1
|
Zhang B, Zhang W, He Y, Ma X, Li M, Jiang Q, Loor JJ, Lv X, Yang W, Xu C. Store-operated Ca 2+ entry-sensitive glycolysis regulates neutrophil adhesion and phagocytosis in dairy cows with subclinical hypocalcemia. J Dairy Sci 2023; 106:7131-7146. [PMID: 37164848 DOI: 10.3168/jds.2022-22709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Hypocalcemia in dairy cows is associated with a decrease of neutrophil adhesion and phagocytosis, an effect driven partly by changes in the expression of store-operated Ca2+ entry (SOCE)-related molecules. It is well established in nonruminants that neutrophils obtain the energy required for immune function through glycolysis. Whether glycolysis plays a role in the acquisition of energy by neutrophils during hypocalcemia in dairy cows is unknown. To address this relationship, we performed a cohort study and then a clinical trial. Neutrophils were isolated at 2 d postcalving from lactating Holstein dairy cows (average 2.83 ± 0.42 lactations, n = 6) diagnosed as clinically healthy (CON) or with plasma concentrations of Ca2+ <2.0 mmol/L as a criterion for diagnosing subclinical hypocalcemia (HYP, average 2.83 ± 0.42 lactations, n = 6). In the first experiment, neutrophils were isolated from blood of CON and HYP cows and used to analyze aspects of adhesion and phagocytosis function through quantitative reverse-transcription PCR along with confocal laser scanning microscopy, mRNA expression of the glycolysis-related gene hexokinase 2 (HKII), and components of the SOCE moiety ORAI calcium release-activated calcium modulator 1 (ORAI1, ORAI2, ORAI3, stromal interaction molecule 1 [STIM1], and STIM2). Results showed that adhesion and phagocytosis function were reduced in HYP cows. The mRNA expression of adhesion-related syndecan-4 (SDC4), integrin β9 (ITGA9), and integrin β3 (ITGB3) and phagocytosis-related molecules complement component 1 R subcomponent (C1R), CD36, tubulinß1 (TUBB1) were significantly decreased in the HYP group. In the second experiment, to address how glycolysis affects neutrophil adhesion and phagocytosis, neutrophils isolated from CON and HYP cows were treated with 2 μM HKII inhibitor benserazide-d3 or 1 μM fructose-bisphosphatase 1 (FBP1) inhibitor MB05032 for 1 h. Results revealed that the HKII inhibitor benserazide-d3 reduced phagocytosis and the mRNA abundance of ITGA9, and CD36 in the HYP group. The FBP1 inhibitor MB05032 increased adhesion and phagocytosis and increased mRNA abundance of HKII, ITGA9, and CD36 in the HYP group. Finally, to investigate the mechanism whereby SOCE-sensitive glycolysis affects neutrophil adhesion and phagocytosis, isolated neutrophils were treated with 1 μM SOCE activator thapsigargin or 50 μM inhibitor 2-APB for 1 h. Results showed that thapsigargin increased mRNA abundance of HKII, ITGA9, and CD36, and increased adhesion and phagocytosis in the HYP group. In contrast, 2-APB decreased mRNA abundance of HKII and both adhesion and phagocytosis of neutrophils in the CON group. Overall, the data indicated that SOCE-sensitive intracellular Ca2+ levels affect glycolysis and help regulate adhesion and phagocytosis of neutrophils during hypocalcemia in dairy cows.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxin He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
2
|
Carvelli L, Hermo L, O’Flaherty C, Oko R, Pshezhetsky AV, Morales CR. Effects of Heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) inactivation on the structure and function of epithelial and immune cells of the testis and epididymis and sperm parameters in adult mice. PLoS One 2023; 18:e0292157. [PMID: 37756356 PMCID: PMC10529547 DOI: 10.1371/journal.pone.0292157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.
Collapse
Affiliation(s)
- Lorena Carvelli
- IHEM-CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Cristian O’Flaherty
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Surgery (Urology Division), McGill University, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Alexey V. Pshezhetsky
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Lu H, Zuo L, Roddick KM, Zhang P, Oku S, Garden J, Ge Y, Bellefontaine M, Delhaye M, Brown RE, Craig AM. Alternative splicing and heparan sulfation converge on neurexin-1 to control glutamatergic transmission and autism-related behaviors. Cell Rep 2023; 42:112714. [PMID: 37384525 DOI: 10.1016/j.celrep.2023.112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/16/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Neurexin synaptic organizing proteins are central to a genetic risk pathway in neuropsychiatric disorders. Neurexins also exemplify molecular diversity in the brain, with over a thousand alternatively spliced forms and further structural heterogeneity contributed by heparan sulfate glycan modification. Yet, interactions between these modes of post-transcriptional and post-translational modification have not been studied. We reveal that these regulatory modes converge on neurexin-1 splice site 5 (S5): the S5 insert increases the number of heparan sulfate chains. This is associated with reduced neurexin-1 protein level and reduced glutamatergic neurotransmitter release. Exclusion of neurexin-1 S5 in mice boosts neurotransmission without altering the AMPA/NMDA ratio and shifts communication and repetitive behavior away from phenotypes associated with autism spectrum disorders. Thus, neurexin-1 S5 acts as a synaptic rheostat to impact behavior through the intersection of RNA processing and glycobiology. These findings position NRXN1 S5 as a potential therapeutic target to restore function in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hong Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Long Zuo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jessica Garden
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Michael Bellefontaine
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
4
|
Lovett BM, Hill KE, Randolph EM, Wang L, Schwarzbauer JE. Nucleation of fibronectin fibril assembly requires binding between heparin and the 13th type III module of fibronectin. J Biol Chem 2023; 299:104622. [PMID: 36933809 PMCID: PMC10124947 DOI: 10.1016/j.jbc.2023.104622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Fibronectin (FN), a critical component of the extracellular matrix, is assembled into fibrils through a cell-mediated process. Heparan sulfate (HS) binds to the III13 module of FN, and fibroblasts lacking this glycosaminoglycan exhibit reduced FN fibril assembly. To determine if HS depends on III13 to control FN assembly, we deleted both III13 alleles in NIH 3T3 cells using the CRISPR-Cas9 system. ΔIII13 cells assembled fewer FN matrix fibrils and less DOC-insoluble FN matrix than wildtype cells. Little if any mutant FN matrix was assembled when purified ΔIII13 FN was provided to Chinese hamster ovary (CHO) cells, showing that lack of III13 caused the deficiency in assembly by ΔIII13 cells. Addition of heparin promoted the assembly of wildtype FN by CHO cells, but it had no effect on the assembly of ΔIII13 FN. Furthermore, heparin binding stabilized the folded conformation of III13 and prevented it from self-associating with increasing temperature suggesting that stabilization by HS/heparin binding might regulate interactions between III13 and other FN modules. This effect would be particularly important at matrix assembly sites where our data show that ΔIII13 cells require both exogenous wildtype FN and heparin in the culture medium to maximize assembly site formation. Our results show that heparin-promoted growth of fibril nucleation sites is dependent on III13. We conclude that HS/heparin binds to III13 to promote and control the nucleation and development of FN fibrils.
Collapse
Affiliation(s)
- Benjamin M Lovett
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Katherine E Hill
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ellie M Randolph
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Luqiong Wang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
5
|
Mead TJ. ADAMTS6: Emerging roles in cardiovascular, musculoskeletal and cancer biology. Front Mol Biosci 2022; 9:1023511. [DOI: 10.3389/fmolb.2022.1023511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
ADAMTS family members control mammalian development and disease, primarily through their function as proteases, by regulation of extracellular matrix composition. Until recently, ADAMTS6 was known as one of the orphan proteinases of the nineteen-member family with a relatively unknown expression pattern and function. Emerging focus on this enzyme has started to uncover these unknowns and revealed a vast importance and requirement of ADAMTS6 in cardiovascular and musculoskeletal development. In addition, ADAMTS6 has been linked to numerous disease settings including several types of cancer. This review summarizes the necessity of ADAMTS6 during development, its role in disease and requirement for essential prospective studies to fully realize its biological implications and potential for therapeutic intervention.
Collapse
|
6
|
Marques C, Poças J, Gomes C, Faria-Ramos I, Reis CA, Vivès RR, Magalhães A. Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates Heparan Sulfate biosynthesis and shapes gastric cancer cell motility and invasion. J Biol Chem 2022; 298:102546. [PMID: 36181793 DOI: 10.1016/j.jbc.2022.102546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are abundant glycoconjugates in cells' glycocalyx and Extracellular Matrix (ECM). By acting as scaffolds for protein-protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell-ECM crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood. In this study, we established glycoengineered gastric cancer cell models lacking either Exostosin Like glycosyltransferase 2 (EXTL2) or EXTL3, and revealed their regulatory roles in both Heparan Sulfate (HS) and Chondroitin Sulfate (CS) biosynthesis and structural features. We showed that EXTL3 is key for initiating the synthesis of HS chains in detriment of CS biosynthesis, intervening in the fine-tuned balance of the HS/CS ratio in cells, while EXTL2 functions as a negative regulator of HS biosynthesis, with impact over the glycoproteome of gastric cancer cells. We demonstrated that knock-out of EXTL2 enhanced HS levels along with concomitant upregulation of Syndecan-4, which is a major cell-surface carrier of HS. This aberrant HS expression profile promoted a more aggressive phenotype, characterized by higher cellular motility and invasion, and impaired activation of Ephrin type-A 4 cell surface receptor tyrosine kinase. Our findings uncover the biosynthetic roles of EXTL2 and EXTL3 in the regulation of cancer cell GAGosylation and proteoglycans expression, and unravel the functional consequences of aberrant HS/CS balance in cellular malignant features.
Collapse
Affiliation(s)
- Catarina Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Juliana Poças
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Isabel Faria-Ramos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Gopal S, Amran A, Elton A, Ng L, Pocock R. A somatic proteoglycan controls Notch-directed germ cell fate. Nat Commun 2021; 12:6708. [PMID: 34795288 PMCID: PMC8602670 DOI: 10.1038/s41467-021-27039-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
Communication between the soma and germline optimizes germ cell fate programs. Notch receptors are key determinants of germ cell fate but how somatic signals direct Notch-dependent germ cell behavior is undefined. Here we demonstrate that SDN-1 (syndecan-1), a somatic transmembrane proteoglycan, controls expression of the GLP-1 (germline proliferation-1) Notch receptor in the Caenorhabditis elegans germline. We find that SDN-1 control of a somatic TRP calcium channel governs calcium-dependent binding of an AP-2 transcription factor (APTF-2) to the glp-1 promoter. Hence, SDN-1 signaling promotes GLP-1 expression and mitotic germ cell fate. Together, these data reveal SDN-1 as a putative communication nexus between the germline and its somatic environment to control germ cell fate decisions.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800, Australia.
| | - Aqilah Amran
- grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800 Australia
| | - Andre Elton
- grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800 Australia
| | - Leelee Ng
- grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800 Australia
| | - Roger Pocock
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
8
|
Herman K, Zemła J, Ptak A, Lekka M. Single-molecule force spectroscopy reveals structural differences of heparan sulfate chains during binding to vitronectin. Phys Rev E 2021; 104:024409. [PMID: 34525582 DOI: 10.1103/physreve.104.024409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
The syndecans represent an ongoing research field focused on their regulatory roles in normal and pathological conditions. The role of syndecans in cancer progression is well documented, implicating their importance in diagnosis and even proposing various potential cancer treatments. Thus, the characterization of the unbinding properties at the single-molecule level will appeal to their use as targets for therapeutics. In our study, syndecan-1 and syndecan-4 were measured during the interaction with the vitronectin HEP II binding site. Our findings show that syndecans are calcium ion dependent molecules that reveal distinct, unbinding properties indicating the alterations in the structure of heparan sulfate (HS) chains, possibly in the chain sequence or sulfation pattern. In this way, we suppose that HS chain affinity to extracellular matrix proteins may govern cancer invasion by altering the syndecans' ability to interact with cancer-related receptors present in the tumor microenvironment, thereby promoting the activation of various signaling cascades regulating tumor cell behavior.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| |
Collapse
|
9
|
Tsai AYL, Iwamoto Y, Tsumuraya Y, Oota M, Konishi T, Ito S, Kotake T, Ishikawa H, Sawa S. Root-knot nematode chemotaxis is positively regulated by l-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I. SCIENCE ADVANCES 2021; 7:eabh4182. [PMID: 34215589 PMCID: PMC11060035 DOI: 10.1126/sciadv.abh4182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Root-knot nematodes (RKNs) are plant parasites and major agricultural pests. RKNs are thought to locate hosts through chemotaxis by sensing host-secreted chemoattractants; however, the structures and properties of these attractants are not well understood. Here, we describe a previously unknown RKN attractant from flaxseed mucilage that enhances infection of Arabidopsis and tomato, which resembles the pectic polysaccharide rhamnogalacturonan-I (RG-I). Fucose and galactose sidechains of the purified attractant were found to be required for attractant activity. Furthermore, the disaccharide α-l-galactosyl-1,3-l-rhamnose, which forms the linkage between the RG-I backbone and galactose sidechains of the purified attractant, was sufficient to attract RKN. These results show that the α-l-galactosyl-1,3-l-rhamnose linkage in the purified attractant from flaxseed mucilage is essential for RKN attraction. The present work also suggests that nematodes can detect environmental chemicals with high specificity, such as the presence of chiral centers and hydroxyl groups.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yuka Iwamoto
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Morihiro Oota
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hayato Ishikawa
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.
- International Research Center for Agricultural and Environmental Biology, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Karampoor S, Zahednasab H, Farahmand M, Mirzaei R, Zamani F, Tabibzadeh A, Bouzari B, Ajdarkosh H, Nikkhah M, Hashemi MR, Laali A, Keyvani H. A possible pathogenic role of Syndecan-1 in the pathogenesis of coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2021; 97:107684. [PMID: 33932696 PMCID: PMC8052477 DOI: 10.1016/j.intimp.2021.107684] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
A cell-surface heparan proteoglycan called Syndecan-1 (SDC-1) has multiple roles in healthy and pathogenic conditions, including respiratory viral infection. In this study, we explore the dynamic alternation in the levels of SDC-1 in cases with COVID-19. A total of 120 cases definitely diagnosed with COVID-19 were admitted to the Firoozgar Hospital, Tehran, Iran, from December 1, 2020, to January 29, 2021, and included in our study. Also, 58 healthy subjects (HS) were chosen as the control group. Patients were classified into two groups: 1) ICU patients and (63 cases) 2) non-ICU patients (57 cases). The dynamic changes of serum SCD-1, CRP, IL-6, IL-10, IL-18, and Vit D levels a well as the disease activity were investigated in three-time points (T1-T3). Our results indicated that the COVID-19 patients had significantly increased SCD-1, CRP, IL-6, IL-10, and IL-18 levels than in HS, while the Vit D levels in COVID-19 patients were significantly lower than HS. Further analysis demonstrated that the SCD-1, CRP, IL-6, IL-10, and IL-18 levels in ICU patients were significantly higher than in non-ICU patients. Tracking dynamic changes in the above markers indicated that on the day of admission, the SCD-1, CRP, IL-6, IL-10, and IL-18 levels were gradually increased on day 5 (T2) and then gradually decreased on day 10 (T3). ROC curve analysis suggests that markers mentioned above, SDC-1, IL-6, and IL-18 are valuable indicators in evaluating the activity of COVID-19. All in all, it seems that the serum SDC-1 levels alone or combined with other markers might be a good candidate for disease activity monitoring.
Collapse
Affiliation(s)
- Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahmand
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikkhah
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Razavi Hashemi
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Laali
- Department of Infectious Disease, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
12
|
Shamdani S, Chantepie S, Flageollet C, Henni-Chebra N, Jouan Y, Eymard F, Hay E, Cohen-Solal M, Papy-Garcia D, Chevalier X, Albanese P. Heparan sulfate functions are altered in the osteoarthritic cartilage. Arthritis Res Ther 2020; 22:283. [PMID: 33287871 PMCID: PMC7722421 DOI: 10.1186/s13075-020-02352-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Heparan sulfate (HS) proteoglycans (PG) may be found at the chondrocyte surface and in the pericellular cartilage matrix, and are involved in cell-cell and cell-matrix interactions. An important function of HS chains is to regulate cell fate through specific interactions with heparin-binding proteins (HBP) modulated by their complex sulfation pattern. Osteoarthritis (OA) is a joint disorder characterized by the degradation of articular cartilaginous extracellular matrix. The aim of this study was to investigate HS structure and functions in osteoarthritic cartilages compared to normal cartilages (controls). METHODS Glycosaminoglycans (GAG) were extracted from human macroscopically normal cartilages (controls, n = 7) and (OA cartilages n = 11). HS were isolated and quantified using the DMMB quantification method. Their structure and functions were then compared using respectively a HPLC analysis and HBP binding tests and their phenotypic effects on murine chondrocytes were studied by RQ-PCR. Statistical analyzes were performed using a one-way ANOVA followed by a Dunnett's test or a t test for pairwise comparisons. RESULTS In OA, HS were characterized by increased sulfation levels compared to controls. Moreover, the capacity of these HS to bind HBP involved in the OA pathophysiological process such as FGF2 and VEGF was reduced. Chondroitin sulfates and keratan sulfates regulated these binding properties. Finally, HS from OA cartilages induced the mRNA levels of catabolic markers such as MMP3, MMP13, and TS4 and inhibited the mRNA levels of anabolic markers such as COL2, ACAN, SOX9, and VEGF in murine articular chondrocytes. CONCLUSION The sulfation of HS chains was increased in OA cartilages with changes in HBP binding properties and biological effects on chondrocyte phenotypes. Thus, modified HS present in altered cartilages could be a novel therapeutic target in OA.
Collapse
Affiliation(s)
- Sara Shamdani
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Sandrine Chantepie
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Camille Flageollet
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Nadia Henni-Chebra
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Yohann Jouan
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré,, Creteil, F-94010, France.,BIOSCAR Inserm U1132, Université de Paris, F-75010, Paris, France
| | - Florent Eymard
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France.,INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, Créteil, 75010, France
| | - Eric Hay
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré,, Creteil, F-94010, France.,BIOSCAR Inserm U1132, Université de Paris, F-75010, Paris, France
| | - Martine Cohen-Solal
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré,, Creteil, F-94010, France.,BIOSCAR Inserm U1132, Université de Paris, F-75010, Paris, France.,Université de Paris (UFR de Médecine), Paris, 75010, France
| | - Dulce Papy-Garcia
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Xavier Chevalier
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France.,INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, Créteil, 75010, France
| | - Patricia Albanese
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France.
| |
Collapse
|
13
|
Ravikumar M, Smith RAA, Nurcombe V, Cool SM. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol 2020; 8:581213. [PMID: 33330458 PMCID: PMC7710810 DOI: 10.3389/fcell.2020.581213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an evolutionarily ancient subclass of glycoproteins with exquisite structural complexity. They are ubiquitously expressed across tissues and have been found to exert a multitude of effects on cell behavior and the surrounding microenvironment. Evidence has shown that heterogeneity in HSPG composition is crucial to its functions as an essential scaffolding component in the extracellular matrix as well as a vital cell surface signaling co-receptor. Here, we provide an overview of the significance of HSPGs as essential regulators of stem cell function. We discuss the various roles of HSPGs in distinct stem cell types during key physiological events, from development through to tissue homeostasis and regeneration. The contribution of aberrant HSPG production to altered stem cell properties and dysregulated cellular homeostasis characteristic of cancer is also reviewed. Finally, we consider approaches to better understand and exploit the multifaceted functions of HSPGs in influencing stem cell characteristics for cell therapy and associated culture expansion strategies.
Collapse
Affiliation(s)
- Maanasa Ravikumar
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Alexander Alfred Smith
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Extensive serum biomarker analysis before and after treatment in healing of diabetic foot ulcers using a cytokine antibody array. Cytokine 2020; 133:155173. [DOI: 10.1016/j.cyto.2020.155173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/21/2023]
|
15
|
Rønning SB, Carlson CR, Aronsen JM, Pisconti A, Høst V, Lunde M, Liland KH, Sjaastad I, Kolset SO, Christensen G, Pedersen ME. Syndecan-4 -/- Mice Have Smaller Muscle Fibers, Increased Akt/mTOR/S6K1 and Notch/HES-1 Pathways, and Alterations in Extracellular Matrix Components. Front Cell Dev Biol 2020; 8:730. [PMID: 32850844 PMCID: PMC7411008 DOI: 10.3389/fcell.2020.00730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Extracellular matrix (ECM) remodeling is essential for skeletal muscle development and adaption in response to environmental cues such as exercise and injury. The cell surface proteoglycan syndecan-4 has been reported to be essential for muscle differentiation, but few molecular mechanisms are known. Syndecan-4–/– mice are unable to regenerate damaged muscle, and display deficient satellite cell activation, proliferation, and differentiation. A reduced myofiber basal lamina has also been reported in syndecan-4–/– muscle, indicating possible defects in ECM production. To get a better understanding of the underlying molecular mechanisms, we have here investigated the effects of syndecan-4 genetic ablation on molecules involved in ECM remodeling and muscle growth, both under steady state conditions and in response to exercise. Methods Tibialis anterior (TA) muscles from sedentary and exercised syndecan-4–/– and WT mice were analyzed by immunohistochemistry, real-time PCR and western blotting. Results Compared to WT, we found that syndecan-4–/– mice had reduced body weight, reduced muscle weight, muscle fibers with a smaller cross-sectional area, and reduced expression of myogenic regulatory transcription factors. Sedentary syndecan-4–/– had also increased mRNA levels of syndecan-2, decorin, collagens, fibromodulin, biglycan, and LOX. Some of these latter ECM components were reduced at protein level, suggesting them to be more susceptible to degradation or less efficiently translated when syndecan-4 is absent. At the protein level, TRPC7 was reduced, whereas activation of the Akt/mTOR/S6K1 and Notch/HES-1 pathways were increased. Finally, although exercise induced upregulation of several of these components in WT, a further upregulation of these molecules was not observed in exercised syndecan-4–/– mice. Conclusion Altogether our data suggest an important role of syndecan-4 in muscle development.
Collapse
Affiliation(s)
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | | | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kristian Hovde Liland
- Nofima AS, Ås, Norway.,Faculty of Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Svein Olav Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | | |
Collapse
|
16
|
Chronopoulos A, Thorpe SD, Cortes E, Lachowski D, Rice AJ, Mykuliak VV, Róg T, Lee DA, Hytönen VP, Del Río Hernández AE. Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway. NATURE MATERIALS 2020; 19:669-678. [PMID: 31907416 PMCID: PMC7260055 DOI: 10.1038/s41563-019-0567-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/19/2019] [Indexed: 05/24/2023]
Abstract
Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and β1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/β1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.
Collapse
Affiliation(s)
- Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Stephen D Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Alistair J Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - David A Lee
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
17
|
Abstract
Syndecans are transmembrane proteoglycans with heparan and chondroitin sulfate chains attached to their extracellular domain. Like many proteoglycans, they interact with a large number of ligands, such as growth factors, adhesion receptors, soluble small molecules, proteinases, and other extracellular matrix proteins to initiate downstream signaling pathways. Syndecans play a major role in inflammation, mainly by regulating leukocyte extravasation and cytokine function. At the same time, syndecans can undergo cytokine mediated changes in their expression levels during inflammation. The function of syndecans during inflammation appears to depend on the stage of inflammation, sulfation of heparan/chondroitin sulfate chains, the rate of ectodomain shedding and the solubility of the ectodomains. From the current literature, it is clear that syndecans are not only involved in the initial recruitment of pro-inflammatory molecules but also in establishing a balanced progression of inflammation. This review will summarize how cell surface and soluble syndecans regulate multiple aspects of inflammation.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Calcium in Cell-Extracellular Matrix Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1079-1102. [PMID: 31646546 DOI: 10.1007/978-3-030-12457-1_43] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.
Collapse
|
19
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
20
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
21
|
|
22
|
Wu ZL, Huang X, Ethen CM, Tatge T, Pasek M, Zaia J. Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase. Glycobiology 2018; 27:518-524. [PMID: 28025251 DOI: 10.1093/glycob/cww130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide found in the extracellular matrix (ECM) and on the cell membrane. It plays numerous roles in cellular events, including cell growth, migration and differentiation through binding to various growth factors, cytokines and other ECM proteins. Heparanase (HPSE) is an endoglycosidase that cleaves HS in the ECM and cell membrane. By degrading HS, HPSE not only alters the integrity of the ECM but also releases growth factors and angiogenic factors bound to HS chains, therefore, changes various cellular activities, including cell mobility that is critical for cancer metastasis. Accordingly, HPSE is an ideal drug target for cancer therapeutics. Here, we describe a method for non-reducing end labeling of HS via click chemistry (CC), and further use it in a novel HPSE assay. HS chains on a recombinant human syndecan-4 are first labeled at their non-reducing ends with GlcNAz using dimeric HS polymerase EXT1/EXT2. The labeled sample is then biotinylated through CC, immobilized on a multi-well plate and detected with ELISA. HPSE digestion of the biotinylated sample removes the label and, therefore, reduces the signal in ELISA assay. Non-reducing end labeling avoids the interference in an HPSE reaction caused by any internal labeling of HS. The assay is very sensitive with only 2.5 ng of labeled syndecan-4 needed in each reaction. The assay is also highly reproducible with a Z' > 0.6. Overall, this new method is suitable for high-throughput drug screening on HPSE.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Xinyi Huang
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Cheryl M Ethen
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Timothy Tatge
- Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA
| | - Marta Pasek
- Department of Protein Purification, Bio-Techne, R&D Systems, Inc. 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
23
|
Bastounis EE, Yeh YT, Theriot JA. Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin. Mol Biol Cell 2018; 29:1571-1589. [PMID: 29718765 PMCID: PMC6080647 DOI: 10.1091/mbc.e18-04-0228] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been studied previously, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens is hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm) and found that adhesion of Lm to host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
24
|
Dyer DP, Migliorini E, Salanga CL, Thakar D, Handel TM, Richter RP. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization. Open Biol 2017; 7:rsob.160286. [PMID: 28123055 PMCID: PMC5303277 DOI: 10.1098/rsob.160286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Elisa Migliorini
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain.,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Dhruv Thakar
- Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Ralf P Richter
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain .,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France.,School of Biomedical Sciences and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
25
|
Saied-Santiago K, Townley RA, Attonito JD, da Cunha DS, Díaz-Balzac CA, Tecle E, Bülow HE. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans. Genetics 2017; 206:1951-1967. [PMID: 28576860 PMCID: PMC5560800 DOI: 10.1534/genetics.116.198739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/20/2017] [Indexed: 11/18/2022] Open
Abstract
Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning.
Collapse
Affiliation(s)
| | - Robert A Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John D Attonito
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dayse S da Cunha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
26
|
Gopal S, Multhaupt HA, Pocock R, Couchman JR. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4. Matrix Biol 2017; 60-61:57-69. [DOI: 10.1016/j.matbio.2016.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
|
27
|
Kim SY, Li B, Linhardt RJ. Pathogenesis and Inhibition of Flaviviruses from a Carbohydrate Perspective. Pharmaceuticals (Basel) 2017; 10:E44. [PMID: 28471403 PMCID: PMC5490401 DOI: 10.3390/ph10020044] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are enveloped, positive single stranded ribonucleic acid (RNA) viruses with various routes of transmission. While the type and severity of symptoms caused by pathogenic flaviviruses vary from hemorrhagic fever to fetal abnormalities, their general mechanism of host cell entry is similar. All pathogenic flaviviruses, such as dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and Zika virus, bind to glycosaminglycans (GAGs) through the putative GAG binding sites within their envelope proteins to gain access to the surface of host cells. GAGs are long, linear, anionic polysaccharides with a repeating disaccharide unit and are involved in many biological processes, such as cellular signaling, cell adhesion, and pathogenesis. Flavivirus envelope proteins are N-glycosylated surface proteins, which interact with C-type lectins, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) through their glycans. In this review, we discuss both host and viral surface receptors that have the carbohydrate components, focusing on the surface interactions in the early stage of flavivirus entry. GAG-flavivirus envelope protein interactions as well as interactions between flavivirus envelope proteins and DC-SIGN are discussed in detail. This review also examines natural and synthetic inhibitors of flaviviruses that are carbohydrate-based or carbohydrate-targeting. Both advantages and drawbacks of these inhibitors are explored, as are potential strategies to improve their efficacy to ultimately help eradicate flavivirus infections.
Collapse
Affiliation(s)
- So Young Kim
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China.
| | - Robert J Linhardt
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
28
|
Hara T, Yoshida E, Fujiwara Y, Yamamoto C, Kaji T. Transforming Growth Factor-β 1 Modulates the Expression of Syndecan-4 in Cultured Vascular Endothelial Cells in a Biphasic Manner. J Cell Biochem 2017; 118:2009-2017. [PMID: 28019669 PMCID: PMC5485002 DOI: 10.1002/jcb.25861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor‐β1 (TGF‐β1) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine‐rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found that TGF‐β1 first upregulates and then downregulates the expression of syndecan‐4, a transmembrane heparan sulfate proteoglycan, via the TGF‐β receptor ALK5 in the cells. In order to identify the intracellular signal transduction pathway that mediates this modulation, bovine aortic endothelial cells were cultured and treated with TGF‐β1. Involvement of the downstream signaling pathways of ALK5—the Smad and MAPK pathways—in syndecan‐4 expression was examined using specific siRNAs and inhibitors. The data indicate that the Smad3–p38 MAPK pathway mediates the early upregulation of syndecan‐4 by TGF‐β1, whereas the late downregulation is mediated by the Smad2/3 pathway. Multiple modulations of proteoglycan synthesis may be involved in the regulation of vascular endothelial cell functions by TGF‐β1. J. Cell. Biochem. 118: 2009–2017,2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthTokyo University of ScienceNoda 278‐8510Japan
| | - Eiko Yoshida
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthTokyo University of ScienceNoda 278‐8510Japan
| | - Yasuyuki Fujiwara
- Department of Environmental HealthSchool of PharmacyTokyo University of Pharmacy and Life SciencesHachioji 192‐0392Japan
| | - Chika Yamamoto
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthToho UniversityFunabashi 274‐8510Japan
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical SciencesDepartment of Environmental HealthTokyo University of ScienceNoda 278‐8510Japan
| |
Collapse
|
29
|
Hara T, Yoshida E, Shinkai Y, Yamamoto C, Fujiwara Y, Kumagai Y, Kaji T. Biglycan Intensifies ALK5-Smad2/3 Signaling by TGF-β 1 and Downregulates Syndecan-4 in Cultured Vascular Endothelial Cells. J Cell Biochem 2017; 118:1087-1096. [PMID: 27585241 PMCID: PMC6221004 DOI: 10.1002/jcb.25721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. A small leucine‐rich dermatan sulfate proteoglycan, biglycan, is one of the predominant types of proteoglycans synthesized by vascular endothelial cells; however, the physiological functions of biglycan are not completely understood. In the present study, bovine aortic endothelial cells in culture were transfected with small interfering RNAs for biglycan, and the expression of other proteoglycans was examined. Transforming growth factor‐β1 signaling was also investigated, because the interaction of biglycan with cytokines has been reported. Biglycan was found to form a complex with either transforming growth factor‐β1 or the transforming growth factor‐β1 type I receptor, ALK5, and to intensify the phosphorylation of Smad2/3, resulting in a lower expression of the transmembrane heparan sulfate proteoglycan, syndecan‐4. This is the first report to clarify the function of biglycan as a regulatory molecule of the ALK5–Smad2/3 TGF‐β1 signaling pathway that mediates the suppression of syndecan‐4 expression in vascular endothelial cells. J. Cell. Biochem. 118: 1087–1096, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Eiko Yoshida
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiro Shinkai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Japan
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| |
Collapse
|
30
|
Cavalheiro RP, Lima MA, Jarrouge-Bouças TR, Viana GM, Lopes CC, Coulson-Thomas VJ, Dreyfuss JL, Yates EA, Tersariol ILS, Nader HB. Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan. Matrix Biol 2017; 63:23-37. [PMID: 28062282 DOI: 10.1016/j.matbio.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 12/04/2016] [Indexed: 01/18/2023]
Abstract
Syndecans are heparan sulfate proteoglycans characterized as transmembrane receptors that act cooperatively with the cell surface and extracellular matrix proteins. Syn4 knockdown was performed in order to address its role in endothelial cells (EC) behavior. Normal EC and shRNA-Syn4-EC cells were studied comparatively using complementary confocal, super-resolution and non-linear microscopic techniques. Confocal and super-resolution microscopy revealed that Syn4 knockdown alters the level and arrangement of essential proteins for focal adhesion, evidenced by the decoupling of vinculin from F-actin filaments. Furthermore, Syn4 knockdown alters the actin network leading to filopodial protrusions connected by VE-cadherin-rich junction. shRNA-Syn4-EC showed reduced adhesion and increased migration. Also, Syn4 silencing alters cell cycle as well as cell proliferation. Moreover, the ability of EC to form tube-like structures in matrigel is reduced when Syn4 is silenced. Together, the results suggest a mechanism in which Syndecan-4 acts as a central mediator that bridges fibronectin, integrin and intracellular components (actin and vinculin) and once silenced, the cytoskeleton protein network is disrupted. Ultimately, the results highlight Syn4 relevance for balanced cell behavior.
Collapse
Affiliation(s)
- R P Cavalheiro
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - M A Lima
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Institute of Integrative Biology, Department of Biochemistry, University of Liverpool, Liverpool, UK
| | - T R Jarrouge-Bouças
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - G M Viana
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - C C Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - V J Coulson-Thomas
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; University of Houston, College of Optometry, The Ocular Surface Institute (TOSI), Houston, USA
| | - J L Dreyfuss
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Grupo Interdisciplinar de Ciências Exatas em Saúde, Universidade Federal de São Paulo, SP, Brazil
| | - E A Yates
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Institute of Integrative Biology, Department of Biochemistry, University of Liverpool, Liverpool, UK
| | - I L S Tersariol
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - H B Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Cain SA, Mularczyk EJ, Singh M, Massam-Wu T, Kielty CM. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions. Sci Rep 2016; 6:35956. [PMID: 27779234 PMCID: PMC5078793 DOI: 10.1038/srep35956] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.
Collapse
Affiliation(s)
- Stuart A. Cain
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ewa J. Mularczyk
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mukti Singh
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Teresa Massam-Wu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Cay M. Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
32
|
Couchman JR, Multhaupt H, Sanderson RD. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer. F1000Res 2016; 5. [PMID: 27408707 PMCID: PMC4930033 DOI: 10.12688/f1000research.8543.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 01/11/2023] Open
Abstract
A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Hinke Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Ralph D Sanderson
- Department of Pathology and University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
33
|
Migliorini E, Thakar D, Kühnle J, Sadir R, Dyer DP, Li Y, Sun C, Volkman BF, Handel TM, Coche-Guerente L, Fernig DG, Lortat-Jacob H, Richter RP. Cytokines and growth factors cross-link heparan sulfate. Open Biol 2016; 5:rsob.150046. [PMID: 26269427 PMCID: PMC4554917 DOI: 10.1098/rsob.150046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.
Collapse
Affiliation(s)
- Elisa Migliorini
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain
| | - Dhruv Thakar
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - Jens Kühnle
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Rabia Sadir
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Douglas P Dyer
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Ralf P Richter
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
34
|
Gouignard N, Maccarana M, Strate I, von Stedingk K, Malmström A, Pera EM. Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin. Dis Model Mech 2016; 9:607-20. [PMID: 27101845 PMCID: PMC4920151 DOI: 10.1242/dmm.024661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.
Collapse
Affiliation(s)
- Nadège Gouignard
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | - Ina Strate
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | | | - Anders Malmström
- Department of Experimental Medical Science, Lund University, Lund 221 84, Sweden
| | - Edgar M Pera
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| |
Collapse
|
35
|
The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction. PLoS One 2016; 11:e0151621. [PMID: 26987116 PMCID: PMC4795781 DOI: 10.1371/journal.pone.0151621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
The heparan sulfate proteoglycan (HSPG) Syndecan (Sdc) is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS) sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ). To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.
Collapse
|
36
|
Gopal S, Couchman J, Pocock R. Redefining the role of syndecans in C. elegans biology. WORM 2016; 5:e1142042. [PMID: 27073736 DOI: 10.1080/21624054.2016.1142042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Cytosolic calcium is an important factor during fertilization, development and differentiation. Hence, the control of cytosolic calcium levels has been studied extensively for several decades. Numerous calcium channels have been identified and their mechanism of action elucidated. However, the mode of calcium channel regulation remains elusive. Here we discuss our recent findings regarding the role of syndecans in the regulation of cytosolic calcium levels. Syndecans are transmembrane proteoglycans present in both vertebrates and invertebrates that interact with extracellular ligands resulting in the activation of several downstream signaling pathways. We identified a previously unappreciated role of syndecans in cytosolic calcium regulation in mammals that is conserved in C. elegans. We concluded that calcium regulation is the basic, evolutionarily conserved role for syndecans, which enables them to be integral for multiple cellular functions.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University , Melbourne, Victoria, Australia
| | - John Couchman
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University , Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Gopal S, Søgaard P, Multhaupt HAB, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 2015; 210:1199-211. [PMID: 26391658 PMCID: PMC4586746 DOI: 10.1083/jcb.201501060] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Syndecans regulate members of the transient receptor potential family to control cytosolic calcium levels with impact on cell adhesion, junction formation, and neuronal guidance. Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pernille Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Csilla Pataki
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Okina
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xiaojie Xian
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikael E Pedersen
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troy Stevens
- Department of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688 Department of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL 36688
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Pyong Woo Park
- Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115 Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Roger Pocock
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
39
|
Rønning SB, Carlson CR, Stang E, Kolset SO, Hollung K, Pedersen ME. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis. PLoS One 2015; 10:e0129288. [PMID: 26068620 PMCID: PMC4467083 DOI: 10.1371/journal.pone.0129288] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Abstract
The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.
Collapse
Affiliation(s)
| | - Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Espen Stang
- Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Svein O. Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
40
|
Bruyère J, Roy E, Ausseil J, Lemonnier T, Teyre G, Bohl D, Etienne-Manneville S, Lortat-Jacob H, Heard JM, Vitry S. Heparan Sulfate Saccharides Modify Focal Adhesions: Implication in Mucopolysaccharidosis Neuropathophysiology. J Mol Biol 2015; 427:775-791. [DOI: 10.1016/j.jmb.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
41
|
Vuong TT, Reine TM, Sudworth A, Jenssen TG, Kolset SO. Syndecan-4 is a major syndecan in primary human endothelial cells in vitro, modulated by inflammatory stimuli and involved in wound healing. J Histochem Cytochem 2015; 63:280-92. [PMID: 25575567 DOI: 10.1369/0022155415568995] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Syndecans are important cell surface proteoglycans with many functions; yet, they have not been studied to a very large extent in primary human endothelial cells. The purpose of this study was to investigate syndecan-4 expression in cultured human umbilical vein endothelial cells (HUVECs) and assess its role in inflammatory reactions and experimental wound healing. qRT-PCR analysis revealed that syndecan-3 and syndecan-4 were highly expressed in HUVECs, whereas the expression of syndecan-1 and -2 was low. HUVECs were cultured with the inflammatory mediators lipopolysaccharide (LPS) and interleukin 1β (IL-1β). As a result, syndecan-4 expression showed a rapid and strong increase. Syndecan-1 and -2 expressions decreased, whereas syndecan-3 was unaffected. Knockdown of syndecan-4 using siRNA resulted in changes in cellular morphology and focal adhesion sites, delayed wound healing and tube formation, and increased secretion of the pro-inflammatory and angiogenic chemokine, CXCL8. These data suggest functions for syndecan-4 in inflammatory reactions, wound healing and angiogenesis in primary human endothelial cells.
Collapse
Affiliation(s)
- Tram Thu Vuong
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (TTV, TMR, SOK)
| | - Trine M Reine
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (TTV, TMR, SOK)
| | - Amanda Sudworth
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (AS)
| | - Trond G Jenssen
- Department of Transplant Medicine, Section of Nephrology, Oslo University Hospital, Oslo, Norway (TGJ),Renal and Metabolic Research Group, Department of Clinical Medicine, UIT The Arctic University of Norway, Tromsø, Norway (TGJ)
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway (TTV, TMR, SOK)
| |
Collapse
|
42
|
Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HAB. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2014; 96:1-10. [PMID: 25546317 DOI: 10.1111/iep.12112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
43
|
Tatara Y, Kakizaki I, Suto S, Ishioka H, Negishi M, Endo M. Chondroitin sulfate cluster of epiphycan from salmon nasal cartilage defines binding specificity to collagens. Glycobiology 2014; 25:557-69. [PMID: 25533443 DOI: 10.1093/glycob/cwu186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epiphycan (EPY) from salmon nasal cartilage has a glycosaminoglycan (GAG) domain that is heavily modified by chondroitin 4-sulfate and chondroitin 6-sulfate. The functional role of the GAG domain has not been investigated. The interaction of EPY with collagen was examined in vitro using surface plasmon resonance analysis. EPY was found to bind to type I collagen via clustered chondroitin sulfate (CS), while a single chain of CS was unable to bind. Types I, III, VII, VIII and X collagen showed high binding affinity with EPY, whereas types II, IV, V, VI and IX showed low binding affinities. Chemical modification of lysine residues in collagen decreased the affinity with the clustered CS. These results suggest that lysine residues of collagen are involved in the interaction with the clustered CS, and the difference in lysine modification defines the binding affinity to EPY. The clustered CS was also involved in an inter-saccharide interaction, and formed self-associated EPY. CS of EPY promoted fibril formation of type I collagen.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shinichiro Suto
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Haruna Ishioka
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Mika Negishi
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masahiko Endo
- Department of Glycobiomedicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
44
|
Kuo CH, Sung MC, Chen PK, Chang BI, Lee FT, Cho CF, Hsieh TT, Huang YC, Li YH, Shi GY, Luo CY, Wu HL. FGFR1 mediates recombinant thrombomodulin domain-induced angiogenesis. Cardiovasc Res 2014; 105:107-17. [DOI: 10.1093/cvr/cvu239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
45
|
Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CLR, Kielty CM. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci 2013; 127:158-71. [PMID: 24190885 PMCID: PMC3874785 DOI: 10.1242/jcs.134270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here, we show that epithelial–mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell–cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial–mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial–mesenchymal status modulates microfibril deposition.
Collapse
Affiliation(s)
- Andrew K Baldwin
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Collapse
Affiliation(s)
- Arye Elfenbein
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
47
|
Nguyen TKN, Tran VM, Sorna V, Eriksson I, Kojima A, Koketsu M, Loganathan D, Kjellén L, Dorsky RI, Chien CB, Kuberan B. Dimerized glycosaminoglycan chains increase FGF signaling during zebrafish development. ACS Chem Biol 2013; 8:939-48. [PMID: 23614643 DOI: 10.1021/cb400132r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs) modulate numerous signaling pathways during development through binding of their glycosaminoglycan (GAG) side chains to various signaling molecules, including fibroblast growth factors (FGFs). A majority of PGs possess two or more GAG side chains, suggesting that GAG multivalency is imperative for biological functions in vivo. However, only a few studies have examined the biological significance of GAG multivalency. In this report, we utilized a library of bis- and tris-xylosides that produce two and three GAG chains on the same scaffold, respectively, thus mimicking PGs, to examine the importance of GAG valency and chain type in regulating FGF/FGFR interactions in vivo in zebrafish. A number of bis- and tris-xylosides, but not mono-xylosides, caused an elongation phenotype upon their injection into embryos. In situ hybridization showed that elongated embryos have elevated expression of the FGF target gene mkp3 but unchanged expression of reporters for other pathways, indicating that FGF/FGFR signaling was specifically hyperactivated. In support of this observation, elongation can be reversed by the tyrosine kinase inhibitor SU5402, mRNA for the FGFR antagonist sprouty4, or FGF8 morpholino. Endogenous GAGs seem to be unaffected after xyloside treatment, suggesting that this is a gain-of-function phenotype. Furthermore, expression of a multivalent but not a monovalent GAG containing syndecan-1 proteoglycan recapitulates the elongation phenotype observed with the bivalent xylosides. On the basis of these in vivo findings, we propose a new model for GAG/FGF/FGFR interactions in which dimerized GAG chains can activate FGF-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Thao K. N. Nguyen
- Departments of Medicinal Chemistry
and Bioengineering, University of Utah,
Salt Lake City, Utah, United States
| | - Vy M. Tran
- Departments of Medicinal Chemistry
and Bioengineering, University of Utah,
Salt Lake City, Utah, United States
| | - Venkataswamy Sorna
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600
036, India
| | - Inger Eriksson
- Department of
Medical Biochemistry
and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Akinori Kojima
- Department
of Materials Science
and Technology, Gifu University, Gifu,
Japan
| | - Mamoru Koketsu
- Department
of Materials Science
and Technology, Gifu University, Gifu,
Japan
| | | | - Lena Kjellén
- Department of
Medical Biochemistry
and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | - Balagurunathan Kuberan
- Departments of Medicinal Chemistry
and Bioengineering, University of Utah,
Salt Lake City, Utah, United States
| |
Collapse
|
48
|
Tran VM, Nguyen TKN, Sorna V, Loganathan D, Kuberan B. Synthesis and assessment of glycosaminoglycan priming activity of cluster-xylosides for potential use as proteoglycan mimetics. ACS Chem Biol 2013; 8:949-57. [PMID: 23402705 DOI: 10.1021/cb300665u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the distinct structural features of many proteoglycans (PGs) is the presence of two or more glycosaminoglycan (GAG) side chains covalently linked to a core protein. Previous studies have shown that the synergistic biological activity of multiple GAG chains, as found in the majority of PGs, cannot be accomplished by the sum of the activities of individual GAG chains. To delineate the biological significance of GAG valency, a number of cluster-xylosides carrying two, three, or four xylose residues on the same scaffold were synthesized using click chemistry. Assessment of cluster-xylosides for their GAG chain priming activity in a cellular system revealed that these cluster-xylosides prime multiple GAG chains per scaffold. Multivalent GAG chains, produced by cluster-xylosides, can better mimic PGs as they carry two or more GAG chains attached to a core protein and therefore can be used as molecular probes to examine the biological significance of GAG multivalency in model organisms.
Collapse
Affiliation(s)
| | | | - Venkataswamy Sorna
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600
036, India
| | | | | |
Collapse
|
49
|
Riaz A, Ilan N, Vlodavsky I, Li JP, Johansson S. Characterization of heparanase-induced phosphatidylinositol 3-kinase-AKT activation and its integrin dependence. J Biol Chem 2013; 288:12366-75. [PMID: 23504323 DOI: 10.1074/jbc.m112.435172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase functions as a heparan sulfate-degrading enzyme and as a ligand for an unidentified signaling receptor(s). Here, several reactions involved in the activation of the PI3K-AKT pathway by latent heparanase were characterized. Protein suppression using specific siRNAs revealed that heparanase-induced phosphorylation of AKT at Ser-473 was RICTOR-mTOR-dependent, whereas ILK and PAK1/2 were dispensable. p110α was the PI3K catalytic isoform preferred by heparanase for AKT activation and cell proliferation because the p110α inhibitor YM024 blocked these processes. Heparanase-induced AKT phosphorylation was low in mouse embryonic fibroblast cells expressing a RAS interaction-defective p110α compared with wild type cells, indicating that RAS has an important role in the PI3K-AKT activation. The response to heparanase was also inefficient in suspension cultures of several cell lines, suggesting a requirement of integrins in this pathway. Adhesion via either αVβ3 or α5β1 promoted heparanase-induced AKT phosphorylation, and a stronger effect was seen when both integrins were engaged. Simultaneous inhibition of FAK and PYK2 using a chemical inhibitor, or suppression of their expression, inhibited heparanase-induced AKT activation and cell proliferation. Stimulation of cells with heparanase enhanced their resistance against oxidative stress- or growth factor starvation-induced apoptosis. These results demonstrate that there is an intimate cross-talk between the heparanase receptor(s) and integrins during induction of the prosurvival PI3K-AKT pathway by heparanase.
Collapse
Affiliation(s)
- Anjum Riaz
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. J Mol Cell Cardiol 2013. [DOI: 10.1016/j.yjmcc.2012.11.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|