1
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
2
|
Soares RMV, da Silva MA, Campos JTADM, Lima JG. Familial partial lipodystrophy resulting from loss-of-function PPARγ pathogenic variants: phenotypic, clinical, and genetic features. Front Endocrinol (Lausanne) 2024; 15:1394102. [PMID: 39398333 PMCID: PMC11466747 DOI: 10.3389/fendo.2024.1394102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
The PPARG gene encodes a member of a nuclear receptor superfamily known as peroxisome proliferator-activated gamma (PPARγ). PPARγ plays an essential role in adipogenesis, stimulating the differentiation of preadipocytes into adipocytes. Loss-of-function pathogenic variants in PPARG reduce the activity of the PPARγ receptor and can lead to severe metabolic consequences associated with familial partial lipodystrophy type 3 (FPLD3). This review focuses on recent scientific data related to FPLD3, including the role of PPARγ in adipose tissue metabolism and the phenotypic and clinical consequences of loss-of-function variants in the PPARG gene. The clinical features of 41 PPARG pathogenic variants associated with FPLD3 patients were reviewed, highlighting the genetic and clinical heterogeneity observed among 91 patients. Most of them were female, and the average age at the onset and diagnosis of lipoatrophy was 21 years and 33 years, respectively. Considering the metabolic profile, hypertriglyceridemia (91.9% of cases), diabetes (77%), hypertension (59.5%), polycystic ovary syndrome (58.2% of women), and metabolic-dysfunction-associated fatty liver disease (87,5%). We also discuss the current treatment for FPLD3. This review provides new data concerning the genetic and clinical heterogeneity in FPLD3 and highlights the importance of further understanding the genetics of this rare disease.
Collapse
Affiliation(s)
- Reivla Marques Vasconcelos Soares
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Monique Alvares da Silva
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
- Department of Morphology (DMOR), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Josivan Gomes Lima
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
3
|
Hirako S, Wakayama Y, Kim H, Iizuka Y, Wada N, Kaibara N, Okabe M, Arata S, Matsumoto A. Association of Aquaporin 7 and 9 with Obesity and Fatty Liver in db/db Mice. Zoolog Sci 2023; 40:455-462. [PMID: 38064372 DOI: 10.2108/zs230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 12/18/2023]
Abstract
Aquaporin (AQP) 7 and AQP9 are membrane channel proteins called aquaglyceroporins and are related to glucose and lipid metabolism. AQP7 is mainly expressed in white adipose tissue (WAT) and is involved in releasing glycerol into the bloodstream. AQP9 is the glycerol channel in the liver that supplies glycerol to the hepatic cells. In this study, we investigated the relationship between the expression of aquaglyceroporins and lifestyle-related diseases, such as obesity and fatty liver, using 22-week-old db/db mice. Body weight, WAT, and liver weight showed increases in db/db mice. The levels of liver lipids, plasma lipids, insulin, and leptin were also increased in db/db mice. Gene expression related to fatty acid and triglyceride synthesis in the liver was enhanced in db/db mice. In addition, gene and protein expression of gluconeogenesis-related enzymes was increased. Conversely, lipolysis-related gene expression in WAT was reduced. In the db/db mice, AQP9 expression in the liver was raised; however, AQP7 expression in WAT was reduced. These results suggest that in db/db mice, enhanced hepatic AQP9 expression increased the supply of glycerol to the liver and induced fatty liver and hyperglycemia. Additionally, reduced AQP7 expression in WAT is associated with excessive lipid accumulation in adipocytes. Aquaglyceroporins are essential molecules for glucose and lipid metabolism, and may be potential target molecules for the treatment of obesity and lifestyle-related diseases.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Iwatsuki-ku, Saitama-shi, Saitama 339-8539, Japan,
| | - Yoshihiro Wakayama
- Wakayama Clinic, Machida-shi, Tokyo 195-0072, Japan
- Department of Anatomy, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Naoko Kaibara
- Department of Health and Nutrition, University of Human Arts and Sciences, Iwatsuki-ku, Saitama-shi, Saitama 339-8539, Japan
| | - Mai Okabe
- Tokyo Shokuryo Dietitian Academy, Setagaya-ku, Tokyo 154-8544, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Biochemistry, Faculty of Arts and Sciences, Showa University, Fujiyoshida-shi, Yamanashi 403-0005, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado-shi, Saitama 350-0295, Japan
| |
Collapse
|
4
|
Increased Aquaporin-7 Expression Is Associated with Changes in Rat Brown Adipose Tissue Whitening in Obesity: Impact of Cold Exposure and Bariatric Surgery. Int J Mol Sci 2023; 24:ijms24043412. [PMID: 36834823 PMCID: PMC9963055 DOI: 10.3390/ijms24043412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2, Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4 °C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2, Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.
Collapse
|
5
|
da Silva IV, Soveral G. Aquaporins in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:289-302. [PMID: 36717502 DOI: 10.1007/978-981-19-7415-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function, in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
6
|
Li X, Xing J, Wang F, Li J, Li J, Hou R, Zhang K. The mRNA Expression Profile of Psoriatic Lesion Distinct from Non-Lesion. Clin Cosmet Investig Dermatol 2022; 15:2035-2043. [PMID: 36193053 PMCID: PMC9526433 DOI: 10.2147/ccid.s385894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Purpose Psoriasis is a chronic recurring autoimmune skin disease with a complex etiology and chronic progression; however, its molecular mechanisms remain unclear. Patients and Methods We performed transcriptomic analysis to profile the mRNA expression of psoriatic lesions (PL) and non-lesion (NL) tissues from psoriasis patients along with normal skin from healthy donors. RT-qPCR was used to validate the mRNA expression profiles. Results A total of 237 differentially expressed genes were screened and identified by RNA sequencing. GO and KEGG analysis indicated that these DEGs were enriched in the PPAR signaling pathway and intermediate filament cytoskeleton. For PPAR signaling pathway, the expression of five genes, including ADIPOQ, AQP7, PLIN1, FABP4 and LPL, were all significantly decreased in psoriatic lesions compared to normal skin by RT-qPCR. There is a clear difference between psoriatic lesions and non-lesion in the expression of ADIPOQ, AQP7 and LPL. For intermediate filament cytoskeleton, including KRT27, KRT25, KRT71, KRT86 and KRT85 were significantly decreased in the psoriasis lesions, showing agreement with the RNA-seq data. Conclusion This study revealed a significant difference between the mRNA expression profiles of PL, NL tissue and normal skin.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Fangdi Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, Shanxi Province, 030009, People's Republic of China
| |
Collapse
|
7
|
Plaza A, Merino B, Ruiz-Gayo M. Cholecystokinin promotes functional expression of the aquaglycerol channel aquaporin 7 in adipocytes. Br J Pharmacol 2022; 179:4092-4106. [PMID: 35366004 DOI: 10.1111/bph.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholecystokinin (CCK) promotes triglyceride storage and adiponectin production in white adipose tissue (WAT), suggesting that CCK modulates WAT homeostasis. Our goal was to investigate the role of CCK in regulating the expression and function of the aquaglycerol channel aquaporin 7 (AQP7), a protein that is pivotal for maintaining adipocyte homeostasis and preserving insulin responsiveness. EXPERIMENTAL APPROACH The effect of the bioactive fragment of CCK, CCK-8, in regulating adipose AQP7 expression and glycerol efflux was assessed in rats as well as in pre-adipocytes. Moreover, the involvement of insulin receptors in the effects of CCK-8 was characterized in pre-adipocytes lacking insulin receptors. KEY RESULTS CCK-8 induced AQP7 gene expression in rat WAT, concomitantly increasing plasma glycerol concentration. In isolated pre-adipocytes, CCK-8 also enhanced both AQP7 expression and glycerol leakage. The effect of CCK-8 was independent of the lipolysis rate, as CCK-8 failed to promote fatty acid release by adipocytes. In addition, CCK-8 did not enhance hormone sensitive lipase phosphorylation, which is the rate-limiting step of lipolysis. Moreover, the effects of CCK-8 were dependent on the activation of protein kinase B and PPARγ. Silencing insulin receptor (IR) expression inhibited CCK-8-induced Aqp7 expression in pre-adipocytes. Furthermore, insulin enhanceded the effect of CCK-8. CONCLUSIONS AND IMPLICATIONS CCK regulates AQP7 expression and function, and this effect is dependent on insulin. Accordingly, CCK receptor agonists could be suitable for preserving and improving insulin responsiveness in WAT.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain.,Laboratory of Bioactive Products and Metabolic Syndrome, IMDEA Food Institute, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain
| |
Collapse
|
8
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
9
|
Aquaporins 8 and 9 as Possible Markers for Adult Murine Lacrimal Gland Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6888494. [PMID: 34540996 PMCID: PMC8445729 DOI: 10.1155/2021/6888494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Aquaporins (AQPs) are proteins that selectively transport water across the cell membrane. Although AQPs play important roles in secretion in the lacrimal gland, the expression and localization of AQPs have not been clarified yet. In the current study, we investigated the expression pattern of AQP family members in the murine lacrimal gland during development. Lacrimal gland tissues were harvested from E13.5 and E17.5 murine embryos and from mice 8 weeks of age (adults). Corneal and conjunctival tissues from the latter served as controls. Total RNA was isolated and analyzed for the expression of AQP family members using qPCR. The localization of AQPs in the adult lacrimal gland in adult murine lacrimal glands was also analyzed. Expression of Aqp8 and Aqp9 mRNAs was detected in the adult lacrimal gland but not in the cornea, conjunctiva, or fetal lacrimal gland. AQP8 and AQP9 and α-SMA partially colocalized around the basal regions of the acinar unit. The levels of Aqp3 mRNAs and protein were much lower in the adult lacrimal gland but were readily detected in the adult cornea and conjunctiva. Our study suggests that AQP8 and AQP9 may serve as markers for adult murine lacrimal gland, ductal, and myoepithelial cells.
Collapse
|
10
|
Galli M, Hameed A, Żbikowski A, Zabielski P. Aquaporins in insulin resistance and diabetes: More than channels! Redox Biol 2021; 44:102027. [PMID: 34090243 PMCID: PMC8182305 DOI: 10.1016/j.redox.2021.102027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaporins (AQPs) are part of the family of the integral membrane proteins. Their function is dedicated to the transport of water, glycerol, ammonia, urea, H2O2, and other small molecules across the biological membranes. Although for many years they were scarcely considered, AQPs have a relevant role in the development of many diseases. Recent discoveries suggest, that AQPs may play an important role in the process of fat accumulation and regulation of oxidative stress, two crucial aspects of insulin resistance and type-2 diabetes (T2D). Insulin resistance (IR) and T2D are multi-faceted systemic diseases with multiple connections to obesity and other comorbidities such as hypertension, dyslipidemia and metabolic syndrome. Both IR and T2D transcends different tissues and organs, creating the maze of mutual relationships between adipose fat depots, skeletal muscle, liver and other insulin-sensitive organs. AQPs with their heterogenous properties, distinctive tissue distribution and documented involvement in both the lipid metabolism and regulation of the oxidative stress appear to be feasible candidates in the search for the explanation to this third-millennium plague. A lot of research has been assigned to adipose tissue AQP7 and liver tissue AQP9, clarifying their relationship and coordinated work in the induction of hepatic insulin resistance. Novel research points also to other aquaporins, such as AQP11 which may be associated with the induction of insulin resistance and T2D through its involvement in hydrogen peroxide transport. In this review we collected recent discoveries in the field of AQP's involvement in the insulin resistance and T2D. Novel paths which connect AQPs with metabolic disorders can give new fuel to the research on obesity, insulin resistance and T2D - one of the most worrying problems of the modern society.
Collapse
Affiliation(s)
- Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| |
Collapse
|
11
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
12
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
14
|
Guo F, Xu S, Zhu Y, Zheng X, Lu Y, Tu J, He Y, Jin L, Li Y. PPARγ Transcription Deficiency Exacerbates High-Fat Diet-Induced Adipocyte Hypertrophy and Insulin Resistance in Mice. Front Pharmacol 2020; 11:1285. [PMID: 32973516 PMCID: PMC7466717 DOI: 10.3389/fphar.2020.01285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background The transcriptional factor peroxisome proliferator–activated receptor γ (PPARγ) is an important therapeutic target for the treatment of type 2 diabetes. However, the role of the PPARγ transcriptional activity remains ambiguous in its metabolic regulation. Methods Based on the crystal structure of PPARγ bound with the DNA target of PPARγ response element (PPRE), Arg134, Arg135, and Arg138, three crucial DNA binding sites for PPARγ, were mutated to alanine (3RA), respectively. In vitro AlphaScreen assay and cell-based reporter assay validated that PPARγ 3RA mutant cannot bind with PPRE and lost transcriptional activity, while can still bind ligand (rosiglitazone) and cofactors (SRC1, SRC2, and NCoR). By using CRISPR/Cas9, we created mice that were heterozygous for PPARγ-3RA (PPARγ3RA/+). The phenotypes of chow diet and high-fat diet fed PPARγ3RA/+ mice were investigated, and the molecular mechanism were analyzed by assessing the PPARγ transcriptional activity. Results Homozygous PPARγ-3RA mutant mice are embryonically lethal. The mRNA levels of PPARγ target genes were significantly decreased in PPARγ3RA/+ mice. PPARγ3RA/+ mice showed more severe adipocyte hypertrophy, insulin resistance, and hepatic steatosis than wild type mice when fed with high-fat diet. These phenotypes were ameliorated after the transcription activity of PPARγ was restored by rosiglitazone, a PPARγ agonist. Conclusion The current report presents a novel mouse model for investigating the role of PPARγ transcription in physiological functions. The data demonstrate that the transcriptional activity plays an indispensable role for PPARγ in metabolic regulation.
Collapse
Affiliation(s)
- Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xing Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Ying He
- Laboratory Animal Center, Xiamen University, Xiamen, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Guo R, Wang L, Zeng X, Liu M, Zhou P, Lu H, Lin H, Dong M. Aquaporin 7 involved in GINSENOSIDE-RB1-mediated anti-obesity via peroxisome proliferator-activated receptor gamma pathway. Nutr Metab (Lond) 2020; 17:69. [PMID: 32821266 PMCID: PMC7433204 DOI: 10.1186/s12986-020-00490-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Obesity, characterized by the excessive accumulation of triglycerides in adipocytes and their decreased excretion from adipocytes, is closely related to various health problems. Ginsenoside Rb1 (Rb1), the most active component of the traditional Chinese medicine ginseng, has been reported to have positive effects on lipid metabolism. The aim of the present study was to determine the protective effects of Rb1 on glycolipid metabolism under obesity conditions and its mechanisms and to reveal the signaling pathways involved. Methods In our study, male C57BL/6 mice with obesity induced by a high-fat diet (HFD) and mature 3 T3-L1 adipocytes were used to investigate the role of Rb1 in lipid accumulation and explore its possible molecular mechanism in vivo and in vitro, respectively. Results Rb1 reduced the body weight, fat mass, adipocytes size and serum free fatty acid (FFA) concentration of obese mice. In differentiated 3 T3-L1 adipocytes, Rb1 reduced the accumulation of lipid droplets and stimulated output of triglycerides. Additionally, the expression of peroxisome proliferator-activated receptor gamma (PPARγ), phosphorylated PPARγ (Ser112) and aquaporin 7 (AQP7) was upregulated in adipocytes and adipose tissues upon Rb1 treatment. However, intervention of GW9662, PPARγ antagonist, attenuated Rb1-mediated effects on glycolipid metabolism and AQP7 levels. Conclusions These data indicated that Rb1 reduced body weight and improved glycolipid metabolism by upregulating PPARγ and AQP7 protein levels. Our study indicated a potential role for Rb1 in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Rong Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China.,Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Xianqin Zeng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi China
| | - Minghao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 People's Republic of China
| | - Peng Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| |
Collapse
|
16
|
Chen L, Chen H, Liu X, Li J, Gao Q, Shi S, Wang T, Ye X, Lu Y, Zhang D, Sheng J, Jin L, Huang H. AQP7 mediates post-menopausal lipogenesis in adipocytes through FSH-induced transcriptional crosstalk with AP-1 sites. Reprod Biomed Online 2020; 41:1122-1132. [PMID: 33132060 DOI: 10.1016/j.rbmo.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
RESEARCH QUESTION Fat accumulation is present in most post-menopausal women, but the underlying mechanism remains unclear. Aquaporin 7 (AQP7) is the most important glycerol channel facilitating glycerol efflux in adipocytes. High circulating FSH in post-menopausal women may play an independent role in regulation of the lipogenic effect of AQP7 in adipocytes. This study explored the role of AQP7 in the pathophysiology of post-menopausal lipogenesis mediated by high concentrations of circulating FSH. DESIGN Primary adipocytes from post-menopausal and childbearing women were analysed. An in-vivo post-menopausal animal model was established. AQP7 expression, lipid accumulation and glycerol concentration in adipocytes were measured. Luciferase reporter assay and chromatin immunoprecipitation were performed to identify transcriptional crosstalk in AQP7 promoter. RESULTS It was found that FSH down-regulated AQP7 expression and glycerol efflux function in mature adipocytes of post-menopausal women and ovariectomized (OVX) mice. In vitro, FSH inhibited lipid accumulation in primary cultured mature adipocytes in a dose-dependent manner and the mechanism was down-regulating AQP7 expression via a FSH receptor pathway. The effect of FSH on AQP7 in adipocytes was through activation of cAMP response element-binding (CREB) protein, which could bind to activator protein-1 (AP-1) sites in the AQP7 promoter, and therefore inhibited the transcriptional activation elicited by c-Jun. CONCLUSIONS Down-regulation of AQP7 by FSH mediated post-menopausal lipogenesis, and the role of FSH was based on binding competition for AP-1 sites between CREB and c-Jun.
Collapse
Affiliation(s)
- Luting Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease Shanghai, China
| | - Huixi Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease Shanghai, China
| | - Xinmei Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease Shanghai, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qian Gao
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China
| | - Shuai Shi
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China
| | - Tingting Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China
| | - Xiaoqun Ye
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchao Lu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China
| | - Li Jin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease Shanghai, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease Shanghai, China; Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou Zhejiang, China.
| |
Collapse
|
17
|
Wang X, Yang J, Yao Y, Shi X, Yang G, Li X. AQP3 Facilitates Proliferation and Adipogenic Differentiation of Porcine Intramuscular Adipocytes. Genes (Basel) 2020; 11:genes11040453. [PMID: 32331274 PMCID: PMC7230797 DOI: 10.3390/genes11040453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
The meat quality of animal products is closely related to the intramuscular fat content. Aquaglyceroporin (AQP) defines a class of water/glycerol channels that primarily facilitate the passive transport of glycerol and water across biological membranes. In this study, the AQP3 protein of the AQP family was mainly studied in the adipogenic function of intramuscular adipocytes in pigs. Here, we found that AQP3 was increased at both mRNA and protein levels upon adipogenic stimuli in porcine intramuscular adipocytes in vitro. Western blot results showed knockdown of AQP3 by siRNA significantly suppressed the expression of adipogenic genes (PPARγ, aP2, etc.), repressed Akt phosphorylation, as well as reducing lipid accumulation. Furthermore, deletion of AQP3 by siRNA significantly downregulated expression of cell cycle genes (cyclin D, E), and decreased the number of EdU-positive cells as well as cell viability. Collectively, our data indicate that AQP3 is of great importance in both adipogenic differentiation and proliferation in intramuscular adipocytes, providing a potential target for modulating fat infiltration in skeletal muscles.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Li
- Correspondence: ; Tel.: +86-29-870-81531
| |
Collapse
|
18
|
Pereira B, Amaral AL, Dias A, Mendes N, Muncan V, Silva AR, Thibert C, Radu AG, David L, Máximo V, van den Brink GR, Billaud M, Almeida R. MEX3A regulates Lgr5 + stem cell maintenance in the developing intestinal epithelium. EMBO Rep 2020; 21:e48938. [PMID: 32052574 PMCID: PMC7132344 DOI: 10.15252/embr.201948938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal stem cells (ISCs) fuel the lifelong self‐renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA‐binding protein is crucial for the maintenance of the Lgr5+ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator‐activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPARγ activity as a molecular intermediate of MEX3A‐mediated regulation. We also show that high PPARγ signalling impairs Lgr5+ISC function, thus uncovering a new layer of post‐transcriptional regulation that critically contributes to intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Pereira
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana L Amaral
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Alexandre Dias
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Nuno Mendes
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana R Silva
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Anca G Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Leonor David
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands.,Medicines Research Center, GSK, Stevenage, UK
| | - Marc Billaud
- Clinical and Experimental Model of Lymphomagenesis, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Raquel Almeida
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Chen A, Jandarov R, Zhou L, Calafat AM, Zhang G, Urbina EM, Sarac J, Augustin DH, Caric T, Bockor L, Petranovic MZ, Novokmet N, Missoni S, Rudan P, Deka R. Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic coast of Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:29-36. [PMID: 31129329 PMCID: PMC6581612 DOI: 10.1016/j.scitotenv.2019.05.250] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, may be related to cardiometabolic diseases in adults. Studies in European populations to examine the association of PFAS exposure and comprehensive cardiometabolic traits and metabolic syndrome (MetS) are limited. METHODS In this pilot cross-sectional study of a well-characterized adult population of the island of Hvar, situated off the eastern Adriatic coast of Croatia, we measured PFAS concentrations in plasma samples collected during 2007-2008 and examined their cross-sectional associations with cardiometabolic traits and MetS after adjustment of covariates (n = 122). PFAS investigated in this study included perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). RESULTS The geometric mean (range) was 8.91 (2.36, 33.67) ng/mL for PFOS, 2.87 (1.03, 8.02) ng/mL for PFOA, 0.77 (0.25, 2.40) ng/mL for PFHxS, and 1.29 (0.48, 3.46) ng/mL for PFNA, with frequency of detection at 100%, 100%, 95.9%, and 100%, respectively. PFOS, PFOA, and PFNA concentrations were positively associated with the risk of MetS as defined by the Adult Treatment Panel III (ATP III) criteria, with estimated odds ratios and 95% confidence intervals at 1.89 (0.93, 3.86), 2.19 (0.88, 5.44), and 2.95 (1.12, 7.80), respectively, with only PFNA reaching statistical significance. PFNA concentrations were associated with increased risk of overweight or obesity. CONCLUSIONS Background exposure to PFOS, PFOA, and PFNA was marginally associated with increased risk of MetS in this small study, and these results should be confirmed with a larger sample size and longitudinal follow-up.
Collapse
Affiliation(s)
- Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Li Zhou
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ge Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elaine M Urbina
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jelena Sarac
- Institute for Anthropological Research, Zagreb, Croatia
| | | | - Tonko Caric
- Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bockor
- Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Sasa Missoni
- Institute for Anthropological Research, Zagreb, Croatia; Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
| | - Pavao Rudan
- Institute for Anthropological Research, Zagreb, Croatia; Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Ranjan Deka
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Xing L, Jin B, Fu X, Zhu J, Guo X, Xu W, Mou X, Wang Z, Jiang F, Zhou Y, Chen X, Shu J. Identification of functional estrogen response elements in glycerol channel Aquaporin-7 gene. Climacteric 2019; 22:466-471. [PMID: 30888885 DOI: 10.1080/13697137.2019.1580255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- L. Xing
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - B. Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Fu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - J. Zhu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Guo
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - W. Xu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - Z. Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - F. Jiang
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Y. Zhou
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - X. Chen
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - J. Shu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
21
|
Modulation of aquaporin gene expression by n-3 long-chain PUFA lipid structures in white and brown adipose tissue from hamsters. Br J Nutr 2018; 120:1098-1106. [DOI: 10.1017/s0007114518002519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractEPA (20 : 5n-3) and DHA (22 : 6n-3) fatty acids have weight-reducing properties with physiological activity depending on their molecular structure – that is, as TAG or ethyl esters (EE). Aquaporins (AQP) are membrane protein channels recognised as important players in fat metabolism, but their differential expression in white adipose tissue (WAT) and brown adipose tissue (BAT), as well as their modulation by dietary n-3 long-chain PUFA (LCPUFA) such as EPA and DHA, has never been investigated. In this study, the transcriptional profiles of AQP3, AQP5, AQP7 and selected lipid markers of WAT (subcutaneous and visceral) and BAT (interscapular) from hamsters fed diets containing n-3 LCPUFA in different lipid structures such as fish oil (FO, rich in EPA and DHA in the TAG form) and FO-EE (rich in EPA and DHA in the EE form) were used and compared with linseed oil (LSO) as the reference group. A clear effect of fat depot was observed for AQP3 and leptin (LEP), with the lowest values of mRNA found in BAT relative to WAT. The opposite occurred for PPARα. AQP7 was affected by diet, with FO-fed hamsters having higher mRNA levels compared with LSO-fed hamsters. The relative gene expression of AQP5, adiponectin (ADIPO), GLUT4 and PPARγ was influenced by both fat tissue and diet. Taken together, our results revealed a differential expression profile of AQP and some markers of lipid metabolism in both WAT and BAT in response to feeding n-3 LCPUFA in two different structural formats: TAG v. EE.
Collapse
|
22
|
Pesta M, Cedikova M, Dvorak P, Dvorakova J, Kulda V, Srbecka K, Muller L, Bouchalova V, Kralickova M, Babuska V, Kuncova J, Mullerova D. Trends in gene expression changes during adipogenesis in human adipose derived mesenchymal stem cells under dichlorodiphenyldichloroethylene exposure. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0041-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Tardelli M, Claudel T, Bruschi FV, Trauner M. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs. Int J Mol Sci 2018; 19:E1777. [PMID: 29914059 PMCID: PMC6032257 DOI: 10.3390/ijms19061777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
25
|
da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci 2018; 75:1973-1988. [PMID: 29464285 PMCID: PMC11105723 DOI: 10.1007/s00018-018-2781-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Joana S Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Porto, Portugal
| | - Joana P G Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
26
|
Méndez-Giménez L, Ezquerro S, da Silva IV, Soveral G, Frühbeck G, Rodríguez A. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Front Chem 2018; 6:99. [PMID: 29675407 PMCID: PMC5895657 DOI: 10.3389/fchem.2018.00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of β-cell function and a potential anti-diabetic-drug.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Inês V da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Méndez-Giménez L, Becerril S, Moncada R, Valentí V, Fernández S, Ramírez B, Catalán V, Gómez-Ambrosi J, Soveral G, Malagón MM, Diéguez C, Rodríguez A, Frühbeck G. Gastric Plication Improves Glycemia Partly by Restoring the Altered Expression of Aquaglyceroporins in Adipose Tissue and the Liver in Obese Rats. Obes Surg 2018; 27:1763-1774. [PMID: 28054299 DOI: 10.1007/s11695-016-2532-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastric plication is a minimally invasive bariatric surgical procedure, where the greater curvature is plicated inside the gastric lumen. Our aims were to analyze the effectiveness of gastric plication on the resolution of obesity, impaired glucose tolerance, and fatty liver in an experimental model of diet-induced obesity (DIO) and to evaluate changes in glycerol metabolism, a key substrate for adiposity and gluconeogenesis, in adipose tissue and the liver. METHODS Male Wistar DIO rats (n = 58) were subjected to surgical (sham operation and gastric plication) or dietary interventions [fed a normal diet (ND) or high-fat diet (HFD) or pair-fed to the amount of food eaten by gastric-plicated animals]. The expression of aquaglyceroporins (AQPs) in epididymal (EWAT) and subcutaneous (SCWAT) fat and the liver was analyzed by real-time PCR and Western blot. RESULTS Gastric plication did not result in a significant weight loss in DIO rats, showing a modest reduction in whole-body adiposity and hepatic steatosis. However, gastric-plicated animals exhibited an improvement in basal glycemia and glucose clearance, without changes in hepatic gluconeogenic genes. DIO was associated with an increase in glycerol, higher AQP3 and AQP7 in EWAT and SCWAT, and a decrease in hepatic AQP9. Gastric plication downregulated AQP3 in both fat depots without changes in adipose AQP7 and hepatic AQP9. CONCLUSION Gastric plication results in a modest reduction in adiposity and hepatosteatosis but restores glycemia by downregulating AQP3, which entails lower efflux of glycerol from fat, lower plasma glycerol availability, and a reduced use of glycerol as a substrate for hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Anesthesia, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Surgery, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Secundino Fernández
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Otorhinolaryngology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - María M Malagón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain
| | - Carlos Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Irunlarrea 1, 31008, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
28
|
Iena FM, Lebeck J. Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 2018; 19:ijms19010154. [PMID: 29300344 PMCID: PMC5796103 DOI: 10.3390/ijms19010154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
The aquaglyceroporin AQP7 is a pore-forming transmembrane protein that facilitates the transport of glycerol across cell membranes. Glycerol is utilized both in carbohydrate and lipid metabolism. It is primarily stored in white adipose tissue as part of the triglyceride molecules. During states with increased lipolysis, such as fasting and diabetes, glycerol is released from adipose tissue and metabolized in other tissues. AQP7 is expressed in adipose tissue where it facilitates the efflux of glycerol, and AQP7 deficiency has been linked to increased glycerol kinase activity and triglyceride accumulation in adipose tissue, leading to obesity and secondary development of insulin resistance. However, AQP7 is also expressed in a wide range of other tissues, including kidney, muscle, pancreatic β-cells and liver, where AQP7 also holds the potential to influence whole body energy metabolism. The aim of the review is to summarize the current knowledge on AQP7 in adipose tissue, as well as AQP7 expressed in other tissues where AQP7 might play a significant role in modulating whole body energy metabolism.
Collapse
Affiliation(s)
- Francesco Maria Iena
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
29
|
AQP3 is regulated by PPARγ and JNK in hepatic stellate cells carrying PNPLA3 I148M. Sci Rep 2017; 7:14661. [PMID: 29116096 PMCID: PMC5676689 DOI: 10.1038/s41598-017-14557-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023] Open
Abstract
Aquaglyceroporins (AQPs) allow the movement of glycerol that is required for triglyceride formation in hepatic stellate cells (HSC), as key cellular source of fibrogenesis in the liver. The genetic polymorphism I148M of the patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with hepatic steatosis and its progression to steatohepatitis (NASH), fibrosis and cancer. We aimed to explore the role of AQP3 for HSC activation and unveil its potential interactions with PNPLA3. HSC were isolated from human liver, experiments were performed in primary HSC and human HSC line LX2. AQP3 was the only aquaglyceroporin present in HSC and its expression decreased during activation. The PPARγ agonist, rosiglitazone, recovered AQP3 expression also in PNPLA3 I148M carrying HSC. When PNPLA3 was silenced, AQP3 expression increased. In liver sections from patients with NASH, the decreased amount of AQP3 was proportional to the severity of fibrosis and presence of the PNPLA3 I148M variant. In PNPLA3 I148M cells, the blockade of JNK pathway upregulated AQP3 in synergism with PPARγ. In conclusion, we demonstrated profound reduction of AQP3 in HSC carrying the PNPLA3 I148M variant in parallel to decreased PPARγ activation, which could be rescued by rosiglitazone and blockade of JNK.
Collapse
|
30
|
Tardelli M, Claudel T, Bruschi FV, Moreno-Viedma V, Trauner M. Adiponectin regulates AQP3 via PPARα in human hepatic stellate cells. Biochem Biophys Res Commun 2017; 490:51-54. [PMID: 28595905 DOI: 10.1016/j.bbrc.2017.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are trans-membrane proteins which allow the movement of water and glycerol required by hepatic stellate cells (HSC) for triglyceride formation and lipid storage. Adiponectin (ADPQ) is a hormone produced by the adipose tissue, which is known to increase AQP3 expression. Since ADPQ receptor signals via the nuclear receptor PPAR we aimed to explore the role of this pathway in AQP3 regulation by ADPQ in HSC. AQP3 and CPT1α expression increased only after ADPQ but not rosiglitazone stimulation. In LX2 cells co-transfected with plasmids expressing PPARα or PPARγ coupled to a luciferase reporter gene, only PPARα increased luciferase activity after ADPQ stimulation. Collectively, our findings demonstrate that ADPQ increases AQP3 expression through PPARα-mediated signaling in HSC.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Francesca V Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Veronica Moreno-Viedma
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
31
|
Wawrzkiewicz-Jałowiecka A, Kowalczyk K, Pluta D, Blukacz Ł, Madej P. The role of aquaporins in polycystic ovary syndrome - A way towards a novel drug target in PCOS. Med Hypotheses 2017; 102:23-27. [PMID: 28478824 DOI: 10.1016/j.mehy.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Aquaporins (AQPs) are transmembrane proteins, able to transport water (and in some cases also small solutes, e. g. glycerol) through the cell membrane. There are twelve types of aquaporins (AQP1-AQP12) expressed in mammalian reproductive systems. According to literature, many diseases of the reproductive organs are correlated with changes of AQPs expression and their malfunction. That is the case in the polycystic ovary syndrome (PCOS), where dysfunctions of AQPs 7-9 and alterations in its levels occur. In this work, we postulate how AQPs are involved in PCOS-related disorders, in order to emphasize their potential therapeutic meaning as a drug target. Our research allows for a surprising inference, that genetic mutation causing malfunction and/or decreased expression of aquaporins, may be incorporated in the popular insulin-dependent hypothesis of PCOS pathogenesis. What is more, changes in AQP's expression may affect the folliculogenesis and follicular atresia in PCOS.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 9, Poland.
| | - Karolina Kowalczyk
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Dagmara Pluta
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Łukasz Blukacz
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Paweł Madej
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
32
|
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes , dyslipidemia and hypertension , collectively named Metabolic Syndrome. The role of aquaporins in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs, unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity and diabetes.This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, their involvement in glycerol balance and their implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function , in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
33
|
Zhang Y, Yu J, Lee C, Xu B, Sartor MA, Koenig RJ. Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget 2016; 6:40418-32. [PMID: 26595524 PMCID: PMC4747342 DOI: 10.18632/oncotarget.6340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023] Open
Abstract
A chromosomal translocation results in production of an oncogenic PAX8-PPARG fusion protein (PPFP) in thyroid carcinomas. PAX8 is a thyroid transcription factor, and PPARG is a transcription factor that plays important roles in adipocytes and macrophages. PPFP retains the DNA binding domains of both proteins; however, the genomic binding sites of PPFP have not been identified, and only limited data exist to characterize gene expression in PPFP thyroid carcinomas. Therefore, the oncogenic function of PPFP is poorly understood. We expressed PPFP in PCCL3 rat thyroid cells and used ChIP-seq to identify PPFP genomic binding sites (PPFP peaks) and RNA-seq to characterize PPFP-dependent gene expression. PPFP peaks (~20,000) include known PAX8 and PPARG binding sites and are enriched with both motifs, indicating that both DNA binding domains are functional. PPFP binds to and regulates many genes involved in cancer-related processes. In PCCL3 thyroid cells, PPFP binds to adipocyte PPARG target genes in preference to macrophage PPARG target genes, consistent with the pro-adipogenic nature of PPFP and its ligand pioglitazone in thyroid cells. PPFP induces oxidative stress in thyroid cells, and pioglitazone increases susceptibility to further oxidative stress. Our data highlight the complexity of PPFP as a transcription factor and the numerous ways that it regulates thyroid oncogenesis.
Collapse
Affiliation(s)
- Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jingcheng Yu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chee Lee
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ronald J Koenig
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Hirako S, Wakayama Y, Kim H, Iizuka Y, Matsumoto A, Wada N, Kimura A, Okabe M, Sakagami J, Suzuki M, Takenoya F, Shioda S. The relationship between aquaglyceroporin expression and development of fatty liver in diet-induced obesity and ob/ob mice. Obes Res Clin Pract 2015; 10:710-718. [PMID: 26747210 DOI: 10.1016/j.orcp.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
Aquaporin (AQP) 7 and AQP9 are subcategorised as aquaglyceroporins which transport glycerin in addition to water. These AQPs may play a role in the homeostasis of energy metabolism. We examined the effect of AQP7, AQP9, and lipid metabolism-related gene expression in obese mice. In diet-induced obese (DIO) mice, excess lipid accumulated in the liver, which was hyperleptinemic and hyperinsulinemic. Hepatic AQP9 gene expression was significantly increased in both DIO and ob/ob mice compared to controls. The mRNA expression levels of fatty acid and triglyceride synthesis-related genes and fatty acid β oxidation-related genes in the liver were also higher in both mouse models, suggesting that triglyceride synthesis in this organ is promoted as a result of glycerol release from adipocytes. Adipose AQP7 and AQP9 gene expressions were increased in DIO mice, but there was no difference in ob/ob mice compared to wild-type mice. In summary, adipose AQP7 and AQP9 gene expressions are increased by diet-induced obesity, indicating that this is one of the mechanisms by which lipid accumulates in response to a high fat diet, not the genetic mutation of ob/ob mice. Hepatic AQP9 gene expression was increased in both obesity model mice. AQP7 and AQP9 therefore have the potential of defining molecules for the characterisation of obesity or fatty liver and may be a target molecules for the treatment of those disease.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Yoshihiro Wakayama
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan; Wakayama Clinic, Machida-shi, Tokyo, Japan
| | - Hyounju Kim
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yuzuru Iizuka
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Nobuhiro Wada
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ai Kimura
- Hoshi University School of Pharmacy and Pharmaceutical Sciences Global Research Center for Innovative Life Science Peptide Drug Innovation, Tokyo, Japan
| | - Mai Okabe
- Tokyo Shokuryo Dietitian Academy, Tokyo, Japan
| | - Junichi Sakagami
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Mamiko Suzuki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Exercise and Sports Physiology, Hoshi University School of Pharmacy and Pharmaceutical Science, Tokyo, Japan
| | - Seiji Shioda
- Hoshi University School of Pharmacy and Pharmaceutical Sciences Global Research Center for Innovative Life Science Peptide Drug Innovation, Tokyo, Japan.
| |
Collapse
|
35
|
Sleeve Gastrectomy Reduces Hepatic Steatosis by Improving the Coordinated Regulation of Aquaglyceroporins in Adipose Tissue and Liver in Obese Rats. Obes Surg 2015; 25:1723-34. [PMID: 25736229 DOI: 10.1007/s11695-015-1612-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glycerol constitutes an important metabolite for the control of lipid accumulation and glucose homeostasis. Our aim was to investigate the potential role of aquaglyceroporins, which are glycerol channels mediating glycerol efflux in adipocytes (AQP3 and AQP7) and glycerol influx (AQP9) in hepatocytes, in the improvement of adiposity and hepatic steatosis after sleeve gastrectomy in an experimental model of diet-induced obesity (DIO). METHODS Male Wistar DIO rats (n = 161) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions [fed ad libitum a normal diet (ND) or a high-fat diet (HFD) or pair-fed to the amount of food eaten by sleeve-gastrectomized animals]. The tissue distribution and expression of AQPs in biopsies of epididymal (EWAT) and subcutaneous (SCWAT) white adipose tissue and liver were analyzed by real-time PCR, Western blot, and immunohistochemistry. RESULTS Four weeks after surgery, DIO rats undergoing sleeve gastrectomy showed a reduction in body weight, whole-body adiposity, and hepatic steatosis. DIO was associated with a tendency towards an increase in EWAT AQP3 and SCWAT AQP7 and a decrease in hepatic AQP9. Sleeve gastrectomy downregulated AQP7 in both fat depots and upregulated AQP3 in EWAT, without changing hepatic AQP9. Aqp7 transcript levels in EWAT and SCWAT were positively associated with adiposity and glycemia, while Aqp9 mRNA was negatively correlated with markers of hepatic steatosis and insulin resistance. CONCLUSION Our results show, for the first time, that sleeve gastrectomy, a widely applied bariatric surgery procedure, restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, thereby improving whole-body adiposity and hepatic steatosis.
Collapse
|
36
|
Laforenza U, Bottino C, Gastaldi G. Mammalian aquaglyceroporin function in metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1-11. [PMID: 26456554 DOI: 10.1016/j.bbamem.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
Abstract
Aquaglyceroporins are integral membrane proteins that are permeable to glycerol as well as water. The movement of glycerol from a tissue/organ to the plasma and vice versa requires the presence of different aquaglyceroporins that can regulate the entrance or the exit of glycerol across the plasma membrane. Actually, different aquaglyceroporins have been discovered in the adipose tissue, small intestine, liver, kidney, heart, skeletal muscle, endocrine pancreas and capillary endothelium, and their differential expression could be related to obesity and the type 2 diabetes. Here we describe the expression and function of different aquaglyceroporins in physiological condition and in obesity and type 2 diabetes, suggesting they are potential therapeutic targets for metabolic disorders.
Collapse
Affiliation(s)
| | - Cinzia Bottino
- Department of Molecular Medicine, University of Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, Italy
| |
Collapse
|
37
|
Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci Rep 2015; 5:12067. [PMID: 26159457 PMCID: PMC4498231 DOI: 10.1038/srep12067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022] Open
Abstract
Glycerol is an important metabolite for the control of lipid accumulation in white adipose tissue (WAT) and liver. We aimed to investigate whether exogenous administration of leptin improves features of non-alcoholic fatty liver disease (NAFLD) in leptin-deficient ob/ob mice via the regulation of AQP3 and AQP7 (glycerol channels mediating glycerol efflux in adipocytes) and AQP9 (aquaglyceroporin facilitating glycerol influx in hepatocytes). Twelve-week-old male wild type and ob/ob mice were divided in three groups as follows: control, leptin-treated (1 mg/kg/d) and pair-fed. Leptin deficiency was associated with obesity and NAFLD exhibiting an AQP3 and AQP7 increase in WAT, without changes in hepatic AQP9. Adipose Aqp3 and hepatic Aqp9 transcripts positively correlated with markers of adiposity and hepatic steatosis. Chronic leptin administration (4-weeks) was associated with improved body weight, whole-body adiposity, and hepatosteatosis of ob/ob mice and to a down-regulation of AQP3, AQP7 in WAT and an up-regulation of hepatic AQP9. Acute leptin stimulation in vitro (4-h) induced the mobilization of aquaglyceroporins towards lipid droplets (AQP3) and the plasma membrane (AQP7) in murine adipocytes. Our results show that leptin restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, a step which might prevent lipid overaccumulation in WAT and liver in obesity.
Collapse
|
38
|
Madeira A, Moura TF, Soveral G. Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 2015; 72:759-71. [PMID: 25359234 PMCID: PMC11113391 DOI: 10.1007/s00018-014-1773-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023]
Abstract
Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins' unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa F. Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- FCT-UNL, 2829-516 Caparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Rodríguez A, Marinelli RA, Tesse A, Frühbeck G, Calamita G. Sexual Dimorphism of Adipose and Hepatic Aquaglyceroporins in Health and Metabolic Disorders. Front Endocrinol (Lausanne) 2015; 6:171. [PMID: 26594198 PMCID: PMC4633488 DOI: 10.3389/fendo.2015.00171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
Gender differences in the relative risk of developing metabolic complications, such as insulin resistance or non-alcoholic fatty liver disease (NAFLD), have been reported. The deregulation of glycerol metabolism partly contributes to the onset of these metabolic diseases, since glycerol constitutes a key substrate for the synthesis of triacylglycerols (TAGs) as well as for hepatic gluconeogenesis. The present mini-review covers the sex--related differences in glycerol metabolism and aquaglyceroporins (AQPs) and its impact in the control of adipose and hepatic fat accumulation as well as in whole-body glucose homeostasis. Plasma glycerol concentrations are increased in women compared to men probably due to the higher lipolytic rate and larger AQP7 amounts in visceral fat as well as the well-known sexual dimorphism in fat mass with women showing higher adiposity. AQP9 represents the primary route for glycerol uptake in hepatocytes, where glycerol is converted by the glycerol-kinase enzyme into glycerol-3-phosphate, a key substrate for de novo synthesis of glucose and TAG. In spite of showing similar hepatic AQP9 protein, women exhibit lower hepatocyte glycerol permeability than men, which might contribute to their lower prevalence of insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, CIBEROBN, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - Raul A. Marinelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Angela Tesse
- INSERM UMR 1087/CNRS UMR 629, L’Institut du Thorax, IRS-UN, Nantes, France
| | - Gema Frühbeck
- Metabolic Research Laboratory, CIBEROBN, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Giuseppe Calamita,
| |
Collapse
|
40
|
Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:78-92. [PMID: 25008241 DOI: 10.1016/j.mce.2014.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022]
Abstract
Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain.
| | - Inmaculada Balaguer
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
41
|
Iida M, Katsuno M, Nakatsuji H, Adachi H, Kondo N, Miyazaki Y, Tohnai G, Ikenaka K, Watanabe H, Yamamoto M, Kishida K, Sobue G. Pioglitazone suppresses neuronal and muscular degeneration caused by polyglutamine-expanded androgen receptors. Hum Mol Genet 2014; 24:314-29. [DOI: 10.1093/hmg/ddu445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Abstract
Obesity and secondary development of type 2 diabetes (T2D) are major health care problems throughout the developed world. Accumulating evidence suggest that glycerol metabolism contributes to the pathophysiology of obesity and T2D. Glycerol is a small molecule that serves as an important intermediate between carbohydrate and lipid metabolism. It is stored primarily in adipose tissue as the backbone of triglyceride (TG) and during states of metabolic stress, such as fasting and diabetes, it is released for metabolism in other tissues. In the liver, glycerol serves as a gluconeogenic precursor and it is used for the esterification of free fatty acid into TGs. Aquaporin 7 (AQP7) in adipose tissue and AQP9 in the liver are transmembrane proteins that belong to the subset of AQPs called aquaglyceroporins. AQP7 facilitates the efflux of glycerol from adipose tissue and AQP7 deficiency has been linked to TG accumulation in adipose tissue and adult onset obesity. On the other hand, AQP9 expressed in liver facilitates the hepatic uptake of glycerol and thereby the availability of glycerol for de novo synthesis of glucose and TG that both are involved in the pathophysiology of diabetes. The aim of this review was to summarize the current knowledge on the role of the two glycerol channels in controlling glycerol metabolism in adipose tissue and liver.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Odense, Denmark Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus, Denmark
| |
Collapse
|
43
|
Kiskinis E, Chatzeli L, Curry E, Kaforou M, Frontini A, Cinti S, Montana G, Parker MG, Christian M. RIP140 represses the "brown-in-white" adipocyte program including a futile cycle of triacylglycerol breakdown and synthesis. Mol Endocrinol 2014; 28:344-56. [PMID: 24479876 PMCID: PMC4207910 DOI: 10.1210/me.2013-1254] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Receptor-interacting protein 140 (RIP140) is a corepressor of nuclear receptors that is highly expressed in adipose tissues. We investigated the role of RIP140 in conditionally immortal preadipocyte cell lines prepared from white or brown fat depots. In white adipocytes, a large set of brown fat-associated genes was up-regulated in the absence of RIP140. In contrast, a relatively minor role can be ascribed to RIP140 in the control of basal gene expression in differentiated brown adipocytes because significant changes were observed only in Ptgds and Fabp3. The minor role of RIP140 in brown adipocytes correlates with the similar histology and uncoupling protein 1 and CIDEA staining in knockout compared with wild-type brown adipose tissue (BAT). In contrast, RIP140 knockout sc white adipose tissue (WAT) shows increased numbers of multilocular adipocytes with elevated staining for uncoupling protein 1 and CIDEA. Furthermore in a white adipocyte cell line, the markers of BRITE adipocytes, Tbx1, CD137, Tmem26, Cited1, and Epsti1 were repressed in the presence of RIP140 as was Prdm16. Microarray analysis of wild-type and RIP140-knockout white fat revealed elevated expression of genes associated with cold-induced expression or high expression in BAT. A set of genes associated with a futile cycle of triacylglycerol breakdown and resynthesis and functional assays revealed that glycerol kinase and glycerol-3-phosphate dehydrogenase activity as well as [3H]glycerol incorporation were elevated in the absence of RIP140. Thus, RIP140 blocks the BRITE program in WAT, preventing the expression of brown fat genes and inhibiting a triacylglycerol futile cycle, with important implications for energy homeostasis.
Collapse
Affiliation(s)
- Evangelos Kiskinis
- Department of Stem Cell and Regenerative Biology (E.K.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138; Institute of Reproductive and Developmental Biology (L.C., E.C., M.G.P.), Faculty of Medicine, Imperial College London, W12 0NN, United Kingdom; Department of Mathematics (M.K., G.M.), Statistics Section, Imperial College London, London SW7 2AZ, United Kingdom; Department of Experimental and Clinical Medicine (A.F., S.C.), University of Ancona, (Politecnica delle Marche), 60126 Ancona, Italy; Division of Metabolic and Vascular Health (M.C.), Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, Bill RM, Conner MT. Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta Gen Subj 2013; 1840:1492-506. [PMID: 24090884 DOI: 10.1016/j.bbagen.2013.09.033] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. SCOPE OF REVIEW AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. MAJOR CONCLUSIONS AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. GENERAL SIGNIFICANCE Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Rebecca E Day
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Philip Kitchen
- Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - David S Owen
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Charlotte Bland
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lindsay Marshall
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alex C Conner
- School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Matthew T Conner
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| |
Collapse
|
45
|
Arsenijevic T, Gregoire F, Chiadak J, Courtequisse E, Bolaky N, Perret J, Delporte C. Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by activating ERK signaling pathway. PLoS One 2013; 8:e72607. [PMID: 24039785 PMCID: PMC3767812 DOI: 10.1371/journal.pone.0072607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase activating peptide (PACAP) belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP) family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2), strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ).
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Jeanne Chiadak
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Elodie Courtequisse
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
46
|
Sauerwein H, Saremi B, Pappritz J, von Soosten D, Meyer U, Dänicke S, Mielenz M. Short communication: Aquaporin-7 mRNA in adipose depots of primiparous and pluriparous dairy cows: Long-term physiological and conjugated linoleic acid-induced changes. J Dairy Sci 2013; 96:4508-13. [DOI: 10.3168/jds.2012-6363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022]
|
47
|
Laforenza U, Scaffino MF, Gastaldi G. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One 2013; 8:e54474. [PMID: 23382902 PMCID: PMC3558521 DOI: 10.1371/journal.pone.0054474] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
Background Glycerol outflow from adipocytes has been considered for a decade to be mediated by aquaporin-7, an aquaglyceroporin highly expressed in the adipose tissue. Its involvement in glycerol metabolism has been widely studied also in humans. Recent studies in different aquaporin-7 KO mice models pose two different questions 1) the exact localization of aquaporin-7 in human white adipose tissue; 2) the existence of other aquaglyceroporins that work with aquaporin-7 to guarantee glycerol efflux and thus a normal adiposity in humans. To this purpose we investigated the expression, the localization and the functioning of aquaglyceroporin-10 in subcutaneous white adipose tissue, in isolated and cultured differentiated adipocytes. Methodology/Principal Findings Aquaporin-7 and -10 were expressed in the white adipose tissue both at mRNA and at protein level. Immunofluorescence revealed aquaporin-7 and -10 labelling in the human adipose tissue both to the plasma membrane and to a thin rim of cytoplasm of adipocytes. Aquaporin-7, but not aquaporin-10, colocalized with the endothelial marker CD34. Human cultured differentiated adipocytes showed an aquaporin-7 and -10 labelling mainly in the cytoplasm and in the lipid droplets with insulin reinforcing the lipid droplets staining and isoproterenol inducing its translocation to the plasma membrane compartment. Water and glycerol permeability measurements using adipocytes and adipose membrane vesicles confirmed the presence of functioning aquaglyceroporins. Aquaporin-10 silencing in human differentiated adipocytes resulted in a 50% decrease of glycerol and osmotic water permeability. Conclusions/Significance The results indicate that aquaporin-7, differently from mice, is present in both adipocyte and capillary plasma membranes of human adipose tissue. Aquaporin-10, on the contrary, is expressed exclusively in the adipocytes. The expression of two aquaglyceroporins in human adipose tissue is particularly important for the maintenance of normal or low glycerol contents inside the adipocyte, thus protecting humans from obesity.
Collapse
Affiliation(s)
- Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | | | | |
Collapse
|
48
|
Abstract
Visceral fat accumulation is located upstream of metabolic syndrome. Recent progress in adipocyte biology has clarified the molecular mechanism for pathophysiology of metabolic syndrome and its related disorders. In this review we summarize adiponectin and aquaporin 7 (AQP7) in the role of metabolic syndrome and cardiovascular diseases.
Collapse
Affiliation(s)
- Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| | | | | |
Collapse
|
49
|
Lebeck J, Østergård T, Rojek A, Füchtbauer EM, Lund S, Nielsen S, Praetorius J. Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue. Acta Diabetol 2012; 49 Suppl 1:S215-26. [PMID: 23001483 DOI: 10.1007/s00592-012-0430-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/03/2012] [Indexed: 02/08/2023]
Abstract
AQP7 is a glycerol channel in adipose tissue with a suggested role in controlling the accumulation of triglycerides and secondly development of obesity and type-2 diabetes. In the present study, we aimed to test the hypotheses that (1) AQP7 is localized to the capillaries within human adipose tissue, (2) genetic predisposition to type-2 diabetes is associated with a low expression of AQP7 in abdominal subcutaneous adipose tissue (SAT) and (3) physical training increases AQP7 expression in SAT. The cellular localization of AQP7 in adipose tissue was investigated by immunohistochemistry. The relative expression of AQP7 protein in abdominal SAT was analysed before and after ending a 10-week exercise training programme in first-degree relatives to type-2 diabetic patients and control individuals. Non-obese first-degree relatives to type-2 diabetic patients (n = 20) and control (n = 11) men and women participated in this study. By this, we find that AQP7 is localized to the capillary endothelial cells within adipose tissue. We were unable to evidence a link between a low AQP7 abundance in SAT and genetic predisposition type-2 diabetes. Instead we demonstrate that physical training influences the expression of AQP7 in SAT in a gender-specific manner. Thus, women responds by increasing the abundance of AQP7 by 2.2-fold (p = 0.03) whereas in men a reduced expression is observed (p = 0.00009), resulting in a more than twofold higher abundance of AQP7 in women as compared with men. In conclusion, the adipose tissue glycerol channel, AQP7, is regulated in response to physical training in a gender-dependent manner in SAT.
Collapse
Affiliation(s)
- Janne Lebeck
- Department of Biomedicine, The Water and Salt Research Center, Health, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
50
|
Maeda N. Implications of aquaglyceroporins 7 and 9 in glycerol metabolism and metabolic syndrome. Mol Aspects Med 2012; 33:665-75. [DOI: 10.1016/j.mam.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|