), like proanthocyanidin (PAC), has antioxidant properties and may help prevent extracellular matrix degradation. The objective was to evaluate the effect of MYR on the MMP expression and activity in response to reactive oxygen species (ROS) increase induced by triethylene glycol dimethacrylate (TEGDMA) in human odontoblast-like cells (hOLCs). hOLCs differentiated from dental pulp mesenchymal stem cells were exposed to TEGDMA released from dentin blocks using a barrier model with transwell inserts for 18, 24, and 36 h. Intracellular oxidation was evaluated using the 2',7'-dichlorofluorescein probe. The effect of 600 μM MYR on the MMP-2 and MMP-9 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The extracellular MMP levels were quantified using enzyme-linked immunosorbent assay, and their activation by means of a proteolytic fluorometric assay. The results were analyzed by one-way analysis of variance and Tukey's post hoc test, p ≤ 0.05. TEGDMA exposure increased intracellular ROS and upregulated MMP-2 and MMP-9 mRNA in hOLCs (p < 0.001). The levels of MMPs increased significantly 24 h after TEGDMA exposure (p = 0.013). These secreted proteases exhibited high activation ability. MYR reduced ROS production and downregulated MMP expression and activity at both mRNA and protein levels, similar to the effect found for PAC, which was used as a control. A relationship was observed between MMP-2 and MMP-9 expression, secretion, and early activation with ROS increase due to TEGDMA exposure. MYR showed potential as a therapeutic strategy to control MMP expression and modulate redox imbalance, offering a protective effect on cellular response.
Collapse
Affiliation(s)
- Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Aldemar Díaz
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Enrique Betancourt
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Lorentzen LG, Yeung K, Zitkeviciute A, Yang-Jensen KC, Eldrup N, Eiberg JP, Davies MJ. N-Terminal Proteomics Reveals Distinct Protein Degradation Patterns in Different Types of Human Atherosclerotic Plaques. J Proteome Res 2025; 24:144-157. [PMID: 39665830 DOI: 10.1021/acs.jproteome.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Atherosclerotic plaque rupture is a major cause of cardiovascular events. Plaque destabilization is associated with extracellular matrix (ECM) modification involving proteases which generate protein fragments with new N-termini. We hypothesized that rupture-prone plaques would contain elevated fragment levels, and their sequences would allow identification of active proteases and target proteins. Plaques from 21 patients who underwent surgery for symptomatic carotid artery stenosis were examined in an observational/cross-sectional study. Plaques were analyzed by liquid chromatography-mass spectrometry for the presence of N-terminal fragments. 33920 peptides were identified, with 17814 being N-terminal species. 5735 distinct N-terminal peptides were quantified and subjected to multidimensional scaling analysis and consensus clustering. These analyses indicated three clusters, which correlate with gross macroscopic plaque morphology (soft/mixed/hard), ultrasound classification (echolucent/echogenic), and the presence of hemorrhage/ulceration. Differences in the fragment complements are consistent with plaque-type-dependent turnover and degradation pathways. Identified peptides include signal and pro-peptides from synthesis and those from protein fragmentation. Sequence analysis indicates that targeted proteins include ECM species and responsible proteases (meprins, cathepsins, matrix metalloproteinases, elastase, and kallikreins). This study provides a large data set of peptide fragments and proteases present in plaques of differing stability. These species may have potential as biomarkers for improved atherosclerosis risk profiling.
Collapse
Affiliation(s)
- Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
| | - Karin Yeung
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Auguste Zitkeviciute
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Karen C Yang-Jensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nikolaj Eldrup
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jonas P Eiberg
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen─Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Copenhagen Academy for Medical Education and Simulation, Capital Region of Denmark, Copenhagen 2100, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
3
|
Ntekoumes D, Song J, Liu H, Amelung C, Guan Y, Gerecht S. Acute Three-Dimensional Hypoxia Regulates Angiogenesis. Adv Healthc Mater 2025; 14:e2403860. [PMID: 39623803 PMCID: PMC11729260 DOI: 10.1002/adhm.202403860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Indexed: 01/15/2025]
Abstract
Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.
Collapse
Affiliation(s)
- Dimitris Ntekoumes
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Haohao Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Connor Amelung
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
4
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases: an update. Am J Physiol Renal Physiol 2024; 327:F967-F984. [PMID: 39361724 PMCID: PMC11687849 DOI: 10.1152/ajprenal.00179.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease, and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Singh M, Kim A, Young A, Nguyen D, Monroe CL, Ding T, Gray D, Venketaraman V. The Mechanism and Inflammatory Markers Involved in the Potential Use of N-acetylcysteine in Chronic Pain Management. Life (Basel) 2024; 14:1361. [PMID: 39598160 PMCID: PMC11595559 DOI: 10.3390/life14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
N-acetylcysteine (NAC) has established use as an antidote for acetaminophen overdose and treatment for pulmonary conditions and nephropathy. It plays a role in regulating oxidative stress and interacting with various cytokines including IL-1β, TNFα, IL-8, IL-6, IL-10, and NF-κB p65. The overexpression of reactive oxygen species (ROS) is believed to contribute to chronic pain states by inducing inflammation and accelerating disease progression, favoring pain persistence in neuropathic and musculoskeletal pain conditions. Through a comprehensive review, we aim to explore the mechanisms and inflammatory pathways through which NAC may manage neuropathic and musculoskeletal pain. Evidence suggests NAC can attenuate neuropathic and musculoskeletal pain through mechanisms such as inhibiting matrix metalloproteinases (MMPs), reducing reactive oxygen species (ROS), and enhancing glutamate transport. Additionally, NAC may synergize with opioids and other pain medications, potentially reducing opioid consumption and enhancing overall pain management. Further research is needed to fully elucidate its therapeutic potential and optimize its use in pain management. As an adjuvant therapy, NAC shows potential for chronic pain management, offering significant benefits for public health.
Collapse
Affiliation(s)
- Mona Singh
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Alina Kim
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Amelie Young
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Deanna Nguyen
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Cynthia L. Monroe
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Tiffany Ding
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Dennis Gray
- Vigilant Anesthesiology, PA, Tampa, FL 33193, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| |
Collapse
|
6
|
Senderovic A, Galijasevic S. The Role of Inducible Nitric Oxide Synthase in Assessing the Functional Level of Coronary Artery Lesions in Chronic Coronary Syndrome. Cardiol Res 2024; 15:330-339. [PMID: 39420980 PMCID: PMC11483113 DOI: 10.14740/cr1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic coronary syndrome (CCS) is a long-term manifestation of coronary artery disease, marked by stable but recurring chest pain and myocardial ischemia due to the gradual buildup of atherosclerotic plaques in the coronary arteries. It is a metabolic disorder of coronary arteries characterized by oxidative stress, endothelial dysfunction, inflammation, and hyperlipidemia. The imbalance in oxidative-antioxidative status contributes to stable ischemic heart disease. Oxidative stress involves reactive oxygen and nitrogen species, leading to low-density lipoprotein (LDL) oxidation. Endothelial dysfunction, marked by reduced nitric oxide (NO) bioavailability, is an early onset of CCS, affecting vasodilation, cell proliferation, and inflammatory responses. Enzyme myeloperoxidase (MPO), traditionally considered protective, plays a dual role in initiating and progressing inflammatory diseases. MPO interacts with NO, modulating its catalytic activity. Elevated NO levels inhibit MPO through a reversible complex formation, preventing NO-induced inhibition by inducible nitric oxide synthase (iNOS). MPO also inactivates endothelial nitric oxide synthase (eNOS) and reacts with L-arginine, hindering NO synthesis. The interplay between MPO and NO significantly influences inflammation sites, impacting peroxidation rates and oxidation reactions. Peroxynitrite, a reactive species, contributes to nitration of tyrosine residues and lipid peroxidation. Mechanistic pathways suggest MPO enhances iNOS catalytic activity, influencing CCS development. iNOS, implicated in inflammation and atherosclerosis, is connected to NO regulation. This review analyzes the complex interplay of MPO, iNOS, and NO that affects plaque morphology, oxidative stress, and inflammation, contributing to atherosclerosis progression. Therefore, it is possible that the phenotypes of atherosclerotic plaques, focal and diffuse coronary artery disease, could be defined by the relationship between MPO and iNOS.
Collapse
Affiliation(s)
- Admina Senderovic
- Public Institution of Health Centers of the Canton of Sarajevo, Laboratory Diagnostics Service of the Ilidza, Health Center, Ilidza, Bosnia and Herzegovina
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Hercegovina
| | - Semira Galijasevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Hercegovina
| |
Collapse
|
7
|
Huang J, De Veirman L, Van Breusegem F. Cysteine thiol sulfinic acid in plant stress signaling. PLANT, CELL & ENVIRONMENT 2024; 47:2766-2779. [PMID: 38251793 DOI: 10.1111/pce.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cysteine thiols are susceptible to various oxidative posttranslational modifications (PTMs) due to their high chemical reactivity. Thiol-based PTMs play a crucial role in regulating protein functions and are key contributors to cellular redox signaling. Although reversible thiol-based PTMs, such as disulfide bond formation, S-nitrosylation, and S-glutathionylation, have been extensively studied for their roles in redox regulation, thiol sulfinic acid (-SO2H) modification is often perceived as irreversible and of marginal significance in redox signaling. Here, we revisit this narrow perspective and shed light on the redox regulatory roles of -SO2H in plant stress signaling. We provide an overview of protein sulfinylation in plants, delving into the roles of hydrogen peroxide-mediated and plant cysteine oxidase-catalyzed formation of -SO2H, highlighting the involvement of -SO2H in specific regulatory signaling pathways. Additionally, we compile the existing knowledge of the -SO2H reducing enzyme, sulfiredoxin, offering insights into its molecular mechanisms and biological relevance. We further summarize current proteomic techniques for detecting -SO2H and furnish a list of experimentally validated cysteine -SO2H sites across various species, discussing their functional consequences. This review aims to spark new insights and discussions that lead to further investigations into the functional significance of protein -SO2H-based redox signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lindsy De Veirman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
8
|
Zhang J, Han Y, Jia R, Zhu Q, Wang X, Liu M, Zhang W. Exploring the role of myeloperoxidase in the atherosclerotic process in hypoxic mice based on the MAPK signaling pathway. Biochem Pharmacol 2024; 225:116275. [PMID: 38729447 DOI: 10.1016/j.bcp.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Atherosclerosis (AS) is the common pathophysiological basis of various cardiovascular diseases and the leading cause of death from cardiovascular disease worldwide. When the body is in a hypoxic environment, enhanced oxidative stress and significant accumulation of reactive oxygen species (ROS) in tissue cells exacerbate the inflammatory response, resulting in increased release of myeloperoxidase (MPO), catalyzing the formation of large quantities of hypochlorous acid (HOCl), further oxidative modification of low-density lipoprotein (LDL), and exacerbating the formation and progression of atherosclerotic plaques. The MAPK signaling pathway is important in oxidative stress-mediated promotion of atherogenesis. MPO -/- mice were used in this study to establish a hypoxia model simulating 5000 m altitude and a Western high-fat diet-induced atherosclerosis model for 12 weeks. Exploring the role of MPO in the atherosclerotic process in hypoxic mice by observing the MAPK signaling pathway to provide a therapeutic target for the prevention and treatment of hypoxic atherosclerotic disease in the plateau. We found that hypoxia promotes the formation of atherosclerosis in mice, and the mechanism may be that increased MPO in vivo promotes an inflammatory response, which plays a crucial role in the formation of atherosclerosis. In addition, hypoxia further exacerbates plaque instability by activating the MAPK signaling pathway to upregulate vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9), which in turn promotes angiogenesis within the plaque. Therefore, a potential target for preventing and treating hypoxic atherosclerotic disease is the inhibition of MPO.
Collapse
Affiliation(s)
- Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Meiheng Liu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
9
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Yang-Jensen KC, Jørgensen SM, Chuang CY, Davies MJ. Modification of extracellular matrix proteins by oxidants and electrophiles. Biochem Soc Trans 2024; 52:1199-1217. [PMID: 38778764 PMCID: PMC11346434 DOI: 10.1042/bst20230860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The extracellular matrix (ECM) is critical to biological architecture and determines cellular properties, function and activity. In many situations it is highly abundant, with collagens and elastin being some of the most abundant proteins in mammals. The ECM comprises of multiple different protein species and sugar polymers, with both different isoforms and post-translational modifications (PTMs) providing a large variety of microenvironments that play a key role in determining tissue structure and health. A number of the PTMs (e.g. cross-links) present in the ECM are critical to integrity and function, whereas others are deleterious to both ECM structure and associated cells. Modifications induced by reactive oxidants and electrophiles have been reported to accumulate in some ECM with increasing age. This accumulation can be exacerbated by disease, and in particular those associated with acute or chronic inflammation, obesity and diabetes. This is likely to be due to higher fluxes of modifying agents in these conditions. In this focused review, the role and effects of oxidants and other electrophiles on ECM are discussed, with a particular focus on the artery wall and atherosclerotic cardiovascular disease. Modifications generated on ECM components are reviewed, together with the effects of these species on cellular properties including adhesion, proliferation, migration, viability, metabolic activity, gene expression and phenotype. Increasing data indicates that ECM modifications are both prevalent in human and mammalian tissues and play an important role in disease development and progression.
Collapse
Affiliation(s)
- Karen C. Yang-Jensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Shi X, Xue Y, Wu H, Shen C, Zhong L, Lei J, Xia Z, Yang Y, Zhu J. Targeting myeloperoxidase to stabilize unruptured aneurysm: an imaging-guided approach. BMC Cardiovasc Disord 2024; 24:169. [PMID: 38509468 PMCID: PMC10953282 DOI: 10.1186/s12872-024-03822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Inflammation plays a key role in pathogenesis and rupture of aneurysms. Non-invasively and dynamically monitoring aneurysm inflammation is critical. This study evaluated myeloperoxidase (MPO) as an imaging biomarker and therapeutic target for aneurysm inflammation using an elastase-induced rabbit model treated with or without 4-aminobenzoic acid hydrazide (ABAH), an irreversible inhibitor of MPO. Myeloperoxidase-sensitive magnetic resonance imaging (MRI) using Mn-TyrEDTA, a peroxidase activity-dependent contrast agent, revealed weak contrast enhancement in contralateral arteries and decreased contrast enhancement in aneurysm walls with ABAH treatment, indicating MPO activity decreased and inflammation mitigated. This was supported by reduced immune cell infiltration, matrix metalloproteinases (MMP-2 and - 9) activity, ROS production and arterial wall destruction on histology. Finally, the aneurysm expansion rate remained < 50% throughout the study in the ABAH(+) group, but increased gradually in the ABAH(-) group. Our results suggest that inhibition of MPO attenuated inflammation and expansion of experimental aneurysm and MPO-sensitive MRI showed promise as a noninvasive tool for monitoring aneurysm inflammation.
Collapse
Affiliation(s)
- Xingchi Shi
- Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China
- Department of Cardiovascular disease, School of Clinical Medicine, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China
| | - Yuan Xue
- Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Fujiang Road 234, Nanchong City, 637000, Sichuan, China
| | - Huiyu Wu
- Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China
- School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, 637000, Sichuan, China
| | - Chengyi Shen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Fujiang Road 234, Nanchong City, 637000, Sichuan, China
| | - Lei Zhong
- Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China
| | - Jun Lei
- School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, 637000, Sichuan, China
| | - Zhiyang Xia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Fujiang Road 234, Nanchong City, 637000, Sichuan, China.
| | - Ying Yang
- Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China.
- Department of Cardiovascular disease, School of Clinical Medicine, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China.
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, 637000, Sichuan, China.
- School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, 637000, Sichuan, China.
| |
Collapse
|
12
|
Lorentzen LG, Yeung K, Eldrup N, Eiberg JP, Sillesen HH, Davies MJ. Proteomic analysis of the extracellular matrix of human atherosclerotic plaques shows marked changes between plaque types. Matrix Biol Plus 2024; 21:100141. [PMID: 38292008 PMCID: PMC10825564 DOI: 10.1016/j.mbplus.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease is the leading cause of death, with atherosclerosis the major underlying cause. While often asymptomatic for decades, atherosclerotic plaque destabilization and rupture can arise suddenly and cause acute arterial occlusion or peripheral embolization resulting in myocardial infarction, stroke and lower limb ischaemia. As extracellular matrix (ECM) remodelling is associated with plaque instability, we hypothesized that the ECM composition would differ between plaques. We analyzed atherosclerotic plaques obtained from 21 patients who underwent carotid surgery following recent symptomatic carotid artery stenosis. Plaques were solubilized using a new efficient, single-step approach. Solubilized proteins were digested to peptides, and analyzed by liquid chromatography-mass spectrometry using data-independent acquisition. Identification and quantification of 4498 plaque proteins was achieved, including 354 ECM proteins, with unprecedented coverage and high reproducibility. Multidimensional scaling analysis and hierarchical clustering indicate two distinct clusters, which correlate with macroscopic plaque morphology (soft/unstable versus hard/stable), ultrasound classification (echolucent versus echogenic) and the presence of hemorrhage/ulceration. We identified 714 proteins with differential abundances between these groups. Soft/unstable plaques were enriched in proteins involved in inflammation, ECM remodelling, and protein degradation (e.g. matrix metalloproteinases, cathepsins). In contrast, hard/stable plaques contained higher levels of ECM structural proteins (e.g. collagens, versican, nidogens, biglycan, lumican, proteoglycan 4, mineralization proteins). These data indicate that a single-step proteomics method can provide unique mechanistic insights into ECM remodelling and inflammatory mechanisms within plaques that correlate with clinical parameters, and help rationalize plaque destabilization. These data also provide an approach towards identifying biomarkers for individualized risk profiling of atherosclerosis.
Collapse
Affiliation(s)
- Lasse G. Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Karin Yeung
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikolaj Eldrup
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jonas P. Eiberg
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Capital Region of Denmark, Copenhagen, Denmark
| | - Henrik H. Sillesen
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Kryczka KE, Demkow M, Dzielińska Z. Biomarkers in Peripartum Cardiomyopathy-What We Know and What Is Still to Be Found. Biomolecules 2024; 14:103. [PMID: 38254703 PMCID: PMC10813209 DOI: 10.3390/biom14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a form of heart failure, often severe, that occurs in previously healthy women at the end of their pregnancy or in the first few months after delivery. In PPCM, the recovery of heart function reaches 45-50%. However, the all-cause mortality in long-term observation remains high, reaching 20% irrespective of recovery status. The incidence of PPCM is increasing globally; therefore, effort is required to clarify the pathophysiological background of the disease, as well as to discover specific diagnostic and prognostic biomarkers. The etiology of the disease remains unclear, including oxidative stress; inflammation; hormonal disturbances; endothelial, microcirculatory, cardiomyocyte and extracellular matrix dysfunction; fibrosis; and genetic mutations. Currently, antiangiogenic 16-kDa prolactin (PRL), cleaved from standard 23-kDa PRL in the case of unbalanced oxidative stress, is recognized as the main trigger of the disease. In addition, 16-kDa PRL causes damage to cardiomyocytes, acting via microRNA-146a secreted from endothelial cells as a cause of the NF-κβ pathway. Bromocriptine, which inhibits the secretion of PRL from the pituitary gland, is now the only specific treatment for PPCM. Many different phenotypes of the disease, as well as cases of non-responders to bromocriptine treatment, indicate other pathophysiological pathways that need further investigation. Biomarkers in PPCM are not well established. There is a deficiency in specific diagnostic biomarkers. Pro-brain-type natriuretic peptide (BNP) and N-terminal BNP are the best, however unspecific, diagnostic biomarkers of heart failure at the moment. Therefore, more efforts should be engaged in investigating more specific biomolecules of a diagnostic and prognostic manner such as 16-kDa PRL, galectin-3, myeloperoxidase, or soluble Fms-like tyrosine kinase-1/placental growth factor ratio. In this review, we present the current state of knowledge and future directions of exploring PPCM pathophysiology, including microRNA and heat shock proteins, which may improve diagnosis, treatment monitoring, and the development of specific treatment strategies, and consequently improve patients' prognosis and outcome.
Collapse
Affiliation(s)
- Karolina E. Kryczka
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | | |
Collapse
|
14
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
15
|
Alsharif B, Hante N, Govoni B, Verli H, Kukula-Koch W, Jose Santos-Martinez M, Boylan F. Capparis cartilaginea decne (capparaceae): isolation of flavonoids by high-speed countercurrent chromatography and their anti-inflammatory evaluation. Front Pharmacol 2023; 14:1285243. [PMID: 37927588 PMCID: PMC10620733 DOI: 10.3389/fphar.2023.1285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Capparis cartilaginea Decne. (CC) originates from the dry regions of Asia and the Mediterranean basin. In traditional medicine, tea of CC leaves is commonly used to treat inflammatory conditions such as rheumatism, arthritis, and gout. Due to the limited studies on the phytochemistry and biological activity of CC compared to other members of the Capparaceae family, this work aims to: 1) Identify the chemical composition of CC extract and 2) Investigate the potential anti-inflammatory effect of CC extract, tea and the isolated compounds. Methods: To guarantee aim 1, high-speed countercurrent chromatography (HSCC) method; Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESIQTOF-MS/MS) were employed for this purpose. To guarantee aim 2, we studied the effect of the isolated flavonoids on matrix metalloproteinases (MMPs) -9 and -2 in murine macrophages. Molecular docking was initially performed to assess the binding affinity of the isolated flavonoids to the active site of MMP-9. Results and discussion: In silico model was a powerful tool to predict the compounds that could strongly bind and inhibit MMPs. CC extract and tea have shown to possess a significant antioxidant and anti-inflammatory effect, which can partially explain their traditional medicinal use.
Collapse
Affiliation(s)
- Bashaer Alsharif
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadhim Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, University of Kufa, Al-Najaf, Iraq
| | - Bruna Govoni
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hugo Verli
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - María Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Modestino L, Cristinziano L, Trocchia M, Ventrici A, Capone M, Madonna G, Loffredo S, Ferrara AL, Romanelli M, Simeone E, Varricchi G, Rossi FW, de Paulis A, Marone G, Ascierto PA, Galdiero MR. Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps. Cancer Immunol Immunother 2023; 72:3363-3376. [PMID: 37525065 PMCID: PMC10491523 DOI: 10.1007/s00262-023-03493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
17
|
Yu B, Wei J, Zhao J, Fan H, Zhang W, Li X, Wang L, Zhang Y, Ren Z, Song X, Liu G, Liang B. The neutrophil-to-lymphocyte ratio is a potential biomarker for the occurrence of atrial fibrillation in patients with obstructive sleep apnea: A BIOMARKER OF AF IN OSA PATIENTS. Sleep Med 2023; 110:259-267. [PMID: 37669611 DOI: 10.1016/j.sleep.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) affects the occurrence of atrial fibrillation (AF) and usually coexists with AF. Chronic inflammation has been identified as an important factor in the development of AF, and the neutrophil-to-lymphocyte ratio (NLR) has been identified as a biomarker that positively correlates with the degree of inflammation. However, little information regarding how NLR correlates with AF in OSA patients. METHODS Our study enrolled 368 patients with OSA between September 2018 and April 2023. All data were collected after admission. Independently associated factors were assessed by multivariate logistic regression and then constructed a nomogram to predict AF risk. Nomogram's calculation model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The correlation between CHA2DS2-VASc scores and NLR was assessed using Spearman correlation. RESULTS Multivariate logistic regression showed that high level log-transformed NLR (OR, 1.664; 95% CI, 1.026-2.699; P = 0.039) was independently associated with the presence of AF in patients with OSA. The concordance index (0.817, 95% CI, 0.770-0.864), ROC curve, calibration curve, and DCA of the nomogram indicated this model had well clinical utility. Also, the nomogram's calculation model could identify patients who are at a higher risk of developing AF, and the CHA2DS2-VASc score was positively correlated with NLR in patients with AF (P < 0.05). CONCLUSION The elevated NLR may serve as a promising biomarker for assessing the risk of AF in individuals with OSA. The nomogram's calculation model may be utilized as a tool to estimate the probability of AF occurrence in OSA patients.
Collapse
Affiliation(s)
- Bing Yu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Jian Wei
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Jianqi Zhao
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Hongxuan Fan
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Wenjing Zhang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Xin Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Leigang Wang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Yao Zhang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Zhaoyu Ren
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Xiaosu Song
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Gaizhen Liu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Bin Liang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Wuyi Road, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
18
|
Liu J, Lin C, Zhou T, Bao Y, Xie Y, Wei Y, Luo Q, Ling T, Pan W, Zhang N, Lu L, Wu L, Jin Q. Plasma myeloperoxidase: association with atrial fibrillation progression and recurrence after catheter ablation. Front Cardiovasc Med 2023; 10:1150324. [PMID: 37719981 PMCID: PMC10501448 DOI: 10.3389/fcvm.2023.1150324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background Myeloperoxidase (MPO), released by activated neutrophils, is significantly increased in atrial fibrillation (AF). MPO may play a role in the progression of atrial fibrillation and further involved in AF recurrence after catheter ablation. We compared plasma MPO levels in paroxysmal and persistent AF and explored their role in AF recurrence after catheter ablation. Methods Plasma MPO levels were measured in consecutive patients with paroxysmal AF (n = 225) and persistent AF (n = 106). Samples of patients were collected from the femoral vein during catheter ablation and all patients included were followed up after catheter ablation. Results Plasma MPO levels increased from paroxysmal AF to persistent AF patients (56.31 [40.33-73.51] vs. 64.11 [48.65-81.11] ng/ml, p < 0.001). MPO significantly correlated with left atrium volume (LAV) and there existed a significant interaction between the two in relation to AF recurrence (p for interaction <0.05). During a median follow-up of 14 months, 28 patients with paroxysmal AF (12.44%) and 27 patients with persistent AF (25.47%) presented with recurrence after catheter ablation. The percentage of recurrence increased stepwise with increasing tertiles of MPO levels in both paroxysmal AF and persistent AF. MPO levels remained independently associated with AF recurrence after adjusting for potential confounding variables. Conclusion MPO levels were higher in persistent AF than in paroxysmal AF and MPO was positively correlated with LAV in AF. Elevated MPO levels may predispose a switch in AF phenotype and AF recurrence after catheter ablation.
Collapse
Affiliation(s)
- Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingzhi Luo
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Crivello G, Orlandini G, Morena AG, Torchio A, Mattu C, Boffito M, Tzanov T, Ciardelli G. Lignin-Cobalt Nano-Enabled Poly(pseudo)rotaxane Supramolecular Hydrogel for Treating Chronic Wounds. Pharmaceutics 2023; 15:1717. [PMID: 37376166 DOI: 10.3390/pharmaceutics15061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.
Collapse
Affiliation(s)
- Giulia Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giuliana Orlandini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Angela Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
21
|
Maniscalco R, Mangano G, de Joannon AC, Vergassola M, Zucchi S, Mannello F, Ragni L. Effect of Sodium Hypochlorite 0.05% on MMP-9 Extracellular Release in Chronic Wounds. J Clin Med 2023; 12:jcm12093189. [PMID: 37176629 PMCID: PMC10179022 DOI: 10.3390/jcm12093189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND In chronic wounds, high concentrations of matrix metalloproteinases (MMPs) can cause excessive proteolysis and slow wound healing. Consequently, restoring a proper MMP balance can help reduce the risk of a chronic wound. An antiseptic solution containing 0.05% sodium hypochlorite (Amukine Med 0.05%, Angelini S.p.A.; hereafter termed NaClO solution) is available on the market. The NaClO solution was proven effective and safe in managing infected skin wounds. To further characterize its activity, this study evaluated the in vitro activity of the NaClO solution on the monocyte release of MMPs. METHODS Human monocytic THP-1 (ATCC® TIB-202™) cell lines were differentiated into macrophages and treated with different concentrations of NaClO (from 0.05% to 5 × 10-7%). In addition, the THP-1 cell line was stimulated with wound fluid (WF) from patients with active venous leg ulcers in the inflammatory phase. The effect of NaClO (0.025-0.0062%) was also evaluated on healthy human peripheral blood serum samples. The effects of treatments on the gelatinolytic activity of MMP-9 were evaluated by gelatin zymography. The effects on MMPs release were evaluated through the Pro™ Human MMP 9-plex Assay. An exploratory scratch wound healing assay was also performed. RESULTS The NaClO solution reduced the gelatinolytic activity of MMP-9 and its activated form. The downregulation of MMP-9 gelatinolytic activity was also observed in peripheral blood serum. The MMPs profile showed a reduction in MMP-1 release (p < 0.05) and a slight reduction of the release of MMP-9 and MMP-12 after the treatment with LPS and the NaClO solution. A slight improvement in wound healing was observed after macrophage activation and treatment with the NaClO solution. CONCLUSIONS The results obtained suggest a possible ability of the NaClO solution to modulate the proteolytic pathways in the wound microenvironment, further characterizing its activity and use in clinical practice during wound care.
Collapse
Affiliation(s)
- Rosanna Maniscalco
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giorgina Mangano
- Scientific Consultant, ToxHub S.r.l. Albano Laziale, 00073 Rome, Italy
| | | | - Matteo Vergassola
- Global R&D Angelini Pharma S.p.A, Via Vecchia del Pinocchio, 22, 60131 Ancona, Italy
| | - Sara Zucchi
- Global R&D Angelini Pharma S.p.A, Via Vecchia del Pinocchio, 22, 60131 Ancona, Italy
| | - Ferdinando Mannello
- Unit of Clinical Biochemistry, Section of Biochemistry and Biotechnology, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Lorella Ragni
- Global R&D Angelini Pharma S.p.A, Via Vecchia del Pinocchio, 22, 60131 Ancona, Italy
| |
Collapse
|
22
|
Nadel J, Jabbour A, Stocker R. Arterial myeloperoxidase in the detection and treatment of vulnerable atherosclerotic plaque: a new dawn for an old light. Cardiovasc Res 2023; 119:112-120. [PMID: 35587708 DOI: 10.1093/cvr/cvac081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracellular myeloperoxidase (MPO) plays a specific role in the innate immune response; however, upon release into the extracellular space in the setting of inflammation, drives oxidative tissue injury. Extracellular MPO has recently been shown to be abundant in unstable atheroma and causally linked to plaque destabilization, erosion, and rupture, identifying it as a potential target for the surveillance and treatment of vulnerable atherosclerosis. Through the compartmentalization of MPO's protective and deleterious effects, extracellular MPO can be selectively detected using non-invasive molecular imaging and targeted by burgeoning pharmacotherapies. Given its causal relationship to plaque destabilization coupled with an ability to preserve its beneficial properties, MPO is potentially a superior translational inflammatory target compared with other immunomodulatory therapies and imaging biomarkers utilized to date. This review explores the role of MPO in plaque destabilization and provides insights into how it can be harnessed in the management of patients with vulnerable atherosclerotic plaque.
Collapse
Affiliation(s)
- James Nadel
- Heart Research Institute, The University of Sydney, 7 Eliza St, Newtown, 2042 Sydney, NSW, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, Australia
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Andrew Jabbour
- Cardiology Department, St Vincent's Hospital, Sydney, Australia
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, 7 Eliza St, Newtown, 2042 Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Joolharzadeh P, Rodriguez M, Zaghlol R, Pedersen LN, Jimenez J, Bergom C, Mitchell JD. Recent Advances in Serum Biomarkers for Risk Stratification and Patient Management in Cardio-Oncology. Curr Cardiol Rep 2023; 25:133-146. [PMID: 36790618 PMCID: PMC9930715 DOI: 10.1007/s11886-022-01834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 02/16/2023]
Abstract
PURPOSE OF REVIEW Following significant advancements in cancer therapeutics and survival, the risk of cancer therapy-related cardiotoxicity (CTRC) is increasingly recognized. With ongoing efforts to reduce cardiovascular morbidity and mortality in cancer patients and survivors, cardiac biomarkers have been studied for both risk stratification and monitoring during and after therapy to detect subclinical disease. This article will review the utility for biomarker use throughout the cancer care continuum. RECENT FINDINGS A recent meta-analysis shows utility for troponin in monitoring patients at risk for CTRC during cancer therapy. The role for natriuretic peptides is less clear but may be useful in patients receiving proteasome inhibitors. Early studies explore use of myeloperoxidase, growth differentiation factor 15, galectin 3, micro-RNA, and others as novel biomarkers in CTRC. Biomarkers have potential to identify subclinical CTRC and may reveal opportunities for early intervention. Further research is needed to elucidate optimal biomarkers and surveillance strategies.
Collapse
Affiliation(s)
- Pouya Joolharzadeh
- General Medical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Rodriguez
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO, USA
| | - Raja Zaghlol
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren N Pedersen
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jesus Jimenez
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Bergom
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua D Mitchell
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
24
|
Wang Y, Hammer A, Hoefler G, Malle E, Hawkins CL, Chuang CY, Davies MJ. Hypochlorous Acid and Chloramines Induce Specific Fragmentation and Cross-Linking of the G1-IGD-G2 Domains of Recombinant Human Aggrecan, and Inhibit ADAMTS1 Activity. Antioxidants (Basel) 2023; 12:antiox12020420. [PMID: 36829979 PMCID: PMC9952545 DOI: 10.3390/antiox12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of mortality. It is characterized by arterial wall plaques that contain high levels of cholesterol and other lipids and activated leukocytes covered by a fibrous cap of extracellular matrix (ECM). The ECM undergoes remodelling during atherogenesis, with increased expression of aggrecan, a proteoglycan that binds low-density-lipoproteins (LDL). Aggrecan levels are regulated by proteases, including a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). Activated leukocytes release myeloperoxidase (MPO) extracellularly, where it binds to proteins and proteoglycans. Aggrecan may therefore mediate colocalization of MPO and LDL. MPO generates hypochlorous acid (HOCl) and chloramines (RNHCl species, from reaction of HOCl with amines on amino acids and proteins) that damage LDL and proteins, but effects on aggrecan have not been examined. The present study demonstrates that HOCl cleaves truncated (G1-IGD-G2) recombinant human aggrecan at specific sites within the IGD domain, with these being different from those induced by ADAMTS1 which also cleaves within this region. Irreversible protein cross-links are also formed dose-dependently. These effects are limited by the HOCl scavenger methionine. Chloramines including those formed on amino acids, proteins, and ECM materials induce similar damage. HOCl and taurine chloramines inactivate ADAMTS1 consistent with a switch from proteolytic to oxidative aggrecan fragmentation. Evidence is also presented for colocalization of aggrecan and HOCl-generated epitopes in advanced human atherosclerotic plaques. Overall, these data show that HOCl and chloramines can induce specific modifications on aggrecan, and that these effects are distinct from those of ADAMTS1.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Clare L. Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| |
Collapse
|
25
|
Guthoff H, Hof A, Klinke A, Maaß M, Konradi J, Mehrkens D, Geißen S, Nettersheim FS, Braumann S, Michaelsson E, Nies RJ, Lee S, Redzinski MC, Peters VBM, Nemade HN, von Stein P, Winkels H, Rudolph V, Baldus S, Adam M, Mollenhauer M. Protective Effects of Therapeutic Neutrophil Depletion and Myeloperoxidase Inhibition on Left Ventricular Function and Remodeling in Myocardial Infarction. Antioxidants (Basel) 2022; 12:antiox12010033. [PMID: 36670895 PMCID: PMC9854671 DOI: 10.3390/antiox12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. Improved survival has led to an increasing incidence of ischemic cardiomyopathy, making it a major reason for hospitalization in the western world. The inflammatory response in the ischemic myocardium determines the extent of structural remodeling and functional deterioration, with neutrophils (PMN) being a key modulator of the propagation and resolution of inflammation. The heme enzyme myeloperoxidase (MPO) is abundantly expressed in PMN and is an important mediator of their inflammatory capacities. Here, we examine the effects of PMN reduction, MPO deficiency and MPO inhibition in two murine models of MI. Reduction in PMN count resulted in less scar formation and improved cardiac function. Similar results were obtained in genetically MPO deficient mice, suggesting that MPO is a critical factor in PMN-mediated cardiac remodeling. To test our findings in a therapeutic approach, we orally administered the MPO inhibitor AZM198 in the context of MI and could demonstrate improved cardiac function and reduced structural remodeling. Therefore, MPO appears to be a favorable pharmacological target for the prevention of long-term morbidity after MI.
Collapse
Affiliation(s)
- Henning Guthoff
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| | - Alexander Hof
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Martina Maaß
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jürgen Konradi
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Dennis Mehrkens
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Felix S. Nettersheim
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Simon Braumann
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Erik Michaelsson
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Z4-46798 Gothenburg, Sweden
| | - Richard J. Nies
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Samuel Lee
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Marie-Christin Redzinski
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Vera B. M. Peters
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Harshal N. Nemade
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Philipp von Stein
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Holger Winkels
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
26
|
Redox-Activation of Neutrophils Induced by Pericardium Scaffolds. Int J Mol Sci 2022; 23:ijms232415468. [PMID: 36555108 PMCID: PMC9779008 DOI: 10.3390/ijms232415468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Implantation of scaffolds causes a local inflammatory response whereby the early recruitment of neutrophils is of great importance not only for fighting the infection, but also for facilitating effective regeneration. We used luminol-dependent chemiluminescence, flow cytometry, ELISA, and confocal microscopy to assess the responses of neutrophils after the exposure to the scaffold-decellularized bovine pericardium (collagen type I) crosslinked with genipin (DBPG). We demonstrated that DBPG activated neutrophils in whole blood causing respiratory burst, myeloperoxidase (MPO) secretion, and formation of neutrophil extracellular trap-like structures (NETs). In addition, we studied platelets, another important player of the immediate immune host response. We found that platelets triggered redox-activation of isolated neutrophils by the pericardium scaffold, and likely participate in the NETs formation. Free radicals generated by neutrophils and hypochlorous acid produced by MPO are potent oxidizing agents which can oxidatively degrade biological structures. Understanding the mechanisms and consequences of redox activation of neutrophils by pericardium scaffolds is important for the development of new approaches to increase the efficiency of tissue regeneration.
Collapse
|
27
|
Day JJ, Zhang T, Hamsath A, Neill DL, Xu S, Qian WJ, Xian M. A Chemical Approach for the Specific Generation of Cysteine Sulfinylation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
29
|
Morena AG, Pérez-Rafael S, Tzanov T. Lignin-Based Nanoparticles as Both Structural and Active Elements in Self-Assembling and Self-Healing Multifunctional Hydrogels for Chronic Wound Management. Pharmaceutics 2022; 14:pharmaceutics14122658. [PMID: 36559153 PMCID: PMC9781249 DOI: 10.3390/pharmaceutics14122658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Efficient wound healing is feasible when the dressing materials simultaneously target multiple factors causing wound chronicity, such as deleterious proteolytic and oxidative enzymes and bacterial infection. Herein, entirely bio-based multifunctional self-assembled hydrogels for wound healing were developed by simply mixing two biopolymers, thiolated hyaluronic acid (HA-SH) and silk fibroin (SF), with lignin-based nanoparticles (NPs) as both structural and functional elements. Sono-enzymatic lignin modification with natural phenolic compounds results in antibacterial and antioxidant phenolated lignin nanoparticles (PLN) capable of establishing multiple interactions with both polymers. These strong and dynamic polymer-NP interactions endow the hydrogels with self-healing and shear-thinning properties, and pH-responsive NP release is triggered at neutral to alkaline pH (7-9). Despite being a physically crosslinked hydrogel, the material was stable for at least 7 days, and its mechanical and functional properties can be tuned depending on the polymer and NP concentration. Furthermore, human skin cells in contact with the nanocomposite hydrogels for 7 days showed more than 93% viability, while the viability of clinically relevant Staphylococcus aureus and Pseudomonas aeruginosa was reduced by 99.7 and 99.0%, respectively. The hydrogels inhibited up to 52% of the activity of myeloperoxidase and matrix metalloproteinases, responsible for wound chronicity, and showed a strong antioxidant effect, which are crucial features promoting wound healing.
Collapse
|
30
|
Head-to-Head Comparison of Oxidative Stress Biomarkers for All-Cause Mortality in Hemodialysis Patients. Antioxidants (Basel) 2022; 11:antiox11101975. [PMID: 36290698 PMCID: PMC9598936 DOI: 10.3390/antiox11101975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress (OS) presents even in the early chronic kidney disease (CKD) stage and is exacerbated in patients with end-stage renal disease (ESRD) undergoing maintenance hemodialysis (MHD). There is still a debate over the association between oxidative stress and mortality. Our study aims to compare head-to-head the prognostic value of different oxidative markers for all-cause mortality in hemodialysis (HD) patients. We thus enrolled 347 patients on HD in this prospective study. Four OS biomarkers were measured (carbonyl proteins, myeloperoxidase (MPO), advanced oxidation protein products (AOPPs), and oxidized low-density lipoprotein (ox-LDL)). During the 60-month follow-up period, 9 patients have been lost to follow-up and 168 (48.4%) patients died. Concerning the oxidative stress (ox-stress) byproducts, carbonyl proteins were lower in survivors (105.40 ng/mL (IQR 81.30−147.85) versus 129.65 ng/mL (IQR 93.20−180.33); p < 0.001), with similar results for male patients (103.70 ng/mL (IQR 76.90−153.33) versus 134.55 ng/mL (IQR 93.95−178.68); p = 0.0014). However, there are no significant differences in MPO, AOPP, and ox-LDL between the two groups. Kaplan−Meier survival analysis indicated that patients in the higher carbonyl proteins concentration (>117.85 ng/mL group) had a significantly lower survival rate (log-rank test, p < 0.001). Univariate Cox regression analysis showed a positive correlation between carbonyl proteins and all-cause mortality in the higher and lower halves. Even after adjustment for conventional risk factors, it remained a statistically significant predictor of an increased risk of death in MHD. Univariate Cox regression analysis of MPO showed that continuous MPO and Log MPO were significantly associated with all-cause mortality, except for binary MPO (divided according to the median of MPO). Multivariate Cox analysis for MPO showed that the mortality prediction remains significant after adjusting for multiple factors. In conclusion, not all ox-stress biomarkers predict all-cause mortality in HD patients to a similar extent. In the present study, carbonyl proteins and MPO are independent predictors of all-cause mortality in HD patients, whereas AOPPs and oxLDL are clearly not associated with all-cause mortality in HD patients.
Collapse
|
31
|
The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci 2022; 23:ijms231810546. [PMID: 36142454 PMCID: PMC9500641 DOI: 10.3390/ijms231810546] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.
Collapse
|
32
|
Wang Y, Chuang CY, Hawkins CL, Davies MJ. Activation and Inhibition of Human Matrix Metalloproteinase-9 (MMP9) by HOCl, Myeloperoxidase and Chloramines. Antioxidants (Basel) 2022; 11:antiox11081616. [PMID: 36009335 PMCID: PMC9405048 DOI: 10.3390/antiox11081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP9, gelatinase B) plays a key role in the degradation of extracellular-matrix (ECM) proteins in both normal physiology and multiple pathologies, including those linked with inflammation. MMP9 is excreted as an inactive proform (proMMP9) by multiple cells, and particularly neutrophils. The proenzyme undergoes subsequent processing to active forms, either enzymatically (e.g., via plasmin and stromelysin-1/MMP3), or via the oxidation of a cysteine residue in the prodomain (the “cysteine-switch”). Activated leukocytes, including neutrophils, generate O2− and H2O2 and release myeloperoxidase (MPO), which catalyzes hypochlorous acid (HOCl) formation. Here, we examine the reactivity of HOCl and a range of low-molecular-mass and protein chloramines with the pro- and activated forms of MMP9. HOCl and an enzymatic MPO/H2O2/Cl− system were able to generate active MMP9, as determined by fluorescence-activity assays and gel zymography. The inactivation of active MMP9 also occurred at high HOCl concentrations. Low (nM—low μM) concentrations of chloramines formed by the reaction of HOCl with amino acids (taurine, lysine, histidine), serum albumin, ECM proteins (laminin and fibronectin) and basement membrane extracts (but not HEPES chloramines) also activate proMMP9. This activation is diminished by the competitive HOCl-reactive species, methionine. These data indicate that HOCl-mediated oxidation and MMP-mediated ECM degradation are synergistic and interdependent. As previous studies have shown that modified ECM proteins can also stimulate the cellular expression of MMP proteins, these processes may contribute to a vicious cycle of increasing ECM degradation during disease development.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Wu L, Wang G, Yang B, Liu X, Xie C, Feng X, Jin L, Zhou Z, Yang M, Zhou Z, Su C, Li Y, Song Y, Cao W. Urinary Matrix Metalloproteinase 7 Activated by Oxidative Stress Predicts Kidney Prognosis in Myeloperoxidase-Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Antioxid Redox Signal 2022; 37:246-256. [PMID: 35152729 DOI: 10.1089/ars.2021.0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Effective and applicable predictors of end-stage kidney disease (ESKD) are needed for patients with myeloperoxidase-antineutrophil cytoplasmic antibody-associated vasculitis (MPO-AAV) and kidney involvement. We investigated whether urinary matrix metalloproteinase-7 (uMMP7) was associated with kidney injury severity and incident ESKD in MPO-AAV. Results: A prospective two-stage study was conducted in 150 patients with newly diagnosed MPO-AAV in two independent cohorts. uMMP7 was measured on the days of initial and repeat kidney biopsies. In stage I, a higher initial uMMP7 level was associated with a lower estimated glomerular filtration rate (eGFR), higher level of proteinuria, and greater extent of kidney pathologic lesions. This elevated uMMP7 protein level is activated and potentially derived from the enhanced kidney production induced by oxidative stress. In stage II, uMMP7 at initial biopsy was independently associated with the incidence of ESKD over 6 years. The higher uMMP7 group (vs. lower) had an adjusted hazard ratio of 3.79 (95% confidence interval [CI], 1.49-6.09) for ESKD in the test cohort. Findings were similar in the validation cohort. A combination of data from the two cohorts revealed that adding uMMP7 into clinical or clinicopathologic models significantly improved risk discrimination for future ESKD. Innovation: An elevated uMMP7 level in MPO-AAV was independently associated with severe kidney injury and incident ESKD. Conclusions: uMMP7 in MPO-AAV improves identification of patients at risk of ESKD and may enable early and optimized therapy to improve outcomes. Antioxid. Redox Signal. 37, 246-256.
Collapse
Affiliation(s)
- Liling Wu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Division of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Guobao Wang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Bihui Yang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoting Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Chao Xie
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, P.R. China
| | - Xiaodan Feng
- Division of Nephrology, Guangzhou Development District Hospital, Guangzhou, P.R. China
| | - LinWei Jin
- Division of Nephrology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhuoyu Zhou
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Manqiu Yang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Cailing Su
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yajing Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, P.R. China
| | - Wei Cao
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
34
|
González L, Bulnes JF, Orellana MP, Muñoz Venturelli P, Martínez Rodriguez G. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14071395. [PMID: 35890291 PMCID: PMC9323936 DOI: 10.3390/pharmaceutics14071395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key feature of atherosclerosis. The inflammatory process is involved in all stages of disease progression, from the early formation of plaque to its instability and disruption, leading to clinical events. This strongly suggests that the use of anti-inflammatory agents might improve both atherosclerosis progression and cardiovascular outcomes. Colchicine, an alkaloid derived from the flower Colchicum autumnale, has been used for years in the treatment of inflammatory pathologies, including Gout, Mediterranean Fever, and Pericarditis. Colchicine is known to act over microtubules, inducing depolymerization, and over the NLRP3 inflammasome, which might explain its known anti-inflammatory properties. Recent evidence has shown the therapeutic potential of colchicine in the management of atherosclerosis and its complications, with limited adverse effects. In this review, we summarize the current knowledge regarding colchicine mechanisms of action and pharmacokinetics, as well as the available evidence on the use of colchicine for the treatment of coronary artery disease, covering basic, translational, and clinical studies.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Instituto Milenio de Ingeniería e Inteligencia Artificial para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7610658, Chile;
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2042, Australia
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
- Correspondence:
| |
Collapse
|
35
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
36
|
Cheng X, Wang W, Zhang L, Yang RR, Ma Y, Bao YY. ATPase subunits of the 26S proteasome are important for oocyte maturation in the brown planthopper. INSECT MOLECULAR BIOLOGY 2022; 31:317-333. [PMID: 35084067 DOI: 10.1111/imb.12761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The 26S proteasome is the major engine of protein degradation in all eukaryotic cells. Adenosine triphosphatase (ATPase) regulatory subunits (Rpts) are constituents of the proteasome that are involved in the unfolding and translocation of substrate proteins into the core particle. In this study, by using the brown planthopper Nilaparvata lugens as a model insect, we report the biological importance of Rpts in female reproduction. We identified six homologous Rpt genes (Rpt1-6) in N. lugens. These genes were detected at high transcript levels in eggs and ovaries of females but at low transcript levels in males. RNA interference-mediated knockdown of N. lugens Rpt genes significantly decreased the proteolytic activity of the proteasome and impeded the transcription of triacylglycerol lipase and vitellogenin genes in the fat bodies and ovaries of adult females and reduced the triglyceride content in the ovaries. The decrease in the proteolytic activity of the proteasome via knockdown of Rpts also downregulated the transcription of the CYP307A2 gene encoding an important rate-limiting enzyme in the 20-hydroxyecdysone biosynthetic pathway in the ovaries, reduced 20E production in adult females and impaired ovarian development and oocyte maturation, leading to the failure of egg production and egg-laying. These novel findings indicate that Rpts are required for the proteolytic activity of the proteasome, which is important for female reproductive success in N. lugens.
Collapse
Affiliation(s)
- Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rui-Rui Yang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ya Ma
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Frangie C, Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed Rep 2022; 16:53. [PMID: 35620311 PMCID: PMC9112398 DOI: 10.3892/br.2022.1536] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloperoxidase (MPO) belongs to the heme peroxidase family, which includes a set of enzymes with potent oxidoreductase activity. MPO is considered an important part of the innate immune system's microbicidal arm and is secreted by neutrophils and macrophages. Interestingly, this enzyme has been implicated in the pathogenesis of several diseases including atherosclerosis. MPO is ubiquitous in atherosclerotic lesions and contributes to the initiation and progression of the disease primarily by oxidizing low-density lipoprotein (LDL) particles. MPO is the only human enzyme with the ability to produce hypochlorous acid (HOCl) at physiological chloride concentrations and HOCl-LDL epitopes were shown to be present inside atheromatous lesions making it a physiologically relevant model for the oxidation of LDL. It has been shown that MPO modified LDL is not able to bind to the native LDL receptor and is recognized instead by scavenger receptors on both endothelial cells and macrophages, which can lead to endothelial dysfunction and foam cell formation, respectively; both of which are instrumental in the progression of the disease. Meanwhile, several studies have proposed MPO as a biomarker for cardiovascular diseases where high levels of this enzyme were linked to an increased risk of developing coronary artery disease. Overall, there is sufficient evidence supporting the value of MPO as a crucial player in health and disease. Thus, future research should be directed towards investigating the still unknown processes associated with this enzyme. This may assist in better understanding the pathophysiological role of MPO, as well in the development of therapeutic strategies for protecting against the deleterious effects of MPO in numerous pathologies such as atherosclerosis.
Collapse
Affiliation(s)
- Christian Frangie
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El‑Koura 100, Lebanon
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El‑Koura 100, Lebanon
| |
Collapse
|
38
|
Tangeten C, Zouaoui Boudjeltia K, Delporte C, Van Antwerpen P, Korpak K. Unexpected Role of MPO-Oxidized LDLs in Atherosclerosis: In between Inflammation and Its Resolution. Antioxidants (Basel) 2022; 11:antiox11050874. [PMID: 35624738 PMCID: PMC9137493 DOI: 10.3390/antiox11050874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation and its resolution are the result of the balance between pro-inflammatory and pro-resolving factors, such as specialized pro-resolving mediators (SPMs). This balance is crucial for plaque evolution in atherosclerosis, a chronic inflammatory disease. Myeloperoxidase (MPO) has been related to oxidative stress and atherosclerosis, and MPO-oxidized low-density lipoproteins (Mox-LDLs) have specific characteristics and effects. They participate in foam cell formation and cause specific reactions when interacting with macrophages and endothelial cells. They also increase the production of intracellular reactive oxygen species (ROS) in macrophages and the resulting antioxidant response. Mox-LDLs also drive macrophage polarization. Mox-LDLs are known to be pro-inflammatory particles. However, in the presence of Mox-LDLs, endothelial cells produce resolvin D1 (RvD1), a SPM. SPMs are involved in the resolution of inflammation by stimulating efferocytosis and by reducing the adhesion and recruitment of neutrophils and monocytes. RvD1 also induces the synthesis of other SPMs. In vitro, Mox-LDLs have a dual effect by promoting RvD1 release and inducing a more anti-inflammatory phenotype macrophage, thereby having a mixed effect on inflammation. In this review, we discuss the interrelationship between MPO, Mox-LDLs, and resolvins, highlighting a new perception of the role of Mox-LDLs in atherosclerosis.
Collapse
Affiliation(s)
- Cecilia Tangeten
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
- Correspondence: ; Tel.: +32-2-650-5331
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, ULB 222 Unit, CHU-Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium; (K.Z.B.); (K.K.)
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Keziah Korpak
- Laboratory of Experimental Medicine, ULB 222 Unit, CHU-Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium; (K.Z.B.); (K.K.)
- Department of Geriatric Medicine, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
| |
Collapse
|
39
|
Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Neutrophil degranulation and myocardial infarction. Cell Commun Signal 2022; 20:50. [PMID: 35410418 PMCID: PMC8996539 DOI: 10.1186/s12964-022-00824-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
40
|
Gutmann C, Khamina K, Theofilatos K, Diendorfer AB, Burnap SA, Nabeebaccus A, Fish M, McPhail MJW, O'Gallagher K, Schmidt LE, Cassel C, Auzinger G, Napoli S, Mujib SF, Trovato F, Sanderson B, Merrick B, Roy R, Edgeworth JD, Shah AM, Hayday AC, Traby L, Hackl M, Eichinger S, Shankar-Hari M, Mayr M. Association of cardiometabolic microRNAs with COVID-19 severity and mortality. Cardiovasc Res 2022; 118:461-474. [PMID: 34755842 PMCID: PMC8689968 DOI: 10.1093/cvr/cvab338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 01/26/2023] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity and 28 day intensive care unit (ICU) mortality. METHODS AND RESULTS We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19 patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16) patients. Candidates were then measured by RT-qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 samples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122 also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and positively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and triplet combinations, miRNAs improved classification performance of established markers for severity and mortality. CONCLUSION Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | - Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Adam Nabeebaccus
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Mark J W McPhail
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Lukas E Schmidt
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christian Cassel
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Georg Auzinger
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Liver Intensive Care & Critical Care, King's College Hospital London, Denmark Hill, London SE5 9RS, UK
- Department of Critical Care, Cleveland Clinic London, 33 Grosvenor Place, London SW1X 7HY, UK
| | - Salvatore Napoli
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
| | - Salma F Mujib
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Francesca Trovato
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Barnaby Sanderson
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust & King’s College London, Westminster Bridge Road, London SE1 7EH, UK
| | - Roman Roy
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Jonathan D Edgeworth
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust & King’s College London, Westminster Bridge Road, London SE1 7EH, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ludwig Traby
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | - Sabine Eichinger
- Department of Medicine I, Division of Haematology and Hemostaseology Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
- Centre of Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
41
|
Adlam D, Zarebinski M, Uren NG, Ptaszynski P, Oldroyd KG, Munir S, Zaman A, Contractor H, Kiss RG, Édes I, Szachniewicz J, Nagy GG, Garcia MJ, Tomcsanyi J, Irving J, Sharp ASP, Musialek P, Lupkovics G, Shirodaria C, Selvanayagam JB, Quinn P, Ng L, Roth M, Insko MA, Haber B, Hill S, Siegel L, Tulloch S, Channon KM. A Randomized, double-blind, dose ranging clinical trial of intravenous FDY-5301 in acute STEMI patients undergoing primary PCI. Int J Cardiol 2022; 347:1-7. [PMID: 34774885 DOI: 10.1016/j.ijcard.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/31/2021] [Accepted: 11/07/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury remains a major clinical problem in patients with ST-elevation myocardial infarction (STEMI), leading to myocardial damage despite early reperfusion by primary percutaneous coronary intervention (PPCI). There are no effective therapies to limit ischemia-reperfusion injury, which is caused by multiple pathways activated by rapid tissue reoxygenation and the generation of reactive oxygen species (ROS). FDY-5301 contains sodium iodide, a ubiquitous inorganic halide and elemental reducing agent that can act as a catalytic anti-peroxidant. We tested the feasibility, safety and potential utility of FDY-5301 as a treatment to limit ischemia-reperfusion injury, in patients with first-time STEMI undergoing emergency PPCI. METHODS STEMI patients (n = 120, median 62 years) presenting within 12 h of chest pain onset were randomized at 20 PPCI centers, in a double blind Phase 2 clinical trial, to receive FDY-5301 (0.5, 1.0 or 2.0 mg/kg) or placebo prior to reperfusion, to evaluate the feasibility endpoints. Participants underwent continuous ECG monitoring for 14 days after PPCI to address pre-specified cardiac arrhythmia safety end points and cardiac magnetic resonance imaging (MRI) at 72 h and at 3 months to assess exploratory efficacy end points. RESULTS Intravenous FDY-5301 was delivered before re-opening of the infarct-related artery in 97% participants and increased plasma iodide levels ~1000-fold within 2 min. There was no significant increase in the primary safety end point of incidence of cardiac arrhythmias of concern. MRI at 3 months revealed median final infarct sizes in placebo vs. 2.0 mg/kg FDY-5301-treated patients of 14.9% vs. 8.5%, and LV ejection fractions of 53.9% vs. 63.2%, respectively, although the study was not powered to detect statistical significance. In patients receiving FDY-5301, there was a significant reduction in the levels of MPO, MMP2 and NTproBNP after PPCI, but no reduction with placebo. CONCLUSIONS Intravenous FDY-5301, delivered immediately prior to PPCI in acute STEMI, is feasible, safe, and shows potential efficacy. A larger trial is justified to test the effects of FDY-5301 on acute ischemia-reperfusion injury and clinical outcomes. CLINICAL TRIAL REGISTRATION CT.govNCT03470441; EudraCT 2017-000047-41.
Collapse
Affiliation(s)
- David Adlam
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, UK
| | - Maciej Zarebinski
- Invasive Cardiology Dept. Western Hospital, Grodzisk Mazowiecki, Poland
| | - Neal G Uren
- Edinburgh Heart Centre, Royal Infirmary, Edinburgh, UK
| | - Pawel Ptaszynski
- Department of Electrocardiology, Medical University of Lodz, Poland; Central University Hospital, Lodz, Poland
| | - Keith G Oldroyd
- West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Shahzad Munir
- Cardiology Department, Wolverhampton Heart and Lung Centre, New Cross Hospital, Wolverhampton Road, Wolverhampton, UK
| | - Azfar Zaman
- Freeman Hospital and Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Hussain Contractor
- Department of Cardiovascular Medicine, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | | | - István Édes
- Department of Cardiology, Debrecen University, Debrecen, Hungary
| | | | - Gergely Gyorgy Nagy
- Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, 1st Department of Internal Medicine and Cardiology, Miskolc, Hungary
| | - Mario J Garcia
- Division of Cardiology, Montefiore Medical Center, Bronx, NY, USA
| | - János Tomcsanyi
- Department of Cardiology, St. John of Brother of God Hospital, Budapest, Hungary
| | - John Irving
- Department of Cardiology, Ninewells Hospital, Dundee, UK
| | | | - Piotr Musialek
- Jagiellonian University Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Géza Lupkovics
- Department of Cardiology, St. Raphael Hospital of Zala County, Zalaegerszeg, Hungary
| | | | - Joseph B Selvanayagam
- Flinders University and South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Pauline Quinn
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, UK
| | - Mark Roth
- Faraday Pharmaceuticals Inc., Seattle, USA
| | | | - Ben Haber
- Faraday Pharmaceuticals Inc., Seattle, USA
| | | | | | | | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, National Institute for Health (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
42
|
Wang YC, Lu YB, Huang XL, Lao YF, Zhang L, Yang J, Shi M, Ma HL, Pan YW, Zhang YN. Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res 2022; 17:1711-1716. [PMID: 35017418 PMCID: PMC8820716 DOI: 10.4103/1673-5374.332130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myeloperoxidase is an important inflammatory factor in the myeloid system, primarily expressed in neutrophils and microglia. Myeloperoxidase and its active products participate in the occurrence and development of hemorrhagic and ischemic stroke, including damage to the blood-brain barrier and brain. As a specific inflammatory marker, myeloperoxidase can be used in the evaluation of vascular disease occurrence and development in stroke, and a large amount of experimental and clinical data has indicated that the inhibition or lack of myeloperoxidase has positive impacts on stroke prognosis. Many studies have also shown that there is a correlation between the overexpression of myeloperoxidase and the risk of stroke. The occurrence of stroke not only refers to the first occurrence but also includes recurrence. Therefore, myeloperoxidase is significant for the clinical evaluation and prognosis of stroke. This paper reviews the potential role played by myeloperoxidase in the development of vascular injury and secondary brain injury after stroke and explores the effects of inhibiting myeloperoxidase on stroke prognosis. This paper also analyzes the significance of myeloperoxidase etiology in the occurrence and development of stroke and discusses whether myeloperoxidase can be used as a target for the treatment and prediction of stroke.
Collapse
Affiliation(s)
- Yun-Chang Wang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Feng Lao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jun Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Mei Shi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hai-Long Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ya-Wen Pan
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yi-Nian Zhang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
43
|
Sengupta S, Addya S, Biswas D, Banerjee P, Sarma JD. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in murine β-coronavirus-induced neuroinflammation. Virology 2022; 566:122-135. [PMID: 34906793 PMCID: PMC8648396 DOI: 10.1016/j.virol.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 01/17/2023]
Abstract
Mouse hepatitis virus (MHV; m-β-CoV) serves as a useful model for studying the cellular factors involved in neuroinflammation. To understand the role of matrix metalloproteinases (MMPs) in neuroinflammation, brain tissues from m-β-CoV-infected mice were harvested at different days post-infection (d.p.i) and investigated for Mmp expression by RT-qPCR. Mmp-2, -3, -8, -12 showed significant mRNA upregulation peaking with viral replication between 5 and 6 d.p.i. Elevated levels of MMP regulator TIMP-1 are suggestive of a TIMP-1 mediated host antiviral response. Biological network assessment suggested a direct involvement of MMP-3, -8, -14 in facilitating peripheral leukocyte infiltrations. Flow cytometry confirmed the increased presence of NK cells, CD4+ and CD8+ T cells, neutrophils, and MHCII expressing cells in the m-β-CoV infected mice brain. Our study revealed that m-β-CoV upregulated Park7, RelA, Nrf2, and Hmox1 transcripts involved in ROS production and antioxidant pathways, describing the possible nexus between oxidative pathways, MMPs, and TIMP in m-β-CoV-induced neuroinflammation.
Collapse
Affiliation(s)
- Sourodip Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, India
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Diptomit Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, India
| | - Paromita Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, India,Corresponding author
| |
Collapse
|
44
|
Ray AK, Luis PB, Mishra SK, Barry DP, Asim M, Pandey A, Chaturvedi M, Gupta J, Gupta S, Mahant S, Das R, Kumar P, Shalimar, Wilson KT, Schneider C, Chaturvedi R. Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A. Front Cell Infect Microbiol 2021; 11:765842. [PMID: 35004346 PMCID: PMC8740292 DOI: 10.3389/fcimb.2021.765842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Saheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Paula B. Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | | | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Achyut Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maya Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shilpi Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pramod Kumar
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
45
|
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 2021; 236:108052. [PMID: 34890688 DOI: 10.1016/j.pharmthera.2021.108052] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
46
|
ROS as Regulators of Cellular Processes in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1208690. [PMID: 34725562 PMCID: PMC8557056 DOI: 10.1155/2021/1208690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.
Collapse
|
47
|
Status of biomarkers for the identification of stable or vulnerable plaques in atherosclerosis. Clin Sci (Lond) 2021; 135:1981-1997. [PMID: 34414413 DOI: 10.1042/cs20210417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is a systemic inflammation of the arteries characterized by atherosclerotic plaque due to the accumulation of lipids, inflammatory cells, apoptotic cells, calcium and extracellular matrix (ECM) proteins. Stable plaques present a chronic inflammatory infiltration, whereas vulnerable plaques present an 'active' inflammation involved in the thinning of the fibrous cap that predisposes to plaque rupture. Several complex biological cellular processes lead plaques to evolve from stable to vulnerable predisposing them to rupture and thrombosis. In this review, we analyze some emerging circulating biomarkers related to inflammation, ECM and lipid infiltration, angiogenesis, metalloproteinases and microRNA (miRNA), as possible diagnostic and prognostic indicators of plaque vulnerability.
Collapse
|
48
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
49
|
Oral pre-treatment with thiocyanate (SCN -) protects against myocardial ischaemia-reperfusion injury in rats. Sci Rep 2021; 11:12712. [PMID: 34135432 PMCID: PMC8209016 DOI: 10.1038/s41598-021-92142-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 01/15/2023] Open
Abstract
Despite improvements in revascularization after a myocardial infarction, coronary disease remains a major contributor to global mortality. Neutrophil infiltration and activation contributes to tissue damage, via the release of myeloperoxidase (MPO) and formation of the damaging oxidant hypochlorous acid. We hypothesized that elevation of thiocyanate ions (SCN−), a competitive MPO substrate, would modulate tissue damage. Oral dosing of rats with SCN−, before acute ischemia–reperfusion injury (30 min occlusion, 24 h or 4 week recovery), significantly reduced the infarct size as a percentage of the total reperfused area (54% versus 74%), and increased the salvageable area (46% versus 26%) as determined by MRI imaging. No difference was observed in fractional shortening, but supplementation resulted in both left-ventricle end diastolic and left-ventricle end systolic areas returning to control levels, as determined by echocardiography. Supplementation also decreased antibody recognition of HOCl-damaged myocardial proteins. SCN− supplementation did not modulate serum markers of damage/inflammation (ANP, BNP, galectin-3, CRP), but returned metabolomic abnormalities (reductions in histidine, creatine and leucine by 0.83-, 0.84- and 0.89-fold, respectively), determined by NMR, to control levels. These data indicate that elevated levels of the MPO substrate SCN−, which can be readily modulated by dietary means, can protect against acute ischemia–reperfusion injury.
Collapse
|
50
|
Chen FC, Xu YC, Zhang ZC. Multi-biomarker strategy for prediction of myocardial dysfunction and mortality in sepsis. J Zhejiang Univ Sci B 2021; 21:537-548. [PMID: 32633108 DOI: 10.1631/jzus.b2000049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study was to evaluate the feasibility of using the multi-biomarker strategy for the prediction of sepsis-induced myocardial dysfunction (SIMD) and mortality in septic patients. METHODS Brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and heart-type fatty acid-binding protein (h-FABP) in 147 septic patients were assayed within 6 h after admission. We also determined the plasma levels of myeloperoxidase (MPO) and pregnancy-associated plasma protein-A (PAPP-A). The receiver operating characteristic (ROC) curve was used to assess the best cutoff values of various single-biomarkers for the diagnosis of SIMD and the prediction of mortality. Also, the ROC curve, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) indices were used to evaluate the feasibility of using multi-biomarkers to predict SIMD and mortality. RESULTS Our statistics revealed that only h-FABP independently predicted SIMD (P<0.05). The addition of MPO and cTnI to h-FABP for SIMD prediction provided an NRI of 18.7% (P=0.025) and IDI of 3.3% (P=0.033). However, the addition of MPO or cTnI to h-FABP did not significantly improve the predictive ability of h-FABP to SIMD, as evidenced by the area under the curve (AUC), NRI, and IDI (all P>0.05). A history of shock and MPO were independent predictors of mortality in septic patients (both P<0.05). The addition of PAPP-A and h-FABP to MPO resulted in a mortality prediction with NRI of 25.5% (P=0.013) and IDI of 2.9% (P=0.045). However, this study revealed that the addition of h-FABP or PAPP-A to MPO did not significantly improve the ability to predict mortality, as evidenced by the AUC, NRI, and IDI (all P>0.05). CONCLUSIONS The findings of this study indicate that a sensitive and specific strategy for early diagnosis of SIMD and mortality prediction in sepsis should incorporate three biomarkers.
Collapse
Affiliation(s)
- Fa-Chao Chen
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yin-Chuan Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhao-Cai Zhang
- Intensive Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|