1
|
Barisione C, Verzola D, Garibaldi S, Altieri P, Furfaro AL, Nitti M, Pratesi G, Palombo D, Ameri P. Indoxyl sulphate-initiated activation of cardiac fibroblasts is modulated by aryl hydrocarbon receptor and nuclear factor-erythroid-2-related factor 2. J Cell Mol Med 2024; 28:e18192. [PMID: 38506079 PMCID: PMC10951876 DOI: 10.1111/jcmm.18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
In the last decade, extensive attention has been paid to the uremic toxin indoxyl sulphate (IS) as an inducer of cardiac fibroblast (cFib) activation and cardiac fibrosis in chronic kidney disease. At cellular level, IS engages aryl hydrocarbon receptor (AhR) and regulates many biological functions. We analysed how AhR inhibition by CH-223191 (CH) and overexpression of non-functional (dominant negative, DN) nuclear factor-erythroid-2-related factor 2 (NRF2), a transcription factor recruited by AhR, modulate the response of neonatal mouse (nm) cFib to IS. We also evaluated nm-cardiomyocytes after incubation with the conditioned medium (CM) of IS±CH-treated nm-cFib. IS induced activation, collagen synthesis, TLR4 and-downstream-MCP-1, and the genes encoding angiotensinogen, angiotensin-converting enzyme, angiotensin type 1 receptor (AT1r) and neprilysin (Nepr) in nm-cFib. CH antagonized IS-initiated nm-cFib activation, but did not affect or even magnified the other features. IS promoted NRF2 nuclear translocation and expression the NRF2 target Nqo1. Both pre-incubation with CH and transfection of DN-NRF2 resulted in loss of NRF2 nuclear localization. Moreover, DN-NRF2 overexpression led to greater TLR4 and MCP-1 levels following exposure to IS. The CM of IS-primed nm-cFib and to a larger extent the CM of IS+CH-treated nm-cFib upregulated AT1r, Nepr and TNFα and myostatin genes in nm-cardiomyocytes. Hence, IS triggers pro-inflammatory activation of nm-cFib partly via AhR, and AhR-NRF2 counteract it. Strategies other than AhR inhibition are needed to target IS detrimental actions on cardiac cells.
Collapse
Affiliation(s)
- Chiara Barisione
- Department of Surgical and Integrated Diagnostic SciencesUniversity of GenovaGenovaItaly
- Cardiac, Thoracic and Vascular DepartmentIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Daniela Verzola
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | | | - Paola Altieri
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | | | - Mariapaola Nitti
- Department of Experimental MedicineUniversity of GenovaGenovaItaly
| | - Giovanni Pratesi
- Department of Surgical and Integrated Diagnostic SciencesUniversity of GenovaGenovaItaly
- Cardiac, Thoracic and Vascular DepartmentIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Domenico Palombo
- Department of Surgical and Integrated Diagnostic SciencesUniversity of GenovaGenovaItaly
| | - Pietro Ameri
- Cardiac, Thoracic and Vascular DepartmentIRCCS Ospedale Policlinico San MartinoGenovaItaly
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| |
Collapse
|
2
|
Li K, Sun S, Xiao L, Zhang Z. Bioactivity-guided fractionation of Helicteres angustifolia L. extract and its molecular evidence for tumor suppression. Front Cell Dev Biol 2023; 11:1157172. [PMID: 37427379 PMCID: PMC10323433 DOI: 10.3389/fcell.2023.1157172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Helicteres angustifolia L. (Helicteres angustifolia) has been commonly used in folk medicine to treat cancer; however, its mechanisms of action remain obscure. In our earlier work, we reported that aqueous extract of H. angustifolia root (AQHAR) possesses attractive anticancer properties. In the present study, we isolated five ethanol fractions from AQHAR and investigated their therapeutic efficacy in human non-small cell lung cancer (NSCLC) cells. The results showed that among the five fractions, the 40% ethanol fraction (EF40) containing multiple bioactive compounds exhibited the best selective killing effect on NSCLC cells with no obvious toxicity to normal human fibroblasts. Mechanistically, EF40 reduced the expression of nuclear factor-E2-related factor 2 (Nrf2), which is constitutively expressed at high levels in many types of cancers. As a result, Nrf2-dependent cellular defense responses are suppressed, leading to the intracellular accumulation of reactive oxygen species (ROS). Extensive biochemical analyses revealed that EF40 caused cell cycle arrest and apoptosis through activation of the ROS-mediated DNA damage response. Furthermore, treatment with EF40 compromised NSCLC cell migration, as evidenced by the downregulation of matrix metalloproteinases (MMPs) and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). In vivo studies using A549 xenografts in nude mice also revealed significant suppression of tumor growth and lung metastasis in the treated group. We propose that EF40 may serve as a potential natural anti-NSCLC drug that warrants further mechanistic and clinical attention.
Collapse
Affiliation(s)
- Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shuang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Long Xiao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
4
|
Cruz N, Flores M, Urquiaga I, Ávila F. Modulation of 1,2-Dicarbonyl Compounds in Postprandial Responses Mediated by Food Bioactive Components and Mediterranean Diet. Antioxidants (Basel) 2022; 11:1513. [PMID: 36009232 PMCID: PMC9405221 DOI: 10.3390/antiox11081513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Glycoxidative stress with the consequent generation of advanced glycation end products has been implied in the etiology of numerous non-communicable chronic diseases. During the postprandial state, the levels of 1,2-dicarbonyl compounds can increase, depending on numerous factors, including characteristics of the subjects mainly related to glucose metabolism disorders and nutritional status, as well as properties related to the chemical composition of meals, including macronutrient composition and the presence of dietary bioactive molecules and macromolecules. In this review, we examine the chemical, biochemical, and physiological pathways that contribute to postprandial generation of 1,2-dicarbonyl compounds. The modulation of postprandial 1,2-dicarbonyl compounds is discussed in terms of biochemical pathways regulating the levels of these compounds, as well as the effect of phenolic compounds, dietary fiber, and dietary patterns, such as Mediterranean and Western diets.
Collapse
Affiliation(s)
- Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Inés Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile;
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| |
Collapse
|
5
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
6
|
Ola MS. Does Hyperglycemia Cause Oxidative Stress in the Diabetic Rat Retina? Cells 2021; 10:794. [PMID: 33918273 PMCID: PMC8067231 DOI: 10.3390/cells10040794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetes, being a metabolic disease dysregulates a large number of metabolites and factors. However, among those altered metabolites, hyperglycemia is considered as the major factor to cause an increase in oxidative stress that initiates the pathophysiology of retinal damage leading to diabetic retinopathy. Diabetes-induced oxidative stress in the diabetic retina and its damaging effects are well known, but still, the exact source and the mechanism of hyperglycemia-induced reactive oxygen species (ROS) generation especially through mitochondria remains uncertain. In this study, we analyzed precisely the generation of ROS and the antioxidant capacity of enzymes in a real-time situation under ex vivo and in vivo conditions in the control and streptozotocin-induced diabetic rat retinas. We also measured the rate of flux through the citric acid cycle by determining the oxidation of glucose to CO2 and glutamate, under ex vivo conditions in the control and diabetic retinas. Measurements of H2O2 clearance from the ex vivo control and diabetic retinas indicated that activities of mitochondrial antioxidant enzymes are intact in the diabetic retina. Short-term hyperglycemia seems to influence a decrease in ROS generation in the diabetic retina compared to controls, which is also correlated with a decreased oxidation rate of glucose in the diabetic retina. However, an increase in the formation of ROS was observed in the diabetic retinas compared to controls under in vivo conditions. Thus, our results suggest of diabetes/hyperglycemia-induced non-mitochondrial sources may serve as major sources of ROS generation in the diabetic retina as opposed to widely believed hyperglycemia-induced mitochondrial sources of excess ROS. Therefore, hyperglycemia per se may not cause an increase in oxidative stress, especially through mitochondria to damage the retina as in the case of diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, 2B10, Building 5, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Li Y, Ding H, Liu L, Song Y, Du X, Feng S, Wang X, Li X, Wang Z, Li X, Li J, Wu J, Liu G. Non-esterified Fatty Acid Induce Dairy Cow Hepatocytes Apoptosis via the Mitochondria-Mediated ROS-JNK/ERK Signaling Pathway. Front Cell Dev Biol 2020; 8:245. [PMID: 32411699 PMCID: PMC7198733 DOI: 10.3389/fcell.2020.00245] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Elevated plasma non-esterified fatty acid (NEFA) levels and hepatocytes damage are characteristics of ketosis in dairy cows. Oxidative stress is associated with the pathogenesis of NEFA-induced liver damage. However, the exact mechanism by which oxidative stress mediates NEFA-induced hepatocytes apoptosis and liver injury remains poorly understood. The results of the present study demonstrated that NEFA contribute to reactive oxygen species (ROS) generation, resulting in an imbalance between oxidative and antioxidant species, transcriptional activation of p53, transcriptional inhibition of nuclear factor E2-related factor 2 (Nrf2), loss of mitochondria membrane potential (MMP) and release of apoptosis-inducing factor (AIF) and cytochrome c (cyt c) into the cytosol, leading to hepatocytes apoptosis. Besides, NEFA triggered apoptosis in dairy cow hepatocytes via the regulation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), Bcl-2-associated X protein (Bax), B-cell lymphoma gene 2 (Bcl-2), caspase 9 and poly (ADP-ribose) polymerase (PARP). Pretreatment with the inhibitor SP600125 or PD98059 or the antioxidant N-acetylcysteine (NAC) revealed that NEFA-ROS-JNK/ERK-mediated mitochondrial signaling pathway plays a crucial role in NEFA-induced hepatocytes apoptosis. Moreover, the results suggested that the transcription factors p53 and Nrf2 function downstream of this NEFA-ROS-JNK/ERK pathway and are involved in NEFA-induced hepatocytes apoptosis. In conclusion, these findings indicate that the NEFA-ROS-JNK/ERK-mediated mitochondrial pathway plays an important role in NEFA-induced dairy cow hepatocytes apoptosis and strongly suggests that the inhibitors SP600125 and PD98059 and the antioxidant NAC may be developed as therapeutics to prevent hyperlipidemia-induced apoptotic damage in ketotic dairy cows.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Bokhari B, Sharma S. Stress Marks on the Genome: Use or Lose? Int J Mol Sci 2019; 20:ijms20020364. [PMID: 30654540 PMCID: PMC6358951 DOI: 10.3390/ijms20020364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and the resulting damage to DNA are inevitable consequence of endogenous physiological processes further amplified by cellular responses to environmental exposures. If left unrepaired, oxidative DNA lesions can block essential processes such as transcription and replication or can induce mutations. Emerging data also indicate that oxidative base modifications such as 8-oxoG in gene promoters may serve as epigenetic marks, and/or provide a platform for coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch adequate gene expression alterations. Here, we briefly review the current understanding of oxidative lesions in genome stability maintenance and regulation of basal and inducible transcription.
Collapse
Affiliation(s)
- Bayan Bokhari
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
- Department of Biochemistry, Faculty of Applied Medical Science, Umm Al- Qura University, Makkah 21421, Saudi Arabia.
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
- National Human Genome Center, College of Medicine, Howard University, 2041 Georgia Avenue, NW, Washington, DC 20060, USA.
| |
Collapse
|
9
|
Nrf2: Molecular and epigenetic regulation during aging. Ageing Res Rev 2018; 47:31-40. [PMID: 29913211 DOI: 10.1016/j.arr.2018.06.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
Abstract
Increase in life-span is commonly related with age-related diseases and with gradual loss of genomic, proteomic and metabolic integrity. Nrf2 (Nuclear factor-erythroid 2-p45 derived factor 2) controls the expression of genes whose products include antioxidant proteins, detoxifying enzymes, drug transporters and numerous cytoprotective proteins. Several experimental approaches have evaluated the potential regulation of the transcription factor Nrf2 to enhance the expression of genes that contend against accumulative oxidative stress and promote healthy aging. Negative regulators of Nrf2 that act preventing it´s binding to DNA-responsive elements, have been identified in young and adult animal models. However, it is not clearly established if Nrf2 decreased activity in several models of aging results from disruption of that regulation. In this review, we present a compilation of evidences showing that changes in the levels or activity of Keap1 (Kelch-like ECH associated protein 1), GSK-3β (glycogen synthase kinase-3), Bach1, p53, Hrd1 (E3 ubiquitin ligase) and miRNAs might impact on Nrf2 activity during elderly. We conclude that understanding Nrf2 regulatory mechanisms is essential to develop a rational strategy to prevent the loss of cellular protection response during aging.
Collapse
|
10
|
Li X, Wu D, Tian Y. Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway. Biochem Biophys Res Commun 2018; 502:62-68. [PMID: 29778534 DOI: 10.1016/j.bbrc.2018.05.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/14/2023]
Abstract
Diabetes affects cardiac structure and function, where it leads to diabetic cardiomyopathy. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of diabetic cardiomyopathy. Fibroblast growth factor (FGF) 19, an enterokine, is synthesized and released into the ileum. In the present study, we revealed that FGF19 induced an antioxidant response through stimulating the expression of nuclear erythroid factor 2 (NE-F2)-related factor 2 (Nrf2) and as well as reducing ROS production through the AMPK signaling pathway. Additionally, AMPK inhibition by the AMPK-specific inhibitor compound C decreased Nrf2 and heme oxygenase-1 (HO-1) protein expression. Taken together, these results suggested that FGF19, through the anti-oxidative defense system, attenuated the development of diabetic cardiomyopathy and restored cardiac function.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, Heilongjiang, 150001, PR China; Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, The Key Laboratory of Cardiovascular Research of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, 150081, PR China; Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China.
| |
Collapse
|
11
|
Scarpa ES, Mari M, Antonini E, Palma F, Ninfali P. Natural and synthetic avenanthramides activate caspases 2, 8, 3 and downregulate hTERT, MDR1 and COX-2 genes in CaCo-2 and Hep3B cancer cells. Food Funct 2018; 9:2913-2921. [DOI: 10.1039/c7fo01804e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Avenanthramides inhibit proliferation of CaCo-2 and Hep3B cancer cells through induction of apoptosis and downregulation of pro-survival mechanisms.
Collapse
Affiliation(s)
- E. S. Scarpa
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - M. Mari
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - E. Antonini
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - F. Palma
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - P. Ninfali
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| |
Collapse
|
12
|
Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9808520. [PMID: 28553436 PMCID: PMC5434242 DOI: 10.1155/2017/9808520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023]
Abstract
The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries (Rubus geoides), strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis), and currants (Ribes magellanicum) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.
Collapse
|
13
|
Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. Eur J Nutr 2017; 57:1381-1395. [DOI: 10.1007/s00394-017-1418-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
|
14
|
Farabegoli F, Scarpa E, Frati A, Serafini G, Papi A, Spisni E, Antonini E, Benedetti S, Ninfali P. Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells. Food Chem 2017; 218:356-364. [DOI: 10.1016/j.foodchem.2016.09.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 03/16/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
|
15
|
Ray A, Kambali M, Ravindranath V. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease. Antioxid Redox Signal 2016; 25:252-67. [PMID: 27121974 DOI: 10.1089/ars.2015.6602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study investigates the role of thiol homeostasis disruption in Parkinson's disease (PD) pathogenesis using a novel animal model. A single unilateral administration of the thiol oxidant, diamide (1.45 μmol) into substantia nigra (SN) of mice leads to locomotor deficits and degeneration of dopaminergic (DA) neurons in SN pars compacta (SNpc). RESULTS Diamide-injected mice showed hemiparkinsonian behavior, measured as spontaneous contralateral body rotations, poor grip strength, and impaired locomotion on a rotarod. We observed a significant loss of DA neurons in ipsilateral but not contralateral SNpc and their striatal fibers. This was accompanied by increased Fluoro-Jade C-positive cells and a loss of NeuN-positive neurons, indicative of neurodegeneration. Importantly, diamide injection led to α-synuclein aggregation in ipsilateral SNpc, a hallmark of PD pathology not often seen in animal models of PD. On investigating putative mechanism(s) involved, we observed a loss of glutathione, which is essential for maintaining protein thiol homeostasis (PTH). Concomitantly, the redox-sensitive ASK1-p38 mitogen-activated protein kinase (MAPK) death signaling pathway was activated in the ipsilateral but not contralateral ventral midbrain through dissociation of ASK1-Trx1 complex. In Neuro-2a cells, diamide activated ASK1-p38 cascade through Trx1 oxidation, leading to cell death, which was abolished by ASK1 knockdown. INNOVATION Since diamide selectively disrupts PTH, DA neurons appear to be vulnerable to such perturbations and even a single insult with a thiol oxidant can result in long-lasting degeneration. CONCLUSION Identification of the role of PTH dysregulation in neurodegeneration, especially in early PD, not only facilitates an understanding of novel regulatory features of molecular signaling cascades but also may aid in developing disease-modifying strategies for PD. Antioxid. Redox Signal. 25, 252-267.
Collapse
Affiliation(s)
- Ajit Ray
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India .,2 National Brain Research Centre , Manesar, India
| | - Maltesh Kambali
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
16
|
Ariza J, González-Reyes JA, Jódar L, Díaz-Ruiz A, de Cabo R, Villalba JM. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2. Free Radic Biol Med 2016; 95:82-95. [PMID: 27016073 PMCID: PMC4906443 DOI: 10.1016/j.freeradbiomed.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.
Collapse
Affiliation(s)
- Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Laura Jódar
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Alberto Díaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
17
|
Furfaro AL, Piras S, Domenicotti C, Fenoglio D, De Luigi A, Salmona M, Moretta L, Marinari UM, Pronzato MA, Traverso N, Nitti M. Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib. PLoS One 2016; 11:e0152465. [PMID: 27023064 PMCID: PMC4811586 DOI: 10.1371/journal.pone.0152465] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/15/2016] [Indexed: 01/10/2023] Open
Abstract
The activation of Nrf2 has been demonstrated to play a crucial role in cancer cell resistance to different anticancer therapies. The inhibition of proteasome activity has been proposed as a chemosensitizing therapy but the activation of Nrf2 could reduce its efficacy. Using the highly chemoresistant neuroblastoma cells HTLA-230, here we show that the strong reduction in proteasome activity, obtained by using low concentration of bortezomib (BTZ, 2.5 nM), fails in reducing cell viability. BTZ treatment favours the binding of Nrf2 to the ARE sequences in the promoter regions of target genes such as heme oxygenase 1 (HO-1), the modulatory subunit of γ-glutamylcysteine ligase (GCLM) and the transporter for cysteine (x-CT), enabling their transcription. GSH level is also increased after BTZ treatment. The up-regulation of Nrf2 target genes is responsible for cell resistance since HO-1 silencing and GSH depletion synergistically decrease BTZ-treated cell viability. Moreover, cell exposure to all-trans-Retinoic acid (ATRA, 3 μM) reduces the binding of Nrf2 to the ARE sequences, decreases HO-1 induction and lowers GSH level increasing the efficacy of bortezomib. These data suggest the role of Nrf2, HO-1 and GSH as molecular targets to improve the efficacy of low doses of bortezomib in the treatment of malignant neuroblastoma.
Collapse
Affiliation(s)
- A. L. Furfaro
- Giannina Gaslini Institute, Via Gerolamo Gaslini 5, 16147, Genova, Italy
| | - S. Piras
- Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132, Genova, Italy
| | - C. Domenicotti
- Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132, Genova, Italy
| | - D. Fenoglio
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, 16132, Genova, Italy
| | - A. De Luigi
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - M. Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - L. Moretta
- Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Roma, Italy
| | - U. M. Marinari
- Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132, Genova, Italy
| | - M. A. Pronzato
- Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132, Genova, Italy
| | - N. Traverso
- Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132, Genova, Italy
| | - M. Nitti
- Department of Experimental Medicine, University of Genoa, Via L.B. Alberti 2, 16132, Genova, Italy
- * E-mail:
| |
Collapse
|
18
|
Li K, Yu Y, Sun S, Liu Y, Garg S, Kaul SC, Lei Z, Gao R, Wadhwa R, Zhang Z. Functional Characterisation of Anticancer Activity in the Aqueous Extract of Helicteres angustifolia L. Roots. PLoS One 2016; 11:e0152017. [PMID: 27010955 PMCID: PMC4806988 DOI: 10.1371/journal.pone.0152017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/08/2016] [Indexed: 12/25/2022] Open
Abstract
Helicteres angustifolia L. is a shrub that forms a common ingredient of several cancer treatment recipes in traditional medicine system both in China and Laos. In order to investigate molecular mechanisms of its anticancer activity, we prepared aqueous extract of Helicteresangustifolia L. Roots (AQHAR) and performed several in vitro assays using human normal fibroblasts (TIG-3) and osteosarcoma (U2OS). We found that AQHAR caused growth arrest/apoptosis of U2OS cells in a dose-dependent manner. It showed no cytotoxicity to TIG-3 cells at doses up to 50 μg/ml. Biochemical, imaging and cell cycle analyses revealed that it induces ROS signaling and DNA damage response selectively in cancer cells. The latter showed upregulation of p53, p21 and downregulation of Cyclin B1 and phospho-Rb. Furthermore, AQHAR-induced apoptosis was mediated by increase in pro-apoptotic proteins including cleaved PARP, caspases and Bax. Anti-apoptotic protein Bcl-2 showed decrease in AQHAR-treated U2OS cells. In vivo xenograft tumor assays in nude mice revealed dose-dependent suppression of tumor growth and lung metastasis with no toxicity to the animals suggesting that AQHAR could be a potent and safe natural drug for cancer treatment.
Collapse
Affiliation(s)
- Kejuan Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Japan
- Drug Discovery and Assets Innovation Laboratory, DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5–41, 1-1-1 Higashi, Tsukuba 305–8565, Japan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yue Yu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Japan
- Drug Discovery and Assets Innovation Laboratory, DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5–41, 1-1-1 Higashi, Tsukuba 305–8565, Japan
| | - Shuang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Japan
| | - Ye Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Japan
| | - Sukant Garg
- Drug Discovery and Assets Innovation Laboratory, DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5–41, 1-1-1 Higashi, Tsukuba 305–8565, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8577, Japan
| | - Sunil C. Kaul
- Drug Discovery and Assets Innovation Laboratory, DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5–41, 1-1-1 Higashi, Tsukuba 305–8565, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Japan
| | - Ran Gao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Laboratory, DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5–41, 1-1-1 Higashi, Tsukuba 305–8565, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8577, Japan
- * E-mail: (RW); (ZZ)
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305–8572, Japan
- * E-mail: (RW); (ZZ)
| |
Collapse
|
19
|
Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2015; 79:1562-83. [PMID: 25749165 DOI: 10.1134/s0006297914130082] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia, Moscow, 117198, Russia.
| | | | | |
Collapse
|
20
|
Mansour HH, Shouman SA. Effect of N-acetylcysteine on γ-radiation-induced cytotoxicity in human hepatocellular carcinoma cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Kraemer A, Barjaktarovic Z, Sarioglu H, Winkler K, Eckardt-Schupp F, Tapio S, Atkinson MJ, Moertl S. Cell survival following radiation exposure requires miR-525-3p mediated suppression of ARRB1 and TXN1. PLoS One 2013; 8:e77484. [PMID: 24147004 PMCID: PMC3797807 DOI: 10.1371/journal.pone.0077484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) are non-coding RNAs that alter the stability and translation efficiency of messenger RNAs. Ionizing radiation (IR) induces rapid and selective changes in miRNA expression. Depletion of the miRNA processing enzymes Dicer or Ago2 reduces the capacity of cells to survive radiation exposure. Elucidation of critical radiation-regulated miRNAs and their target proteins offers a promising approach to identify new targets to increase the therapeutic effectiveness of the radiation treatment of cancer. PRINCIPAL FINDINGS Expression of miR-525-3p is rapidly up-regulated in response to radiation. Manipulation of miR-525-3p expression in irradiated cells confirmed that this miRNA mediates the radiosensitivity of a variety of non-transformed (RPE, HUVEC) and tumor-derived cell lines (HeLa, U2-Os, EA.hy926) cell lines. Thus, anti-miR-525-3p mediated inhibition of the increase in miR-525-3p elevated radiosensitivity, while overexpression of precursor miR-525-3p conferred radioresistance. Using a proteomic approach we identified 21 radiation-regulated proteins, of which 14 were found to be candidate targets for miR-525-3p-mediated repression. Luciferase reporter assays confirmed that nine of these were indeed direct targets of miR-525-3p repression. Individual analysis of these direct targets by RNAi-mediated knockdown established that ARRB1, TXN1 and HSPA9 are essential miR-525-3p-dependent regulators of radiation sensitivity. CONCLUSION The transient up-regulation of miR-525-3p, and the resultant repression of its direct targets ARRB1, TXN1 and HSPA9, is required for cell survival following irradiation. The conserved function of miR-525-3p across several cell types makes this microRNA pathway a promising target for modifying the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Anne Kraemer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Zarko Barjaktarovic
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Hakan Sarioglu
- Helmholtz Center Munich, German Research Center for Environmental Health, Department of Protein Science, Proteomics Core Facility, Neuherberg, Germany
| | - Klaudia Winkler
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Friederike Eckardt-Schupp
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Michael J. Atkinson
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Chair of Radiation Biology, Technical University Munich, Munich, Germany
| | - Simone Moertl
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
22
|
Baldelli S, Aquilano K, Ciriolo MR. Punctum on two different transcription factors regulated by PGC-1α: Nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta Gen Subj 2013; 1830:4137-46. [DOI: 10.1016/j.bbagen.2013.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022]
|
23
|
Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:828143. [PMID: 23533526 PMCID: PMC3595678 DOI: 10.1155/2013/828143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.
Collapse
|
24
|
Wang M, Qi YY, Chen S, Sun DEF, Wang S, Chen J, Li YQ, Han W, Yang XY. Expression of UDP-glucuronosyltransferase 1A, nuclear factor erythroid-E2-related factor 2 and Kelch-like ECH-associated protein 1 in colonic mucosa, adenoma and adenocarcinoma tissue. Oncol Lett 2012; 4:925-930. [PMID: 23162624 DOI: 10.3892/ol.2012.850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/31/2012] [Indexed: 12/16/2022] Open
Abstract
We investigated the expression of UDP-glucuronosyltransferase 1A (UGT1A), nuclear factor erythroid-E2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in normal colonic mucosa, adenoma tissue and adenocarcinoma tissue, to analyze the correlation between their expression and the clinicopathological features of adenocarcinoma and their roles in colonic carcinogenesis. Using immunohistochemical analysis, we investigated the expression of UGT1A, Nrf2 and Keap1 in normal colonic mucosa (n=24), adenoma tissue (n=30) and adenocarcinoma tissue (n=77). We found that the positive rate of UGT1A was 83.3% in normal colonic mucosa, 80.0% in adenoma tissue and significantly lower, 53.2%, in adenocarcinoma tissue (normal colonic vs. adenoma tissue, P=0.071; normal colonic vs. adenocarcinoma tissue, P=0.023; adenoma vs. adenocarcinoma tissue, P=0.019). The expression levels of Nrf2 were high in adenoma and adenocarcinoma tissues, with positive rates of 70.0 and 87.0%, respectively, but were significantly lower in normal colonic tissue, with a positive rate of 41.7% (normal colonic vs. adenoma tissue, P=0.000; normal colonic vs. adenocarcinoma tissue, P=0.000; adenoma vs. adenocarcinoma tissue, P=0.000). The positive rate of Keap1 was 54.2% in normal mucosa, 70.0% in adenoma tissue and 61.0% in adenocarcinoma tissue (normal colonic mucosa vs. adenoma tissue, P=0.200; normal colonic vs. adenocarcinoma tissue, P=0.040; adenoma vs. adenocarcinoma, P=0.002). In addition, there was no correlation between the expression of Nrf2/Keap1 in adenoma and adenocarcinoma tissues (r=0.067, P=0.723; r=0.042, P=0.715, respectively). The results suggest that decreased expression of UGT1A and the dysregulation of the Nrf2/Keap1 system may be related to colonic carcinogenesis.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatrics and Gastroenterology, Qi-Lu Hospital of Shandong University, Key Laboratory of Proteomics of Shandong Province, Jinan, Shandong 250012
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1767-77. [PMID: 22732297 DOI: 10.1016/j.bbamcr.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/24/2012] [Accepted: 06/13/2012] [Indexed: 01/01/2023]
Abstract
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
26
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Filomeni G, Piccirillo S, Rotilio G, Ciriolo MR. p38(MAPK) and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y. Biochem Pharmacol 2012; 83:1349-57. [PMID: 22342995 DOI: 10.1016/j.bcp.2012.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 12/21/2022]
Abstract
Redox changes are often reported as causative of neoplastic transformation and chemoresistance, but are also exploited as clinical tools to selectively kill tumor cells. We previously demonstrated that gastrointestinal-derived tumor histotypes are resistant to ROS-based treatments by means of the redox activation of Nrf2, but highly sensitive to disulfide stressors triggering apoptosis via the redox induction of Trx1/p38(MAPK)/p53 signaling pathway. Here, we provide evidence that neuroblastoma SH-SY5Y has a complete opposite behavior, being sensitive to H₂O₂, but resistant to the glutathione (GSH)-oxidizing molecule diamide. Consistent with these observations, the apoptotic pathway activated upon H₂O₂ treatment relies upon Trx1 oxidation, and is mediated by the p38(MAPK)/p53 signaling axis. Pre-treatment with different antioxidants, pharmacological inhibitor of p38(MAPK), or small interfering RNA against p53 rescue cell viability. On the contrary, cell survival to diamide relies upon redox activation of Nrf2, in a way independent on Keap1 oxidation, but responsive to ERK1/2 activation. Chemical inhibition of GSH neo-synthesis or ERK1/2 phosphorylation, as well as overexpression of the dominant-negative form of Nrf2 sensitizes cells to diamide toxicity. In the searching for the molecular determinant(s) unifying these phenomena, we found that SH-SY5Y cells show high GSH levels, but exhibit very low GPx activity. This feature allows to efficiently buffer disulfide stress, but leaves them being vulnerable to H₂O₂-mediated insult. The increase of GPx activity by means of selenium supplementation or GPx1 ectopic expression completely reverses death phenotype, indicating that the response of tumor cells to diverse oxidative stimuli deeply involves the entire GSH redox system.
Collapse
Affiliation(s)
- Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | |
Collapse
|
28
|
Lewis KN, Mele J, Hornsby PJ, Buffenstein R. Stress resistance in the naked mole-rat: the bare essentials - a mini-review. Gerontology 2012; 58:453-62. [PMID: 22572398 PMCID: PMC4439786 DOI: 10.1159/000335966] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Studies comparing similar-sized species with disparate longevity may elucidate novel mechanisms that abrogate aging and prolong good health. We focus on the longest living rodent, the naked mole-rat. This mouse-sized mammal lives ~8 times longer than do mice and, despite high levels of oxidative damage evident at a young age, it is not only very resistant to spontaneous neoplasia but also shows minimal decline in age-associated physiological traits. OBJECTIVES We assess the current status of stress resistance and longevity, focusing in particular on the molecular and cellular responses to cytotoxins and other stressors between the short-lived laboratory mouse and the naked mole-rat. RESULTS Like other experimental animal models of lifespan extension, naked mole-rat fibroblasts are extremely tolerant of a broad spectrum of cytotoxins including heat, heavy metals, DNA-damaging agents and xenobiotics, showing LD(50) values between 2- and 20-fold greater than those of fibroblasts of shorter-lived mice. Our new data reveal that naked mole-rat fibroblasts stop proliferating even at low doses of toxin whereas those mouse fibroblasts that survive treatment rapidly re-enter the cell cycle and may proliferate with DNA damage. Naked mole-rat fibroblasts also show significantly higher constitutive levels of both p53 and Nrf2 protein levels and activity, and this increases even further in response to toxins. CONCLUSION Enhanced cell signaling via p53 and Nrf2 protects cells against proliferating with damage, augments clearance of damaged proteins and organelles and facilitates the maintenance of both genomic and protein integrity. These pathways collectively regulate a myriad of mechanisms which may contribute to the attenuated aging profile and sustained healthspan of the naked mole-rat. Understanding how these are regulated may be also integral to sustaining positive human healthspan well into old age and may elucidate novel therapeutics for delaying the onset and progression of physiological declines that characterize the aging process.
Collapse
Affiliation(s)
- Kaitlyn N. Lewis
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
| | - James Mele
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
| | - Peter J. Hornsby
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
| | - Rochelle Buffenstein
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
- *Rochelle Buffenstein, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM No. 2.2, San Antonio, TX 78209 (USA), Tel. +1 210 562 5062, E-Mail
| |
Collapse
|
29
|
Rigobello MP, Folda A, Citta A, Scutari G, Gandin V, Fernandes AP, Rundlöf AK, Marzano C, Björnstedt M, Bindoli A. Interaction of selenite and tellurite with thiol-dependent redox enzymes: Kinetics and mitochondrial implications. Free Radic Biol Med 2011; 50:1620-9. [PMID: 21397686 DOI: 10.1016/j.freeradbiomed.2011.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/17/2011] [Accepted: 03/04/2011] [Indexed: 12/13/2022]
Abstract
The interactions of selenite and tellurite with cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and glutathione reductases (GR) from yeast and mammalian sources were explored. Both TrxR1 and TrxR2 act as selenite and tellurite reductases. Kinetic treatment shows that selenite has a greater affinity than tellurite with both TrxR1 and TrxR2. Considering both k(cat) and K(m), selenite shows a better catalytic efficiency than tellurite with TrxR1, whereas with TrxR2, the catalytic efficiency is similar for both chalcogens. Tellurite is a good substrate for GR, whereas selenite is almost completely ineffective. Selenite or tellurite determine a large mitochondrial permeability transition associated with thiol group oxidation. However, with increasing concentrations of both chalcogens, only about 25% of total thiols are oxidized. In isolated mitochondria, selenite or tellurite per se does not stimulate H₂O₂ production, which, however, is increased by the presence of auranofin. They also determine a large oxidation of mitochondrial pyridine nucleotides. In ovarian cancer cells both chalcogens decrease the mitochondrial membrane potential. These results indicate that selenite and tellurite, interacting with the thiol-dependent enzymes, alter the balance connecting pyridine nucleotides and thiol redox state, consequently leading to mitochondrial and cellular alterations essentially referable to a disulfide stress.
Collapse
|
30
|
Neibert KD, Maysinger D. Mechanisms of cellular adaptation to quantum dots--the role of glutathione and transcription factor EB. Nanotoxicology 2011; 6:249-62. [PMID: 21495880 DOI: 10.3109/17435390.2011.572195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular adaptation is the dynamic response of a cell to adverse changes in its intra/extra cellular environment. The aims of this study were to investigate the role of: (i) the glutathione antioxidant system, and (ii) the transcription factor EB (TFEB), a newly revealed master regulator of lysosome biogenesis, in cellular adaptation to nanoparticle-induced oxidative stress. Intracellular concentrations of glutathione species and activation of TFEB were assessed in rat pheochromocytoma (PC12) cells following treatment with uncapped CdTe quantum dots (QDs), using biochemical, live cell fluorescence and immunocytochemical techniques. Exposure to toxic concentrations of QDs resulted in a significant enhancement of intracellular glutathione concentrations, redistribution of glutathione species and a progressive translocation and activation of TFEB. These changes were associated with an enlargement of the cellular lysosomal compartment. Together, these processes appear to have an adaptive character, and thereby participate in the adaptive cellular response to toxic nanoparticles.
Collapse
Affiliation(s)
- Kevin D Neibert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | | |
Collapse
|
31
|
Wang HB, Zhou CJ, Song SZ, Chen P, Xu WH, Liu B, Zhu KX, Yu WH, Wu HL, Wang HJ, Lin S, Guo JQ, Qin CY. Evaluation of Nrf2 and IGF-1 expression in benign, premalignant and malignant gastric lesions. Pathol Res Pract 2011; 207:169-73. [PMID: 21367536 DOI: 10.1016/j.prp.2010.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 12/31/2010] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the expression of Nrf2 and IGF-1 in benign, premalignant, and malignant gastric lesions, and to explore the role of Nrf2 and IGF-1 in gastric carcinoma carcinogenesis. Nrf2 and IGF-1 expression was detected in normal gastric mucosa, hyperplastic polyp, intraepithelial neoplasia, and adenocarcinoma by immunohistochemistry. There was no expression of Nrf2 and IGF-1 in normal gastric mucous membrane. With the elevation of Nrf2, IGF-1 expression, their co-expressions were highly elevated from benign proliferative lesions to malignant lesions. There were significant differences between hyperplastic polyps, intraepithelial neoplasias, and adenocarcinoma (hyperplastic polys vs. intraepithelial neoplasia: P=0.012; hyperplastic polyps vs. adenocarcinoma: P=0.023; and intraepithelial neoplasia vs. adenocarcinoma: P=0.027; hyperplastic polyps vs. adenocarcinoma: P=0.0000, respectively). Nrf2 expression and IGF-1 expression were correlated positively (r=0.337, P=0.037). The increased expression of Nrf2 and IGF-1 may be related to gastric carcinogenesis. Elevated Nrf2 and IGF-1 may play important roles in promoting tumor progression.
Collapse
Affiliation(s)
- Hong-Bo Wang
- Department of Digestive Disease, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Holland R, Fishbein JC. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal 2010; 13:1749-61. [PMID: 20486763 PMCID: PMC2959180 DOI: 10.1089/ars.2010.3273] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The protein Kelch-like ECH-associated protein 1 (Keap1) is a cysteine-rich regulatory and scaffold protein. Human Keap1 contains 27 cysteines. Some of these cysteines are believed to mediate derepression of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which subsequently upregulates phase 2 enzymes, in response to electrophilic/oxidative assault. Some current models depict a highly select group of two and possibly a few more cysteine residues as key sensors. The assumptions and approaches undergirding these models are commented upon. The chemical reactivity of the cysteines of Keap1 toward an array of electrophiles and one oxidant is reviewed. A number of reports in the recent literature of molecules that putatively modify cysteines of Keap1 are also included. Insights into the current molecular basis of electrophile/oxidant activation of the Nrf2 pathway via reaction at cysteines of Keap1 are discussed. Finally, important knowns and unknowns are summarized.
Collapse
Affiliation(s)
- Ryan Holland
- The Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | |
Collapse
|
33
|
Widodo N, Priyandoko D, Shah N, Wadhwa R, Kaul SC. Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling. PLoS One 2010; 5:e13536. [PMID: 20975835 PMCID: PMC2958829 DOI: 10.1371/journal.pone.0013536] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways. METHODOLOGY/PRINCIPAL FINDINGS Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress. CONCLUSION Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy.
Collapse
Affiliation(s)
- Nashi Widodo
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Didik Priyandoko
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Navjot Shah
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (SCK); (RW)
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (SCK); (RW)
| |
Collapse
|
34
|
p38(MAPK)/p53 signalling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem J 2010; 430:439-51. [PMID: 20590525 DOI: 10.1042/bj20100503] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BH4 (tetrahydrobiopterin) induces neuronal demise via production of ROS (reactive oxygen species). In the present study we investigated the mechanisms of its toxicity and the redox signalling events responsible for the apoptotic commitment in SH-SY5Y neuroblastoma cells and in mouse primary cortical neurons. We identified in p38(MAPK)/p53 a BH4-responsive pro-apoptotic signalling axis, as demonstrated by the recovery of neuronal viability achieved by gene silencing or pharmacological inhibition of both p38(MAPK) and p53. BH4-induced oxidative stress was characterized by a decrease in the GSH/GSSG ratio, an increase in protein carbonylation and DNA damage. BH4 toxicity and the redox-activated apoptotic pathway were counteracted by the H2O2-scavengers catalase and N-acetylcysteine and enhanced by the GSH neo-synthesis inhibitor BSO (buthionine sulfoximine). We also demonstrated that BH4 impairs glucose uptake and utilization, which was prevented by catalase administration. This effect contributes to the neuronal demise, exacerbating BH4-induced nuclear damage and the activation of the pro-apoptotic p38(MAPK)/p53 axis. Inhibition of glucose uptake was also observed upon treatment with 6-hydroxydopamine, another redox-cycling molecule, suggesting a common mechanism of action for auto-oxidizable neurotoxins.
Collapse
|
35
|
Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 2010; 107:17385-90. [PMID: 20855618 DOI: 10.1073/pnas.1003996107] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remain unclear. Hydrogen peroxide (H(2)O(2)) plays an important role in cell signaling and is an attractive candidate mediator of adaptive responses in astrocytes. Here we determine (i) the significance of H(2)O(2) in promoting astrocyte-dependent neuroprotection from oxidative stress, and (ii) the relevance of H(2)O(2) in inducing astrocytic Nrf2 activation. To control the duration and level of cytoplasmic H(2)O(2) production in astrocytes cocultured with neurons, we heterologously expressed the H(2)O(2)-producing enzyme Rhodotorula gracilis D-amino acid oxidase (rgDAAO) selectively in astrocytes. Exposure of rgDAAO-astrocytes to D-alanine lead to the concentration-dependent generation of H(2)O(2). Seven hours of low-level H(2)O(2) production (∼3.7 nmol·min·mg protein) in astrocytes protected neurons from oxidative stress, but higher levels (∼130 nmol·min·mg protein) were neurotoxic. Neuroprotection occurred without direct neuronal exposure to astrocyte-derived H(2)O(2), suggesting a mechanism specific to astrocytic intracellular signaling. Nrf2 activation mimicked the effect of astrocytic H(2)O(2) yet H(2)O(2)-induced protection was independent of Nrf2. Astrocytic protein tyrosine phosphatase inhibition also protected neurons from oxidative death, representing a plausible mechanism for H(2)O(2)-induced neuroprotection. These findings demonstrate the utility of rgDAAO for spatially and temporally controlling intracellular H(2)O(2) concentrations to uncover unique astrocyte-dependent neuroprotective mechanisms.
Collapse
|
36
|
|
37
|
Leiser SF, Miller RA. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 2010; 30:871-84. [PMID: 19933842 PMCID: PMC2812245 DOI: 10.1128/mcb.01145-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/09/2009] [Accepted: 11/12/2009] [Indexed: 12/30/2022] Open
Abstract
Transcriptional regulation of the antioxidant response element (ARE) by Nrf2 is important for the cellular adaptive response to toxic insults. New data show that primary skin-derived fibroblasts from the long-lived Snell dwarf mutant mouse, previously shown to be resistant to many toxic stresses, have elevated levels of Nrf2 and of multiple Nrf2-sensitive ARE genes. Dwarf-derived fibroblasts exhibit many of the traits associated with enhanced activity of Nrf2/ARE, including higher levels of glutathione and resistance to plasma membrane lipid peroxidation. Treatment of control cells with arsenite, an inducer of Nrf2 activity, increases their resistance to paraquat, hydrogen peroxide, cadmium, and UV light, rendering these cells as stress resistant as untreated cells from dwarf mice. Furthermore, mRNA levels for some Nrf2-sensitive genes are elevated in at least some tissues of Snell dwarf mice, suggesting that the phenotypes observed in culture may be mirrored in vivo. Augmented activity of Nrf2 and ARE-responsive genes may coordinate many of the stress resistance traits seen in cells from these long-lived mutant mice.
Collapse
Affiliation(s)
- Scott F. Leiser
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, Department of Pathology, Geriatrics Center, and VA Medical Center, University of Michigan, 109 Zina Pitcher Place, Room 3001 BSRB, Box 2200, Ann Arbor, Michigan 48109-2200
| | - Richard A. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, Department of Pathology, Geriatrics Center, and VA Medical Center, University of Michigan, 109 Zina Pitcher Place, Room 3001 BSRB, Box 2200, Ann Arbor, Michigan 48109-2200
| |
Collapse
|
38
|
Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 2010; 5:47-62. [PMID: 19957967 DOI: 10.1021/cb900258z] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H(2)O(2) production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H(2)O(2) can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Chemical Biology Graduate Program
- Life Sciences Institute
- Departmentof Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-2216
| |
Collapse
|