1
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04543-4. [PMID: 39446217 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
2
|
Malik SA, Mondal S, Atreya HS. Alpha-Synuclein Aggregation Mechanism in the Presence of Nanomaterials. Biochemistry 2024; 63:1162-1169. [PMID: 38668883 DOI: 10.1021/acs.biochem.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Parkinson's disease (PD) is characterized by the toxic oligomeric and fibrillar phases formed by monomeric alpha-synuclein (α-syn). Certain nanoparticles have been demonstrated to promote protein aggregation, while other nanomaterials have been found to prevent the process. In the current work, we use nuclear magnetic resonance spectroscopy in conjunction with isothermal titration calorimetry to investigate the cause and mechanism of these opposing effects at the amino acid protein level. The interaction of α-syn with two types of nanomaterials was considered: citrate-capped gold nanoparticles (AuNPs) and graphene oxide (GO). In the presence of AuNPs, α-syn aggregation is accelerated, whereas in the presence of GO, aggregation is prevented. The study indicates that GO sequesters the NAC region of α-syn monomers through electrostatic and hydrophobic interactions, leading to a reduced elongation rate, and AuNPs leave the NAC region exposed while binding the N-terminus, leading to higher aggregation. The protein's inclination toward quicker aggregation is explained by the binding of the N-terminus of α-syn with the gold nanoparticles. Conversely, a comparatively stronger interaction with GO causes the nucleation and growth phases to be postponed and inhibits intermolecular interactions. Our finding offers novel experimental insights at the residue level regarding the aggregation of α-syn in the presence of various nanomaterials and creates new opportunities for the development of suitably functionalized nanomaterial-based therapeutic reagents against Parkinson's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shahid A Malik
- Department of Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- Nuclear Magnetic Resonance Research Centre, Indian Institute of Science, Bangalore 560012, India
- The John Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Somnath Mondal
- Department of Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- Nuclear Magnetic Resonance Research Centre, Indian Institute of Science, Bangalore 560012, India
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hanudatta S Atreya
- Nuclear Magnetic Resonance Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Abidi SMS, Shukla AK, Randhawa S, Bathla M, Acharya A. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy. Int J Biol Macromol 2024; 266:131108. [PMID: 38531523 DOI: 10.1016/j.ijbiomac.2024.131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
5
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
6
|
Tsai TY, Jhang WT, Hsu HK, Chan YT, Chang CF, Chen YR. Amyloid Modifier SERF1a Accelerates Alzheimer's Amyloid-β Fibrillization and Exacerbates the Cytotoxicity. ACS Chem Neurosci 2024; 15:479-490. [PMID: 38211979 DOI: 10.1021/acschemneuro.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disease affecting the elderly in the world. The pathological hallmark senile plaques are mainly composed of amyloid-β (Aβ), in which the main isoforms are Aβ40 and Aβ42. Aβ is prone to aggregate and ultimately forms amyloid fibrils in the brains of AD patients. Factors that alter the Aβ aggregation process have been considered to be potential targets for treatments of AD. Modifier of aggregation 4 (MOAG-4)/small EDRK-rich factor (SERF) was previously selected from a chemical mutagenesis screen and identified as an amyloid modifier that promotes amyloid aggregation for α-synuclein, huntingtin, and Aβ40. The interaction and effect of yeast ScSERF on Aβ40 were previously described. Here, we examined the human SERF1a effect on Aβ40 and Aβ42 fibrillization by the Thioflavin T assay and found that SERF1a accelerated Aβ fibrillization in a dose-dependent manner without changing the fibril amount and without incorporation. By Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), we found that SERF1a altered the secondary structures and the morphology of Aβ fibrils. The electrospray ionization mass spectrometry (ESI-MS) and analytical ultracentrifugation (AUC) results showed that SERF1a binds to Aβ in a 1:1 stoichiometry. Moreover, the NMR study showed that SERF1a interacts with Aβ via its N-terminal region. Cytotoxicity assay demonstrated that SERF1a enhanced toxicity of Aβ intermediates, and the effect can be rescued by SERF1a antibody. Overall, our study provides the underlying molecular mechanism for the SERF1a effect on Aβ fibrillization and facilitates the therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ting Jhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| |
Collapse
|
7
|
Yeh CT, Chang HW, Hsu WH, Huang SJ, Wu MH, Tu LH, Lee MC, Chan JCC. Beta Amyloid Oligomers with Higher Cytotoxicity have Higher Sidechain Dynamics. Chemistry 2023; 29:e202301879. [PMID: 37706579 DOI: 10.1002/chem.202301879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/15/2023]
Abstract
The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of β-amyloid (Aβ) peptides has long been an enigma. Here we show that the size of Aβ40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aβ40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aβ40 oligomers could also be correlated to the motional dynamics of the sidechains.
Collapse
Affiliation(s)
- Chen-Tsen Yeh
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Wen-Hsin Hsu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
John R, Aravindakumar CT, Aravind UK. Delineating the cascade of molecular events in protein aggregation triggered by Glyphosate, aminomethylphosphonic acid, and Roundup in serum albumins. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132158. [PMID: 37567142 DOI: 10.1016/j.jhazmat.2023.132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The molecular basis of protein unfolding on exposure to the widely used herbicide, Glyphosate (GLY), its metabolite aminomethylphosphonic acid (AMPA), and the commercial formulation Roundup have been probed using human and bovine serum albumins (HSA and BSA). Protein solutions were exposed to chemical stress at set experimental conditions. The study proceeds with spectroscopic and imaging tools. Steady-state and time-resolved fluorescence (TRF) measurements indicated polarity changes with the possibility of forming a ground-state complex. Atomic force microscopy imaging results revealed the formation of fibrils from BSA and dimer, trimer, and tetramer forms of oligomers from HSA under the chemical stress of GLY. In the presence of AMPA, serum albumins (SAs) form a compact network of oligomers. The compact network of oligomers was transformed into fibrils for HSA with increasing concentrations of AMPA. In contrast, Roundup triggered the formation of amorphous aggregates from SAs. Analysis of the Raman amide I band of all aggregates showed a significant increase in antiparallel β-sheet fractions at the expense of α-helix. The highest percentage, 24.6%, of antiparallel β-sheet fractions was present in amorphous aggregate formed from HSA under the influence of Roundup. These results demonstrated protein unfolding, which led to the formation of oligomers and fibrils.
Collapse
Affiliation(s)
- Reshmi John
- Inter University Instrumentation Centre (IUIC), India
| | - Charuvila T Aravindakumar
- Inter University Instrumentation Centre (IUIC), India; School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology (CUSAT), Kochi 682022, Kerala, India.
| |
Collapse
|
9
|
Přáda Brichtová E, Krupová M, Bouř P, Lindo V, Gomes Dos Santos A, Jackson SE. Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation. Biophys J 2023; 122:2475-2488. [PMID: 37138517 PMCID: PMC10323027 DOI: 10.1016/j.bpj.2023.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.
Collapse
Affiliation(s)
- Eva Přáda Brichtová
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic
| | - Viv Lindo
- AstraZeneca, Cambridge, United Kingdom
| | | | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
11
|
Oren O, Taube R, Papo N. Amyloid β structural polymorphism, associated toxicity and therapeutic strategies. Cell Mol Life Sci 2021; 78:7185-7198. [PMID: 34643743 PMCID: PMC11072899 DOI: 10.1007/s00018-021-03954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
A review of the multidisciplinary scientific literature reveals a large variety of amyloid-β (Aβ) oligomeric species, differing in molecular weight, conformation and morphology. These species, which may assemble via either on- or off-aggregation pathways, exhibit differences in stability, function and neurotoxicity, according to different experimental settings. The conformations of the different Aβ species are stabilized by intra- and inter-molecular hydrogen bonds and by electrostatic and hydrophobic interactions, all depending on the chemical and physical environment (e.g., solvent, ions, pH) and interactions with other molecules, such as lipids and proteins. This complexity and the lack of a complete understanding of the relationship between the different Aβ species and their toxicity is currently dictating the nature of the inhibitor (or inducer)-based approaches that are under development for interfering with (or inducing) the formation of specific species and Aβ oligomerization, and for interfering with the associated downstream neurotoxic effects. Here, we review the principles that underlie the involvement of different Aβ oligomeric species in neurodegeneration, both in vitro and in preclinical studies. In addition, we provide an overview of the existing inhibitors (or inducers) of Aβ oligomerization that serve as potential therapeutics for neurodegenerative diseases. The review, which covers the exciting studies that have been published in the past few years, comprises three main parts: 1) on- and off-fibrillar assembly mechanisms and Aβ structural polymorphism; 2) interactions of Aβ with other molecules and cell components that dictate the Aβ aggregation pathway; and 3) targeting the on-fibrillar Aβ assembly pathway as a therapeutic approach.
Collapse
Affiliation(s)
- Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
13
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
14
|
Madhu P, Das D, Mukhopadhyay S. Conformation-specific perturbation of membrane dynamics by structurally distinct oligomers of Alzheimer's amyloid-β peptide. Phys Chem Chem Phys 2021; 23:9686-9694. [PMID: 33908427 DOI: 10.1039/d0cp06456d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The accumulation of toxic soluble oligomers of the amyloid-β peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease. There are mainly two conformationally distinct oligomers, namely, prefibrillar and fibrillar oligomers, that are recognized by conformation-specific antibodies, anti-amyloid oligomer antibody (A11) and anti-amyloid fibrillar antibody (OC), respectively. Previous studies have shown that the interaction of Aβ oligomers with the lipid membrane is one of the key mechanisms of toxicity produced by Aβ oligomers. However, the mechanism by which structurally distinct Aβ oligomers interact with the lipid membrane remains elusive. In this work, we dissect the molecular mechanism underlying the interaction of structurally distinct Aβ42 oligomers with the lipid membrane derived from the brain total lipid extract. Using picosecond time-resolved fluorescence spectroscopy, we show that the A11-positive Aβ42 oligomers undergo a membrane-induced conformational change that promotes the deeper immersion of these oligomers into the lipid hydrocarbon region and results in an increase in the membrane micro-viscosity. In sharp contrast, OC-positive Aβ42 oligomers interact with the lipid membrane via electrostatic interactions between the negatively-charged lipid headgroup and positively-charged residues of Aβ42 without perturbing the membrane dynamics. We show that the two structurally distinct Aβ42 oligomers demonstrating different interaction mechanisms with the lipid membrane eventually lead to the formation of typical amyloid fibrils. Our findings provide the mechanistic underpinning of the perturbation of lipid membranes by two conformationally distinct Aβ42 oligomers and can be of prime importance in designing anti-Alzheimer's therapeutic agents targeting Aβ-membrane interactions.
Collapse
Affiliation(s)
- Priyanka Madhu
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali 140306, Punjab, India.
| | | | | |
Collapse
|
15
|
Lau HHC, Ingelsson M, Watts JC. The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Acta Neuropathol 2021; 142:17-39. [PMID: 32743745 DOI: 10.1007/s00401-020-02201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Reminiscent of the human prion diseases, there is considerable clinical and pathological variability in Alzheimer's disease, the most common human neurodegenerative condition. As in prion disorders, protein misfolding and aggregation is a hallmark feature of Alzheimer's disease, where the initiating event is thought to be the self-assembly of Aβ peptide into aggregates that deposit in the central nervous system. Emerging evidence suggests that Aβ, similar to the prion protein, can polymerize into a conformationally diverse spectrum of aggregate strains both in vitro and within the brain. Moreover, certain types of Aβ aggregates exhibit key hallmarks of prion strains including divergent biochemical attributes and the ability to induce distinct pathological phenotypes when intracerebrally injected into mouse models. In this review, we discuss the evidence demonstrating that Aβ can assemble into distinct strains of aggregates and how such strains may be primary drivers of the phenotypic heterogeneity in Alzheimer's disease.
Collapse
|
16
|
Alghamdi A, Forbes S, Birch DJS, Vyshemirsky V, Rolinski OJ. Detecting beta-amyloid glycation by intrinsic fluorescence - Understanding the link between diabetes and Alzheimer's disease. Arch Biochem Biophys 2021; 704:108886. [PMID: 33887256 DOI: 10.1016/j.abb.2021.108886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
We monitor early stages of beta-amyloid (Aβ1-40) aggregation, one of the key processes leading to Alzheimer's disease (AD), in the presence of high glucose concentrations by measuring Aβ1- 40 intrinsic fluorescence. The multiple peaks and their shifts observed in the time-resolved emission spectra (TRES) reveal the impact of glycation on Aβ1- 40 oligomerisation. The results show that formation of the advanced glycation end products (AGEs) alters the aggregation pathway. These changes are highly relevant to our understanding of the pathophysiology of AD and the implication of AGE and diabetes in these pathways.
Collapse
Affiliation(s)
- Abeer Alghamdi
- Photophysics Group, Centre for Molecular Nanometrology, Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | - Shareen Forbes
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - David J S Birch
- Photophysics Group, Centre for Molecular Nanometrology, Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | | | - Olaf J Rolinski
- Photophysics Group, Centre for Molecular Nanometrology, Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, U.K.
| |
Collapse
|
17
|
Banerjee S, Mukherjee B, Poddar MK, Dunbar GL. Carnosine improves aging-induced cognitive impairment and brain regional neurodegeneration in relation to the neuropathological alterations in the secondary structure of amyloid beta (Aβ). J Neurochem 2021; 158:710-723. [PMID: 33768569 DOI: 10.1111/jnc.15357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Aging-induced proteinopathies, including deterioration of amyloid beta (Aβ) conformation, are associated with reductions in endogenous levels of carnosine and cognitive impairments. Carnosine is a well-known endogenous antioxidant, which counteracts aging-induced Aβ plaque formation. The aim of this study was to investigate the effects of exogenous carnosine treatments on aging-induced changes (a) in the steady-state level of endogenous carnosine and conformation of Aβ secondary structure in the different brain regions (cerebral cortex, hippocampus, hypothalamus, pons-medulla, and cerebellum) and (b) cognitive function. Young (4 months) and aged (18 and 24 months) male albino Wistar rats were treated with carnosine (2.0 μg kg-1 day-1 ; i.t.) or equivalent volumes of vehicle (saline) for 21 consecutive days and were tested for cognition using 8-arm radial maze test. Brains were processed to assess the conformational integrity of Aβ plaques using Raman spectroscopy and endogenous levels of carnosine were measured in the brain regions using HPLC. Results indicated that carnosine treatments improved the aging-induced deficits in cognitive function and reduced the β-sheets in the secondary structure of Aβ protein, as well as mitigating the reduction in the steady-state levels of carnosine and spine density in the brain regions examined. These results thus, suggest that carnosine can attenuate the aging-induced: (a) conformational changes in Aβ secondary structure by reducing the abundance of β-sheets and reductions in carnosine content in the brain regions and (b) cognitive impairment.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.,Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Gary L Dunbar
- Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
18
|
Wells C, Brennan S, Keon M, Ooi L. The role of amyloid oligomers in neurodegenerative pathologies. Int J Biol Macromol 2021; 181:582-604. [PMID: 33766600 DOI: 10.1016/j.ijbiomac.2021.03.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Many neurodegenerative diseases are rooted in the activities of amyloid-like proteins which possess conformations that spread to healthy proteins. These include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). While their clinical manifestations vary, their protein-level mechanisms are remarkably similar. Aberrant monomeric proteins undergo conformational shifts, facilitating aggregation and formation of solid fibrils. However, there is growing evidence that intermediate oligomeric stages are key drivers of neuronal toxicity. Analysis of protein dynamics is complicated by the fact that nucleation and growth of amyloid-like proteins is not a linear pathway. Feedback within this pathway results in exponential acceleration of aggregation, but activities exerted by oligomers and fibrils can alter cellular interactions and the cellular environment as a whole. The resulting cascade of effects likely contributes to the late onset and accelerating progression of amyloid-like protein disorders and the widespread effects they have on the body. In this review we explore the amyloid-like proteins associated with AD, PD, HD and ALS, as well as the common mechanisms of amyloid-like protein nucleation and aggregation. From this, we identify core elements of pathological progression which have been targeted for therapies, and which may become future therapeutic targets.
Collapse
Affiliation(s)
- Cameron Wells
- GenieUs Genomics, Sydney, NSW 2010, Australia; University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Matt Keon
- GenieUs Genomics, Sydney, NSW 2010, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; GenieUs Genomics, Sydney, NSW 2010, Australia
| |
Collapse
|
19
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer's disease. Nat Commun 2020; 11:5950. [PMID: 33230138 PMCID: PMC7683652 DOI: 10.1038/s41467-020-19786-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
TDP-43 inclusions are found in many Alzheimer’s disease (AD) patients presenting faster disease progression and greater brain atrophy. Previously, we showed full-length TDP-43 forms spherical oligomers and perturbs amyloid-β (Aβ) fibrillization. To elucidate the role of TDP-43 in AD, here, we examined the effect of TDP-43 in Aβ aggregation and the attributed toxicity in mouse models. We found TDP-43 inhibited Aβ fibrillization at initial and oligomeric stages. Aβ fibrillization was delayed specifically in the presence of N-terminal domain containing TDP-43 variants, while C-terminal TDP-43 was not essential for Aβ interaction. TDP-43 significantly enhanced Aβ’s ability to impair long-term potentiation and, upon intrahippocampal injection, caused spatial memory deficit. Following injection to AD transgenic mice, TDP-43 induced inflammation, interacted with Aβ, and exacerbated AD-like pathology. TDP-43 oligomers mostly colocalized with intracellular Aβ in the brain of AD patients. We conclude that TDP-43 inhibits Aβ fibrillization through its interaction with Aβ and exacerbates AD pathology. TDP-43 inclusions are observed in Alzheimer’s disease. Here the authors show that TDP-43 interacts with amyloid-β and inhibits fibrillization in vitro and exacerbates Alzheimer’s disease pathology in animal models.
Collapse
|
21
|
Lou W, Stimple SD, Desai AA, Makowski EK, Kalyoncu S, Mogensen JE, Spang LT, Asgreen DJ, Staby A, Duus K, Amstrup J, Zhang Y, Tessier PM. Directed evolution of conformation-specific antibodies for sensitive detection of polypeptide aggregates in therapeutic drug formulations. Biotechnol Bioeng 2020; 118:797-808. [PMID: 33095442 DOI: 10.1002/bit.27610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Biologics such as peptides and proteins possess a number of attractive attributes that make them particularly valuable as therapeutics, including their high activity, high specificity, and low toxicity. However, one of the key challenges associated with this class of drugs is their propensity to aggregate. Given the safety and immunogenicity concerns related to polypeptide aggregates, it is particularly important to sensitively detect aggregates in therapeutic drug formulations as part of the quality control process. Here, we report the development of conformation-specific antibodies that recognize polypeptide aggregates composed of a GLP-1 receptor agonist (liraglutide) and their integration into a sensitive immunoassay for detecting liraglutide amyloid fibrils. We sorted single-chain antibody libraries against liraglutide fibrils using yeast surface display and magnetic-activated cell sorting, and identified several antibodies with high conformational specificity. Interestingly, these antibodies cross-react with amyloid fibrils formed by several other polypeptides, revealing that they recognize molecular features common to different types of fibrils. Moreover, we find that our immunoassay using these antibodies is >50-fold more sensitive than the conventional method for detecting liraglutide aggregation (Thioflavin T fluorescence). We expect that our systematic approach for generating a sensitive, aggregate-specific immunoassay can be readily extended to other biologics to improve the quality and safety of formulated drug products.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel D Stimple
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alec A Desai
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily K Makowski
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sibel Kalyoncu
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | | | | | | | - Yulei Zhang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Tang Z, Su KH, Xu M, Dai C. HSF1 physically neutralizes amyloid oligomers to empower overgrowth and bestow neuroprotection. SCIENCE ADVANCES 2020; 6:6/46/eabc6871. [PMID: 33177089 PMCID: PMC7673739 DOI: 10.1126/sciadv.abc6871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
The role of proteomic instability in cancer, particularly amyloidogenesis, remains obscure. Heat shock factor 1 (HSF1) transcriptionally governs the proteotoxic stress response to suppress proteomic instability and enhance survival. Paradoxically, HSF1 promotes oncogenesis. Here, we report that AKT activates HSF1 via Ser230 phosphorylation. In vivo, HSF1 enables megalencephaly and hepatomegaly, which are driven by hyperactive phosphatidylinositol 3-kinase/AKT signaling. Hsf1 deficiency exacerbates amyloidogenesis and elicits apoptosis, thereby countering tissue overgrowth. Unexpectedly, HSF1 physically neutralizes soluble amyloid oligomers (AOs). Beyond impeding amyloidogenesis, HSF1 shields HSP60 from direct assault by AOs, averting HSP60 destabilization, collapse of the mitochondrial proteome, and, ultimately, mitophagy and apoptosis. The very same mechanism occurs in Alzheimer's disease. These findings suggest that amyloidogenesis may be a checkpoint mechanism that constrains uncontrolled growth and safeguards tissue homeostasis, congruent with its emerging tumor-suppressive function. HSF1, by acting as an anti-amyloid factor, promotes overgrowth syndromes and cancer but may suppress neurodegenerative disorders.
Collapse
Affiliation(s)
- Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
- Graduate Programs, Department of Molecular & Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Mannem R, Yousuf M, Sreerama L. Nanostructures Formed by Custom-Made Peptides Based on Amyloid Peptide Sequences and Their Inhibition by 2-Hydroxynaphthoquinone. Front Chem 2020; 8:684. [PMID: 32850681 PMCID: PMC7424059 DOI: 10.3389/fchem.2020.00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023] Open
Abstract
Extensive research on amyloid fibril formations shows that certain core sequences within Aβ peptide play an important role in their formation. It is impossible to track these events in vivo. Many proteins and peptides with such core sequences form amyloid fibrils and such Aβ sheet mimics have become excellent tools to study amyloid fibril formation and develop therapeutic strategies. A group of peptides based on amyloid peptide sequences obtained from PDB searches, where glycine residues are substituted with alanine and isoleucine, are tested for aggregation by SEM and ThT binding assay. SEM of different peptide sequences showed morphologically different structures such as nanorods, crystalline needles and nanofibrils. The peptides were co-incubated with HNQ (a quinone) to study its effect on the process of aggregation and/or fibrillation. In conclusion, this group of peptides seem to be Aβ sheet mimics and can be very useful in understanding the different morphologies of amyloid fibrils arising from different peptide sequences and the effective strategies to inhibit or anneal them.
Collapse
Affiliation(s)
- Radhika Mannem
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha, Qatar
| | | |
Collapse
|
24
|
Jamerlan A, An SSA. The influence of Aβ-dependent and independent pathways on TDP-43 proteinopathy in Alzheimer's disease: a possible connection to LATE-NC. Neurobiol Aging 2020; 95:161-167. [PMID: 32814257 DOI: 10.1016/j.neurobiolaging.2020.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that results from the accumulation of plaques by cleaved Aβ42 peptides as well as neurofibrillary tangles of tau proteins. This accumulation triggers a complex cascade of cytotoxic, neuroinflammatory, and oxidative stresses that lead to neuronal death throughout the progression of the disease. Much of research in AD focused on the 2 pathologic proteins. Interestingly, another form of dementia with similar clinical manifestations of AD, but preferentially affected much older individuals, was termed as limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy (LATE) and involved the cytotoxic intraneuronal deposition of phosphorylated TDP-43. TDP-43 proteinopathy was also found to be involved in AD pathology leading to the possibility that AD and LATE may share a common upstream etiology. This paper discusses the roles molecular pathways known in AD may have on influencing TDP-43 proteinopathy and the development of AD, LATE, or the 2 being comorbid with each other.
Collapse
Affiliation(s)
- Angelo Jamerlan
- Department of Bionano Technology, Gachon University, Seongnam-si, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam-si, Republic of Korea.
| |
Collapse
|
25
|
Madhu P, Mukhopadhyay S. Preferential Recruitment of Conformationally Distinct Amyloid-β Oligomers by the Intrinsically Disordered Region of the Human Prion Protein. ACS Chem Neurosci 2020; 11:86-98. [PMID: 31808343 DOI: 10.1021/acschemneuro.9b00646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Soluble oligomeric species of the amyloid-β (Aβ) peptide exhibit pronounced neurotoxic effects in Alzheimer's disease. Recent studies have indicated that the prion protein (PrP) is one of the cell-surface receptors, so-called a bad receptor, of Aβ oligomers that mediates downstream cellular toxicity. A rational classification of Aβ oligomers on the basis of conformation indicates that there are two distinct types of oligomers, namely, prefibrillar and fibrillar oligomers that are positive to A11 and OC conformation-dependent antibodies, respectively. The mechanism of heterotypic assembly of conformationally distinct oligomers and PrP is poorly understood. In this work, using an array of biophysical and biochemical tools, we dissect the molecular mechanism of the interaction of A11- and OC-positive Aβ42 oligomers with human PrP. Using site-specific binding titrations, we show that the recruitment of Aβ oligomers primarily occurs via the electrostatic interaction between the N-terminal intrinsically disordered region of PrP and Aβ oligomers. Our results demonstrate that OC-positive fibrillar oligomers possessing in-register parallel β-sheet packing displayed ∼30 times stronger binding with PrP compared to A11-positive oligomers. We also show that these OC-positive oligomers exacerbate their toxic effects on mammalian cells upon binding to PrP. On the contrary, the addition of PrP does not alter the toxicity exhibited by A11-positive oligomers. Our findings suggest that strategies targeting the interaction between PrP and OC-positive oligomers, which have been shown to be highly concentrated in the vicinity of amyloid plaques, may have therapeutic potential against Alzheimer's disease.
Collapse
|
26
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
27
|
Vander Zanden CM, Wampler L, Bowers I, Watkins EB, Majewski J, Chi EY. Fibrillar and Nonfibrillar Amyloid Beta Structures Drive Two Modes of Membrane-Mediated Toxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16024-16036. [PMID: 31509701 PMCID: PMC7385729 DOI: 10.1021/acs.langmuir.9b02484] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In Alzheimer's disease, the amyloid-beta peptide (Aβ) is implicated in neuronal toxicity via interactions with the cell membrane. Monomeric Aβ (Aβm) is intrinsically disordered, but it can adopt a range of aggregated conformations with varying toxicities from short fibrillar oligomers (FO), to globular nonfibrillar oligomers (NFO), and full-length amyloid fibrils. NFO is considered to be the most toxic, followed by fibrils, and finally Aβm. To elucidate molecular-level membrane interactions that contribute to their different toxicities, we used liquid surface X-ray scattering and Langmuir trough insertion assays to compare Aβm, FO, and NFO surface activities and interactions with anionic DMPG lipid monolayers at the air/water interface. All Aβ species were highly surface active and rapidly adopted β-sheet rich structures upon adsorption to the air/water interface. Likewise, all Aβ species had affinity for the anionic membrane. Aβm rapidly converted to β-sheet rich assemblies upon binding the membrane, and these aggregated structures of Aβm and FO disrupted hexagonally packed lipid domains and resulted in membrane thinning and instability. In contrast, NFO perturbed membrane structure by extracting lipids from the air/water interface and causing macroscale membrane deformations. Altogether, our results support two models for membrane-mediated Aβ toxicity: fibril-induced reorganization of lipid packing and NFO-induced membrane destabilization and lipid extraction. This work provides a structural understanding of Aβ neurotoxicity via membrane interactions and aids the effort in understanding early events in Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Department of Chemistry and Biochemistry , University of Colorado Colorado Springs , Colorado Springs , Colorado 80918 , United States
| | - Lois Wampler
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Isabella Bowers
- Department of Engineering and Technology , Southeast Missouri State University , Cape Girardeau , Missouri 63701 , United States
| | - Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jaroslaw Majewski
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Division of Molecular and Cellular Biosciences , National Science Foundation , Alexandria , Virginia 22314 , United States
- Theoretical Biology and Biophysics , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Eva Y Chi
- Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
- Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
28
|
Karamanos TK, Jackson MP, Calabrese AN, Goodchild SC, Cawood EE, Thompson GS, Kalverda AP, Hewitt EW, Radford SE. Structural mapping of oligomeric intermediates in an amyloid assembly pathway. eLife 2019; 8:46574. [PMID: 31552823 PMCID: PMC6783270 DOI: 10.7554/elife.46574] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Transient oligomers are commonly formed in the early stages of amyloid assembly. Determining the structure(s) of these species and defining their role(s) in assembly is key to devising new routes to control disease. Here, using a combination of chemical kinetics, NMR spectroscopy and other biophysical methods, we identify and structurally characterize the oligomers required for amyloid assembly of the protein ΔN6, a truncation variant of human β2-microglobulin (β2m) found in amyloid deposits in the joints of patients with dialysis-related amyloidosis. The results reveal an assembly pathway which is initiated by the formation of head-to-head non-toxic dimers and hexamers en route to amyloid fibrils. Comparison with inhibitory dimers shows that precise subunit organization determines amyloid assembly, while dynamics in the C-terminal strand hint to the initiation of cross-β structure formation. The results provide a detailed structural view of early amyloid assembly involving structured species that are not cytotoxic.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Matthew P Jackson
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Antonio N Calabrese
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophia C Goodchild
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Gary S Thompson
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Arnout P Kalverda
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Eric W Hewitt
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
30
|
Vivoli Vega M, Cascella R, Chen SW, Fusco G, De Simone A, Dobson CM, Cecchi C, Chiti F. The Toxicity of Misfolded Protein Oligomers Is Independent of Their Secondary Structure. ACS Chem Biol 2019; 14:1593-1600. [PMID: 31074957 DOI: 10.1021/acschembio.9b00324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The self-assembly of proteins into structured fibrillar aggregates is associated with a range of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, in which an important cytotoxic role is thought to be played by small soluble oligomers accumulating during the aggregation process or released by mature fibrils. As the structural characteristics of such species and their links with toxicity are still not fully defined, we have compared six examples of preformed misfolded protein oligomers with different β-sheet content, as determined using Fourier transform infrared spectroscopy, and with different toxicity, as determined by three cellular readouts of cell viability. The results show the absence of any measurable correlation between the nature of their secondary structure and their cellular toxicity, both when comparing the six types of oligomers as a group and when comparing species in subgroups characterized by either the same size or the same exposure of hydrophobic moieties.
Collapse
Affiliation(s)
- Mirella Vivoli Vega
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Serene W Chen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Giuliana Fusco
- Centre for Misfolding disease, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Christopher M. Dobson
- Centre for Misfolding disease, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| |
Collapse
|
31
|
Stimple SD, Kalyoncu S, Desai AA, Mogensen JE, Spang LT, Asgreen DJ, Staby A, Tessier PM. Sensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies. Biotechnol Bioeng 2019; 116:1868-1877. [DOI: 10.1002/bit.26994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Samuel D. Stimple
- Department of Pharmaceutical Sciences, Biointerfaces InstituteUniversity of MichiganAnn Arbor MI
- Department of Chemical Engineering, Biointerfaces InstituteUniversity of MichiganAnn Arbor MI
| | - Sibel Kalyoncu
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy NY
| | - Alec A. Desai
- Department of Chemical Engineering, Biointerfaces InstituteUniversity of MichiganAnn Arbor MI
| | | | - Lotte T. Spang
- New Product Introduction, Product SupplyNovo Nordisk A/SCopenhagen Denmark
| | - Désirée J. Asgreen
- New Product Introduction, Product SupplyNovo Nordisk A/SCopenhagen Denmark
| | - Arne Staby
- CMC Development, R&DNovo Nordisk A/SCopenhagen Denmark
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, Biointerfaces InstituteUniversity of MichiganAnn Arbor MI
- Department of Chemical Engineering, Biointerfaces InstituteUniversity of MichiganAnn Arbor MI
- Department of Biomedical Engineering, Biointerfaces InstituteUniversity of MichiganAnn Arbor MI
| |
Collapse
|
32
|
Mondal S, Roy Chowdhury S, Shah M, Kumar V, Kumar S, Iyer PK. Nanoparticle Assisted Regulation of Nucleation Pathway of Amyloid Tetramer and Inhibition of Their Fibrillation Kinetics. ACS APPLIED BIO MATERIALS 2019; 2:2137-2142. [DOI: 10.1021/acsabm.9b00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Mannini B, Habchi J, Chia S, Ruggeri FS, Perni M, Knowles TPJ, Dobson CM, Vendruscolo M. Stabilization and Characterization of Cytotoxic Aβ 40 Oligomers Isolated from an Aggregation Reaction in the Presence of Zinc Ions. ACS Chem Neurosci 2018; 9:2959-2971. [PMID: 29986583 DOI: 10.1021/acschemneuro.8b00141] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small oligomers formed during the aggregation of certain peptides and proteins are highly cytotoxic in numerous neurodegenerative disorders. Because of their transient nature and conformational heterogeneity, however, the structural and biological features of these oligomers are still poorly understood. Here, we describe a method of generating stable oligomers formed by the Alzheimer's Aβ40 peptide by carrying out an aggregation reaction in the presence of zinc ions. The resulting oligomers are amenable to detailed biophysical and biological characterization, which reveals a homogeneous population with small size, high cross-β sheet structure content, and extended hydrophobic surface patches. We also show that these oligomers decrease the viability of neuroblastoma cells and impair the motility of C. elegans. The availability of these oligomers offers novel opportunities for studying the mechanisms of Aβ40 toxicity in vitro and in cellular and animal models of Alzheimer's disease.
Collapse
Affiliation(s)
- Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Francesco S. Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
34
|
Sahoo BR, Genjo T, Cox SJ, Stoddard AK, Anantharamaiah GM, Fierke C, Ramamoorthy A. Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. J Mol Biol 2018; 430:4230-4244. [PMID: 30170005 DOI: 10.1016/j.jmb.2018.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Peptidic nanodiscs are useful membrane mimetic tools for structural and functional studies of membrane proteins, and membrane interacting peptides including amyloids. Here, we demonstrate anti-amyloidogenic activities of a nanodisc-forming 18-residue peptide (denoted as 4F), both in lipid-bound and lipid-free states by using Alzheimer's amyloid-beta (Aβ40) peptide as an example. Fluorescence-based amyloid fibrillation kinetic assays showed a significant delay in Aβ40 amyloid aggregation by the 4F peptide. In addition, 4F-encased lipid nanodiscs, at an optimal concentration of 4F (>20 μM) and nanodisc size (<10 nm), significantly affect amyloid fibrillation. A comparison of experimental results obtained from nanodiscs with that obtained from liposomes revealed a substantial inhibitory efficacy of 4F-lipid nanodiscs against Aβ40 aggregation and were also found to be suitable to trap Aβ40 intermediates. A combination of atomistic molecular dynamics simulations with NMR and circular dichroism experimental results exhibited a substantial change in Aβ40 conformation upon 4F binding through electrostatic and π-π interactions. Specifically, the 4F peptide was found to interfere with the central β-sheet-forming residues of Aβ40 through substantial hydrogen, π-π, and π-alkyl interactions. Fluorescence experiments and coarse-grained molecular dynamics simulations showed the formation of a ternary complex, where Aβ40 binds to the proximity of peptidic belt and membrane surface that deaccelerate amyloid fibrillation. Electron microscopy images revealed short and thick amyloid fibers of Aβ40 formed in the presence of 4F or 4F-lipid nanodsics. These findings could aid in the development of amyloid inhibitors as well as in stabilizing Aβ40 intermediates for high-resolution structural and neurobiological studies.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Takuya Genjo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sarah J Cox
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Andrea K Stoddard
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | - Carol Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Texas A&M, College Station, TX 77843-3255, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
35
|
Lee MC, Yu WC, Shih YH, Chen CY, Guo ZH, Huang SJ, Chan JCC, Chen YR. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer's disease. Sci Rep 2018; 8:4772. [PMID: 29555950 PMCID: PMC5859292 DOI: 10.1038/s41598-018-23122-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in the elderly. Zinc (Zn) ion interacts with the pathogenic hallmark, amyloid-β (Aβ), and is enriched in senile plaques in brain of AD patients. To understand Zn-chelated Aβ (ZnAβ) species, here we systematically characterized ZnAβ aggregates by incubating equimolar Aβ with Zn. We found ZnAβ40 and ZnAβ42 both form spherical oligomers with a diameter of ~12–14 nm composed of reduced β-sheet content. Oligomer assembly examined by analytical ultracentrifugation, hydrophobic exposure by BisANS spectra, and immunoreactivity of ZnAβ and Aβ derived diffusible ligands (ADDLs) are distinct. The site-specific 13C labeled solid-state NMR spectra showed that ZnAβ40 adopts β-sheet structure as in Aβ40 fibrils. Interestingly, removal of Zn by EDTA rapidly shifted the equilibrium back to fibrillization pathway with a faster kinetics. Moreover, ZnAβ oligomers have stronger toxicity than ADDLs by cell viability and cytotoxicity assays. The ex vivo study showed that ZnAβ oligomers potently inhibited hippocampal LTP in the wild-type C57BL/6JNarl mice. Finally, we demonstrated that ZnAβ oligomers stimulate hippocampal microglia activation in an acute Aβ-injected model. Overall, our study demonstrates that ZnAβ rapidly form toxic and distinct off-pathway oligomers. The finding provides a potential target for AD therapeutic development.
Collapse
Affiliation(s)
- Ming-Che Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Cheng Yu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhong-Hong Guo
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shing-Jong Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jerry C C Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yun-Ru Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.. .,Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
36
|
Hane FT, Lee BY, Leonenko Z. Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. J Alzheimers Dis 2018; 57:1-28. [PMID: 28222507 DOI: 10.3233/jad-160882] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of Alzheimer's disease (AD) research has grown exponentially over the past few decades, especially since the isolation and identification of amyloid-β from postmortem examination of the brains of AD patients. Recently, the Journal of Alzheimer's Disease (JAD) put forth approximately 300 research reports which were deemed to be the most influential research reports in the field of AD since 2010. JAD readers were asked to vote on these most influential reports. In this 3-part review, we review the results of the 300 most influential AD research reports to provide JAD readers with a readily accessible, yet comprehensive review of the state of contemporary research. Notably, this multi-part review identifies the "hottest" fields of AD research providing guidance for both senior investigators as well as investigators new to the field on what is the most pressing fields within AD research. Part 1 of this review covers pathogenesis, both on a molecular and macro scale. Part 2 review genetics and epidemiology, and part 3 covers diagnosis and treatment. This part of the review, pathology, reviews amyloid-β, tau, prions, brain structure, and functional changes with AD and the neuroimmune response of AD.
Collapse
Affiliation(s)
- Francis T Hane
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Brenda Y Lee
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
37
|
Selivanova OM, Surin AK, Ryzhykau YL, Glyakina AV, Suvorina MY, Kuklin AI, Rogachevsky VV, Galzitskaya OV. To Be Fibrils or To Be Nanofilms? Oligomers Are Building Blocks for Fibril and Nanofilm Formation of Fragments of Aβ Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2332-2343. [PMID: 29338255 DOI: 10.1021/acs.langmuir.7b03393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To identify the key stages in the amyloid fibril formation we studied the aggregation of amyloidogenic fragments of Aβ peptide, Aβ(16-25), Aβ(31-40), and Aβ(33-42), using the methods of electron microscopy, X-ray analysis, mass spectrometry, and structural modeling. We have found that fragments Aβ(31-40) and Aβ(33-42) form amyloid fibrils in the shape of bundles and ribbons, while fragment Aβ(16-25) forms only nanofilms. We are the first who performed 2D reconstruction of amyloid fibrils by the Markham rotation technique on electron micrographs of negatively stained fragments of Aβ peptide. Combined analysis of the data allows us to speculate that both the fibrils and the films are formed via association of ring-shaped oligomers with the external diameter of about 6 to 7 nm, the internal diameter of 2 to 3 nm, and the height of ∼3 nm. We conclude that such oligomers are the main building blocks in fibrils of any morphology. The interaction of ring oligomers with each other in different ways makes it possible to explain their polymorphism. The new mechanism of polymerization of amyloidogenic proteins and peptides, described here, could stimulate new approaches in the development of future therapeutics for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Olga M Selivanova
- Institute of Protein Research, Russian Academy of Sciences , Pushchino 142290, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences , Pushchino 142290, Russia
- State Research Center for Applied Microbiology & Biotechnology , Obolensk 142279, Russia
| | - Yury L Ryzhykau
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russian Federation
| | - Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences , Pushchino 142290, Russia
- Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences , Pushchino 142290, Russia
| | - Mariya Yu Suvorina
- Institute of Protein Research, Russian Academy of Sciences , Pushchino 142290, Russia
| | - Alexander I Kuklin
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russian Federation
- Joint Institute for Nuclear Research , Dubna 141980, Russian Federation
| | - Vadim V Rogachevsky
- Institute of Cell Biophysics, Russian Academy of Sciences , Pushchino 142290, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences , Pushchino 142290, Russia
| |
Collapse
|
38
|
Olsson TT, Klementieva O, Gouras GK. Prion-like seeding and nucleation of intracellular amyloid-β. Neurobiol Dis 2018; 113:1-10. [PMID: 29414379 DOI: 10.1016/j.nbd.2018.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/22/2017] [Accepted: 01/21/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) brain tissue can act as a seed to accelerate aggregation of amyloid-β (Aβ) into plaques in AD transgenic mice. Aβ seeds have been hypothesized to accelerate plaque formation in a prion-like manner of templated seeding and intercellular propagation. However, the structure(s) and location(s) of the Aβ seeds remain unknown. Moreover, in contrast to tau and α-synuclein, an in vitro system with prion-like Aβ has not been reported. Here we treat human APP expressing N2a cells with AD transgenic mouse brain extracts to induce inclusions of Aβ in a subset of cells. We isolate cells with induced Aβ inclusions and using immunocytochemistry, western blot and infrared spectroscopy show that these cells produce oligomeric Aβ over multiple replicative generations. Further, we demonstrate that cell lysates of clones with induced oligomeric Aβ can induce aggregation in previously untreated N2a APP cells. These data strengthen the case that Aβ acts as a prion-like protein, demonstrate that Aβ seeds can be intracellular oligomers and for the first time provide a cellular model of nucleated seeding of Aβ.
Collapse
Affiliation(s)
- Tomas T Olsson
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Oxana Klementieva
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
39
|
Pickett EK, Koffie RM, Wegmann S, Henstridge CM, Herrmann AG, Colom-Cadena M, Lleo A, Kay KR, Vaught M, Soberman R, Walsh DM, Hyman BT, Spires-Jones TL. Non-Fibrillar Oligomeric Amyloid-β within Synapses. J Alzheimers Dis 2018; 53:787-800. [PMID: 27258414 DOI: 10.3233/jad-160007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss, insidious cognitive decline, profound neurodegeneration, and the extracellular accumulation of amyloid-β (Aβ) peptide in senile plaques and intracellular accumulation of tau in neurofibrillary tangles. Loss and dysfunction of synapses are believed to underlie the devastating cognitive decline in AD. A large amount of evidence suggests that oligomeric forms of Aβ associated with senile plaques are toxic to synapses, but the precise sub-synaptic localization of Aβ and which forms are synaptotoxic remain unknown. Here, we characterize the sub-synaptic localization of Aβ oligomers using three high-resolution imaging techniques, stochastic optical reconstruction microscopy, immunogold electron microscopy, and Förster resonance energy transfer in a plaque-bearing mouse model of AD. With all three techniques, we observe oligomeric Aβ inside synaptic terminals. Further, we tested a panel of Aβ antibodies using the relatively high-throughput array tomography technique to determine which forms are present in synapses. Our results show that different oligomeric Aβ species are present in synapses and highlight the potential of array tomography for rapid testing of aggregation state specific Aβ antibodies in brain tissue.
Collapse
Affiliation(s)
- Eleanor K Pickett
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Robert M Koffie
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Susanne Wegmann
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christopher M Henstridge
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Abigail G Herrmann
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Marti Colom-Cadena
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Alberto Lleo
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Kevin R Kay
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Melissa Vaught
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Roy Soberman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Bradley T Hyman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Cognitive and Neural Systems, Centre for Dementia Prevention and the Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| |
Collapse
|
40
|
Selivanova OM, Surin AK, Marchenkov VV, Dzhus UF, Grigorashvili EI, Suvorina MY, Glyakina AV, Dovidchenko NV, Galzitskaya OV. The Mechanism Underlying Amyloid Polymorphism is Opened for Alzheimer's Disease Amyloid-β Peptide. J Alzheimers Dis 2018; 54:821-30. [PMID: 27567850 DOI: 10.3233/jad-160405] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been demonstrated using Aβ40 and Aβ42 recombinant and synthetic peptides that their fibrils are formed of complete oligomer ring structures. Such ring structures have a diameter of about 8-9 nm, an oligomer height of about 2- 4 nm, and an internal diameter of the ring of about 3-4 nm. Oligomers associate in a fibril in such a way that they interact with each other, overlapping slightly. There are differences in the packing of oligomers in fibrils of recombinant and synthetic Aβ peptides. The principal difference is in the degree of orderliness of ring-like oligomers that leads to generation of morphologically different fibrils. Most ordered association of ring-like structured oligomers is observed for a recombinant Aβ40 peptide. Less ordered fibrils are observed with the synthetic Aβ42 peptide. Fragments of fibrils the most protected from the action of proteases have been determined by tandem mass spectrometry. It was shown that unlike Aβ40, fibrils of Aβ42 are more protected, showing less ordered organization compared to that of Aβ40 fibrils. Thus, the mass spectrometry data agree with the electron microscopy data and structural models presented here.
Collapse
Affiliation(s)
- Olga M Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.,State Research Center for Applied Microbiology & Biotechnology, Obolensk, Serpukhov District, Moscow Region, Russia
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ulyana F Dzhus
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | - Mariya Yu Suvorina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.,Institute of Mathematical Problems of Biology, Pushchino, Moscow Region, Russia
| | - Nikita V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
41
|
Sánchez R, Martínez J, Montoya L, Castellanos M, Gasset M. Mapping Amyloid Regions in Gad m 1 with Peptide Arrays. Methods Mol Biol 2018; 1779:197-207. [PMID: 29886535 DOI: 10.1007/978-1-4939-7816-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amyloid formation is basically featured by a protein-protein interaction in which the reacting regions are the segments assembling into cross β-sheets. To identify these segments both theoretical and experimental tools have been developed. Here, we focus on the use of peptide arrays to probe the binding of several amyloid-specific probes such as the OC and A11 anti-amyloid conformation-selective antibodies and of monomers and preformed fibrils. These arrays use libraries containing partly overlapping peptides derived from the sequence of Gad m 1, the major allergen from Atlantic cod, which forms amyloids under gastrointestinal relevant conditions.
Collapse
Affiliation(s)
- Rosa Sánchez
- Institute of Physical Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain
| | - Javier Martínez
- Institute of Physical Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain
- Faculdade de Ciências, Departamento de Química e Bioquímica, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Montoya
- Institute of Physical Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Maria Gasset
- Institute of Physical Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
42
|
Nakajima K, So M, Takahashi K, Tagawa YI, Hirao M, Goto Y, Ogi H. Optimized Ultrasonic Irradiation Finds Out Ultrastable Aβ1–40 Oligomers. J Phys Chem B 2017; 121:2603-2613. [DOI: 10.1021/acs.jpcb.7b01409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kichitaro Nakajima
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masatomo So
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuma Takahashi
- School
of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoh-ichi Tagawa
- School
of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masahiko Hirao
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuji Goto
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
43
|
Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE, Shi D, Hattne J, Nannenga BL, Oskarsson ME, Philipp S, Griner S, Jiang L, Glabe CG, Westermark GT, Gonen T, Eisenberg DS. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 2017; 6. [PMID: 28045370 PMCID: PMC5207774 DOI: 10.7554/elife.19273] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/01/2016] [Indexed: 01/09/2023] Open
Abstract
hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic β-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19-29 S20G, forms pairs of β-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15-25 WT, forms non-toxic labile β-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19-29 S20G may serve as a model for the toxic spine of hIAPP.
Collapse
Affiliation(s)
- Pascal Krotee
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jose A Rodriguez
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Michael R Sawaya
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Duilio Cascio
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Dan Shi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Johan Hattne
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brent L Nannenga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marie E Oskarsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stephan Philipp
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
| | - Sarah Griner
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Lin Jiang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Brain Research Institute (BRI), University of California, Los Angeles, Los Angeles, United States
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States.,Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David S Eisenberg
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
44
|
Yang QQ, Jin JC, Xu ZQ, Zhang JQ, Wang BB, Jiang FL, Liu Y. Active site-targeted carbon dots for the inhibition of human insulin fibrillation. J Mater Chem B 2017; 5:2010-2018. [DOI: 10.1039/c6tb02823c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work aimed to study the inhibitory mechanism of carbon dots for HI fibrillation using isothermal titration calorimetry.
Collapse
Affiliation(s)
- Q. Q. Yang
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - J. C. Jin
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Z. Q. Xu
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - J. Q. Zhang
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - B. B. Wang
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - F. L. Jiang
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Y. Liu
- State Key Laboratory of Viology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecaular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
45
|
Turner JP, Chastain SE, Park D, Moss MA, Servoss SL. Modulating amyloid-β aggregation: The effects of peptoid side chain placement and chirality. Bioorg Med Chem 2016; 25:20-26. [PMID: 27776890 DOI: 10.1016/j.bmc.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by the buildup of insoluble aggregated amyloid-β protein (Aβ) into plaques that accumulate between the neural cells in the brain. AD is the sixth leading cause of death in the United States and is the only cause of death among the top ten that cannot currently be treated or cured (Alzheimer's Association, 2011; Selkoe, 1996). Researchers have focused on developing small molecules and peptides to prevent Aβ aggregation; however, while some compounds appear promising in vitro, the research has not resulted in a viable therapeutic treatment. We previously reported a peptoid-based mimic (JPT1) of the peptide KLVFF (residues 16-20 of Aβ) that modulates Aβ40 aggregation, specifically reducing the total number of fibrillar, β-sheet structured aggregates formed. In this study, we investigate two new variants of JPT1 that probe the importance of aromatic side chain placement (JPT1s) and side chain chirality (JPT1a). Both JPT1s and JPT1a modulate Aβ40 aggregation by reducing total β-sheet aggregates. However, JPT1a also has a pronounced effect on the morphology of fibrillar Aβ40 aggregates. These results suggest that Aβ40 aggregation may follow a different pathway in the presence of peptoids with different secondary structures. A better understanding of the interactions between peptoids and Aβ will allow for improved design of AD treatments.
Collapse
Affiliation(s)
- J Phillip Turner
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Shelby E Chastain
- Biomedical Engineering Program, University of South Carolina, 1B33 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Dongwon Park
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Melissa A Moss
- Biomedical Engineering Program, University of South Carolina, 1B33 Swearingen Engineering Center, Columbia, SC 29208, USA; Department of Chemical Engineering, University of South Carolina, 2C02 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Shannon L Servoss
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA.
| |
Collapse
|
46
|
Rajasekhar K, Madhu C, Govindaraju T. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity. ACS Chem Neurosci 2016; 7:1300-10. [PMID: 27355515 DOI: 10.1021/acschemneuro.6b00175] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accumulation of amyloid beta (Aβ) peptide and its aggregates in the human brain is considered as one of the hallmarks of Alzheimer's disease (AD). The polymorphic oligomers and fully grown fibrillar aggregates of Aβ exhibit different levels of neuronal toxicity. Moreover, aggregation of Aβ in the presence of redox-active metal ions like Cu(2+) is responsible for the additional trait of cellular toxicity induced by the generation of reactive oxygen species (ROS). Herein, a multifunctional peptidomimetic inhibitor (P6) has been presented, based on a naturally occurring metal chelating tripeptide (GHK) and the inhibitor of Aβ aggregation. It was shown by employing various biophysical studies that P6 interact with Aβ and prevent the formation of toxic Aβ forms like oligomeric species and fibrillar aggregates. Further, P6 successfully sequestered Cu(2+) from the Aβ-Cu(2+) complex and maintained it in a redox-dormant state to prevent the generation of ROS. P6 inhibited membrane disruption by Aβ oligomers and efficiently prevented DNA damage caused by the Aβ-Cu(2+) complex. PC12 cells were rescued from multifaceted Aβ toxicity when treated with P6, and the amount of ROS generated in cells was reduced. These attributes make P6 a potential therapeutic candidate to ameliorate the multifaceted Aβ toxicity in AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur
P. O., Bengaluru 560064, Karnataka, India
| | - Chilakapati Madhu
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur
P. O., Bengaluru 560064, Karnataka, India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur
P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
47
|
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease? Neuron 2016; 91:957-973. [PMID: 27608759 PMCID: PMC5019121 DOI: 10.1016/j.neuron.2016.08.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lymphatic vasculature drains interstitial fluids, which contain the tissue's waste products, and ensures immune surveillance of the tissues, allowing immune cell recirculation. Until recently, the CNS was considered to be devoid of a conventional lymphatic vasculature. The recent discovery in the meninges of a lymphatic network that drains the CNS calls into question classic models for the drainage of macromolecules and immune cells from the CNS. In the context of neurological disorders, the presence of a lymphatic system draining the CNS potentially offers a new player and a new avenue for therapy. In this review, we will attempt to integrate the known primary functions of the tissue lymphatic vasculature that exists in peripheral organs with the proposed function of meningeal lymphatic vessels in neurological disorders, specifically multiple sclerosis and Alzheimer's disease. We propose that these (and potentially other) neurological afflictions can be viewed as diseases with a neuro-lympho-vascular component and should be therapeutically targeted as such.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sandro Da Mesquita
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
48
|
Sánchez R, Martínez J, Castro A, Pedrosa M, Quirce S, Rodríguez-Pérez R, Gasset M. The amyloid fold of Gad m 1 epitopes governs IgE binding. Sci Rep 2016; 6:32801. [PMID: 27597317 PMCID: PMC5011719 DOI: 10.1038/srep32801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
Amyloids are polymeric structural states formed from locally or totally unfolded protein chains that permit surface reorganizations, stability enhancements and interaction properties that are absent in the precursor monomers. β-Parvalbumin, the major allergen in fish allergy, forms amyloids that are recognized by IgE in the patient sera, suggesting a yet unknown pathological role for these assemblies. We used Gad m 1 as the fish β-parvalbumin model and a combination of approaches, including peptide arrays, recombinant wt and mutant chains, biophysical characterizations, protease digestions, mass spectrometry, dot-blot and ELISA assays to gain insights into the role of amyloids in the IgE interaction. We found that Gad m 1 immunoreactive regions behave as sequence-dependent conformational epitopes that provide a 1000-fold increase in affinity and the structural repetitiveness required for optimal IgE binding and cross-linking upon folding into amyloids. These findings support the amyloid state as a key entity in type I food allergy.
Collapse
Affiliation(s)
- Rosa Sánchez
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Javier Martínez
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Ana Castro
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - María Pedrosa
- Departamento de Alergología, Hospital Universitario La Paz, 28046 Madrid, Spain
- Instituto de Investigación-Hospital Universitario La Paz (IdiPaz), 28046 Madrid, Spain
| | - Santiago Quirce
- Departamento de Alergología, Hospital Universitario La Paz, 28046 Madrid, Spain
- Instituto de Investigación-Hospital Universitario La Paz (IdiPaz), 28046 Madrid, Spain
| | - Rosa Rodríguez-Pérez
- Instituto de Investigación-Hospital Universitario La Paz (IdiPaz), 28046 Madrid, Spain
| | - María Gasset
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
49
|
Breydo L, Kurouski D, Rasool S, Milton S, Wu JW, Uversky VN, Lednev IK, Glabe CG. Structural differences between amyloid beta oligomers. Biochem Biophys Res Commun 2016; 477:700-705. [PMID: 27363332 PMCID: PMC11247950 DOI: 10.1016/j.bbrc.2016.06.122] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease, soluble Aβ oligomers are believed to play important roles in the disease pathogenesis, and their levels correlate with cognitive impairment. We have previously shown that Aβ oligomers can be categorized into multiple structural classes based on their reactivity with conformation-dependent antibodies. In this study, we analyzed the structures of Aβ40 oligomers belonging to two of these classes: fibrillar and prefibrillar oligomers. We found that fibrillar oligomers were similar in structure to fibrils but were less stable towards denaturation while prefibrillar oligomers were found to be partially disordered. These results are consistent with previously proposed structures for both oligomer classes while providing additional structural information.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Molecular Medicine and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, United States.
| | - Dmitry Kurouski
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States
| | - Saskia Milton
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States
| | - Jessica W Wu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33612, United States; Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Tycko R. Molecular Structure of Aggregated Amyloid-β: Insights from Solid-State Nuclear Magnetic Resonance. Cold Spring Harb Perspect Med 2016; 6:a024083. [PMID: 27481836 PMCID: PMC4968170 DOI: 10.1101/cshperspect.a024083] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made to characterize the molecular structures of Aβ aggregates. Full molecular structural models based primarily on data from measurements using solid-state nuclear magnetic resonance (ssNMR) have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|