1
|
Pahl MC, Sharma P, Thomas RM, Thompson Z, Mount Z, Pippin JA, Morawski PA, Sun P, Su C, Campbell D, Grant SFA, Wells AD. Dynamic chromatin architecture identifies new autoimmune-associated enhancers for IL2 and novel genes regulating CD4+ T cell activation. eLife 2024; 13:RP96852. [PMID: 39302339 PMCID: PMC11418197 DOI: 10.7554/elife.96852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic signals associated with autoimmune disease. The majority of these signals are located in non-coding regions and likely impact cis-regulatory elements (cRE). Because cRE function is dynamic across cell types and states, profiling the epigenetic status of cRE across physiological processes is necessary to characterize the molecular mechanisms by which autoimmune variants contribute to disease risk. We localized risk variants from 15 autoimmune GWAS to cRE active during TCR-CD28 co-stimulation of naïve human CD4+ T cells. To characterize how dynamic changes in gene expression correlate with cRE activity, we measured transcript levels, chromatin accessibility, and promoter-cRE contacts across three phases of naive CD4+ T cell activation using RNA-seq, ATAC-seq, and HiC. We identified ~1200 protein-coding genes physically connected to accessible disease-associated variants at 423 GWAS signals, at least one-third of which are dynamically regulated by activation. From these maps, we functionally validated a novel stretch of evolutionarily conserved intergenic enhancers whose activity is required for activation-induced IL2 gene expression in human and mouse, and is influenced by autoimmune-associated genetic variation. The set of genes implicated by this approach are enriched for genes controlling CD4+ T cell function and genes involved in human inborn errors of immunity, and we pharmacologically validated eight implicated genes as novel regulators of T cell activation. These studies directly show how autoimmune variants and the genes they regulate influence processes involved in CD4+ T cell proliferation and activation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Rajan M Thomas
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Zachary Thompson
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Zachary Mount
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Peter A Morawski
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Peng Sun
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Daniel Campbell
- Benaroya Research Institute at Virginia MasonSeattleUnited States
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Endocrinology and Diabetes, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Immunology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Blake TCA, Fox HM, Urbančič V, Ravishankar R, Wolowczyk A, Allgeyer ES, Mason J, Danuser G, Gallop JL. Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions. J Cell Sci 2024; 137:jcs261057. [PMID: 38323924 PMCID: PMC11006392 DOI: 10.1242/jcs.261057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Helen M. Fox
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vasja Urbančič
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Roshan Ravishankar
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Wolowczyk
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Edward S. Allgeyer
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Julia Mason
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L. Gallop
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
3
|
Han X, Yang F, Zhang Z, Hou Z, Sun Q, Su T, Lv W, Wang Z, Yuan C, Zhang G, Pi X, Long J, Liu H. 4EBP2-regulated protein translation has a critical role in high-fat diet-induced insulin resistance in hepatocytes. J Biol Chem 2023; 299:105315. [PMID: 37797700 PMCID: PMC10641227 DOI: 10.1016/j.jbc.2023.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
A high-fat diet (HFD) plays a critical role in hepatocyte insulin resistance. Numerous models and factors have been proposed to elucidate the mechanism of palmitic acid (PA)-induced insulin resistance. However, proteomic studies of insulin resistance by HFD stimulation are usually performed under insulin conditions, leading to an unclear understanding of how a HFD alone affects hepatocytes. Here, we mapped the phosphorylation rewiring events in PA-stimulated HepG2 cells and found PA decreased the phosphorylation level of the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2) at S65/T70. Further experiments identified 4EBP2 as a key node of insulin resistance in either HFD mice or PA-treated cells. Reduced 4EBP2 levels increased glucose uptake and insulin sensitivity, whereas the 4EBP2_S65A/T70A mutation exacerbated PA-induced insulin resistance. Additionally, the nascent proteome revealed many glycolysis-related proteins translationally regulated by 4EBP2 such as hexokinase-2, pyruvate kinase PKM, TBC1 domain family member 4, and glucose-6-phosphate 1-dehydrogenase. In summary, we report the critical role of 4EBP2 in regulating HFD-stimulated insulin resistance in hepatocytes.
Collapse
Affiliation(s)
- Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Qiong Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Chao Yuan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Xin Pi
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China.
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong China.
| |
Collapse
|
4
|
Zhao X, Qi Y, Wu T, Cheng G. Phosphoproteomic Analysis of the Jejunum Tissue Response to Colostrum and Milk Feeding in Dairy Calves during the Passive Immunity Period. Animals (Basel) 2022; 13:ani13010145. [PMID: 36611753 PMCID: PMC9817995 DOI: 10.3390/ani13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Improvements in the feeding of calves are of increasing importance for the development of the dairy industry. While colostrum is essential for the health of newborn calves, knowledge of protein phosphorylation alterations in neonatal calves that are fed colostrum or mature milk is lacking. Here, mid-jejunum tissue samples were collected from calves that received colostrum or milk. Subsequently, the jejunum phosphoproteome was analyzed using a phosphopeptide enrichment method, i.e., titanium immobilized metal ion affinity chromatography, coupled with liquid chromatography-tandem mass spectrometry. A total of 2093 phosphopeptides carrying unique 1851 phosphorylation sites corresponding to 1180 phosphoproteins were identified. Of the 1180 phosphoproteins, 314 phosphorylation sites on 241 proteins were differentially expressed between the groups. Gene ontology analysis indicated that the phosphoproteins were strongly associated with developmental and macromolecule metabolic processes, signal transduction, and responses to stimuli and insulin. Pathway analysis showed that the spliceosome, Hippo, insulin, and neurotrophin signaling pathways were enriched. These results reveal the expression pattern and changes in the function of phosphoproteins in bovine jejunum tissues under different feeding conditions and provide further insights into the crucial role of colostrum feeding during the early stages of life.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Correspondence: ; Tel.: +86-551-65146065; Fax: +86-551-62160275
| | | | | | | |
Collapse
|
5
|
Malaguarnera R, Gabriele C, Santamaria G, Giuliano M, Vella V, Massimino M, Vigneri P, Cuda G, Gaspari M, Belfiore A. Comparative proteomic analysis of insulin receptor isoform A and B signaling. Mol Cell Endocrinol 2022; 557:111739. [PMID: 35940390 DOI: 10.1016/j.mce.2022.111739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
The insulin receptor (IR) gene undergoes differential splicing generating two IR isoforms, IR-A and IR-B. The roles of IR-A in cancer and of IR-B in metabolic regulation are well known but the molecular mechanisms responsible for their different biological effects are poorly understood. We aimed to identify different or similar protein substrates and signaling linked to each IR isoforms. We employed mouse fibroblasts lacking IGF1R gene and expressing exclusively either IR-A or IR-B. By proteomic analysis a total of 2530 proteins were identified and quantified. Proteins and pathways mostly associated with insulin-activated IR-A were involved in cancer, stemness and interferon signaling. Instead, proteins and pathways associated with insulin-stimulated IR-B-expressing cells were mostly involved in metabolic or tumor suppressive functions. These results show that IR-A and IR-B recruit partially different multiprotein complexes in response to insulin, suggesting partially different functions of IR isoforms in physiology and in disease.
Collapse
Affiliation(s)
| | - Caterina Gabriele
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Gianluca Santamaria
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy; Klinikum rechts der Isar, Department of Medicine and Molecular Cardiology, Technical University of Munich, Germany.
| | - Marika Giuliano
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy.
| | - Veronica Vella
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, Oncology Unit, University of Catania, 95100, Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, Oncology Unit, University of Catania, 95100, Catania, Italy.
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Antonino Belfiore
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy.
| |
Collapse
|
6
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Cheng GL, Yang YX, Bu DP, Hu H, Meng LF. Regulatory role of phosphoproteins in the development of bovine small intestine during early life. J Dairy Sci 2022; 105:9240-9252. [PMID: 36175223 DOI: 10.3168/jds.2022-21983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
The small intestine is the primary site of nutrient digestion and absorption, which plays a key role in the survival of neonatal calves. A comprehensive assessment of the phosphoproteomic changes in the small intestine of neonatal calves is unavailable; therefore, we used phosphopeptide enrichment coupled with liquid chromatography-tandem mass spectrometry to investigate the changes in the phosphoproteome profile in the bovine small intestine during the first 36 h of life. Twelve neonatal male calves were assigned to one of the following groups: (1) calves not fed colostrum and slaughtered approximately 2 h postpartum (n = 3), (2) calves fed colostrum at 1 to 2 h and slaughtered 8 h postpartum (n = 3), (3) calves fed 2 colostrum meals (at 1-2 and 10-12 h) and slaughtered 24 h postpartum (n = 3), (4) calves fed 3 colostrum meals (at 1-2, 10-12, and 22-24 h) and slaughtered 36 h postpartum (n = 3). Mid-duodenal, jejunal, and ileal samples of the calves were collected after slaughter. We identified 1,678 phosphoproteins with approximately 3,080 phosphosites, which were mainly Ser (89.9%), Thr (9.8%), and Tyr (0.3%) residues; they belonged to the prodirected (52.9%), basic (20.4%), acidic (16.6%), and Tyr-directed (1.7%) motif categories. The regional differentially expressed phosphoproteins included zonula occludens 2, sorting nexin 12, and protein kinase C, which are mainly associated with developmental processes, intracellular transport, vesicle-mediated transport, and immune system process. They are enriched in the endocytosis, tight junction, insulin signaling, and focal adhesion pathways. The temporal differentially expressed phosphoproteins included occludin, epsin 1, and bridging integrator 1, which were mainly associated with macromolecule metabolic process, cell adhesion, and growth. They were enriched in the spliceosomes, adherens junctions, and tight junctions. The observed changes in the phosphoproteins in the tissues of small intestine suggest the protein phosphorylation plays an important role in nutrient transport and immune response of calves during early life, which needs to be confirmed in a larger study.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - H Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - L F Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
7
|
L GB, JG H, I LT, M JM, P BÁ. The Sperm Olfactory Receptor OLFR601 is Dispensable for Mouse Fertilization. Front Cell Dev Biol 2022; 10:854115. [PMID: 35721474 PMCID: PMC9204177 DOI: 10.3389/fcell.2022.854115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Fertilization involves the fusion of two gametes by means of yet unknown membrane binding and fusion events. Over the last years, many sperm proteins have been uncovered to play essential roles in sperm-egg fusion in mammals, but their precise role in fertilization remains unknown, being unclear how these proteins interact with each other or with other yet unknown sperm proteins. The aim of this study has been to identify possible sperm proteins interacting with TMEM95, a protein essential for fertilization located in the sperm membrane. A list of 41 sperm proteins that were pulled down with TMEM95 and identified by mass spectrometry did not include other sperm proteins known to play a role in fertilization, suggesting an independent role of TMEM95 in fertilization. Between these lists, OLFR601 is allocated to the acrosomal region and may mediate affinity for an odorant involved in fertilization. However, Olfr601 disruption did not impair the sperm fertilization ability, suggesting that its function may be redundant with that of other sperm proteins.
Collapse
Affiliation(s)
| | - Hamzé JG
- Animal Reproduction Department, INIA-CSIC, Madrid, Spain
- Department of Cell Biology and Histology, Medical School, IMIB, University of Murcia, Murcia, Spain
| | | | - Jiménez-Movilla M
- Department of Cell Biology and Histology, Medical School, IMIB, University of Murcia, Murcia, Spain
- *Correspondence: Jiménez-Movilla M, ; Bermejo-Álvarez P,
| | - Bermejo-Álvarez P
- Animal Reproduction Department, INIA-CSIC, Madrid, Spain
- *Correspondence: Jiménez-Movilla M, ; Bermejo-Álvarez P,
| |
Collapse
|
8
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
9
|
Chatzi C, Westbrook GL. Revisiting I-BAR Proteins at Central Synapses. Front Neural Circuits 2022; 15:787436. [PMID: 34975417 PMCID: PMC8716821 DOI: 10.3389/fncir.2021.787436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 01/30/2023] Open
Abstract
Dendritic spines, the distinctive postsynaptic feature of central nervous system (CNS) excitatory synapses, have been studied extensively as electrical and chemical compartments, as well as scaffolds for receptor cycling and positioning of signaling molecules. The dynamics of the shape, number, and molecular composition of spines, and how they are regulated by neural activity, are critically important in synaptic efficacy, synaptic plasticity, and ultimately learning and memory. Dendritic spines originate as outward protrusions of the cell membrane, but this aspect of spine formation and stabilization has not been a major focus of investigation compared to studies of membrane protrusions in non-neuronal cells. We review here one family of proteins involved in membrane curvature at synapses, the BAR (Bin-Amphiphysin-Rvs) domain proteins. The subfamily of inverse BAR (I-BAR) proteins sense and introduce outward membrane curvature, and serve as bridges between the cell membrane and the cytoskeleton. We focus on three I-BAR domain proteins that are expressed in the central nervous system: Mtss2, MIM, and IRSp53 that promote negative, concave curvature based on their ability to self-associate. Recent studies suggest that each has distinct functions in synapse formation and synaptic plasticity. The action of I-BARs is also shaped by crosstalk with other signaling components, forming signaling platforms that can function in a circuit-dependent manner. We discuss another potentially important feature-the ability of some BAR domain proteins to impact the function of other family members by heterooligomerization. Understanding the spatiotemporal resolution of synaptic I-BAR protein expression and their interactions should provide insights into the interplay between activity-dependent neural plasticity and network rewiring in the CNS.
Collapse
Affiliation(s)
- Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Low expression of CIP4 in predicting worse overall survival: A potential biomarker for laryngeal cancer. PLoS One 2021; 16:e0253545. [PMID: 34570775 PMCID: PMC8475988 DOI: 10.1371/journal.pone.0253545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Previous reports indicate that Cdc42-interacting protein-4 (CIP4) has previously been reported to plays an important role in the progression of various cancers. However, its correlation with laryngeal cancer (LC) remains unreported. Data from TCGA and GEO databases were used to evaluate the role of CIP4 in LC. Based on GEO and TCGA datasets, we analyzed the differences in CIP4 expression between normal and tumor samples. The Wilcoxon signed-rank test was used to analyze the relationship between clinical features and CIP4. Cox regression and the Kaplan-Meier analyses were used to identify the clinical characteristics associated with the overall survival. Also, the GEPIA database was used to confirm the relationship between CIP4 and overall survival. Lastly, Gene Set Enrichment Analysis (GSEA) was performed based on the TCGA dataset. CIP4 expression in LC was significantly associated with gender and tumor stage (p-values<0.05). Similar to GEPIA validation, Kaplan-Meier survival analysis demonstrated that LC with CIP4-low exhibited a worse prognosis than that with CIP4-high. Univariate analysis revealed that CIP4-high significantly correlated with better overall survival (HR: 0.522, 95% CI: 0.293–0.830, P = 0.026). Besides, multivariate analysis revealed that CIP4 remained independently associated with the overall survival (HR: 0.61, 95% CI: 0.326–0.912, P = 0.012). GSEA showed that the p53, WNT signaling, TGF-β signaling pathways, etc. were enriched in a phenotype high CIP4 expression. In summary, the CIP4 gene is a potential prognostic molecular marker for patients diagnosed with laryngeal cancer. Moreover, the p53, WNT signaling, and TGF-β signaling pathways are potentially associated with CIP4 in LC.
Collapse
|
11
|
Francis D, Ghazanfar S, Havula E, Krycer JR, Strbenac D, Senior A, Minard AY, Geddes T, Nelson ME, Weiss F, Stöckli J, Yang JYH, James DE. Genome-wide analysis in Drosophila reveals diet-by-gene interactions and uncovers diet-responsive genes. G3-GENES GENOMES GENETICS 2021; 11:6287063. [PMID: 34568906 PMCID: PMC8496270 DOI: 10.1093/g3journal/jkab171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
Genetic and environmental factors play a major role in metabolic health. However, they do not act in isolation, as a change in an environmental factor such as diet may exert different effects based on an individual’s genotype. Here, we sought to understand how such gene–diet interactions influenced nutrient storage and utilization, a major determinant of metabolic disease. We subjected 178 inbred strains from the Drosophila genetic reference panel (DGRP) to diets varying in sugar, fat, and protein. We assessed starvation resistance, a holistic phenotype of nutrient storage and utilization that can be robustly measured. Diet influenced the starvation resistance of most strains, but the effect varied markedly between strains such that some displayed better survival on a high carbohydrate diet (HCD) compared to a high-fat diet while others had opposing responses, illustrating a considerable gene × diet interaction. This demonstrates that genetics plays a major role in diet responses. Furthermore, heritability analysis revealed that the greatest genetic variability arose from diets either high in sugar or high in protein. To uncover the genetic variants that contribute to the heterogeneity in starvation resistance, we mapped 566 diet-responsive SNPs in 293 genes, 174 of which have human orthologs. Using whole-body knockdown, we identified two genes that were required for glucose tolerance, storage, and utilization. Strikingly, flies in which the expression of one of these genes, CG4607 a putative homolog of a mammalian glucose transporter, was reduced at the whole-body level, displayed lethality on a HCD. This study provides evidence that there is a strong interplay between diet and genetics in governing survival in response to starvation, a surrogate measure of nutrient storage efficiency and obesity. It is likely that a similar principle applies to higher organisms thus supporting the case for nutrigenomics as an important health strategy.
Collapse
Affiliation(s)
- Deanne Francis
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shila Ghazanfar
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Essi Havula
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dario Strbenac
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Annabel Y Minard
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Geddes
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marin E Nelson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fiona Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Li X, Li J, Martinez EC, Froese A, Passariello CL, Henshaw K, Rusconi F, Li Y, Yu Q, Thakur H, Nikolaev VO, Kapiloff MS. Calcineurin Aβ-Specific Anchoring Confers Isoform-Specific Compartmentation and Function in Pathological Cardiac Myocyte Hypertrophy. Circulation 2020; 142:948-962. [PMID: 32611257 DOI: 10.1161/circulationaha.119.044893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of cardiac myocyte hypertrophy in disease. An unexplained paradox is how the β isoform of the calcineurin catalytic A-subunit (CaNAβ) is required for induction of pathological myocyte hypertrophy, despite calcineurin Aα expression in the same cells. It is unclear how the pleiotropic second messenger Ca2+ drives excitation-contraction coupling while not stimulating hypertrophy by calcineurin in the normal heart. Elucidation of the mechanisms conferring this selectivity in calcineurin signaling should reveal new strategies for targeting the phosphatase in disease. METHODS Primary adult rat ventricular myocytes were studied for morphology and intracellular signaling. New Förster resonance energy transfer reporters were used to assay Ca2+ and calcineurin activity in living cells. Conditional gene deletion and adeno-associated virus-mediated gene delivery in the mouse were used to study calcineurin signaling after transverse aortic constriction in vivo. RESULTS CIP4 (Cdc42-interacting protein 4)/TRIP10 (thyroid hormone receptor interactor 10) was identified as a new polyproline domain-dependent scaffold for CaNAβ2 by yeast 2-hybrid screen. Cardiac myocyte-specific CIP4 gene deletion in mice attenuated pressure overload-induced pathological cardiac remodeling and heart failure. Blockade of CaNAβ polyproline-dependent anchoring using a competing peptide inhibited concentric hypertrophy in cultured myocytes; disruption of anchoring in vivo using an adeno-associated virus gene therapy vector inhibited cardiac hypertrophy and improved systolic function after pressure overload. Live cell Förster resonance energy transfer biosensor imaging of cultured myocytes revealed that Ca2+ levels and calcineurin activity associated with the CIP4 compartment were increased by neurohormonal stimulation, but minimally by pacing. Conversely, Ca2+ levels and calcineurin activity detected by nonlocalized Förster resonance energy transfer sensors were induced by pacing and minimally by neurohormonal stimulation, providing functional evidence for differential intracellular compartmentation of Ca2+ and calcineurin signal transduction. CONCLUSIONS These results support a structural model for Ca2+ and CaNAβ compartmentation in cells based on an isoform-specific mechanism for calcineurin protein-protein interaction and localization. This mechanism provides an explanation for the specific role of CaNAβ in hypertrophy and its selective activation under conditions of pathologic stress. Disruption of CaNAβ polyproline-dependent anchoring constitutes a rational strategy for therapeutic targeting of CaNAβ-specific signaling responsible for pathological cardiac remodeling in cardiovascular disease deserving of further preclinical investigation.
Collapse
Affiliation(s)
- Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Kathryn Henshaw
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Francesca Rusconi
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| |
Collapse
|
14
|
Echarri A, Pavón DM, Sánchez S, García-García M, Calvo E, Huerta-López C, Velázquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lázaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA. An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 2019; 10:5828. [PMID: 31862885 PMCID: PMC6925243 DOI: 10.1038/s41467-019-13782-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling. Mechanical forces are sensed by cells and can alter plasma membrane properties, but biochemical changes underlying this are not clear. Here the authors show tension is sensed by c-Abl and FBP17, which couples changes in mechanical tension to remodelling of the plasma membrane and actin cytoskeleton.
Collapse
Affiliation(s)
- Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Dácil M Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - María García-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Carla Huerta-López
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Diana Velázquez-Carreras
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Lázaro-Carrillo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | - David De Sancho
- Departamento de Ciencia y Tecnología de Polímeros, Euskal Herriko Unibertsitatea, 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, 20018, Donostia-San Sebastián, Spain
| | - Jorge Alegre-Cebollada
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Robert G Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
15
|
RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3-GENES GENOMES GENETICS 2019; 9:1141-1151. [PMID: 30733382 PMCID: PMC6469413 DOI: 10.1534/g3.118.200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.
Collapse
|
16
|
Blue RE, Curry EG, Engels NM, Lee EY, Giudice J. How alternative splicing affects membrane-trafficking dynamics. J Cell Sci 2018; 131:jcs216465. [PMID: 29769303 PMCID: PMC6031328 DOI: 10.1242/jcs.216465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cell biology field has outstanding working knowledge of the fundamentals of membrane-trafficking pathways, which are of critical importance in health and disease. Current challenges include understanding how trafficking pathways are fine-tuned for specialized tissue functions in vivo and during development. In parallel, the ENCODE project and numerous genetic studies have revealed that alternative splicing regulates gene expression in tissues and throughout development at a post-transcriptional level. This Review summarizes recent discoveries demonstrating that alternative splicing affects tissue specialization and membrane-trafficking proteins during development, and examines how this regulation is altered in human disease. We first discuss how alternative splicing of clathrin, SNAREs and BAR-domain proteins influences endocytosis, secretion and membrane dynamics, respectively. We then focus on the role of RNA-binding proteins in the regulation of splicing of membrane-trafficking proteins in health and disease. Overall, our aim is to comprehensively summarize how trafficking is molecularly influenced by alternative splicing and identify future directions centered on its physiological relevance.
Collapse
Affiliation(s)
- R Eric Blue
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ennessa G Curry
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M Engels
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Labadorf A, Choi SH, Myers RH. Evidence for a Pan-Neurodegenerative Disease Response in Huntington's and Parkinson's Disease Expression Profiles. Front Mol Neurosci 2018; 10:430. [PMID: 29375298 PMCID: PMC5768647 DOI: 10.3389/fnmol.2017.00430] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Huntington's and Parkinson's Diseases (HD and PD) are neurodegenerative disorders that share some pathological features but are disparate in others. For example, while both diseases are marked by aberrant protein aggregation in the brain, the specific proteins that aggregate and types of neurons affected differ. A better understanding of the molecular similarities and differences between these two diseases may lead to a more complete mechanistic picture of both the individual diseases and the neurodegenerative process in general. We sought to characterize the common transcriptional signature of HD and PD as well as genes uniquely implicated in each of these diseases using mRNA-Seq data from post mortem human brains in comparison to neuropathologically normal controls. The enriched biological pathways implicated by HD differentially expressed genes show remarkable consistency with those for PD differentially expressed genes and implicate the common biological processes of neuroinflammation, apoptosis, transcriptional dysregulation, and neuron-associated functions. Comparison of the differentially expressed (DE) genes highlights a set of consistently altered genes that span both diseases. In particular, processes involving nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and transcription factor cAMP response element-binding protein (CREB) are the most prominent among the genes common to HD and PD. When the combined HD and PD data are compared to controls, relatively few additional biological processes emerge as significantly enriched, suggesting that most pathways are independently seen within each disorder. Despite showing comparable numbers of DE genes, DE genes unique to HD are enriched in far more coherent biological processes than the DE genes unique to PD, suggesting that PD may represent a more heterogeneous disorder. The complexity of the biological processes implicated by this analysis provides impetus for the development of better experimental models to validate the results.
Collapse
Affiliation(s)
- Adam Labadorf
- Bioinformatics Program, Boston University, Boston, MA, United States.,Department of Neurology, Boston University, Boston, MA, United States
| | - Seung H Choi
- Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Richard H Myers
- Bioinformatics Program, Boston University, Boston, MA, United States.,Department of Neurology, Boston University, Boston, MA, United States.,Biostatistics, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
18
|
Brüser L, Bogdan S. Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029140. [PMID: 28096264 DOI: 10.1101/cshperspect.a029140] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.
Collapse
Affiliation(s)
- Lena Brüser
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
19
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
20
|
Tonucci FM, Hidalgo F, Ferretti A, Almada E, Favre C, Goldenring JR, Kaverina I, Kierbel A, Larocca MC. Centrosomal AKAP350 and CIP4 act in concert to define the polarized localization of the centrosome and Golgi in migratory cells. J Cell Sci 2015. [PMID: 26208639 DOI: 10.1242/jcs.170878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.
Collapse
Affiliation(s)
- Facundo M Tonucci
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anabela Ferretti
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Evangelina Almada
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - James R Goldenring
- Department of Surgery, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín 1650, Buenos Aires, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
21
|
Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol 2015; 8:47. [PMID: 25956236 PMCID: PMC4437251 DOI: 10.1186/s13045-015-0144-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Collapse
Affiliation(s)
- Suxuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
23
|
Wang K, Song H, Jin M, Xiao H, Zhao G, Zou H, Yu L. Chronic alcohol consumption from adolescence to adulthood in mice--hypothalamic gene expression changes in insulin-signaling pathway. Alcohol 2014; 48:571-8. [PMID: 25088817 DOI: 10.1016/j.alcohol.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adolescence is a developmental stage vulnerable to alcohol drinking-related problems, and alcohol exposure during adolescence may lead to long-lasting consequences. The hypothalamus is a key brain region for food and water intake regulation as well as weight control, and is one of the alcohol-sensitive brain regions. However, it is not known what the alcohol effect is on the hypothalamus following adolescent alcohol intake, chronically over adolescent development, at moderate levels. We employed a model of chronic moderate alcohol intake from adolescence to adulthood in mice, and analyzed the effect of alcohol on growth and weight gain, as well as hypothalamic gene expression patterns. The results indicated that chronic alcohol consumption during adolescence, even at moderate levels, led to both a reduction in weight gain in mice, and considerable gene expression changes in the hypothalamus. Pathway analysis and real-time PCR identified the type II diabetes mellitus and the insulin-signaling pathways as being the hypothalamic pathways affected by chronic alcohol. Our findings from the mouse alcohol consumption study therefore serve as a potential warning against alcohol consumption during adolescence, such as in teens and college students.
Collapse
Affiliation(s)
- Ke Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Research Center for Biochip at Shanghai, Shanghai, China; Department of Cardiothoracic Surgery, Shu Guang Hospital Affiliated with the Shanghai Traditional Medicine University, Shanghai, China
| | - Huaiguang Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Research Center for Biochip at Shanghai, Shanghai, China
| | - Meilei Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huasheng Xiao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Research Center for Biochip at Shanghai, Shanghai, China
| | - Guoping Zhao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China; Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.
| | - Hong Zou
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Lei Yu
- Department of Genetics & Center of Alcohol Studies, Rutgers University, 607 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
The CDC42-Interacting Protein 4 Controls Epithelial Cell Cohesion and Tumor Dissemination. Dev Cell 2014; 30:553-68. [DOI: 10.1016/j.devcel.2014.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/17/2014] [Accepted: 08/06/2014] [Indexed: 01/14/2023]
|
25
|
CIP4 promotes lung adenocarcinoma metastasis and is associated with poor prognosis. Oncogene 2014; 34:3527-35. [PMID: 25174397 PMCID: PMC4978543 DOI: 10.1038/onc.2014.280] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/28/2022]
Abstract
Aberrant Epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC) is linked to tumor progression, metastasis, and poor survival rates. Here, we report the role of Cdc42-interacting protein 4 (CIP4) in the regulation of NSCLC cell invasiveness and tumor metastasis. CIP4 was highly expressed in a panel of NSCLC cell lines and normal lung epithelial cell lines. Stable knock-down (KD) of CIP4 in lung adenocarcinoma H1299 cells, expressing wild-type EGFR, led to increased EGFR levels on the cell surface, and defects in sustained activation of Erk kinase in H1299 cells treated with EGF. CIP4 localized to leading edge projections in NSCLC cells, and CIP4 KD cells displayed defects in EGF-induced cell motility and invasion through extracellular matrix. This correlated with reduced expression and activity of matrix metalloproteinase-2 (MMP-2) in CIP4 KD cells compared to control. In xenograft assays, CIP4 silencing had no effect on tumor growth, but resulted in significant defects in spontaneous metastases to the lungs from these subcutaneous tumors. This correlated with reduced expression of the Erk target gene Zeb1, and the Zeb1 target gene MMP-2 in CIP4 KD tumors compared to control. CIP4 also enhanced rates of metastasis to the liver and lungs in an intrasplenic experimental metastasis model. In human NSCLC tumor sections, CIP4 expression was elevated ≥ 2-fold in 43% of adenocarcinomas and 32% of squamous carcinomas compared to adjacent normal lung tissues. Analysis of microarray data for NSCLC patients also revealed that high CIP4 transcript levels correlated with reduced overall survival. Together, these results identify CIP4 as a positive regulator of NSCLC metastasis, and a potential poor prognostic biomarker in lung adenocarcinoma.
Collapse
|
26
|
Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6:a016964. [PMID: 24984778 DOI: 10.1101/cshperspect.a016964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe(3+), K(+)) or efflux (e.g., Na(+)) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
27
|
Differential protein–protein interactions of full length human FasL and FasL fragments generated by proteolysis. Exp Cell Res 2014; 320:290-301. [DOI: 10.1016/j.yexcr.2013.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/25/2013] [Accepted: 11/19/2013] [Indexed: 01/14/2023]
|
28
|
Cvrčková F. Formins and membranes: anchoring cortical actin to the cell wall and beyond. FRONTIERS IN PLANT SCIENCE 2013; 4:436. [PMID: 24204371 PMCID: PMC3817587 DOI: 10.3389/fpls.2013.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/13/2013] [Indexed: 05/03/2023]
Abstract
Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two - Class I and II - present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHO GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such "non-classical" formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.
Collapse
Affiliation(s)
- Fatima Cvrčková
- *Correspondence: Fatima Cvrčková, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43, Prague, Czech Republic e-mail:
| |
Collapse
|
29
|
CIP4 is required for the hypertrophic growth of neonatal cardiac myocytes. J Biomed Sci 2013; 20:56. [PMID: 23915320 PMCID: PMC3750294 DOI: 10.1186/1423-0127-20-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CIP4 is a scaffold protein that regulates membrane deformation and tubulation, organization of the actin cytoskeleton, endocytosis of growth factor receptors, and vesicle trafficking. Although expressed in the heart, CIP4 has not been studied with regards to its potential function in cardiac myocytes. RESULTS We now show using RNA interference that CIP4 expression in neonatal rat ventricular myocytes is required for the induction of non-mitotic, hypertrophic growth by the α-adrenergic agonist phenylephrine, the IL-6 cytokine leukemia inhibitor factor, and fetal bovine serum, as assayed using morphometry, immunocytochemistry for the hypertrophic marker atrial natriuretic factor and [3H]leucine incorporation for de novo protein synthesis. This requirement was consistent with the induction of CIP4 expression by hypertrophic stimulation. The inhibition of myocyte hypertrophy by CIP4 small interfering oligonucleotides (siRNA) was rescued by expression of a recombinant CIP4 protein, but not by a mutant lacking the N-terminal FCH domain responsible for CIP4 intracellular localization. CONCLUSIONS These results imply that CIP4 plays a significant role in the intracellular hypertrophic signal transduction network that controls the growth of cardiac myocytes in heart disease.
Collapse
|
30
|
Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 2013; 122:1695-706. [PMID: 23881916 DOI: 10.1182/blood-2013-03-484550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Megakaryocytes generate platelets through extensive reorganization of the cytoskeleton and plasma membrane. Cdc42 interacting protein 4 (CIP4) is an F-BAR protein that localizes to membrane phospholipids through its BAR domain and interacts with Wiskott-Aldrich Syndrome Protein (WASP) via its SRC homology 3 domain. F-BAR proteins promote actin polymerization and membrane tubulation. To study its function, we generated CIP4-null mice that displayed thrombocytopenia similar to that of WAS(-) mice. The number of megakaryocytes and their progenitors was not affected. However, the number of proplatelet protrusions was reduced in CIP4-null, but not WAS(-), megakaryocytes. Electron micrographs of CIP4-null megakaryocytes showed an altered demarcation membrane system. Silencing of CIP4, not WASP, expression resulted in fewer proplatelet-like extensions. Fluorescence anisotropy studies showed that loss of CIP4 resulted in a more rigid membrane. Micropipette aspiration demonstrated decreased cortical actin tension in megakaryocytic cells with reduced CIP4 or WASP protein. These studies support a new biophysical mechanism for platelet biogenesis whereby CIP4 enhances the complex, dynamic reorganization of the plasma membrane (WASP independent) and actin cortex network (as known for WASP and cortical actin) to reduce the work required for generating proplatelets. CIP4 is a new component in the highly coordinated system of megakaryocytic membrane and cytoskeletal remodeling affecting platelet production.
Collapse
|
31
|
Malet-Engra G, Viaud J, Ysebaert L, Farcé M, Lafouresse F, Laurent G, Gaits-Iacovoni F, Scita G, Dupré L. CIP4 controls CCL19-driven cell steering and chemotaxis in chronic lymphocytic leukemia. Cancer Res 2013; 73:3412-24. [PMID: 23644527 DOI: 10.1158/0008-5472.can-12-3564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solid tumor dissemination relies on the reprogramming of molecular pathways controlling chemotaxis. Whether the motility of nonsolid tumors such as leukemia depends on the deregulated expression of molecules decoding chemotactic signals remains an open question. We identify here the membrane remodeling F-BAR adapter protein Cdc42-interacting protein 4 (CIP4) as a key regulator of chemotaxis in chronic lymphocytic leukemia (CLL). CIP4 is expressed at abnormally high levels in CLL cells, where it is required for CCL19-induced chemotaxis. Upon CCL19 stimulation of CLL cells, CIP4 associates with GTP-bound Cdc42 and is recruited to the rear of the lamellipodium and along microspikes radiating through the lamellipodium. Consistent with its cellular distribution, CIP4 removal impairs both the assembly of the polarized lamellipodium and directional migration along a diffusible CCL19 gradient. Furthermore, CIP4 depletion results in decreased activation of WASP, but increased activation of PAK1 and p38 mitogen-activated protein kinase (MAPK). Notably, p38 MAPK inhibition results in impaired lamellipodium assembly and loss of directional migration. This suggests that CIP4 modulates both the WASP and p38 MAPK pathways to promote lamellipodium assembly and chemotaxis. Overall, our study reveals a critical role of CIP4 in mediating chemotaxis of CLL cells by controlling the dynamics of microspike-containing protrusions and cell steering.
Collapse
Affiliation(s)
- Gema Malet-Engra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen Y, Aardema J, Misra A, Corey SJ. BAR proteins in cancer and blood disorders. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:198-208. [PMID: 22773959 PMCID: PMC3388730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Remodeling of the membrane and cytoskeleton is involved in a wide range of normal and pathologic cellular function. These are complex, highly-coordinated biochemical and biophysical processes involving dozens of proteins. Serving as a scaffold for a variety of proteins and possessing a domain that interacts with plasma membranes, the BAR family of proteins contribute to a range of cellular functions characterized by membrane and cytoskeletal remodeling. There are several subgroups of BAR proteins: BAR, N-BAR, I-BAR, and F-BAR. They differ in their ability to induce angles of membrane curvature and in their recruitment of effector proteins. Evidence is accumulating that BAR proteins contribute to cancer cell invasion, T cell trafficking, phagocytosis, and platelet production. In this review, we discuss the physiological function of BAR proteins and discuss how they contribute to blood and cancer disorders.
Collapse
Affiliation(s)
- Yolande Chen
- Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicago, IL
| | - Jorie Aardema
- Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicago, IL
| | - Ashish Misra
- Division of Cardiology, Department of Medicine, Yale University School of MedicineNew Haven, CT, USA
| | - Seth J Corey
- Departments of Pediatrics and Cell & Molecular Biology, Children’s Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of MedicineChicago, IL
| |
Collapse
|
33
|
Oh E, Robinson I. Barfly: sculpting membranes at the Drosophila neuromuscular junction. Dev Neurobiol 2012; 72:33-56. [PMID: 21630471 DOI: 10.1002/dneu.20923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of a cell to change the shape of its membranes is intrinsic to many cellular functions. Proteins that can alter or recognize curved membrane structures and those that can act to recruit other proteins which stabilize the membrane curvature are likely to be essential in cell functions. The BAR (Bin, amphiphysin, RVS167 homology) domain is a protein domain that can either induce lipidic membranes to curve or can sense curved membranes. BAR domains are found in several proteins at neuronal synapses. We will review BAR domain structure and the role that BAR domain containing proteins play in regulating the morphology and function of the Drosophila neuromuscular junction. In flies the BAR domain containing proteins, endophilin and syndapin affect synaptic vesicle endocytosis, whereas CIP4, dRich, nervous wreck and syndapin affect synaptic morphology. We will review the growing evidence implicating mutations in BAR domain containing proteins being the cause of human pathologies.
Collapse
Affiliation(s)
- Eugene Oh
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
34
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
35
|
The F-BAR protein CIP4 inhibits neurite formation by producing lamellipodial protrusions. Curr Biol 2012; 22:494-501. [PMID: 22361215 DOI: 10.1016/j.cub.2012.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/22/2011] [Accepted: 01/19/2012] [Indexed: 02/01/2023]
Abstract
Neurite formation is a seminal event in the early development of neurons. However, little is known about the mechanisms by which neurons form neurites. F-BAR proteins function in sensing and inducing membrane curvature. Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, regulates endocytosis in a variety of cell types. However, there is little data on how CIP4 functions in neurons. Here we show that CIP4 plays a novel role in neuronal development by inhibiting neurite formation. Remarkably, CIP4 exerts this effect not through endocytosis, but by producing lamellipodial protrusions. In primary cortical neurons CIP4 is concentrated specifically at the tips of extending lamellipodia and filopodia, instead of endosomes as in other cell types. Overexpression of CIP4 results in lamellipodial protrusions around the cell body, subsequently delaying neurite formation and enlarging growth cones. These effects depend on the F-BAR and SH3 domains of CIP4 and on its ability to multimerize. Conversely, cortical neurons from CIP4-null mice initiate neurites twice as fast as controls. This is the first study to demonstrate that an F-BAR protein functions differently in neuronal versus nonneuronal cells and induces lamellipodial protrusions instead of invaginations or filopodia-like structures.
Collapse
|
36
|
Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J 2011; 30:4955-69. [PMID: 21926968 DOI: 10.1038/emboj.2011.339] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/23/2011] [Indexed: 02/03/2023] Open
Abstract
Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.
Collapse
Affiliation(s)
- Dennis Koch
- Institute of Biochemistry I, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|
38
|
Vranakis I, De Bock PJ, Papadioti A, Samoilis G, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A. Unraveling Persistent Host Cell Infection with Coxiella burnetii by Quantitative Proteomics. J Proteome Res 2011; 10:4241-51. [DOI: 10.1021/pr200422f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iosif Vranakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Pieter-Jan De Bock
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Anastasia Papadioti
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Georgios Samoilis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Yannis Tselentis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Georgios Tsiotis
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Anna Psaroulaki
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| |
Collapse
|
39
|
miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci 2011; 56:2009-16. [PMID: 21221794 DOI: 10.1007/s10620-010-1536-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/16/2010] [Indexed: 01/01/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a class of small (19-25 nucleotides) noncoding RNAs that regulate the expressions of a wide variety of genes, including some involved in cancer development. Some recent studies show that DNA methylation contributes to down-regulation of microRNA-137 (miR-137) during tumorigenesis. Whether down-regulation of miR-137 also exists in gastric cancer is unknown. AIM Our aim was to test the hypothesis that down-regulation of miR-137 also exists in gastric cancer. METHODS Expression of levels of miR-137 were examined using real-time PCR on paired gastric cancer and adjacent non-cancerous tissues. The methylation status is detected by MSP. RESULTS Results show that miR-137 is downregulated by hypermethylation of the promoter in gastric cancer tissues. Epigenetic silencing of miR-137 induced an up-regulation of its targets, Cdc42. Restoration of the miR-137 expression in gastric cancer cell lines downregulated the Cdc42 expression. Restoration of the miR-137 and inactivation of Cdc42 induce apoptosis and cell cycle G1 arrest in gastric cancer cells. Furthermore, the miR-137 expression was found to be inversely correlated with CDC42 expression in gastric caner. CONCLUSIONS miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42.
Collapse
|
40
|
Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124:679-83. [PMID: 21321325 DOI: 10.1242/jcs.064964] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Soon-Tuck Sit
- sGSK Group, A-Star Neuroscience Research Partnership, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | | |
Collapse
|
41
|
Hu J, Mukhopadhyay A, Truesdell P, Chander H, Mukhopadhyay UK, Mak AS, Craig AWB. Cdc42-interacting protein 4 is a Src substrate that regulates invadopodia and invasiveness of breast tumors by promoting MT1-MMP endocytosis. J Cell Sci 2011; 124:1739-51. [PMID: 21525036 DOI: 10.1242/jcs.078014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invadopodia are actin-rich membrane protrusions that promote extracellular matrix degradation and invasiveness of tumor cells. Src protein-tyrosine kinase is a potent inducer of invadopodia and tumor metastases. Cdc42-interacting protein 4 (CIP4) adaptor protein interacts with actin regulatory proteins and regulates endocytosis. Here, we show that CIP4 is a Src substrate that localizes to invadopodia in MDA-MB-231 breast tumor cells expressing activated Src (MDA-SrcYF). To probe the function of CIP4 in invadopodia, we established stable CIP4 knockdown in MDA-SrcYF cell lines by RNA interference. Compared with control cells, CIP4 knockdown cells degrade more extracellular matrix (ECM), have increased numbers of mature invadopodia and are more invasive through matrigel. Similar results are observed with knockdown of CIP4 in EGF-treated MDA-MB-231 cells. This inhibitory role of CIP4 is explained by our finding that CIP4 limits surface expression of transmembrane type I matrix metalloprotease (MT1-MMP), by promoting MT1-MMP internalization. Ectopic expression of CIP4 reduces ECM digestion by MDA-SrcYF cells, and this activity is enhanced by mutation of the major Src phosphorylation site in CIP4 (Y471). Overall, our results identify CIP4 as a suppressor of Src-induced invadopodia and invasion in breast tumor cells by promoting endocytosis of MT1-MMP.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6 Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Sandvig K, Pust S, Skotland T, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 2011; 23:413-20. [PMID: 21466956 DOI: 10.1016/j.ceb.2011.03.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 12/17/2022]
Abstract
It is now about 20 years since we first wrote reviews about clathrin-independent endocytosis. The challenge at the time was to convince the reader about its existence. Then the suggestion came up that caveolae might be responsible for the uptake. However, clearly this could not be the case since a large fraction of the clathrin-independent uptake is dynamin-independent. Today, two decades later, the field has developed considerably. New techniques have enabled a detailed analysis of several clathrin-independent endocytic mechanisms, and caveolae have been found to be mostly stable structures having several functions of their own. This article aims at providing a brief update on the importance of clathrin-independent endocytic mechanisms, how the processes are regulated differentially, for instance on the poles of polarized cells, and the challenges in studying them.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
43
|
Hsu CC, Leu YW, Tseng MJ, Lee KD, Kuo TY, Yen JY, Lai YL, Hung YC, Sun WS, Chen CM, Chu PY, Yeh KT, Yan PS, Chang YS, Huang THM, Hsiao SH. Functional characterization of Trip10 in cancer cell growth and survival. J Biomed Sci 2011; 18:12. [PMID: 21299869 PMCID: PMC3044094 DOI: 10.1186/1423-0127-18-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 02/07/2011] [Indexed: 01/10/2023] Open
Abstract
Background The Cdc42-interacting protein-4, Trip10 (also known as CIP4), is a multi-domain adaptor protein involved in diverse cellular processes, which functions in a tissue-specific and cell lineage-specific manner. We previously found that Trip10 is highly expressed in estrogen receptor-expressing (ER+) breast cancer cells. Estrogen receptor depletion reduced Trip10 expression by progressively increasing DNA methylation. We hypothesized that Trip10 functions as a tumor suppressor and may be involved in the malignancy of ER-negative (ER-) breast cancer. To test this hypothesis and evaluate whether Trip10 is epigenetically regulated by DNA methylation in other cancers, we evaluated DNA methylation of Trip10 in liver cancer, brain tumor, ovarian cancer, and breast cancer. Methods We applied methylation-specific polymerase chain reaction and bisulfite sequencing to determine the DNA methylation of Trip10 in various cancer cell lines and tumor specimens. We also overexpressed Trip10 to observe its effect on colony formation and in vivo tumorigenesis. Results We found that Trip10 is hypermethylated in brain tumor and breast cancer, but hypomethylated in liver cancer. Overexpressed Trip10 was associated with endogenous Cdc42 and huntingtin in IMR-32 brain tumor cells and CP70 ovarian cancer cells. However, overexpression of Trip10 promoted colony formation in IMR-32 cells and tumorigenesis in mice inoculated with IMR-32 cells, whereas overexpressed Trip10 substantially suppressed colony formation in CP70 cells and tumorigenesis in mice inoculated with CP70 cells. Conclusions Trip10 regulates cancer cell growth and death in a cancer type-specific manner. Differential DNA methylation of Trip10 can either promote cell survival or cell death in a cell type-dependent manner.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proc Natl Acad Sci U S A 2010; 107:16252-6. [PMID: 20805498 DOI: 10.1073/pnas.1002747107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The F-BAR domain containing protein CIP4 (Cdc42 interacting protein 4) interacts with Cdc42 and WASP/N-WASP and is thought to participate in the assembly of filamentous actin. CIP4(-/-) mice had normal T- and B-lymphocyte development but impaired T cell-dependent antibody production, IgG antibody affinity maturation, and germinal center (GC) formation, despite an intact CD40L-CD40 axis. CIP4(-/-) mice also had impaired contact hypersensitivity (CHS) to haptens, and their T cells failed to adoptively transfer CHS. Ovalbumin-activated CD4(+) effector T cells from CIP4(-/-)/OT-II mice migrated poorly to antigen-challenged skin. Activated CIP4(-/-) T cells exhibited impaired adhesion and polarization on immobilized VCAM-1 and ICAM-1 and defective arrest and transmigration across murine endothelial cell monolayers under shear flow conditions. These results demonstrate an important role for CIP4 in integrin-dependent T cell-dependent antibody responses and GC formation and in integrin-mediated recruitment of effector T cells to cutaneous sites of antigen-driven immune reactions.
Collapse
|
45
|
Suetsugu S. The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins. J Biochem 2010; 148:1-12. [PMID: 20435640 DOI: 10.1093/jb/mvq049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plasma membrane, the outermost surface of eukaryotic cells, contains various substructures, such as protrusions or invaginations, which are associated with diverse functions, including endocytosis and cell migration. These structures of the plasma membrane can be considered as tubules or inverted tubules (protrusions) of the membrane. There are six modes of membrane curvature at the plasma membrane, which are classified by the positive or negative curvature and the location of the curvature (tip, neck or shaft of the tubules). The BAR domain superfamily proteins have structurally determined positive and negative curvatures of membrane contact at their BAR, F-BAR and I-BAR domains, which generate and maintain such curved membranes by binding to the membrane. Importantly, the SH3 domains of the BAR domain superfamily proteins bind to the actin regulatory WASP/WAVE proteins, and the BAR/F-BAR/I-BAR domain-SH3 unit could orient the actin filaments towards the membrane for each subcellular structure. These membrane tubulations are also considered to function in membrane fusion and fission.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|