1
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
2
|
Bonomi RE, Girgenti M, Krystal JH, Cosgrove KP. A Role for Histone Deacetylases in the Biology and Treatment of Post-Traumatic Stress Disorder: What Do We Know and Where Do We Go from Here? Complex Psychiatry 2022; 8:13-27. [PMID: 36545044 PMCID: PMC9669946 DOI: 10.1159/000524079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Post-traumatic stress disorder is a prevalent disorder within the USA and worldwide with a yearly diagnosis rate of 2-4% and affecting women more than men. One of the primary methods for study of this stress disorder relies on animal models as there are few noninvasive methods and few replicated peripheral biomarkers for use in humans. One area of active research in psychiatric neuroscience is the field of epigenetics - how the chemical modifications of the genetic code regulate behavior. The dynamic changes in histone acetylation and deacetylation in the brain are not fully reflected by the study of peripheral biomarker. In this review, we aim to examine the role of histone acetylation and deacetylation in memory formation and fear memory learning. The studies discussed here focus largely on the role of histone deacetylases (HDACs) in animal models of trauma and fear response. Many studies used HDAC inhibitors to elucidate the effects after inhibition of these enzymes after trauma or stress. These studies of memory processing and cued fear extinction in animal can often shed light on human disorders of cued fear responses and memory dysregulation after stress or trauma such as in PTSD. These results provide strong evidence for a role of these enzymes in PTSD in humans. The few clinical studies that exist with HDAC inhibitors also suggest a fundamental role of these enzymes in the neurobiology of the stress response. Further study of these enzymes in both clinical and pre-clinical settings may help elucidate the neurobiology of stress-related pathology like PTSD and provide a foundation for novel therapy to treat these disorders.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- *Robin E. Bonomi,
| | - Matthew Girgenti
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut, USA
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- **Kelly P. Cosgrove,
| |
Collapse
|
3
|
Distinct Patterns of GR Transcriptional Regulation in Liver and Muscle of LPS-Challenged Weaning Piglets. Int J Mol Sci 2022; 23:ijms23158072. [PMID: 35897645 PMCID: PMC9331734 DOI: 10.3390/ijms23158072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid receptor (GR), which is ubiquitously expressed in nearly all cell types of various organs, mediates the tissue-specific metabolic and immune responses to maintain homeostasis and ensure survival under stressful conditions or pathological challenges. The neonatal period is metabolically demanding, and piglets are subjected to multiple stressors in modern intensive farms, especially around weaning. The liver is more responsive to LPS challenge compared to muscle, which is indicated by significantly increased TLR4 and p-p65, TNF-α, and IL-6 levels in association with GR down-regulation at both mRNA and protein levels. GR binding to the putative nGRE on TNF-α and IL-6 gene promoters decreased in the liver, but not muscle, upon LPS stimulation. The transcriptional regulation of GR also showed striking differences between liver and muscle. GR exon 1 mRNA variants 1–4, 1–5, and 1–6 were down-regulated in both liver and muscle, but a significant up-regulation of GR exon 1–9/10 mRNA variants abolished the change of total GR mRNA in the muscle in response to LPS stimulation. The significant down-regulation of GR in the liver corresponded with significantly decreased binding of p-GR and diminished histone acetylation in GR gene promoters. These results indicate that tissue-specific GR transcriptional regulation is involved in the differential inflammation responses between liver and muscle.
Collapse
|
4
|
Goldberg D, Charni-Natan M, Buchshtab N, Bar-Shimon M, Goldstein I. Hormone-controlled cooperative binding of transcription factors drives synergistic induction of fasting-regulated genes. Nucleic Acids Res 2022; 50:5528-5544. [PMID: 35556130 PMCID: PMC9177981 DOI: 10.1093/nar/gkac358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
During fasting, hepatocytes produce glucose in response to hormonal signals. Glucagon and glucocorticoids are principal fasting hormones that cooperate in regulating glucose production via gluconeogenesis. However, how these hormone signals are integrated and interpreted to a biological output is unknown. Here, we use genome-wide profiling of gene expression, enhancer dynamics and transcription factor (TF) binding in primary mouse hepatocytes to uncover the mode of cooperation between glucagon and glucocorticoids. We found that compared to a single treatment with each hormone, a dual treatment directs hepatocytes to a pro-gluconeogenic gene program by synergistically inducing gluconeogenic genes. The cooperative mechanism driving synergistic gene expression is based on ‘assisted loading’ whereby a glucagon-activated TF (cAMP responsive element binding protein; CREB) leads to enhancer activation which facilitates binding of the glucocorticoid receptor (GR) upon glucocorticoid stimulation. Glucagon does not only activate single enhancers but also activates enhancer clusters, thereby assisting the loading of GR also across enhancer units within the cluster. In summary, we show that cells integrate extracellular signals by an enhancer-specific mechanism: one hormone-activated TF activates enhancers, thereby assisting the loading of a TF stimulated by a second hormone, leading to synergistic gene induction and a tailored transcriptional response to fasting.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
6
|
Kershaw S, Morgan DJ, Boyd J, Spiller DG, Kitchen G, Zindy E, Iqbal M, Rattray M, Sanderson CM, Brass A, Jorgensen C, Hussell T, Matthews LC, Ray DW. Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway. J Cell Sci 2020; 133:jcs242842. [PMID: 32381682 PMCID: PMC7295589 DOI: 10.1242/jcs.242842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) act through the glucocorticoid receptor (GR, also known as NR3C1) to regulate immunity, energy metabolism and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. Here, we show that GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following GC treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function, and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stephen Kershaw
- Systems Oncology, Cancer Research UK Manchester Institute, Manchester, SK10 4TG, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation University of Manchester, Manchester, M13 9PT, UK
| | - James Boyd
- Division of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - David G Spiller
- Platform Sciences, Enabling Technologies, and Infrastructure, University of Manchester, Manchester, M13 9PT, UK
| | - Gareth Kitchen
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK
| | - Egor Zindy
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Mudassar Iqbal
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Magnus Rattray
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Christopher M Sanderson
- Division of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Andrew Brass
- Division of Informatics, Imaging, and Data Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Claus Jorgensen
- Systems Oncology, Cancer Research UK Manchester Institute, Manchester, SK10 4TG, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation University of Manchester, Manchester, M13 9PT, UK
| | - Laura C Matthews
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - David W Ray
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, OX3 7LE, and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
7
|
Reddy AT, Lakshmi SP, Banno A, Reddy RC. Glucocorticoid Receptor α Mediates Roflumilast's Ability to Restore Dexamethasone Sensitivity in COPD. Int J Chron Obstruct Pulmon Dis 2020; 15:125-134. [PMID: 32021151 PMCID: PMC6969699 DOI: 10.2147/copd.s230188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background Glucocorticoids are commonly prescribed to treat inflammation of the respiratory system; however, they are mostly ineffective for controlling chronic obstructive pulmonary disease (COPD)-associated inflammation. This study aimed to elucidate the molecular mechanisms responsible for such glucocorticoid inefficacy in COPD, which may be instrumental to providing better patient outcomes. Roflumilast is a selective phosphodiesterase-4 (PDE4) inhibitor with anti-inflammatory properties in severe COPD patients who have a history of exacerbations. Roflumilast has a suggested ability to mitigate glucocorticoid resistance, but the mechanism is unknown. Methods To understand the mechanism that mediates roflumilast-induced restoration of glucocorticoid sensitivity in COPD, we tested the role of glucocorticoid receptor α (GRα). Roflumilast's effects on GRα expression and transcriptional activity were assessed in bronchial epithelial cells from COPD patients. Results We found that both GRα expression and activity are downregulated in bronchial epithelial cells from COPD patients and that roflumilast stimulates both GRα mRNA synthesis and GRα's transcriptional activity in COPD bronchial epithelial cells. We also demonstrate that roflumilast enhances dexamethasone's ability to suppress pro-inflammatory mediator production, in a GRα-dependent manner. Discussion Our findings highlight the significance of roflumilast-induced GRα upregulation for COPD therapeutic strategies by revealing that roflumilast restores glucocorticoid sensitivity by sustaining GRα expression.
Collapse
Affiliation(s)
- Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA15240, USA
| | - Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA15240, USA
| | - Asoka Banno
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA15213, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA15240, USA
| |
Collapse
|
8
|
Zhang Q, Dai Y, Cai Z, Mou L. HDAC Inhibitors: Novel Immunosuppressants for Allo- and Xeno- Transplantation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Yifan Dai
- Department Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing, Jiangsu 210029 China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| |
Collapse
|
9
|
Zhang H, He Y, Zhang G, Li X, Yan S, Hou N, Xiao Q, Huang Y, Luo M, Zhang G, Yi Q, Chen M, Luo J. HDAC2 is required by the physiological concentration of glucocorticoid to inhibit inflammation in cardiac fibroblasts. Can J Physiol Pharmacol 2017; 95:1030-1038. [PMID: 28511026 DOI: 10.1139/cjpp-2016-0449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.
Collapse
Affiliation(s)
- Haining Zhang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Yanhua He
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guiping Zhang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Xiaobin Li
- b Department of Histology and Embryology, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Suikai Yan
- c Department of Morphology, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ning Hou
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Qing Xiao
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Yue Huang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Miaoshan Luo
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Genshui Zhang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Quan Yi
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Minsheng Chen
- d Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Jiandong Luo
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.,d Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| |
Collapse
|
10
|
Hulsurkar M, Li Z, Zhang Y, Li X, Zheng D, Li W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 2017; 36:1525-1536. [PMID: 27641328 DOI: 10.1038/onc.2016.319] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/22/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022]
Abstract
Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.
Collapse
Affiliation(s)
- M Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Z Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Breast and Thyroid Surgery Center, The Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, China
| | - D Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Sotelo-Rivera I, Cote-Vélez A, Uribe RM, Charli JL, Joseph-Bravo P. Glucocorticoids curtail stimuli-induced CREB phosphorylation in TRH neurons through interaction of the glucocorticoid receptor with the catalytic subunit of protein kinase A. Endocrine 2017; 55:861-871. [PMID: 28063130 DOI: 10.1007/s12020-016-1223-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/26/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Corticosterone prevents cold-induced stimulation of thyrotropin-releasing hormone (Trh) expression in rats, and the stimulatory effect of dibutyryl cyclic-adenosine monophosphate (dB-cAMP) on Trh transcription in hypothalamic cultures. We searched for the mechanism of this interference. METHODS Immunohistochemical analyses of phosphorylated cAMP-response element binding protein (pCREB) were performed in the paraventricular nucleus (PVN) of Wistar rats, and in cell cultures of 17-day old rat hypothalami, or neuroblastoma SH-SY5Y cells. Cultures were incubated 1h with dB-cAMP, dexamethasone and both drugs combined; their nuclear extracts were used for chromatin immunoprecipitation; cytosolic or nuclear extracts for coimmunoprecipitation analyses of catalytic subunit of protein kinase A (PKAc) and of glucocorticoid receptor (GR); their subcellular distribution was analyzed by immunocytochemistry. RESULTS Cold exposure increased pCREB in TRH neurons of rats PVN, effect blunted by corticosterone previous injection. Dexamethasone interfered with forskolin increase in nuclear pCREB and its binding to Trh promoter; antibodies against histone deacetylase-3 precipitated chromatin from nuclear extracts of hypothalamic cells treated with tri-iodothyronine but not with dB-cAMP + dexamethasone, discarding chromatin compaction as responsible mechanism. Co-immunoprecipitation analyses of cytosolic or nuclear extracts showed protein:protein interactions between activated GR and PKAc. Immunocytochemical analyses of hypothalamic or SH-SY5Y cells revealed diminished nuclear translocation of PKAc and GR in cells incubated with forskolin + dexamethasone, compared to either forskolin or dexamethasone alone. CONCLUSIONS Glucocorticoids and cAMP exert mutual inhibition of Trh transcription through interaction of activated glucocorticoid receptor with protein kinase A catalytic subunit, reducing their nuclear translocation, limiting cAMP-response element binding protein phosphorylation and its binding to Trh promoter.
Collapse
Affiliation(s)
- Israim Sotelo-Rivera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), UNAM, A.P. 510-3, Cuernavaca, Morelos, 62271, Mexico
| | - Antonieta Cote-Vélez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), UNAM, A.P. 510-3, Cuernavaca, Morelos, 62271, Mexico
| | - Rosa-María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), UNAM, A.P. 510-3, Cuernavaca, Morelos, 62271, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), UNAM, A.P. 510-3, Cuernavaca, Morelos, 62271, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), UNAM, A.P. 510-3, Cuernavaca, Morelos, 62271, Mexico.
| |
Collapse
|
12
|
Chronic social defeat stress leads to changes of behaviour and memory-associated proteins of young mice. Behav Brain Res 2017; 316:136-144. [DOI: 10.1016/j.bbr.2016.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 12/15/2022]
|
13
|
Rimando MG, Wu HH, Liu YA, Lee CW, Kuo SW, Lo YP, Tseng KF, Liu YS, Lee OKS. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs). Sci Rep 2016; 6:37371. [PMID: 27901049 PMCID: PMC5128810 DOI: 10.1038/srep37371] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Lineage commitment and differentiation of mesenchymal stromal cells (MSCs) into osteoblasts in vitro is enhanced by a potent synthetic form of glucocorticoid (GC), dexamethasone (Dex). Paradoxically, when used chronically in patients, GCs exert negative effects on bone, a phenomenon known as glucocorticoid-induced osteoporosis in clinical practice. The mechanism on how GC differentially affects bone precursor cells to become mature osteoblasts during osteogenesis remains elusive. In this study, the dose and temporal regulation of Dex on MSC differentiation into osteoblasts were investigated. We found that continuous Dex treatment led to a net reduction of the maturation potential of differentiating osteoblasts. This phenomenon correlated with a decrease in glucocorticoid receptor (GR) expression, hastened degradation, and impaired sub cellular localization. Similarly, Histone Deacetylase 6 (HDAC6) expression was found to be regulated by Dex, co-localized with GR and this GR-HDAC6 complex occupied the promoter region of the osteoblast late marker osteocalcin (OCN). Combinatorial inhibition of HDAC6 and GR enhanced OCN expression. Together, the cross-talk between the Dex effector molecule GR and the inhibitory molecule HDAC6 provided mechanistic explanation of the bimodal effect of Dex during osteogenic differentiation of MSCs. These findings may provide new directions of research to combat glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Marilyn G Rimando
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica and Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-An Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chien-Wei Lee
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Shu-Wen Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yin-Ping Lo
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Kuo-Fung Tseng
- Department of Orthopaedics, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
| | - Yi-Shiuan Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Taipei City Hospital, Taipei 10341, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
14
|
Bilgin B, Nath A, Chan C, Walton SP. Characterization of transcription factor response kinetics in parallel. BMC Biotechnol 2016; 16:62. [PMID: 27557669 PMCID: PMC4997724 DOI: 10.1186/s12896-016-0293-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcription factors (TFs) are effectors of cell signaling pathways that regulate gene expression. TF networks are highly interconnected; one signal can lead to changes in many TF levels, and one TF level can be changed by many different signals. TF regulation is central to normal cell function, with altered TF function being implicated in many disease conditions. Thus, measuring TF levels in parallel, and over time, is crucial for understanding the impact of stimuli on regulatory networks and on diseases. RESULTS Here, we report the parallel analysis of temporal TF level changes due to multiple stimuli in distinct cell types. We have analyzed short-term dynamic changes in the levels of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), signal transducer and activator of transcription 3 (Stat3), cAMP response element-binding protein (CREB), glucocorticoid receptor (GR), and TATA binding protein (TBP), in breast and liver cancer cells after tumor necrosis factor-alpha (TNF-α) and palmitic acid (PA) exposure. In response to both stimuli, NF-kB and CREB levels were increased, Stat3 decreased, and TBP was constant. GR levels were unchanged in response to TNF-α stimulation and increased in response to PA treatment. CONCLUSIONS Our results show significant overlap in signaling initiated by TNF-α and by PA, with the exception that the events leading to PA-mediated cytotoxicity likely also include induction of GR signaling. These results further illuminate the dynamics of TF responses to cytokine and fatty acid exposure, while concomitantly demonstrating the utility of parallel TF measurement approaches in the analysis of biological phenomena.
Collapse
Affiliation(s)
- Betul Bilgin
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 3249, Engineering Building, East Lansing, MI 48824-1226 USA
| | - Aritro Nath
- Genetics Program, Michigan State University, East Lansing, MI 48824 USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 3249, Engineering Building, East Lansing, MI 48824-1226 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 3249, Engineering Building, East Lansing, MI 48824-1226 USA
| |
Collapse
|
15
|
M L, P PV, T K, M P, E S, J P, K V W, C L, F C, S D, M SKS, M M, A K, J PI, A S, E S, J W, E M S, A V. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol 2016; 10:735-750. [PMID: 26775640 DOI: 10.1016/j.molonc.2015.12.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylases (HDACs), originally described as histone modifiers, have more recently been demonstrated to target a variety of other proteins unrelated to the chromatin environment. In this context, our present work demonstrates that the pharmacological or genetic abrogation of HDAC6 in primary melanoma samples and cell lines, down-regulates the expression of PD-L1, an important co-stimulatory molecule expressed in cancer cells, which activates the inhibitory regulatory pathway PD-1 in T-cells. Our data suggests that this novel mechanism of PD-L1 regulation is mainly mediated by the influence of HDAC6 over the recruitment and activation of STAT3. Additionally, we observed that selective HDAC6 inhibitors impairs tumor growth and reduce the in vivo expression of several inhibitory check-point molecules and other regulatory pathways involved in immunosurveillance. Most importantly, these results provide a key pre-clinical rationale and justification to further study isotype selective HDAC6 inhibitors as potential immuno-modulatory agents in cancer.
Collapse
Affiliation(s)
- Lienlaf M
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Perez-Villarroel P
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Knox T
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Pabon M
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Sahakian E
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Powers J
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Woan K V
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Lee C
- All Children's Hospital, Johns Hopkins Medicine, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Cheng F
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Deng S
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Smalley K S M
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Montecino M
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | | | - Pinilla-Ibarz J
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Sarnaik A
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | - Seto E
- George Washington University
| | - Weber J
- H. Lee Moffitt Cancer Center, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello
| | | | | |
Collapse
|
16
|
Li R, Jia Y, Zou H, Zhao R. Breed-specific expression ofDROSHA, DICERandAGO2is regulated by glucocorticoid-mediated miRNAs in the liver of newborn piglets. Anim Genet 2014; 45:817-26. [DOI: 10.1111/age.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Runsheng Li
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Yimin Jia
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Huafeng Zou
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Ruqian Zhao
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
17
|
Jiang Z, Qian L, Zou H, Jia Y, Ni Y, Yang X, Jiang Z, Zhao R. Porcine glucocorticoid receptor (NR3C1) gene: tissue-specificity of transcriptional strength and glucocorticoid responsiveness of alternative promoters. J Steroid Biochem Mol Biol 2014; 141:87-93. [PMID: 24503296 DOI: 10.1016/j.jsbmb.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/27/2022]
Abstract
Glucocorticoid receptor (GR) is transcribed in a tissue- and cell-specific manner with multiple exon 1 mRNA variants driven by selective promoters. We recently cloned and characterized the 5.3kb proximal promoter sequence of porcine GR gene containing 7 untranslated alternative first exons each processed by a distinct promoter. In this study, we showed tissue-specific expression of total GR and its exon 1 mRNA variants in hippocampus, muscle and liver of pigs. Total GR mRNA was most abundant in liver, followed by muscle and hippocampus in descending order. Among all the GR exon 1 mRNA variants detected, GR exon 1-9/10 and 1-4 were the most predominant variants in all the three tissues. The abundance of GR exon 1-4 mRNA was similar to that of 1-10 in muscle, but was significantly lower than 1-10 in liver and hippocampus. The activities of truncated short (S) and long (L) promoters of respective GR exon 1 mRNA variants were analyzed by luciferase reporter assay in 3 representative cell lines, SY5Y, C2C12 and HepG2. S1-10 and S1-4 demonstrated significantly higher activities than other short promoters in all the cell lines examined. Nevertheless, the strongest activity and cell specificity were detected for L1-10 promoter, which was consistent with the predominant exon 1-9/10 expression in porcine tissues. Moreover, with 3 potential nGRE binding sites, L1-10 promoter was more sensitive to dexamethasone (DEX) in HepG2. Our data provide basic knowledge of the transcriptional mechanism underlying the tissue- and cell-specific expression of porcine GR under basal or ligand-stimulated conditions.
Collapse
Affiliation(s)
- Zheng Jiang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lu Qian
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, PR China
| | - Huafeng Zou
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Zou H, Jiang Z, Li R, Jia Y, Yang X, Ni Y, Zhao R. p53 cooperates with Sp1 to regulate breed-dependent expression of glucocorticoid receptor in the liver of preweaning piglets. PLoS One 2013; 8:e70494. [PMID: 23950944 PMCID: PMC3737268 DOI: 10.1371/journal.pone.0070494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022] Open
Abstract
Previous studies indicate that Chinese indigenous pig breeds demonstrate distinct pattern of glucocorticoid receptor (GR) expression, which is associated with their unique growth and metabolic phenotypes. Here we sought to unravel the transcriptional mechanisms underlying the breed-specific hepatic GR expression in preweaning Chinese Erhualian (EHL) and Western Large White (LW) piglets. Total GR mRNA and the predominant GR mRNA variant 1-9/10 were expressed significantly higher in EHL compared with LW piglets (P<0.01), which was associated with more enriched histone H3 acetylation on 1-9/10 promoter (P<0.05). Nuclear content of transcription factor specificity protein 1 (Sp1) was significantly lower in EHL piglets, yet its binding to GR 1-9/10 promoter was significantly higher in EHL piglets, as revealed by chromatin immunoprecipitation assays. Although p53 binding to GR promoter 1-9/10 did not differ between breeds, expression of p53 mRNA and protein, as well as its binding to Sp1, were significantly higher in EHL piglets. Moreover, p53 activator doxorubicin significantly enhanced GR 1-9/10 promoter activity in HepG2 cells at 100 nM, which was associated with significantly higher protein content of p53 and GR. Sp1 inhibitor, mithramycin A, significantly inhibited (P<0.05) the basal activity of GR promoter 1-9/10 and completely blocked doxorubicin -induced activation of GR promoter 1-9/10. These data indicate that higher hepatic GR expression in EHL piglets attributes mainly to the enhanced transcription of GR promoter 1-9/10, which is achieved from breed-specific interaction of p53 and Sp1 on porcine GR 1-9/10 promoter.
Collapse
Affiliation(s)
- Huafeng Zou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zheng Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Runsheng Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
- * E-mail:
| |
Collapse
|
19
|
Jeanneteau F, Chao MV. Are BDNF and glucocorticoid activities calibrated? Neuroscience 2013; 239:173-95. [PMID: 23022538 PMCID: PMC3581703 DOI: 10.1016/j.neuroscience.2012.09.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of 'BDNF therapies', however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitates stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles shared by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects.
Collapse
Affiliation(s)
- F Jeanneteau
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
20
|
Li R, Zou H, Jia Y, Zhao R. Glucocorticoid receptor is involved in the breed-dependent transcriptional regulation of mtDNA- and nuclear-encoded mitochondria genes in the liver of newborn piglets. BMC Vet Res 2013; 9:87. [PMID: 23618392 PMCID: PMC3644494 DOI: 10.1186/1746-6148-9-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/23/2013] [Indexed: 01/20/2023] Open
Abstract
Background Mitochondria, which are essential for the functionality of eukaryotic cells, are particularly important in metabolically active tissues such as liver. Different breeds of pigs demonstrate distinct metabolic profiles in the liver, yet little is known whether the expression and transcriptional regulation of mitochondrial genes differ between breeds. Results Here we used male newborn Large White (LW) and Erhualian (EHL) piglets to delineate the difference in hepatic mitochondrial gene regulation between breeds. The hepatic content of ATP was significantly higher (p < 0.01) in EHL piglets, which was associated with lower mtDNA copy number (p < 0.05). Most of the mtDNA-encoded genes (10 of 13), however, were more abundantly expressed in EHL compared to LW piglets. We also detected 3 differentially expressed nuclear-encoded mitochondrial genes, among which isocitrate dehydrogenase 2 (IDH2) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d (ATP5H) were expressed significantly lower, while adenylate kinase 1 (AK1) was significantly over expressed in EHL piglets. Compared to LW, the over expression of mtDNA-encoded genes in EHL was associated with significantly higher (p < 0.01) glucocorticoid receptor (GR) binding to the control region of mtDNA with no alterations in the methylation status. For nuclear-encoded genes, however, a negative correlation was observed between GR binding and mRNA expression of AK1 and ATP5H. Moreover, higher expression of AK1 in EHL piglets was also associated with lower cytosine methylation (p < 0.05) and hydroxymethylation (p < 0.05). In the promoter region. Conclusions These results indicate a role of the GR in the breed-dependent regulation of mitochondrial genes in the liver of newborn piglets.
Collapse
Affiliation(s)
- Runsheng Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | | | | | | |
Collapse
|
21
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
The hypersensitive glucocorticoid response specifically regulates period 1 and expression of circadian genes. Mol Cell Biol 2012; 32:3756-67. [PMID: 22801371 DOI: 10.1128/mcb.00062-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glucocorticoids regulate gene expression by binding and activating the glucocorticoid receptor (GR). While ligand affinity determines the global sensitivity of the response, additional proteins act on the genome to tune sensitivity of some genes. However, the genomic extent and specificity of dose-specific glucocorticoid responses are unknown. We show that dose-specific glucocorticoid responses are extraordinarily specific at the genomic scale, able to distinctly express a single gene, the circadian rhythm gene for Period 1 (PER1), at concentrations consistent with the nighttime nadir of human cortisol. We mapped the PER1 response to a single GR binding site. The specific GR binding sequence did not impact sensitivity, and we instead attributed the response to a combination of additional transcription factors and chromatin accessibility acting in the same locus. The PER1 hypersensitive response element is conserved in the mouse, where we found similar upregulation of Per1 in pituitary cells. Targeted and transient overexpression of PER1 led to regulation of additional circadian rhythm genes hours later, suggesting that hypersensitive expression of PER1 impacts circadian gene expression. These findings show that hypersensitive GR binding occurs throughout the genome, drives targeted gene expression, and may be important to endocrine mediation of peripheral circadian rhythms.
Collapse
|
23
|
Zou H, Li R, Jia Y, Yang X, Ni Y, Cong R, Soloway PD, Zhao R. Breed-dependent transcriptional regulation of 5'-untranslated GR (NR3C1) exon 1 mRNA variants in the liver of newborn piglets. PLoS One 2012; 7:e40432. [PMID: 22792317 PMCID: PMC3390360 DOI: 10.1371/journal.pone.0040432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids are vital for life and regulate an array of physiological functions by binding to the ubiquitously expressed glucocorticoid receptor (GR, also known as NR3C1). Previous studies demonstrate striking breed differences in plasma cortisol levels in pigs. However, investigation into the breed-dependent GR transcriptional regulation is hampered by lacking porcine GR promoter information. In this study, we sequenced 5.3 kb upstream of the translation start codon of the porcine GR gene, and identified seven alternative 5′-untranslated exons 1–4, 1–5, 1–6, 1–7, 1–8, 1–9,10 and 1–11. Among all these mRNA variants, exons 1–4 and 1–5, as well as the total GR were expressed significantly (P<0.05) higher in the liver of newborn piglets of Large White (LW) compared with Erhualian, a Chinese indigenous breed. Overall level of CpG methylation in the region flanking exons 1–4 and 1–5 did not show breed difference. However, nuclear content of Sp1, p-CREB and GR in the liver was significantly (P<0.05) higher in LW piglets, associated with enhanced binding of p-CREB, and higher level of histone H3 acetylation in 1–4 and 1–5 promoters. In contrast, GR binding to promoters of exons 1–4 and 1–5 was significantly diminished in LW piglets, implicating the presence of negative GREs. These results indicate that the difference in the hepatic expression of GR transcript variants between two breeds of pigs is determined, at least partly, by the disparity in the binding of transcription factors and the enrichment of histone H3 acetylation to the promoters.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Animals, Newborn
- Base Sequence
- Binding Sites
- Body Weight
- Cloning, Molecular
- CpG Islands
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Exons
- Hydrocortisone/blood
- Liver/anatomy & histology
- Liver/metabolism
- Male
- Molecular Sequence Data
- Organ Size
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Sequence Analysis, DNA
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sus scrofa/genetics
- Sus scrofa/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Huafeng Zou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Runsheng Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Rihua Cong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Paul D. Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
24
|
Human Tau may Modify Glucocorticoids-Mediated Regulation of cAMP-dependent Kinase and Phosphorylated cAMP Response Element Binding Protein. Neurochem Res 2012; 37:935-47. [DOI: 10.1007/s11064-011-0686-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
25
|
Shanmugam R, Gade P, Wilson-Weekes A, Sayar H, Suvannasankha A, Goswami C, Li L, Gupta S, Cardoso AA, Baghdadi TA, Sargent KJ, Cripe LD, Kalvakolanu DV, Boswell HS. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia. Clin Cancer Res 2011; 18:360-369. [PMID: 22096027 DOI: 10.1158/1078-0432.ccr-10-3022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. EXPERIMENTAL DESIGN Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. RESULTS AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. CONCLUSIONS Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML.
Collapse
Affiliation(s)
- Rajasubramaniam Shanmugam
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Padmaja Gade
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Annique Wilson-Weekes
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Hamid Sayar
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Attaya Suvannasankha
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Chirayu Goswami
- Biostatistics and Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lang Li
- Biostatistics and Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sushil Gupta
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Angelo A Cardoso
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tareq Al Baghdadi
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Larry D Cripe
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - H Scott Boswell
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| |
Collapse
|
26
|
Reciprocal regulation of 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor expression by dexamethasone inhibits human coronary artery smooth muscle cell proliferation in vitro. Mol Cell Biochem 2010; 346:69-79. [PMID: 20922465 DOI: 10.1007/s11010-010-0592-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
The actions of glucocorticoids are mediated, in part, by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which amplifies their effects at the pre-receptor level by converting cortisone to cortisol. Glucocorticoids, such as dexamethasone, inhibit vascular smooth muscle cell proliferation; however, the role of 11β-HSD1 in this response remains unknown. Accordingly, we treated human coronary artery smooth muscle cells (HCSMC) with dexamethasone (10(-9)-10(-6) mol/l) and found that after 72 h dexamethasone increased 11β-HSD1 expression (14.16 ± 1.6-fold, P < 0.001) and activity (6.21 ± 1.2-fold, P < 0.001) in a dose- and time-dependent manner, which was dependent upon glucocorticoid receptor (GR) activation and C/EBPβ and C/EBPδ signaling. As glucocorticoids are known to negatively regulate GR expression, we examined the effect of decreasing 11β-HSD1 expression on GR expression. In HCSMC transfected with 11β-HSD1 siRNA, GR expression was increased; this effect was associated with protein kinase A activation and CREB phosphorylation. To examine the role of 11β-HSD1 in HCSMC proliferation, we decreased 11β-HSD1 expression and stimulated cells with platelet-derived growth factor (PDGF) (10 ng/ml). Decreased 11β-HSD1 expression was associated with increased cell proliferation in the absence of PDGF compared to scrambled control-transfected cells (236.10 ± 13.11%, n = 4, P < 0.001) and this effect was augmented by PDGF. Furthermore, the inhibitory effect of dexamethasone on cellular proliferation was abrogated in 11β-HSD1 siRNA-transfected HCSMC. Downregulation of 11β-HSD1 was associated with decreased p27(kip1) expression and increased phosphorylated retinoblastoma protein, consistent with a proliferative response. These findings suggest that 11β-HSD1 plays a role in the effects of glucocorticoids on vascular smooth muscle cell phenotype.
Collapse
|