1
|
Correa Y, Ravel M, Imbert M, Waldie S, Clifton L, Terry A, Roosen‐Runge F, Lagerstedt JO, Moir M, Darwish T, Cárdenas M, Del Giudice R. Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes. Protein Sci 2024; 33:e4987. [PMID: 38607188 PMCID: PMC11010956 DOI: 10.1002/pro.4987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Mathilde Ravel
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Marie Imbert
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Sarah Waldie
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities CouncilRutherford Appleton Laboratory, Harwell Science and Innovation CampusDidcotUK
| | - Ann Terry
- MAX IV LaboratoryCoSAXS Beamline, Lund UniversityLundSweden
| | - Felix Roosen‐Runge
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Jens O. Lagerstedt
- Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes CentreLund UniversityMalmöSweden
- Rare Endocrine Disorders, Research and Early DevelopmentNovo NordiskCopenhagenDenmark
| | - Michael Moir
- National Deuteration FacilityAustralian Nuclear Science and Technology Organization (ANSTO)Lucas HeightsNew South WalesAustralia
| | - Tamim Darwish
- National Deuteration FacilityAustralian Nuclear Science and Technology Organization (ANSTO)Lucas HeightsNew South WalesAustralia
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Marité Cárdenas
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC))LeioaSpain
| | - Rita Del Giudice
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| |
Collapse
|
2
|
Iram S, Rahman S, Choi I, Kim J. Insight into the function of tetranectin in human diseases: A review and prospects for tetranectin-targeted disease treatment. Heliyon 2024; 10:e23512. [PMID: 38187250 PMCID: PMC10770464 DOI: 10.1016/j.heliyon.2023.e23512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Tetranectin (TN), a serum protein, is closely associated with different types of cancers. TN binds plasminogen and promotes the proteolytic activation of plasminogen into plasmin, which suggests that TN is involved in remodeling the extracellular matrix and cancer tissues during cancer development. TN is also associated with other diseases, such as developmental disorders, cardiovascular diseases, neurological diseases, inflammation, and diabetes. Although the functional mechanism of TN in diseases is not fully elucidated, TN binds different proteins, such as structural protein, a growth factor, and a transcription regulator. Moreover, TN changes and regulates protein functions, indicating that TN-binding proteins mediate the association between TN and diseases. This review summarizes the current knowledge of TN-associated diseases and TN functions with TN-binding proteins in different diseases. In addition, potential TN-targeted disease treatment by inhibiting the interaction between TN and its binding proteins is discussed.
Collapse
Affiliation(s)
- Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur, Bihar, 845401, India
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
4
|
Chandrasekhar G, Chandra Sekar P, Srinivasan E, Amarnath A, Pengyong H, Rajasekaran R. Molecular simulation unravels the amyloidogenic misfolding of nascent ApoA1 protein, driven by deleterious point mutations occurring in between 170-178 hotspot region. J Biomol Struct Dyn 2022; 40:13278-13290. [PMID: 34613891 DOI: 10.1080/07391102.2021.1986134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein ApoA1 is extensively studied for its role in lipid metabolism. Its seedy dark side of amyloid formulation remains relatively understudied yet. Due to genetic mutations, the protein pathologically misshapes into its amyloid form that gets accumulated in various organs, including the heart. To contrive effective therapeutics against this debilitating congenital disorder, it is imperative to comprehend the structural ramifications induced by mutations in APoA1's dynamic conformation. Till now, several point mutations have been implicated in ApoA1's amyloidosis, although only a handful has been examined considerably. Especially, the single nucleotide polymorphisms (SNPs) that occur in-between 170-178 mutation hotspot site of APoA1 needs to be investigated, since most of them are culpable of amyloid deposition in the heart. To that effect, in the present study, we have computationally quantified and studied the ApoA1's biomolecular modifications fostered by SNPs in the 170-178 mutation hotspot. Findings from discrete molecular dynamics simulation studies indicate that the SNPs have noticeably steered the ApoA1's behaviour from its native structural dynamics. Analysis of protein's secondary structural changes exhibits a considerable change upon mutations. Further, subjecting the protein structures to simulated thermal denaturation shows increased resistance to denaturation among mutants when compared to native. Further, normal mode analysis of protein's dynamic motion also shows discrepancy in its dynamic structural change upon SNP. These structural digressions induced by SNPs can very well be the biomolecular incendiary that drives ApoA1 into its amyloidogenesis. And, understanding these structural modifications initiates a better understanding of SNP's amyloidogenic pathology on APoA1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - P Chandra Sekar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - A Amarnath
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - H Pengyong
- Central Lab, Changzhi Medical College, Changzhi, China
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Battle S, Gogonea V, Willard B, Wang Z, Fu X, Huang Y, Graham LM, Cameron SJ, DiDonato JA, Crabb JW, Hazen SL. The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta. J Biol Chem 2022; 298:101832. [PMID: 35304099 PMCID: PMC9010765 DOI: 10.1016/j.jbc.2022.101832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO−) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN−), yielding CNO− and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO− pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
Collapse
Affiliation(s)
- Shawna Battle
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Belinda Willard
- Proteomics Shared Laboratory Resource, Cleveland Clinic, Cleveland, OH
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ying Huang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Linda M Graham
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Scott J Cameron
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - John W Crabb
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH; Department of Chemistry, Cleveland State University, Cleveland, OH; Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
6
|
Bedi S, Morris J, Shah A, Hart RC, Jerome WG, Aller SG, Tang C, Vaisar T, Bornfeldt KE, Segrest JP, Heinecke JW, Davidson WS. Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. J Lipid Res 2022; 63:100168. [PMID: 35051413 PMCID: PMC8953623 DOI: 10.1016/j.jlr.2022.100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Amy Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chongren Tang
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
8
|
Sierri G, Dal Magro R, Vergani B, Leone BE, Formicola B, Taiarol L, Fagioli S, Kravicz M, Tremolizzo L, Calabresi L, Re F. Reduced Levels of ABCA1 Transporter Are Responsible for the Cholesterol Efflux Impairment in β-Amyloid-Induced Reactive Astrocytes: Potential Rescue from Biomimetic HDLs. Int J Mol Sci 2021; 23:ijms23010102. [PMID: 35008528 PMCID: PMC8745016 DOI: 10.3390/ijms23010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The cerebral synthesis of cholesterol is mainly handled by astrocytes, which are also responsible for apoproteins’ synthesis and lipoproteins’ assembly required for the cholesterol transport in the brain parenchyma. In Alzheimer disease (AD), these processes are impaired, likely because of the astrogliosis, a process characterized by morphological and functional changes in astrocytes. Several ATP-binding cassette transporters expressed by brain cells are involved in the formation of nascent discoidal lipoproteins, but the effect of beta-amyloid (Aβ) assemblies on this process is not fully understood. In this study, we investigated how of Aβ1-42-induced astrogliosis affects the metabolism of cholesterol in vitro. We detected an impairment in the cholesterol efflux of reactive astrocytes attributable to reduced levels of ABCA1 transporters that could explain the decreased lipoproteins’ levels detected in AD patients. To approach this issue, we designed biomimetic HDLs and evaluated their performance as cholesterol acceptors. The results demonstrated the ability of apoA-I nanodiscs to cross the blood–brain barrier in vitro and to promote the cholesterol efflux from astrocytes, making them suitable as a potential supportive treatment for AD to compensate the depletion of cerebral HDLs.
Collapse
Affiliation(s)
- Giulia Sierri
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Marcelo Kravicz
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Laura Calabresi
- Department of Pharmacological and Biomolecular Science, Centro Grossi Paoletti, University of Milan, 20133 Milan, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
- Correspondence:
| |
Collapse
|
9
|
Tikhonov D, Kulikova L, Kopylov AT, Rudnev V, Stepanov A, Malsagova K, Izotov A, Kulikov D, Zulkarnaev A, Enikeev D, Potoldykova N, Kaysheva AL. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep 2021; 11:19318. [PMID: 34588485 PMCID: PMC8481388 DOI: 10.1038/s41598-021-98201-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational processing leads to conformational changes in protein structure that modulate molecular functions and change the signature of metabolic transformations and immune responses. Some post-translational modifications (PTMs), such as phosphorylation and acetylation, are strongly related to oncogenic processes and malignancy. This study investigated a PTM pattern in patients with gender-specific ovarian or breast cancer. Proteomic profiling and analysis of cancer-specific PTM patterns were performed using high-resolution UPLC-MS/MS. Structural analysis, topology, and stability of PTMs associated with sex-specific cancers were analyzed using molecular dynamics modeling. We identified highly specific PTMs, of which 12 modified peptides from eight distinct proteins derived from patients with ovarian cancer and 6 peptides of three proteins favored patients from the group with breast cancer. We found that all defined PTMs were localized in the compact and stable structural motifs exposed outside the solvent environment. PTMs increase the solvent-accessible surface area of the modified moiety and its active environment. The observed conformational fluctuations are still inadequate to activate the structural degradation and enhance protein elimination/clearance; however, it is sufficient for the significant modulation of protein activity.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Arthur T Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia.
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Izotov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Dmitry Kulikov
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Alexey Zulkarnaev
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Dmitry Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Natalia Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Anna L Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| |
Collapse
|
10
|
Lorkowski SW, Brubaker G, Li L, Li XS, Hazen SL, Smith JD. A Novel Cell-Free Fluorescent Assay for HDL Function: Low Apolipoprotein A1 Exchange Rate Associated with Increased Incident Cardiovascular Events. J Appl Lab Med 2021; 5:544-557. [PMID: 32445357 DOI: 10.1093/jalm/jfaa002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cholesterol efflux capacity is a tissue culture assay for HDL function that is not amenable for high-throughput monitoring of risk assessment. METHODS We devised a cell-free HDL function assay to measure the exchange rate of exogenous apoA1 into serum HDL using NBD/Alexa647 double-labeled apoA1, whose NBD/Alexa647 emission ratio increased upon exchange into HDL. ApoA1 exchange rate (AER) was assayed by incubating labeled apoA1 with human serum, and the rate of the increase of the NBD/Alexa647 ratio over time was calculated as AER. RESULTS Fast protein liquid chromatography analysis of serum confirmed that the labeled apoA1 selectively exchanged into the HDL lipoprotein fraction. Characterization studies demonstrated that the AER assay had excellent intra- and inter-day reproducibility, was stable over 3 freeze-thaw cycles, and yielded similar results with serum or plasma. We quantified AER in serum from randomly selected stable subjects undergoing elective diagnostic coronary angiography (n = 997). AER was correlated with HDL-cholesterol (r = 0.58, P < 0.0001) and apoA1 levels (r = 0.56, P < 0.0001). Kaplan-Meier survival plot showed subjects in the lowest quartile of AER experienced a significantly higher rate of incident major adverse cardiovascular events (MACE = myocardial infarction, stroke, or death) (P < 0.0069 log rank). Moreover, compared to subjects in the lowest AER quartile, the remaining subjects showed significantly lower incident (3 year) risk for MACE, even after adjustment for traditional risk factors and apoA1 (HR 0.58; 95% CI 0.40-0.85; P = 0.005). CONCLUSIONS In a prospective cohort of stable subjects undergoing elective diagnostic cardiac evaluations, low AER was associated with increased incident risk of MACE.
Collapse
Affiliation(s)
- Shuhui Wang Lorkowski
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Gregory Brubaker
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Lin Li
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
11
|
Waldie S, Sebastiani F, Moulin M, Del Giudice R, Paracini N, Roosen-Runge F, Gerelli Y, Prevost S, Voss JC, Darwish TA, Yepuri N, Pichler H, Maric S, Forsyth VT, Haertlein M, Cárdenas M. ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition. Front Chem 2021; 9:630152. [PMID: 33996741 PMCID: PMC8117676 DOI: 10.3389/fchem.2021.630152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein E (ApoE), an important mediator of lipid transportation in plasma and the nervous system, plays a large role in diseases such as atherosclerosis and Alzheimer's. The major allele variants ApoE3 and ApoE4 differ only by one amino acid. However, this difference has major consequences for the physiological behaviour of each variant. In this paper, we follow (i) the initial interaction of lipid-free ApoE variants with model membranes as a function of lipid saturation, (ii) the formation of reconstituted High-Density Lipoprotein-like particles (rHDL) and their structural characterisation, and (iii) the rHDL ability to exchange lipids with model membranes made of saturated lipids in the presence and absence of cholesterol [1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) with and without 20 mol% cholesterol]. Our neutron reflection results demonstrate that the protein variants interact differently with the model membranes, adopting different protein conformations. Moreover, the ApoE3 structure at the model membrane is sensitive to the level of lipid unsaturation. Small-angle neutron scattering shows that the ApoE containing lipid particles form elliptical disc-like structures, similar in shape but larger than nascent or discoidal HDL based on Apolipoprotein A1 (ApoA1). Neutron reflection shows that ApoE-rHDL do not remove cholesterol but rather exchange saturated lipids, as occurs in the brain. In contrast, ApoA1-containing particles remove and exchange lipids to a greater extent as occurs elsewhere in the body.
Collapse
Affiliation(s)
- Sarah Waldie
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden.,Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Martine Moulin
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Rita Del Giudice
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Nicolò Paracini
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, France.,Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - John C Voss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Nageshwar Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz, Austria
| | | | - V Trevor Forsyth
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France.,Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Michael Haertlein
- Institut Laue-Langevin, Grenoble, France.,Partnership for Structural Biology (PSB), Grenoble, France
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
12
|
Lee H. Effect of Protein Corona on Nanoparticle-Lipid Membrane Binding: The Binding Strength and Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3751-3760. [PMID: 33739835 DOI: 10.1021/acs.langmuir.1c00249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
All-atom molecular dynamics simulations of the 10 nm-sized anionic polystyrene (PS) particle complexed with plasma proteins (human serum albumin, immunoglobulin gamma-1 chain-C, and apolipoprotein A-I) adsorbed onto lipid bilayers [asymmetrically composed of extracellular (zwitterionic) and cytosolic (anionic) leaflets] are performed. Free energies calculated from umbrella sampling simulations show that proteins on the particle more weakly bind to the zwitterionic leaflet than do bare particles, in agreement with experiments showing the suppression of the particle-bilayer binding by protein corona. Proteins on the particle interact more strongly with the anionic leaflet than with the zwitterionic leaflet because of charge interactions between cationic protein residues and anionic lipid headgroups, to an extent dependent on various plasma proteins. In particular, hydrogen bonds between proteins and zwitterionic leaflets restrict the motion of lipids and thus reduce the lateral dynamics of bilayers, while the tight binding between proteins and anionic leaflets disrupts the helical structure of proteins and disorders lipids, leading to an increase in the lateral dynamics of bilayers. These findings help explain the experimental observation regarding the fact that the bilayer dynamics decreases when interacting with protein corona and suggest that the effect of protein corona on the binding strength and bilayer dynamics depends on protein types and bilayer charges.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, South Korea
| |
Collapse
|
13
|
Laurenzi T, Parravicini C, Palazzolo L, Guerrini U, Gianazza E, Calabresi L, Eberini I. rHDL modeling and the anchoring mechanism of LCAT activation. J Lipid Res 2020; 62:100006. [PMID: 33518511 PMCID: PMC7859856 DOI: 10.1194/jlr.ra120000843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Lecithin:cholesterol-acyl transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodeling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT functionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands the LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Florens N, Calzada C, Lemoine S, Boulet MM, Guillot N, Barba C, Roux J, Delolme F, Page A, Poux JM, Laville M, Moulin P, Soulère L, Guebre-Egziabher F, Juillard L, Soulage CO. CKD Increases Carbonylation of HDL and Is Associated with Impaired Antiaggregant Properties. J Am Soc Nephrol 2020; 31:1462-1477. [PMID: 32518085 DOI: 10.1681/asn.2019111205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/22/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND CKD is associated with increased oxidative stress that correlates with occurrence of cardiovascular events. Modifications induced by increased oxidative stress particularly affect circulating lipoproteins such as HDL that exhibit antiatheromatous and antithrombotic properties in vitro. METHODS To explore the specific role of oxidative modifications of HDL in CKD and their effect on the platelet-targeting antiaggregant properties of HDL, we used a CKD (5/6 nephrectomy) rabbit model. For ex vivo assessment of the antiaggregant properties of HDL, we collected blood samples from 15 healthy volunteers, 25 patients on hemodialysis, and 20 on peritoneal dialysis. We analyzed malondialdehyde, 4-hydroxynonenal (HNE), and 4-hydroxy-2-hexenal protein adduct levels. Platelet aggregation and activation were assessed by aggregometry, thromboxane B2 assay, or FACS. We modified HDL from controls by incubating it overnight at 37°C with 100 µM of HNE. RESULTS HDL from CKD rabbits and patients on hemodialysis had HNE adducts. The percentage of platelet aggregation or activation induced by collagen was significantly higher when platelets were incubated with HDL from CKD rabbit and hemodialysis groups than with HDL from the control group. In both rabbits and humans, platelet aggregation and activation were significantly higher in the presence of HNE-modified HDL than with HDL from their respective controls. Incubation of platelets with a blocking antibody directed against CD36 or with a pharmacologic inhibitor of SRC kinases restored the antiaggregative phenotype in the presence of HDL from CKD rabbits, patients on hemodialysis and peritoneal dialysis, and HNE-modified HDL. CONCLUSIONS HDL from CKD rabbits and patients on hemodialysis exhibited an impaired ability to inhibit platelet aggregation, suggesting that altered HDL properties may contribute to the increased cardiovascular risk in this population.
Collapse
Affiliation(s)
- Nans Florens
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France .,Department of Nephrology, University Hospital of Lyon, E. Herriot Hospital, Lyon, France
| | - Catherine Calzada
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France
| | - Sandrine Lemoine
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France.,Department of Nephrology, University Hospital of Lyon, E. Herriot Hospital, Lyon, France
| | - Marie Michèle Boulet
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France
| | - Nicolas Guillot
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France
| | - Christophe Barba
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France
| | - Julie Roux
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France
| | - Fréderic Delolme
- Protein Science Facility, SFR BioSciences, Centre National de la Recherche Scientifique (CNRS) UMS3444, INSERM US8, Claude Bernard University Lyon 1, École Normale Supérieure de Lyon (ENS de Lyon), Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, Centre National de la Recherche Scientifique (CNRS) UMS3444, INSERM US8, Claude Bernard University Lyon 1, École Normale Supérieure de Lyon (ENS de Lyon), Lyon, France
| | - Jean Michel Poux
- Association Pour l'Utilisation du Rein Artificiel dans la Région Lyonnaise (AURAL), Lyon, France
| | - Maurice Laville
- Association Pour l'Utilisation du Rein Artificiel dans la Région Lyonnaise (AURAL), Lyon, France
| | - Philippe Moulin
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France.,Department of Endocrinology, University Hospital of Lyon, L. Pradel Hospital, Bron, France
| | - Laurent Soulère
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, University of Lyon, INSA-Lyon, UMR 5246 CNRS, Villeurbanne, France
| | - Fitsum Guebre-Egziabher
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France.,Department of Nephrology, University Hospital of Lyon, E. Herriot Hospital, Lyon, France
| | - Laurent Juillard
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France.,Department of Nephrology, University Hospital of Lyon, E. Herriot Hospital, Lyon, France
| | - Christophe O Soulage
- CarMeN Laboratory, University of Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) U1060, Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Claude Bernard University Lyon 1, Institut National de la Recherche Agronomique (INRA) U1397, Villeurbanne, France
| |
Collapse
|
15
|
Lee H. Effects of Nanoparticle Electrostatics and Protein-Protein Interactions on Corona Formation: Conformation and Hydrodynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906598. [PMID: 32022403 DOI: 10.1002/smll.201906598] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/29/2019] [Indexed: 06/10/2023]
Abstract
All-atom molecular dynamics simulations of plasma proteins (human serum albumin, fibrinogen, immunoglobulin gamma-1 chain-C, complement C3, and apolipoprotein A-I) adsorbed onto 10 nm sized cationic, anionic, and neutral polystyrene (PS) particles in water are performed. In simulations of a single protein with a PS particle, proteins eventually bind to all PS particles, regardless of particle charge, in agreement with experiments showing the binding between anionic proteins and particles, which is further confirmed by calculating the binding free energies from umbrella sampling simulations. Simulations of mixtures of multiple proteins and a PS particle show the formation of the protein layer on the surface via the adsorption competition between proteins, which influences the binding affinity and structure of adsorbed proteins. In particular, diffusivities are much higher for proteins bound to the particle surface or to the boundary of the protein layer than for those bound to both the particle surface and other proteins, indicating the dependence of protein mobility on their positions in the layer. These findings help to explain in detail experimental observations regarding the replacement of plasma proteins at the early stage of corona formation and the difference in the binding strength of proteins in inner and outer protein-layers.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, 16890, South Korea
| |
Collapse
|
16
|
Protein Backbone and Average Particle Dynamics in Reconstituted Discoidal and Spherical HDL Probed by Hydrogen Deuterium Exchange and Elastic Incoherent Neutron Scattering. Biomolecules 2020; 10:biom10010121. [PMID: 31936876 PMCID: PMC7022587 DOI: 10.3390/biom10010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Lipoproteins are supramolecular assemblies of proteins and lipids with dynamic characteristics critically linked to their biological functions as plasma lipid transporters and lipid exchangers. Among them, spherical high-density lipoproteins are the most abundant forms of high-density lipoprotein (HDL) in human plasma, active participants in reverse cholesterol transport, and associated with reduced development of atherosclerosis. Here, we employed elastic incoherent neutron scattering (EINS) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) to determine the average particle dynamics and protein backbone local mobility of physiologically competent discoidal and spherical HDL particles reconstituted with human apolipoprotein A-I (apoA-I). Our EINS measurements indicated that discoidal HDL was more dynamic than spherical HDL at ambient temperatures, in agreement with their lipid-protein composition. Combining small-angle neutron scattering (SANS) with contrast variation and MS cross-linking, we showed earlier that the most likely organization of the three apolipoprotein A-I (apoA-I) chains in spherical HDL is a combination of a hairpin monomer and a helical antiparallel dimer. Here, we corroborated those findings with kinetic studies, employing hydrogen-deuterium exchange mass spectrometry (HDX-MS). Many overlapping apoA-I digested peptides exhibited bimodal HDX kinetics behavior, suggesting that apoA-I regions with the same amino acid composition located on different apoA-I chains had different conformations and/or interaction environments.
Collapse
|
17
|
Kornmueller K, Vidakovic I, Prassl R. Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 2019; 24:E2829. [PMID: 31382521 PMCID: PMC6695986 DOI: 10.3390/molecules24152829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
18
|
Cooke AL, Morris J, Melchior JT, Street SE, Jerome WG, Huang R, Herr AB, Smith LE, Segrest JP, Remaley AT, Shah AS, Thompson TB, Davidson WS. A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 2018; 59:1244-1255. [PMID: 29773713 DOI: 10.1194/jlr.m085332] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Indexed: 01/28/2023] Open
Abstract
APOA1 is the most abundant protein in HDL. It modulates interactions that affect HDL's cardioprotective functions, in part via its activation of the enzyme, LCAT. On nascent discoidal HDL, APOA1 comprises 10 α-helical repeats arranged in an anti-parallel stacked-ring structure that encapsulates a lipid bilayer. Previous chemical cross-linking studies suggested that these APOA1 rings can adopt at least two different orientations, or registries, with respect to each other; however, the functional impact of these structural changes is unknown. Here, we placed cysteine residues at locations predicted to form disulfide bonds in each orientation and then measured APOA1's ability to adopt the two registries during HDL particle formation. We found that most APOA1 oriented with the fifth helix of one molecule across from fifth helix of the other (5/5 helical registry), but a fraction adopted a 5/2 registry. Engineered HDLs that were locked in 5/5 or 5/2 registries by disulfide bonds equally promoted cholesterol efflux from macrophages, indicating functional particles. However, unlike the 5/5 registry or the WT, the 5/2 registry impaired LCAT cholesteryl esterification activity (P < 0.001), despite LCAT binding equally to all particles. Chemical cross-linking studies suggest that full LCAT activity requires a hybrid epitope composed of helices 5-7 on one APOA1 molecule and helices 3-4 on the other. Thus, APOA1 may use a reciprocating thumbwheel-like mechanism to activate HDL-remodeling proteins.
Collapse
Affiliation(s)
- Allison L Cooke
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Jamie Morris
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - John T Melchior
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Scott E Street
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - W Gray Jerome
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rong Huang
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Andrew B Herr
- Division of Immunobiology and Center for Systems Immunology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Loren E Smith
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jere P Segrest
- Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas B Thompson
- Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45237
| | - W Sean Davidson
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
19
|
Molecular dynamics simulations of lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2094-2107. [PMID: 29729280 DOI: 10.1016/j.bbamem.2018.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
A lipid nanodisc is a discoidal lipid bilayer stabilized by proteins, peptides, or polymers on its edge. Nanodiscs have two important connections to structural biology. The first is associated with high-density lipoprotein (HDL), a particle with a variety of functionalities including lipid transport. Nascent HDL (nHDL) is a nanodisc stabilized by Apolipoprotein A-I (APOA1). Determining the structure of APOA1 and its mimetic peptides in nanodiscs is crucial to understanding pathologies related to HDL maturation and designing effective therapies. Secondly, nanodiscs offer non-detergent membrane-mimicking environments and greatly facilitate structural studies of membrane proteins. Although seemingly similar, natural and synthetic nanodiscs are different in that nHDL is heterogeneous in size, due to APOA1 elasticity, and gradually matures to become spherical. Synthetic nanodiscs, in contrast, should be homogenous, stable, and size-tunable. This report reviews previous molecular dynamics (MD) simulation studies of nanodiscs and illustrates convergence and accuracy issues using results from new multi-microsecond atomistic MD simulations. These new simulations reveal that APOA1 helices take 10-20 μs to rearrange on the nanodisc, while peptides take 2 μs to migrate from the disc surfaces to the edge. These systems can also become kinetically trapped depending on the initial conditions. For example, APOA1 was trapped in a biologically irrelevant conformation for the duration of a 10 μs trajectory; the peptides were similarly trapped for 5 μs. It therefore remains essential to validate MD simulations of these systems with experiments due to convergence and accuracy issues. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
|
20
|
Zhu L, Petrlova J, Gysbers P, Hebert H, Wallin S, Jegerschöld C, Lagerstedt JO. Structures of apolipoprotein A-I in high density lipoprotein generated by electron microscopy and biased simulations. Biochim Biophys Acta Gen Subj 2017; 1861:2726-2738. [DOI: 10.1016/j.bbagen.2017.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
21
|
Pownall HJ, Rosales C, Gillard BK, Ferrari M. Native and Reconstituted Plasma Lipoproteins in Nanomedicine: Physicochemical Determinants of Nanoparticle Structure, Stability, and Metabolism. Methodist Debakey Cardiovasc J 2017; 12:146-150. [PMID: 27826368 DOI: 10.14797/mdcj-12-3-146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although many acute and chronic diseases are managed via pharmacological means, challenges remain regarding appropriate drug targeting and maintenance of therapeutic levels within target tissues. Advances in nanotechnology will overcome these challenges through the development of lipidic particles, including liposomes, lipoproteins, and reconstituted high-density lipoproteins (rHDL) that are potential carriers of water-soluble, hydrophobic, and amphiphilic molecules. Herein we summarize the properties of human plasma lipoproteins and rHDL, identify the physicochemical determinants of lipid transfer between phospholipid surfaces, and discuss strategies for increasing the plasma half-life of lipoprotein- and liposome-associated molecules.
Collapse
Affiliation(s)
- Henry J Pownall
- Houston Methodist Hospital, Houston, Texas; Weill-Cornell Medical College, New York, New York
| | - Corina Rosales
- Houston Methodist Hospital, Houston, Texas; Weill-Cornell Medical College, New York, New York
| | | | | |
Collapse
|
22
|
Devaurs D, Antunes DA, Papanastasiou M, Moll M, Ricklin D, Lambris JD, Kavraki LE. Coarse-Grained Conformational Sampling of Protein Structure Improves the Fit to Experimental Hydrogen-Exchange Data. Front Mol Biosci 2017; 4:13. [PMID: 28344973 PMCID: PMC5344923 DOI: 10.3389/fmolb.2017.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
Monitoring hydrogen/deuterium exchange (HDX) undergone by a protein in solution produces experimental data that translates into valuable information about the protein's structure. Data produced by HDX experiments is often interpreted using a crystal structure of the protein, when available. However, it has been shown that the correspondence between experimental HDX data and crystal structures is often not satisfactory. This creates difficulties when trying to perform a structural analysis of the HDX data. In this paper, we evaluate several strategies to obtain a conformation providing a good fit to the experimental HDX data, which is a premise of an accurate structural analysis. We show that performing molecular dynamics simulations can be inadequate to obtain such conformations, and we propose a novel methodology involving a coarse-grained conformational sampling approach instead. By extensively exploring the intrinsic flexibility of a protein with this approach, we produce a conformational ensemble from which we extract a single conformation providing a good fit to the experimental HDX data. We successfully demonstrate the applicability of our method to four small and medium-sized proteins.
Collapse
Affiliation(s)
- Didier Devaurs
- Department of Computer Science, Rice UniversityHouston, TX, USA
| | | | - Malvina Papanastasiou
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Broad Institute of MIT & HarvardCambridge, MA, USA
| | - Mark Moll
- Department of Computer Science, Rice UniversityHouston, TX, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Pharmaceutical Sciences, University of BaselBasel, Switzerland
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | | |
Collapse
|
23
|
Lai CT, Sun W, Palekar RU, Thaxton CS, Schatz GC. Molecular Dynamics Simulation and Experimental Studies of Gold Nanoparticle Templated HDL-like Nanoparticles for Cholesterol Metabolism Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1247-1254. [PMID: 28001031 DOI: 10.1021/acsami.6b12249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in the transport and metabolism of cholesterol. Mimics of HDL are being explored as potentially powerful therapeutic agents for removing excess cholesterol from arterial plaques. Gold nanoparticles (AuNPs) functionalized with apolipoprotein A-I and with the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate] have been demonstrated to be robust acceptors of cellular cholesterol. However, detailed structural information about this functionalized HDL AuNP is still lacking. In this study, we have used X-ray photoelectron spectroscopy and lecithin/cholesterol acyltransferase activation experiments together with coarse-grained and all-atom molecular dynamics simulations to model the structure and cholesterol uptake properties of the HDL AuNP construct. By simulating different apolipoprotein-loaded AuNPs, we find that lipids are oriented differently in regions with and without apoA-I. We also show that in this functionalized HDL AuNP, the distribution of cholesteryl ester maintains a reverse concentration gradient that is similar to the gradient found in native HDL.
Collapse
Affiliation(s)
- Cheng-Tsung Lai
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Wangqiang Sun
- Department of Urology, Northwestern University , Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Bionanotechnology , 303 East Superior, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rohun U Palekar
- Department of Urology, Northwestern University , Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Bionanotechnology , 303 East Superior, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - C Shad Thaxton
- Department of Urology, Northwestern University , Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Bionanotechnology , 303 East Superior, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 2016; 397:1335-1354. [DOI: 10.1515/hsz-2016-0224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Abstract
The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.
Collapse
|
25
|
Midtgaard SR, Pedersen MC, Arleth L. Small-angle X-ray scattering of the cholesterol incorporation into human ApoA1-POPC discoidal particles. Biophys J 2016. [PMID: 26200866 DOI: 10.1016/j.bpj.2015.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Structural and functional aspects of high-density lipoproteins have been studied for over half a century. Due to the plasticity of this highly complex system, new aspects continue to be discovered. Here, we present a structural study of the human Apolipoprotein A1 (ApoA1) and investigate the role of its N-terminal domain, the so-called globular domain of ApoA1, in discoidal complexes with phospholipids and increasing amounts of cholesterol. Using a combination of solution-based small-angle x-ray scattering (SAXS) and molecular constrained data modeling, we show that the ApoA1-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-based particles are disk shaped with an elliptical cross section and composed by a central lipid bilayer surrounded by two stabilizing ApoA1 proteins. This structure is very similar to the particles formed in the so-called nanodisc system, which is based on N-terminal truncated ApoA1 protein. Although it is commonly agreed that the nanodisc is plain disk shaped, several more advanced structures have been proposed for the full-length ApoA1 in combination with POPC and cholesterol. This prompted us to make a detailed comparative study of the ApoA1 and nanodisc systems upon cholesterol uptake. Based on the presented SAXS analysis it is found that the N-terminal domains of ApoA1-POPC-cholesterol particles are not globular but instead an integrated part of the protein belt stabilizing the particles. Upon incorporation of increasing amounts of cholesterol, the presence of the N-terminal domain allows the bilayer thickness to increase while maintaining an overall flat bilayer structure. This is contrasted by the energetically more strained and less favorable lens shape required to fit the SAXS data from the N-terminal truncated nanodisc system upon cholesterol incorporation. This suggests that the N-terminal domain of ApoA1 actively participates in the stabilization of the ApoA1-POPC-cholesterol discoidal particle and allows for a more optimal lipid packing upon cholesterol uptake.
Collapse
Affiliation(s)
- Søren Roi Midtgaard
- X-Ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Denmark.
| | | | - Lise Arleth
- X-Ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Pan L, Segrest JP. Computational studies of plasma lipoprotein lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2401-2420. [PMID: 26969087 DOI: 10.1016/j.bbamem.2016.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/27/2022]
Abstract
Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in atomistic detail. This review discusses the current status of computational methods including all-atom MD (AAMD), coarse-grain MD (CGMD), and MD-simulated annealing (MDSA) and their applications in lipoprotein structural dynamics and biological assemblies. Results from MD simulations are discussed and compared across studies in order to identify key findings, controversies, issues and future directions. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Lurong Pan
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jere P Segrest
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
27
|
Gu X, Wu Z, Huang Y, Wagner MA, Baleanu-Gogonea C, Mehl RA, Buffa JA, DiDonato AJ, Hazen LB, Fox PL, Gogonea V, Parks JS, DiDonato JA, Hazen SL. A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein. J Biol Chem 2016; 291:6386-95. [PMID: 26797122 DOI: 10.1074/jbc.m115.696088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/06/2022] Open
Abstract
The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) maturation. We previously identified a highly solvent-exposed apoA-I loop domain (Leu(159)-Leu(170)) in nascent HDL, the so-called "solar flare" (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861-868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro(165), Tyr(166), Ser(167), and Asp(168)) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr(166) was further supported using reconstituted HDL generated from apoA-I mutants (Tyr(166) → Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO2-Tyr(166)-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr(166)-apoA-I, after subcutaneous injection into hLCAT(Tg/Tg), apoA-I(-/-) mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent-exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency.
Collapse
Affiliation(s)
- Xiaodong Gu
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Zhiping Wu
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Ying Huang
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Matthew A Wagner
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | | | - Ryan A Mehl
- the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, and
| | - Jennifer A Buffa
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Anthony J DiDonato
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Leah B Hazen
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Paul L Fox
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Valentin Gogonea
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - John S Parks
- the Sections on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Joseph A DiDonato
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and
| | - Stanley L Hazen
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, and the Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
28
|
Gogonea V. Structural Insights into High Density Lipoprotein: Old Models and New Facts. Front Pharmacol 2016; 6:318. [PMID: 26793109 PMCID: PMC4709926 DOI: 10.3389/fphar.2015.00318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen-deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function.
Collapse
Affiliation(s)
- Valentin Gogonea
- Department of Chemistry, Cleveland State UniversityCleveland, OH, USA; Departments of Cellular and Molecular Medicine and the Center for Cardiovascular Diagnostics and Prevention, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
29
|
Haertlein M, Moulin M, Devos JM, Laux V, Dunne O, Trevor Forsyth V. Biomolecular Deuteration for Neutron Structural Biology and Dynamics. Methods Enzymol 2016; 566:113-57. [DOI: 10.1016/bs.mie.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Murray SC, Gillard BK, Ludtke SJ, Pownall HJ. Direct Measurement of the Structure of Reconstituted High-Density Lipoproteins by Cryo-EM. Biophys J 2015; 110:810-6. [PMID: 26743047 DOI: 10.1016/j.bpj.2015.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
Early forms of high-density lipoproteins (HDL), nascent HDL, are formed by the interaction of apolipoprotein AI with macrophage and hepatic ATP-binding cassette transporter member 1. Various plasma activities convert nascent to mature HDL, comprising phosphatidylcholine (PC) and cholesterol, which are selectively removed by hepatic receptors. This process is important in reducing the cholesterol burden of arterial wall macrophages, an important cell type in all stages of atherosclerosis. Interaction of apolipoprotein AI with dimyristoyl (DM)PC forms reconstituted (r)HDL, which is a good model of nascent HDL. rHDL have been used as an antiathersclerosis therapy that enhances reverse cholesterol transport in humans and animal models. Thus, identification of the structure of rHDL would inform about that of nascent HDL and how rHDL improves reverse cholesterol transport in an atheroprotective way. Early studies of rHDL suggested a discoidal structure, which included pairs of antiparallel helices of apolipoprotein AI circumscribing a phospholipid bilayer. Another rHDL model based on small angle neutron scattering supported a double superhelical structure. Herein, we report a cryo-electron microscopy-based model of a large rHDL formed spontaneously from apolipoprotein AI, cholesterol, and excess DMPC and isolated to near homogeneity. After reconstruction we obtained an rHDL structure comprising DMPC, cholesterol, and apolipoprotein AI (423:74:1 mol/mol) forming a discoidal particle 360 Å in diameter and 45 Å thick; these dimensions are consistent with the stoichiometry of the particles. Given that cryo-electron microscopy directly observes projections of individual rHDL particles in different orientations, we can unambiguously state that rHDL particles are protein bounded discoidal bilayers.
Collapse
Affiliation(s)
| | | | | | - Henry J Pownall
- Houston Methodist Research Institute, Houston, Texas; Weill Cornell Medicine, Houston, Texas.
| |
Collapse
|
31
|
Gu X, Huang Y, Levison BS, Gerstenecker G, DiDonato AJ, Hazen LB, Lee J, Gogonea V, DiDonato JA, Hazen SL. Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction. J Biol Chem 2015; 291:1890-1904. [PMID: 26567339 DOI: 10.1074/jbc.m115.678334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 11/06/2022] Open
Abstract
Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated protein with atherosclerosis-protective and systemic anti-oxidant functions. We recently showed that PON1, myeloperoxidase, and HDL bind to one another in vivo forming a functional ternary complex (Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B. S., Gu, X., Fu, X., Wagner, M. A., Besler, C., Gerstenecker, G., Zhang, R., Li, X. M., Didonato, A. J., Gogonea, V., Tang, W. H., et al. (2013) J. Clin. Invest. 123, 3815-3828). However, specific residues on PON1 involved in the HDL-PON1 interaction remain unclear. Unambiguous identification of protein residues involved in docking interactions to lipid surfaces poses considerable methodological challenges. Here we describe a new strategy that uses a novel synthetic photoactivatable and click chemistry-taggable phospholipid probe, which, when incorporated into HDL, was used to identify amino acid residues on PON1 that directly interact with the lipoprotein phospholipid surface. Several specific PON1 residues (Leu-9, Tyr-185, and Tyr-293) were identified through covalent cross-links with the lipid probes using affinity isolation coupled to liquid chromatography with on-line tandem mass spectrometry. Based upon the crystal structure for PON1, the identified residues are all localized in relatively close proximity on the surface of PON1, defining a domain that binds to the HDL lipid surface. Site-specific mutagenesis of the identified PON1 residues (Leu-9, Tyr-185, and Tyr-293), coupled with functional studies, reveals their importance in PON1 binding to HDL and both PON1 catalytic activity and stability. Specifically, the residues identified on PON1 provide important structural insights into the PON1-HDL interaction. More generally, the new photoactivatable and affinity-tagged lipid probe developed herein should prove to be a valuable tool for identifying contact sites supporting protein interactions with lipid interfaces such as found on cell membranes or lipoproteins.
Collapse
Affiliation(s)
- Xiaodong Gu
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and
| | - Ying Huang
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and
| | - Bruce S Levison
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and
| | - Gary Gerstenecker
- the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Anthony J DiDonato
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and
| | - Leah B Hazen
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and.
| | - Joonsue Lee
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and
| | - Valentin Gogonea
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and; the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Joseph A DiDonato
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and
| | - Stanley L Hazen
- From the Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, and; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
32
|
Deng X, Walker RG, Morris J, Davidson WS, Thompson TB. Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function. J Biol Chem 2015; 290:10689-702. [PMID: 25733664 PMCID: PMC4409236 DOI: 10.1074/jbc.m115.637058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo)A-IV is a lipid emulsifying protein linked to a range of protective roles in obesity, diabetes, and cardiovascular disease. It exists in several states in plasma including lipid-bound in HDL and chylomicrons and as monomeric and dimeric lipid-free/poor forms. Our recent x-ray crystal structure of the central domain of apoA-IV shows that it adopts an elongated helical structure that dimerizes via two long reciprocating helices. A striking feature is the alignment of conserved proline residues across the dimer interface. We speculated that this plays important roles in the structure of the lipid-free protein and its ability to bind lipid. Here we show that the systematic conversion of these prolines to alanine increased the thermodynamic stability of apoA-IV and its propensity to oligomerize. Despite the structural stabilization, we noted an increase in the ability to bind and reorganize lipids and to promote cholesterol efflux from cells. The novel properties of these mutants allowed us to isolate the first trimeric form of an exchangeable apolipoprotein and characterize it by small-angle x-ray scattering and chemical cross-linking. The results suggest that the reciprocating helix interaction is a common feature of all apoA-IV oligomers. We propose a model of how self-association of apoA-IV can result in spherical lipoprotein particles, a model that may have broader applications to other exchangeable apolipoprotein family members.
Collapse
Affiliation(s)
- Xiaodi Deng
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | - Ryan G Walker
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | - Jamie Morris
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - W Sean Davidson
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Thomas B Thompson
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| |
Collapse
|
33
|
Zhang X, Lei D, Zhang L, Rames M, Zhang S. A model of lipid-free apolipoprotein A-I revealed by iterative molecular dynamics simulation. PLoS One 2015; 10:e0120233. [PMID: 25793886 PMCID: PMC4368682 DOI: 10.1371/journal.pone.0120233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/29/2015] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipid-free apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Dongsheng Lei
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Lei Zhang
- Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Matthew Rames
- Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
34
|
Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol 2015; 224:3-51. [PMID: 25522985 DOI: 10.1007/978-3-319-09665-0_1] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A molecular understanding of high-density lipoprotein (HDL) will allow a more complete grasp of its interactions with key plasma remodelling factors and with cell-surface proteins that mediate HDL assembly and clearance. However, these particles are notoriously heterogeneous in terms of almost every physical, chemical and biological property. Furthermore, HDL particles have not lent themselves to high-resolution structural study through mainstream techniques like nuclear magnetic resonance and X-ray crystallography; investigators have therefore had to use a series of lower resolution methods to derive a general structural understanding of these enigmatic particles. This chapter reviews current knowledge of the composition, structure and heterogeneity of human plasma HDL. The multifaceted composition of the HDL proteome, the multiple major protein isoforms involving translational and posttranslational modifications, the rapidly expanding knowledge of the HDL lipidome, the highly complex world of HDL subclasses and putative models of HDL particle structure are extensively discussed. A brief history of structural studies of both plasma-derived and recombinant forms of HDL is presented with a focus on detailed structural models that have been derived from a range of techniques spanning mass spectrometry to molecular dynamics.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France,
| | | | | | | | | | | |
Collapse
|
35
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Cilpa-Karhu G, Jauhiainen M, Riekkola ML. Atomistic MD simulation reveals the mechanism by which CETP penetrates into HDL enabling lipid transfer from HDL to CETP. J Lipid Res 2014; 56:98-108. [PMID: 25424006 DOI: 10.1194/jlr.m054288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inhibition of cholesterol ester transfer protein (CETP), a protein mediating transfer of neutral lipids between lipoproteins, has been proposed as a means to elevate atheroprotective HDL subpopulations and thereby reduce atherosclerosis. However, off-target and adverse effects of the inhibition have raised doubts about the molecular mechanism of CETP-HDL interaction. Recent experimental findings have demonstrated the penetration of CETP into HDL. However, atomic level resolution of CETP penetration into HDL, a prerequisite for a better understanding of CETP functionality and HDL atheroprotection, is missing. We constructed an HDL particle that mimics the actual human HDL mass composition and investigated for the first time, by large-scale atomistic molecular dynamics, the interaction of an upright CETP with a human HDL-mimicking model. The results demonstrated how CETP can penetrate the HDL particle surface, with the formation of an opening in the N barrel domain end of CETP, put in evidence the major anchoring role of a tryptophan-rich region of this domain, and unveiled the presence of a phenylalanine barrier controlling further access of HDL-derived lipids to the tunnel of CETP. The findings reveal novel atomistic details of the CETP-HDL interaction mechanism and can provide new insight into therapeutic strategies.
Collapse
Affiliation(s)
- Geraldine Cilpa-Karhu
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, FIN-00251 Helsinki, Finland
| | - Marja-Liisa Riekkola
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
37
|
Microenvironmentally controlled secondary structure motifs of apolipoprotein A-I derived peptides. Mol Cell Biochem 2014; 393:99-109. [PMID: 24748322 PMCID: PMC4067536 DOI: 10.1007/s11010-014-2050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/02/2014] [Indexed: 11/12/2022]
Abstract
The structure of apolipoprotein A-I (apoA-I), the major protein of HDL, has been extensively studied in past years. Nevertheless, its corresponding three-dimensional structure has been difficult to obtain due to the frequent conformational changes observed depending on the microenvironment. Although the function of each helical segment of this protein remains unclear, it has been observed that the apoA-I amino (N) and carboxy-end (C) domains are directly involved in receptor-recognition, processes that determine the diameter for HDL particles. In addition, it has been observed that the high structural plasticity of these segments might be related to several amyloidogenic processes. In this work, we studied a series of peptides derived from the N- and C-terminal domains representing the most hydrophobic segments of apoA-I. Measurements carried out using circular dichroism in all tested peptides evidenced that the lipid environment promotes the formation of α-helical structures, whereas an aqueous environment facilitates a strong tendency to adopt β-sheet/disordered conformations. Electron microscopy observations showed the formation of amyloid-like structures similar to those found in other well-defined amyloidogenic proteins. Interestingly, when the apoA-I peptides were incubated under conditions that promote stable globular structures, two of the peptides studied were cytotoxic to microglia and mouse macrophage cells. Our findings provide an insight into the physicochemical properties of key segments contained in apoA-I which may be implicated in disorder-to-order transitions that in turn maintain the delicate equilibrium between both, native and abnormal conformations, and therefore control its propensity to become involved in pathological processes.
Collapse
|
38
|
DiDonato JA, Aulak K, Huang Y, Wagner M, Gerstenecker G, Topbas C, Gogonea V, DiDonato AJ, Tang WHW, Mehl RA, Fox PL, Plow EF, Smith JD, Fisher EA, Hazen SL. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem 2014; 289:10276-10292. [PMID: 24558038 DOI: 10.1074/jbc.m114.556506] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr(166)), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr(166) nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr(166)-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr(166)-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼ 8% of total apoA-I within the artery wall but was nearly undetectable (>100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr(166)-apoA-I existed as a lipid-poor lipoprotein with <3% recovered within the HDL-like fraction (d = 1.063-1.21). NO2-Tyr(166)-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr(166)-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr(166) is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall.
Collapse
Affiliation(s)
- Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195.
| | - Kulwant Aulak
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ying Huang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195
| | - Matthew Wagner
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Gary Gerstenecker
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Department of Chemistry, Cleveland State University, Cleveland, Ohio 44118
| | - Celalettin Topbas
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Department of Chemistry, Cleveland State University, Cleveland, Ohio 44118
| | - Valentin Gogonea
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Department of Chemistry, Cleveland State University, Cleveland, Ohio 44118
| | - Anthony J DiDonato
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Department of Psychology, John Carroll University, University Heights, Ohio 44118
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F Plow
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward A Fisher
- Department of Cell Biology and the Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195; Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
39
|
Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, Buffa J, Kim T, Gerstenecker G, Gu X, Kadiyala C, Wang Z, Culley MK, Hazen JE, DiDonato AJ, Fu X, Berisha S, Peng D, Nguyen T, Liang S, Chuang CC, Cho L, Plow EF, Fox PL, Gogonea V, Tang WW, Parks JS, Fisher EA, Smith JD, Hazen SL. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 2014; 20:193-203. [PMID: 24464187 PMCID: PMC3923163 DOI: 10.1038/nm.3459] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
Recent studies have indicated that high-density lipoproteins (HDLs) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma are dysfunctional and are extensively oxidized by myeloperoxidase (MPO). In vitro oxidation of either apoA1 or HDL particles by MPO impairs their cholesterol acceptor function. Here, using phage display affinity maturation, we developed a high-affinity monoclonal antibody that specifically recognizes both apoA1 and HDL that have been modified by the MPO-H2O2-Cl(-) system. An oxindolyl alanine (2-OH-Trp) moiety at Trp72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirmed a critical role for apoA1 Trp72 in MPO-mediated inhibition of the ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation but accounts for 20% of the apoA1 in atherosclerosis-laden arteries. OxTrp72-apoA1 recovered from human atheroma or plasma is lipid poor, virtually devoid of cholesterol acceptor activity and demonstrated both a potent proinflammatory activity on endothelial cells and an impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n = 627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a proatherogenic process in the artery wall.
Collapse
Affiliation(s)
- Ying Huang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A. DiDonato
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Bruce S. Levison
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dave Schmitt
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Lin Li
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, OH 44115
| | - Jennifer Buffa
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Timothy Kim
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Gary Gerstenecker
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Xiaodong Gu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Chandra Kadiyala
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Miranda K. Culley
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jennie E. Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Anthony J. DiDonato
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xiaoming Fu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stela Berisha
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Daoquan Peng
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Truc Nguyen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | | | - Chia-Chi Chuang
- Departments of Pathology-Section on Lipid Sciences and Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157
| | - Leslie Cho
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F. Plow
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Paul L. Fox
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Valentin Gogonea
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - W.H. Wilson Tang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - John S. Parks
- Departments of Pathology-Section on Lipid Sciences and Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157
| | - Edward A. Fisher
- Department of Cardiovascular Medicine, New York University School of Medicine, New York, NY 10016
| | - Jonathan D. Smith
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L. Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
40
|
Alwaili K, Awan Z, Alshahrani A, Genest J. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev Cardiovasc Ther 2014; 8:413-23. [DOI: 10.1586/erc.10.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Mutation mapping of apolipoprotein A-I structure assisted with the putative cholesterol recognition regions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2030-5. [DOI: 10.1016/j.bbapap.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/04/2013] [Accepted: 06/15/2013] [Indexed: 12/22/2022]
|
42
|
Oda MN, Budamagunta MS, Geier EG, Chandradas SH, Shao B, Heinecke JW, Voss JC, Cavigiolio G. Conservation of apolipoprotein A-I's central domain structural elements upon lipid association on different high-density lipoprotein subclasses. Biochemistry 2013; 52:6766-78. [PMID: 23984834 DOI: 10.1021/bi4007012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antiatherogenic properties of apolipoprotein A-I (apoA-I) are derived, in part, from lipidation-state-dependent structural elements that manifest at different stages of apoA-I's progression from lipid-free protein to spherical high-density lipoprotein (HDL). Previously, we reported the structure of apoA-I's N-terminus on reconstituted HDLs (rHDLs) of different sizes. We have now investigated at the single-residue level the conformational adaptations of three regions in the central domain of apoA-I (residues 119-124, 139-144, and 164-170) upon apoA-I lipid binding and HDL formation. An important function associated with these residues of apoA-I is the activation of lecithin:cholesterol acyltransferase (LCAT), the enzyme responsible for catalyzing HDL maturation. Structural examination was performed by site-directed tryptophan fluorescence and spin-label electron paramagnetic resonance spectroscopies for both the lipid-free protein and rHDL particles 7.8, 8.4, and 9.6 nm in diameter. The two methods provide complementary information about residue side chain mobility and molecular accessibility, as well as the polarity of the local environment at the targeted positions. The modulation of these biophysical parameters yielded new insight into the importance of structural elements in the central domain of apoA-I. In particular, we determined that the loosely lipid-associated structure of residues 134-145 is conserved in all rHDL particles. Truncation of this region completely abolished LCAT activation but did not significantly affect rHDL size, reaffirming the important role of this structural element in HDL function.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute , Oakland, California 94609, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
DiDonato JA, Huang Y, Aulak KS, Even-Or O, Gerstenecker G, Gogonea V, Wu Y, Fox PL, Tang WHW, Plow EF, Smith JD, Fisher EA, Hazen SL. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 2013; 128:1644-55. [PMID: 23969698 DOI: 10.1161/circulationaha.113.002624] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prior studies show that apolipoprotein A1 (apoA1) recovered from human atherosclerotic lesions is highly oxidized. Ex vivo oxidation of apoA1 or high-density lipoprotein (HDL) cross-links apoA1 and impairs lipid binding, cholesterol efflux, and lecithin-cholesterol acyltransferase activities of the lipoprotein. Remarkably, no studies to date directly quantify either the function or HDL particle distribution of apoA1 recovered from the human artery wall. METHODS AND RESULTS A monoclonal antibody (10G1.5) was developed that equally recognizes lipid-free and HDL-associated apoA1 in both native and oxidized forms. Examination of homogenates of atherosclerotic plaque-laden aorta showed >100-fold enrichment of apoA1 compared with normal aorta (P<0.001). Surprisingly, buoyant density fractionation revealed that only a minority (<3% of total) of apoA1 recovered from either lesions or normal aorta resides within an HDL-like particle (1.063≤d≤1.21). In contrast, the majority (>90%) of apoA1 within aortic tissue (normal and lesions) was recovered within the lipoprotein-depleted fraction (d>1.21). Moreover, both lesion and normal artery wall apoA1 are highly cross-linked (50% to 70% of total), and functional characterization of apoA1 quantitatively recovered from aorta with the use of monoclonal antibody 10G1.5 showed ≈80% lower cholesterol efflux activity and ≈90% lower lecithin-cholesterol acyltransferase activity relative to circulating apoA1. CONCLUSIONS The function and distribution of apoA1 in human aorta are quite distinct from those found in plasma. The lipoprotein is markedly enriched within atherosclerotic plaque, predominantly lipid-poor, not associated with HDL, extensively oxidatively cross-linked, and functionally impaired.
Collapse
Affiliation(s)
- Joseph A DiDonato
- Departments of Cellular and Molecular Medicine, Lerner Research Institute (J.A.D., Y.H., K.A., G.G., V.G., P.L.F., W.H.W.T., J.D.S., S.L.H.), Cardiovascular Medicine, Heart, and Vascular Institute (W.H.W.T., J.D.S., S.L.H.), and Molecular Cardiology, Lerner Research Institute (E.F.P.), Cleveland Clinic, Cleveland, OH; Department of Medicine, New York University, New York, NY (O.E.-O., E.A.F.); and Departments of Chemistry (G.G., V.G., S.L.H.) and Mathematics (Y.W.), Cleveland State University, Cleveland, OH
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang Y, Wu Z, Riwanto M, Gao S, Levison BS, Gu X, Fu X, Wagner MA, Besler C, Gerstenecker G, Zhang R, Li XM, DiDonato AJ, Gogonea V, Tang WHW, Smith JD, Plow EF, Fox PL, Shih DM, Lusis AJ, Fisher EA, DiDonato JA, Landmesser U, Hazen SL. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest 2013; 123:3815-28. [PMID: 23908111 DOI: 10.1172/jci67478] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/23/2013] [Indexed: 12/17/2022] Open
Abstract
Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein-associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each other's function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function.
Collapse
Affiliation(s)
- Ying Huang
- Department of Cellular and Molecular Medicine, Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Breyton C, Gabel F, Lethier M, Flayhan A, Durand G, Jault JM, Juillan-Binard C, Imbert L, Moulin M, Ravaud S, Härtlein M, Ebel C. Small angle neutron scattering for the study of solubilised membrane proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:71. [PMID: 23852580 DOI: 10.1140/epje/i2013-13071-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/22/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Small angle neutron scattering (SANS) is a powerful technique for investigating association states and conformational changes of biological macromolecules in solution. SANS is of particular interest for the study of the multi-component systems, as membrane protein complexes, for which in vitro characterisation and structure determination are often difficult. This article details the important physical properties of surfactants in view of small angle neutron scattering studies and the interest to deuterate membrane proteins for contrast variation studies. We present strategies for the production of deuterated membrane proteins and methods for quality control. We then review some studies on membrane proteins, and focus on the strategies to overcome the intrinsic difficulty to eliminate homogeneously the detergent or surfactant signal for solubilised membrane proteins, or that of lipids for membrane proteins inserted in liposomes.
Collapse
Affiliation(s)
- Cécile Breyton
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu XP, Zhai D, Kim E, Swift M, Reed JC, Volkmann N, Hanein D. Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis 2013; 4:e683. [PMID: 23788040 PMCID: PMC3702287 DOI: 10.1038/cddis.2013.210] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) is a member of the Bcl-2 protein family having a pivotal role in triggering cell commitment to apoptosis. Bax is latent and monomeric in the cytosol but transforms into its lethal, mitochondria-embedded oligomeric form in response to cell stress, leading to the release of apoptogenic factors such as cytochrome C. Here, we dissected the structural correlates of Bax membrane insertion while oligomerization is halted. This strategy was enabled through the use of nanometer-scale phospholipid bilayer islands (nanodiscs) the size of which restricts the reconstituted system to single Bax-molecule activity. Using this minimal reconstituted system, we captured structural correlates that precede Bax homo-oligomerization elucidating previously inaccessible steps of the core molecular mechanism by which Bcl-2 family proteins regulate membrane permeabilization. We observe that, in the presence of BH3 interacting domain death agonist (Bid) BH3 peptide, Bax monomers induce the formation of ~3.5-nm diameter pores and significantly distort the phospholipid bilayer. These pores are compatible with promoting release of ions as well as proteinaceous components, suggesting that membrane-integrated Bax monomers in the presence of Bid BH3 peptides are key functional units for the activation of the cell demolition machinery.
Collapse
Affiliation(s)
- X-P Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Miyazaki M, Tajima Y, Ishihama Y, Handa T, Nakano M. Effect of phospholipid composition on discoidal HDL formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1340-6. [DOI: 10.1016/j.bbamem.2013.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
48
|
Sequence-specific apolipoprotein A-I effects on lecithin:cholesterol acyltransferase activity. Mol Cell Biochem 2013; 378:283-90. [DOI: 10.1007/s11010-013-1619-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
49
|
Spagnuolo MS, Di Stasi R, De Rosa L, Maresca B, Cigliano L, D'Andrea LD. Analysis of the haptoglobin binding region on the apolipoprotein A-I-derived P2a peptide. J Pept Sci 2013; 19:220-6. [PMID: 23420675 DOI: 10.1002/psc.2487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/10/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is the main protein component of the high density lipoproteins and it plays an important role in the reverse cholesterol transport. In particular, it stimulates cholesterol efflux from peripheral cells toward liver and activates the enzyme lecithin-cholesterol acyltransferase (LCAT). Haptoglobin (Hpt), a plasma α2-glycoprotein belonging to the family of acute-phase proteins, binds to ApoA-I inhibiting the stimulation of the enzyme LCAT. Previously, we reported that a synthetic peptide, P2a, binds to and displaces Hpt from ApoA-I restoring the LCAT cholesterol esterification activity in the presence of Hpt. Here, we investigate the molecular determinants underlining the interaction between Hpt and P2a peptide. Analysis of truncated P2a analogs showed that P2a sequence can only be slight reduced in length at the N-terminal to preserve the ability of binding to Hpt. Binding assays showed that charged residues are not involved in Hpt recognition; actually, E146A and D157A substitutions increase the binding affinity to Hpt. Biological characterization of the corresponding P2a peptide analogs, Apo146 and Apo157, showed that the two peptides interfere with Hpt binding to HDL and are more effective than P2a peptide in rescue LCAT activity from Hpt inhibition. This result suggests novel hints to design peptides with anti-atherogenic activity.
Collapse
|
50
|
Gogonea V, Gerstenecker GS, Wu Z, Lee X, Topbas C, Wagner MA, Tallant TC, Smith JD, Callow P, Pipich V, Malet H, Schoehn G, DiDonato JA, Hazen SL. The low-resolution structure of nHDL reconstituted with DMPC with and without cholesterol reveals a mechanism for particle expansion. J Lipid Res 2013; 54:966-83. [PMID: 23349207 DOI: 10.1194/jlr.m032763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small-angle neutron scattering (SANS) with contrast variation was used to obtain the low-resolution structure of nascent HDL (nHDL) reconstituted with dimyristoyl phosphatidylcholine (DMPC) in the absence and presence of cholesterol, [apoA1:DMPC (1:80, mol:mol) and apoA1:DMPC:cholesterol (1:86:9, mol:mol:mol)]. The overall shape of both particles is discoidal with the low-resolution structure of apoA1 visualized as an open, contorted, and out of plane conformation with three arms in nascent HDL/dimyristoyl phosphatidylcholine without cholesterol (nHDL(DMPC)) and two arms in nascent HDL/dimyristoyl phosphatidylcholine with cholesterol (nHDL(DMPC+Chol)). The low-resolution shape of the lipid phase in both nHDL(DMPC) and nHDL(DMPC+Chol) were oblate ellipsoids, and fit well within their respective protein shapes. Modeling studies indicate that apoA1 is folded onto itself in nHDL(DMPC), making a large hairpin, which was also confirmed independently by both cross-linking mass spectrometry and hydrogen-deuterium exchange (HDX) mass spectrometry analyses. In nHDL(DMPC+Chol), the lipid was expanded and no hairpin was visible. Importantly, despite the overall discoidal shape of the whole particle in both nHDL(DMPC) and nHDL(DMPC+Chol), an open conformation (i.e., not a closed belt) of apoA1 is observed. Collectively, these data show that full length apoA1 retains an open architecture that is dictated by its lipid cargo. The lipid is likely predominantly organized as a bilayer with a micelle domain between the open apoA1 arms. The apoA1 configuration observed suggests a mechanism for accommodating changing lipid cargo by quantized expansion of hairpin structures.
Collapse
Affiliation(s)
- Valentin Gogonea
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|