1
|
Hazan S, Tauber M, Ben-Chaim Y. Voltage dependence of M2 muscarinic receptor antagonists and allosteric modulators. Biochem Pharmacol 2024; 227:116421. [PMID: 38996933 DOI: 10.1016/j.bcp.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Muscarinic receptors are G protein-coupled receptors (GPCRs) that play a role in various physiological functions. Previous studies have shown that these receptors, along with other GPCRs, are voltage-sensitive; both their affinity toward agonists and their activation are regulated by membrane potential. To our knowledge, whether the effect of antagonists on these receptors is voltage-dependent has not yet been studied. In this study, we used Xenopus oocytes expressing the M2 muscarinic receptor (M2R) to investigate this question. Our results indicate that the potencies of two M2R antagonists, atropine and scopolamine, are voltage-dependent; they are more effective at resting potential than under depolarization. In contrast, the M2R antagonist AF-DX 386 did not exhibit voltage-dependent potency.Furthermore, we discovered that the voltage dependence of M2R activation by acetylcholine remains unchanged in the presence of two allosteric modulators, the negative modulator gallamine and the positive modulator LY2119620. These findings enhance our understanding of GPCRs' voltage dependence and may have pharmacological implications.
Collapse
Affiliation(s)
- Shimrit Hazan
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Merav Tauber
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
2
|
Tauber M, Ben-Chaim Y. Voltage Sensors Embedded in G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5295. [PMID: 38791333 PMCID: PMC11120775 DOI: 10.3390/ijms25105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Some signaling processes mediated by G protein-coupled receptors (GPCRs) are modulated by membrane potential. In recent years, increasing evidence that GPCRs are intrinsically voltage-dependent has accumulated. A recent publication challenged the view that voltage sensors are embedded in muscarinic receptors. Herein, we briefly discuss the evidence that supports the notion that GPCRs themselves are voltage-sensitive proteins and an alternative mechanism that suggests that voltage-gated sodium channels are the voltage-sensing molecules involved in such processes.
Collapse
Affiliation(s)
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
| |
Collapse
|
3
|
Kenakin T. Bias translation: The final frontier? Br J Pharmacol 2024; 181:1345-1360. [PMID: 38424747 DOI: 10.1111/bph.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024] Open
Abstract
Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Braga Emidio N, Small BM, Keller AR, Cheloha RW, Wingler LM. Nanobody-Mediated Dualsteric Engagement of the Angiotensin Receptor Broadens Biased Ligand Pharmacology. Mol Pharmacol 2024; 105:260-271. [PMID: 38164609 PMCID: PMC10877709 DOI: 10.1124/molpharm.123.000797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Dualsteric G protein-coupled receptor (GPCR) ligands are a class of bitopic ligands that consist of an orthosteric pharmacophore, which binds to the pocket occupied by the receptor's endogenous agonist, and an allosteric pharmacophore, which binds to a distinct site. These ligands have the potential to display characteristics of both orthosteric and allosteric ligands. To explore the signaling profiles that dualsteric ligands of the angiotensin II type 1 receptor (AT1R) can access, we ligated a 6e epitope tag-specific nanobody (single-domain antibody fragment) to angiotensin II (AngII) and analogs that show preferential allosteric coupling to Gq (TRV055, TRV056) or β-arrestin (TRV027). While the nanobody itself acts as a probe-specific neutral or negative allosteric ligand of N-terminally 6e-tagged AT1R, nanobody conjugation to orthosteric ligands had varying effects on Gq dissociation and β-arrestin plasma membrane recruitment. The potency of certain AngII analogs was enhanced up to 100-fold, and some conjugates behaved as partial agonists, with up to a 5-fold decrease in maximal efficacy. Nanobody conjugation also biased the signaling of TRV055 and TRV056 toward Gq, suggesting that Gq bias at AT1R can be modulated through molecular mechanisms distinct from those previously elucidated. Both competition radioligand binding experiments and functional assays demonstrated that orthosteric antagonists (angiotensin receptor blockers) act as non-competitive inhibitors of all these nanobody-peptide conjugates. This proof-of-principle study illustrates the array of pharmacological patterns that can be achieved by incorporating neutral or negative allosteric pharmacophores into dualsteric ligands. Nanobodies directed toward linear epitopes could provide a rich source of allosteric reagents for this purpose. SIGNIFICANCE STATEMENT: Here we engineer bitopic (dualsteric) ligands for epitope-tagged angiotensin II type 1 receptor by conjugating angiotensin II or its biased analogs to an epitope-specific nanobody (antibody fragment). Our data demonstrate that nanobody-mediated interactions with the receptor N-terminus endow angiotensin analogs with properties of allosteric modulators and provide a novel mechanism to increase the potency, modulate the maximal effect, or alter the bias of ligands.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Brandi M Small
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Amanda R Keller
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Laura M Wingler
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| |
Collapse
|
5
|
Kenakin T. Allostery: The Good, the Bad, and the Ugly. J Pharmacol Exp Ther 2024; 388:110-120. [PMID: 37918859 DOI: 10.1124/jpet.123.001838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
With the advent of functional screening, more allosteric molecules are being discovered and developed as possible therapeutic entities. Allosteric proteins are unique because of two specific properties: 1) separate binding sites for allosteric modulators and guests and 2) mandatory alteration of receptor conformation upon binding of allosteric modulators. For G protein-coupled receptors, these properties produce many beneficial effects on pharmacologic systems that are described here. Allosteric discovery campaigns also bring with them added considerations that must be addressed for the endeavor to be successful, and these are described herein as well. SIGNIFICANCE STATEMENT: Recent years have seen the increasing presence of allosteric molecules as possible therapeutic drug candidates. The scientific procedures to characterize these are unique and require special techniques, so it is imperative that scientists understand the new concepts involved in allosteric function. This review examines the reasons why allosteric molecules should be considered as new drug entities and the techniques required to optimize the discovery process for allosteric molecules.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Buchwald P. Quantitative receptor model for responses that are left- or right-shifted versus occupancy (are more or less concentration sensitive): the SABRE approach. Front Pharmacol 2023; 14:1274065. [PMID: 38161688 PMCID: PMC10755021 DOI: 10.3389/fphar.2023.1274065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Simple one-to three-parameter models routinely used to fit typical dose-response curves and calculate EC50 values using the Hill or Clark equation cannot provide the full picture connecting measured response to receptor occupancy, which can be quite complex due to the interplay between partial agonism and (pathway-dependent) signal amplification. The recently introduced SABRE quantitative receptor model is the first one that explicitly includes a parameter for signal amplification (γ) in addition to those for binding affinity (K d), receptor-activation efficacy (ε), constitutive activity (ε R0), and steepness of response (Hill slope, n). It can provide a unified framework to fit complex cases, where fractional response and occupancy do not match, as well as simple ones, where parameters constrained to specific values can be used (e.g., ε R0 = 0, γ = 1, or n = 1). Here, it is shown for the first time that SABRE can fit not only typical cases where response curves are left-shifted compared to occupancy (κ = K d/EC50 > 1) due to signal amplification (γ > 1), but also less common ones where they are right-shifted (i.e., less concentration-sensitive; κ = K d/EC50 < 1) by modeling them as apparent signal attenuation/loss (γ < 1). Illustrations are provided with μ-opioid receptor (MOPr) data from three different experiments with one left- and one right-shifted response (G protein activation and β-arrestin2 recruitment, respectively; EC50,Gprt < K d < EC50,βArr). For such cases of diverging pathways with differently shifted responses, partial agonists can cause very weak responses in the less concentration-sensitive pathway without having to be biased ligands due to the combination of low ligand efficacy and signal attenuation/loss-an illustration with SABRE-fitted oliceridine data is included.
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Pham V, Habben Jansen MCC, Thompson G, Heitman LH, Christopoulos A, Thal DM, Valant C. Role of Conserved Tyrosine Lid Residues in the Activation of the M 2 Muscarinic Acetylcholine Receptor. Mol Pharmacol 2023; 104:92-104. [PMID: 37348914 DOI: 10.1124/molpharm.122.000661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
The development of subtype selective small molecule drugs for the muscarinic acetylcholine receptor (mAChR) family has been challenging. The design of more selective ligands can be improved by understanding the structure and function of key amino acid residues that line ligand binding sites. Here we study the role of three conserved key tyrosine residues [Y1043.33, Y4036.51, and Y4267.39 (Ballesteros and Weinstein numbers in superscript)] at the human M2 mAChR, located at the interface between the orthosteric and allosteric binding sites of the receptor. We specifically focused on the role of the three tyrosine hydroxyl groups in the transition between the inactive and active conformations of the receptor by making phenylalanine point mutants. Single-point mutation at either of the three positions was sufficient to reduce the affinity of agonists by ∼100-fold for the M2 mAChR, whereas the affinity of antagonists remained largely unaffected. In contrast, neither of the mutations affected the efficacy of orthosteric agonists. When mutations were combined into double and triple M2 mAChR mutants, the affinity of antagonists was reduced by more than 100-fold compared with the wild-type M2 receptor. In contrast, the affinity of allosteric modulators, either negative or positive, was retained at all single and multiple mutations, but the degree of allosteric effect exerted on the endogenous ligand acetylcholine was affected at all mutants containing Y4267.39F. These findings will provide insights to consider when designing future mAChR ligands. SIGNIFICANCE STATEMENT: Structural studies demonstrated that three tyrosine residues between the orthosteric and allosteric sites of the M2 muscarinic acetylcholine receptor (mAChR) had different hydrogen bonding networks in the inactive and active conformations. The role of hydroxyl groups of the tyrosine residues on orthosteric and allosteric ligand pharmacology was unknown. We found that hydroxyl groups of the tyrosine residues differentially affected the molecular pharmacology of orthosteric and allosteric ligands. These results provide insights to consider when designing future mAChR ligands.
Collapse
Affiliation(s)
- Vi Pham
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Maria Clazina Cornelia Habben Jansen
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Geoff Thompson
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Laura H Heitman
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Arthur Christopoulos
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - David M Thal
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Celine Valant
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| |
Collapse
|
8
|
Pottie E, Poulie CBM, Simon IA, Harpsøe K, D’Andrea L, Komarov IV, Gloriam DE, Jensen AA, Kristensen JL, Stove CP. Structure-Activity Assessment and In-Depth Analysis of Biased Agonism in a Set of Phenylalkylamine 5-HT 2A Receptor Agonists. ACS Chem Neurosci 2023; 14:2727-2742. [PMID: 37474114 PMCID: PMC10401645 DOI: 10.1021/acschemneuro.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of β-arrestin2 (βarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the βarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Icaro A. Simon
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura D’Andrea
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - David E. Gloriam
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 2023; 12:83477. [PMID: 37248726 DOI: 10.7554/elife.83477] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.
Collapse
Affiliation(s)
- Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Vindhya Nawaratne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, United States
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
10
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Kirchner S, Hicks C, Choi I, Pham U, Zheng K, Warman A, Smith JS, Zhang JY, Rajagopal S. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat Commun 2022; 13:5846. [PMID: 36195635 PMCID: PMC9532441 DOI: 10.1038/s41467-022-33569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.
Collapse
Affiliation(s)
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Stephen Kirchner
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27707, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA, 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S Smith
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
McDonald JK, van der Westhuizen ET, Pham V, Thompson G, Felder CC, Paul SM, Thal DM, Christopoulos A, Valant C. Biased Profile of Xanomeline at the Recombinant Human M 4 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci 2022; 13:1206-1218. [PMID: 35380782 DOI: 10.1021/acschemneuro.1c00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many Food and Drug Administration (FDA)-approved drugs are structural analogues of the endogenous (natural) ligands of G protein-coupled receptors (GPCRs). However, it is becoming appreciated that chemically distinct ligands can bind to GPCRs in conformations that lead to different cellular signaling events, a phenomenon termed biased agonism. Despite this, the rigorous experimentation and analysis required to identify biased agonism are often not undertaken in most clinical candidates and go unrealized. Recently, xanomeline, a muscarinic acetylcholine receptor (mAChR) agonist, has entered phase III clinical trials for the treatment of schizophrenia. If successful, xanomeline will be the first novel FDA-approved antipsychotic drug in almost 50 years. Intriguingly, xanomeline's potential for biased agonism at the mAChRs and, in particular, the M4 mAChR, the most promising receptor target for schizophrenia, has not been assessed. Here, we quantify the biased agonism profile of xanomeline and three other mAChR agonists in Chinese hamster ovary cells recombinantly expressing the M4 mAChR. Agonist activity was examined across nine distinct signaling readouts, including the activation of five different G protein subtypes, ERK1/2 phosphorylation, β-arrestin recruitment, calcium mobilization, and cAMP regulation. Relative to acetylcholine (ACh), xanomeline was biased away from ERK1/2 phosphorylation and calcium mobilization compared to Gαi2 protein activation. These findings likely have important implications for our understanding of the therapeutic action of xanomeline and call for further investigation into the in vivo consequences of biased agonism in drugs targeting the M4 mAChR for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Jack K. McDonald
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Steven M. Paul
- Karuna Therapeutics, Boston, Massachusetts 02110, United States
| | - David M. Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Chen CJ, Jiang C, Yuan J, Chen M, Cuyler J, Xie XQ, Feng Z. How Do Modulators Affect the Orthosteric and Allosteric Binding Pockets? ACS Chem Neurosci 2022; 13:959-977. [PMID: 35298129 PMCID: PMC10496248 DOI: 10.1021/acschemneuro.1c00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Allosteric modulators (AMs) that bind allosteric sites can exhibit greater selectivity than the orthosteric ligands and can either enhance agonist-induced receptor activity (termed positive allosteric modulator or PAM), inhibit agonist-induced activity (negative AM or NAM), or have no effect on activity (silent AM or SAM). Until now, it is not clear what the exact effects of AMs are on the orthosteric active site or the allosteric binding pocket(s). In the present work, we collected both the three-dimensional (3D) structures of receptor-orthosteric ligand and receptor-orthosteric ligand-AM complexes of a specific target protein. Using our novel algorithm toolset, molecular complex characterizing system (MCCS), we were able to quantify the key residues in both the orthosteric and allosteric binding sites along with potential changes of the binding pockets. After analyzing 21 pairs of 3D crystal or cryo-electron microscopy (cryo-EM) complexes, including 4 pairs of GPCRs, 5 pairs of ion channels, 11 pairs of enzymes, and 1 pair of transcription factors, we found that the binding of AMs had little impact on both the orthosteric and allosteric binding pockets. In return, given the accurately predicted allosteric binding pocket(s) of a drug target of medicinal interest, we can confidently conduct the virtual screening or lead optimization without concern that the huge conformational change of the pocket could lead to the low accuracy of virtual screening.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Chen Jiang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jiayi Yuan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
13
|
Servant NB, Williams ME, Brust PF, Tang H, Wong MS, Chen Q, Lebl-Rinnova M, Adamski-Werner SL, Tachdjian C, Servant G. A Dynamic Mass Redistribution Assay for the Human Sweet Taste Receptor Uncovers G-Protein Dependent Biased Ligands. Front Pharmacol 2022; 13:832529. [PMID: 35250580 PMCID: PMC8893300 DOI: 10.3389/fphar.2022.832529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
The sweet taste receptor is rather unique, recognizing a diverse repertoire of natural or synthetic ligands, with a surprisingly large structural diversity, and with potencies stretching over more than six orders of magnitude. Yet, it is not clear if different cell-based assays can faithfully report the relative potencies and efficacies of these molecules. Indeed, up to now, sweet taste receptor agonists have been almost exclusively characterized using cell-based assays developed with overexpressed and promiscuous G proteins. This non-physiological coupling has allowed the quantification of receptor activity via phospholipase C activation and calcium mobilization measurements in heterologous cells on a FLIPR system, for example. Here, we developed a novel assay for the human sweet taste receptor where endogenous G proteins and signaling pathways are recruited by the activated receptor. The effects of several sweet taste receptor agonists and other types of modulators were recorded by measuring changes in dynamic mass redistribution (DMR) using an Epic® reader. Potency and efficacy values obtained in the DMR assay were compared to those results obtained with the classical FLIPR assay. Results demonstrate that for some ligands, the two assay systems provide similar information. However, a clear bias for the FLIPR assay was observed for one third of the agonists evaluated, suggesting that the use of non-physiological coupling may influence the potency and efficacy of sweet taste receptor ligands. Replacing the promiscuous G protein with a chimeric G protein containing the C-terminal tail 25 residues of the physiologically relevant G protein subunit Gαgustducin reduced or abrogated bias.
Collapse
|
14
|
Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A. Crystal structure of the α 1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun 2022; 13:382. [PMID: 35046410 PMCID: PMC8770593 DOI: 10.1038/s41467-021-27911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α1BAR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α1BAR structure allows the identification of two unique secondary binding pockets. By structural comparison of α1BAR with α2ARs, and by constructing α1BAR-α2CAR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α1BAR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype. This study reports the X-ray structure of the α1B-adrenergic G protein-coupled receptor bound to an inverse agonist, and unveils key determinants of subtype-selective ligand binding that may help the design of aminergic drugs with fewer side-effects.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Riley R Cridge
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lazarus A de Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
15
|
Randáková A, Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol Res 2021; 169:105641. [PMID: 33951507 DOI: 10.1016/j.phrs.2021.105641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Disruption of cholinergic signalling via muscarinic receptors is associated with various pathologies, like Alzheimer's disease or schizophrenia. Selective muscarinic agonists possess therapeutic potential in the treatment of diabetes, pain or Sjögren's syndrome. The orthosteric binding site of all subtypes of the muscarinic receptor is structurally identical, making the development of affinity-based selective agonists virtually impossible. Some agonists, however, are functionally selective; they activate only a subset of receptors or signalling pathways. Others may stabilise specific conformations of the receptor leading to non-uniform modulation of individual signalling pathways (biased agonists). Functionally selective and biased agonists represent a promising approach for selective activation of individual subtypes of muscarinic receptors. In this work we review chemical structures, receptor binding and agonist-specific conformations of currently known functionally selective and biased muscarinic agonists in the context of their intricate intracellular signalling. Further, we take a perspective on the possible use of biased agonists for tissue and organ-specific activation of muscarinic receptors.
Collapse
Affiliation(s)
- Alena Randáková
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Xu Y, Marck P, Huang M, Xie JX, Wang T, Shapiro JI, Cai L, Feng F, Xie Z. Biased Effect of Cardiotonic Steroids on Na/K-ATPase-Mediated Signal Transduction. Mol Pharmacol 2021; 99:217-225. [PMID: 33495275 DOI: 10.1124/molpharm.120.000101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023] Open
Abstract
Recent studies have revealed that Na/K-ATPase (NKA) can transmit signals through ion-pumping-independent activation of pathways relayed by distinct intracellular protein/lipid kinases, and endocytosis challenges the traditional definition that cardiotonic steroids (CTS) are NKA inhibitors. Although additional effects of CTS have long been suspected, revealing its agonist impact through the NKA receptor could be a novel mechanism in understanding the basic biology of NKA. In this study, we tested whether different structural CTS could trigger different sets of NKA/effector interactions, resulting in biased signaling responses without compromising ion-pumping capacity. Using purified NKA, we found that ouabain, digitoxigenin, and somalin cause comparable levels of NKA inhibition. However, although endogenous ouabain stimulates both protein kinases and NKA endocytosis, digitoxigenin and somalin bias to protein kinases and endocytosis, respectively, in LLC-PK1 cells. The positive inotropic effects of CTS are traditionally regarded as NKA inhibitors. However, CTS-induced signaling occurs at concentrations at least one order of magnitude lower than that of inotropy, which eliminates their well known toxic actions on the heart. The current study adds a novel mechanism that CTS could exert its biased signaling properties through the NKA signal transducer. SIGNIFICANCE STATEMENT: Although it is now well accepted that NKA has an ion-pumping-independent signaling function, it is still debated whether direct and conformation-dependent NKA/effector interaction is a key to this function. Therefore, this investigation is significant in advancing our understanding of the basic biology of NKA-mediated signal transduction and gaining molecular insight into the structural elements that are important for cardiotonic steroid's biased action.
Collapse
Affiliation(s)
- Yunhui Xu
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Pauline Marck
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Jeffrey X Xie
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Tong Wang
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Joseph I Shapiro
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Feng Feng
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia (Y.X., P.M., M.H., T.W., L.C., Z.X.); University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.X.X.); Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia (J.I.S.); and Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China, and Jiangsu Food and Pharmaceutical Science College, Huai'an, P. R. China (F.F.)
| |
Collapse
|
17
|
BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M 2 muscarinic acetylcholine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
BRET and fluorescence anisotropy (FA) are two fluorescence-based techniques used for the characterization of ligand binding to G protein-coupled receptors (GPCRs) and both allow monitoring of ligand binding in real time. In this study, we present the first direct comparison of BRET-based and FA-based binding assays using the human M2 muscarinic acetylcholine receptor (M2R) and two TAMRA (5-carboxytetramethylrhodamine)-labeled fluorescent ligands as a model system. The determined fluorescent ligand affinities from both assays were in good agreement with results obtained from radioligand competition binding experiments. The assays yielded real-time kinetic binding data revealing differences in the mechanism of binding for the investigated fluorescent probes. Furthermore, the investigation of various unlabeled M2R ligands yielded pharmacological profiles in accordance with earlier reported data. Taken together, this study showed that BRET- and FA-based binding assays represent valuable alternatives to radioactivity-based methods for screening purposes and for a precise characterization of binding kinetics supporting the exploration of binding mechanisms.
Collapse
|
18
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Buchwald P. A single unified model for fitting simple to complex receptor response data. Sci Rep 2020; 10:13386. [PMID: 32770075 PMCID: PMC7414914 DOI: 10.1038/s41598-020-70220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
The fitting of complex receptor-response data where fractional response and occupancy do not match is challenging. They encompass important cases including (a) the presence of "receptor reserve" and/or partial agonism, (b) multiple responses assessed at different vantage points along a pathway, (c) responses that are different along diverging downstream pathways (biased agonism), and (d) constitutive activity. For these, simple models such as the well-known Clark or Hill equations cannot be used. Those that can, such as the operational (Black&Leff) model, do not provide a unified approach, have multiple nonintuitive parameters that are challenging to fit in well-defined manner, have difficulties incorporating binding data, and cannot be reduced or connected to simpler forms. We have recently introduced a quantitative receptor model (SABRE) that includes parameters for Signal Amplification (γ), Binding affinity (Kd), Receptor activation Efficacy (ε), and constitutive activity (εR0). It provides a single equation to fit complex cases within a full two-state framework with the possibility of incorporating receptor occupancy data (i.e., experimental Kds). Simpler cases can be fit by using consecutively reduced forms obtained by constraining parameters to specific values, e.g., εR0 = 0: no constitutive activity, γ = 1: no amplification (Emax-type fitting), and ε = 1: no partial agonism (Clark equation). Here, a Hill-type extension is introduced (n ≠ 1), and simulated and experimental receptor-response data from simple to increasingly complex cases are fitted within the unified framework of SABRE with differently constrained parameters.
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology and Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
20
|
Hatzipantelis CJ, Lu Y, Spark DL, Langmead CJ, Stewart GD. β-Arrestin-2-Dependent Mechanism of GPR52 Signaling in Frontal Cortical Neurons. ACS Chem Neurosci 2020; 11:2077-2084. [PMID: 32519845 DOI: 10.1021/acschemneuro.0c00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The orphan Gαs-coupled receptor GPR52 is expressed exclusively in the brain, predominantly in circuitry relating to symptoms of neuropsychiatric and cognitive disorders such as schizophrenia. While GPR52 agonists have displayed antipsychotic and procognitive efficacy in murine models, there remains limited evidence delineating the molecular mechanisms of these effects. Indeed, previous studies have solely reported canonical cAMP signaling and CREB phosphorylation downstream of GPR52 activation. In the present study, we demonstrated that the synthetic GPR52 agonist, 3-BTBZ, equipotently induces cAMP accumulation, ERK1/2 phosphorylation, and β-arrestin-1 and -2 recruitment in transfected HEK293T cells. In cultured frontal cortical neurons, however, 3-BTBZ-induced ERK1/2 phosphorylation was significantly more potent than cAMP signaling, with a more prolonged signaling profile than that in HEK293T cells. Furthermore, knock down of β-arrestin-2 in frontal cortical neurons abolished 3-BTBZ-induced ERK1/2 phosphorylation, but not cAMP accumulation. These results suggest a β-arrestin-2-dependent mechanism for GPR52-mediated ERK1/2 signaling, which may link to cognitive function in vivo. Finally, these findings highlight the context-dependence of GPCR signaling in recombinant cells and neurons, offering new insights into translationally relevant GPR52 signaling mechanisms.
Collapse
Affiliation(s)
- Cassandra J. Hatzipantelis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yao Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daisy L. Spark
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Matucci R, Bellucci C, Martino MV, Nesi M, Manetti D, Welzel J, Bartz U, Holze J, Tränkle C, Mohr K, Mazzolari A, Vistoli G, Dei S, Teodori E, Romanelli MN. Carbachol dimers with primary carbamate groups as homobivalent modulators of muscarinic receptors. Eur J Pharmacol 2020; 883:173183. [PMID: 32534072 DOI: 10.1016/j.ejphar.2020.173183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/23/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Although agonists and antagonists of muscarinic receptors have been known for long time, there is renewed interest in compounds (such as allosteric or bitopic ligands, or biased agonists) able to differently and selectively modulate these receptors. As a continuation of our previous research, we designed a new series of dimers of the well-known cholinergic agonist carbachol. The new compounds were tested on the five cloned human muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding experiments, showing a dependence of the binding affinity on the length and position of the linker connecting the two monomers. Kinetic binding studies revealed that some of the tested compounds were able to slow the rate of NMS dissociation, suggesting allosteric behavior, also supported by docking simulations. Assessment of ERK1/2 phosphorylation on hM1, hM2 and hM3 activation showed that the new compounds are endowed with muscarinic antagonist properties. At hM2 receptors, some compounds were able to stimulate GTPγS binding but not cAMP accumulation, suggesting a biased behavior. Classification, Molecular and cellular pharmacology.
Collapse
Affiliation(s)
- Rosanna Matucci
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Firenze, Italy.
| | - Cristina Bellucci
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Vittoria Martino
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Marta Nesi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Firenze, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Jessica Welzel
- Department of Pharmacology & Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, H-BRS University of Applied Sciences, von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Janine Holze
- Department of Pharmacology & Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Christian Tränkle
- Department of Pharmacology & Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Klaus Mohr
- Department of Pharmacology & Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Angelica Mazzolari
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milano, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milano, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
22
|
López-Serrano AL, De Jesús-Pérez JJ, Zamora-Cárdenas R, Ferrer T, Rodríguez-Menchaca AA, Tristani-Firouzi M, Moreno-Galindo EG, Navarro-Polanco RA. Voltage-induced structural modifications on M2 muscarinic receptor and their functional implications when interacting with the superagonist iperoxo. Biochem Pharmacol 2020; 177:113961. [PMID: 32272111 DOI: 10.1016/j.bcp.2020.113961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
It has been reported that muscarinic type-2 receptors (M2R) are voltage sensitive in an agonist-specific manner. In this work, we studied the effects of membrane potential on the interaction of M2R with the superagonist iperoxo (IXO), both functionally (using the activation of the ACh-gated K+ current (IKACh) in cardiomyocytes) and by molecular dynamics (MD) simulations. We found that IXO activated IKACh with remarkable high potency and clear voltage dependence, displaying a larger effect at the hyperpolarized potential. This result is consistent with a greater affinity, as validated by a slower (τ = 14.8 ± 2.3 s) deactivation kinetics of the IXO-evoked IKACh than that at the positive voltage (τ = 6.7 ± 1.2 s). The voltage-dependent M2R-IXO interaction induced IKACh to exhibit voltage-dependent features of this current, such as the 'relaxation gating' and the modulation of rectification. MD simulations revealed that membrane potential evoked specific conformational changes both at the external access and orthosteric site of M2R that underlie the agonist affinity change provoked by voltage on M2R. Moreover, our experimental data suggest that the 'tyrosine lid' (Y104, Y403, and Y426) is not the previously proposed voltage sensor of M2R. These findings provide an insight into the structural and functional framework of the biased signaling induced by voltage on GPCRs.
Collapse
Affiliation(s)
- Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - José J De Jesús-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Rodrigo Zamora-Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA; Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico.
| | | |
Collapse
|
23
|
Randáková A, Nelic D, Doležal V, El-Fakahany EE, Boulos J, Jakubík J. Agonist-Specific Conformations of the M 2 Muscarinic Acetylcholine Receptor Assessed by Molecular Dynamics. J Chem Inf Model 2020; 60:2325-2338. [PMID: 32130001 DOI: 10.1021/acs.jcim.0c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Binding of muscarinic ligands, both antagonists and agonists, and their effects on the conformation of the M2 acetylcholine receptor were modeled in silico and compared to experimental data. After docking of antagonists to the M2 receptor in an inactive conformation (3UON, 5ZK3, 5ZKB, or 5ZKB) and agonists in an active conformation (4MQS), 100 ns of conventional molecular dynamics (MD) followed by 500 ns of accelerated MD was run. Conventional MD revealed ligand-specific interactions with the receptor. Antagonists stabilized the receptor in an inactive conformation during accelerated MD. The receptor in complex with various agonists attained different conformations specific to individual agonists. The magnitude of the TM6 movement correlated with agonist efficacy at the non-preferential Gs pathway. The shape of the intracellular opening where the receptor interacts with a G-protein was different for the classical agonist carbachol, super-agonist iperoxo, and Gi/o-biased partial agonists JR-6 and JR-7, being compatible with experimentally observed agonist bias at the G-protein level. Moreover, a wash-resistant binding of the unique agonist xanomeline associated with interactions with membrane lipids was formed during accelerated MD. Thus, accelerated MD is suitable for modeling of ligand-specific receptor binding and receptor conformations that is essential for the design of experiments aimed at identification of the secondary binding sites and understanding molecular mechanisms underlying receptor activation.
Collapse
Affiliation(s)
- Alena Randáková
- Department of Neurochemistry, Institute of Physiology CAS, Prague, CZ 142 20, Czech Republic
| | - Dominik Nelic
- Department of Neurochemistry, Institute of Physiology CAS, Prague, CZ 142 20, Czech Republic
| | - Vladimír Doležal
- Department of Neurochemistry, Institute of Physiology CAS, Prague, CZ 142 20, Czech Republic
| | - Esam E El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, United States
| | - John Boulos
- Department of Physical Sciences, Barry University, Miami Shores, Florida 33161, United States
| | - Jan Jakubík
- Department of Neurochemistry, Institute of Physiology CAS, Prague, CZ 142 20, Czech Republic
| |
Collapse
|
24
|
Jakubik J, El-Fakahany EE. Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules 2020; 10:biom10020325. [PMID: 32085536 PMCID: PMC7072599 DOI: 10.3390/biom10020325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Allosteric modulators are ligands that bind to a site on the receptor that is spatially separated from the orthosteric binding site for the endogenous neurotransmitter. Allosteric modulators modulate the binding affinity, potency, and efficacy of orthosteric ligands. Muscarinic acetylcholine receptors are prototypical allosterically-modulated G-protein-coupled receptors. They are a potential therapeutic target for the treatment of psychiatric, neurologic, and internal diseases like schizophrenia, Alzheimer’s disease, Huntington disease, type 2 diabetes, or chronic pulmonary obstruction. Here, we reviewed the progress made during the last decade in our understanding of their mechanisms of binding, allosteric modulation, and in vivo actions in order to understand the translational impact of studying this important class of pharmacological agents. We overviewed newly developed allosteric modulators of muscarinic receptors as well as new spin-off ideas like bitopic ligands combining allosteric and orthosteric moieties and photo-switchable ligands based on bitopic agents.
Collapse
Affiliation(s)
- Jan Jakubik
- Department of Neurochemistry, Institute of Physiology CAS, 142 20 Prague, Czech Republic
- Correspondence: (J.J.); (E.E.E.-F.)
| | - Esam E. El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
- Correspondence: (J.J.); (E.E.E.-F.)
| |
Collapse
|
25
|
Hoare SRJ, Tewson PH, Quinn AM, Hughes TE. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Sci Rep 2020; 10:1766. [PMID: 32019973 PMCID: PMC7000712 DOI: 10.1038/s41598-020-58421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The kinetics/dynamics of signaling are of increasing value for G-protein-coupled receptor therapeutic development, including spatiotemporal signaling and the kinetic context of biased agonism. Effective application of signaling kinetics to developing new therapeutics requires reliable kinetic assays and an analysis framework to extract kinetic pharmacological parameters. Here we describe a platform for measuring arrestin recruitment kinetics to GPCRs using a high quantum yield, genetically encoded fluorescent biosensor, and a data analysis framework to quantify the recruitment kinetics. The sensor enabled high temporal resolution measurement of arrestin recruitment to the angiotensin AT1 and vasopressin V2 receptors. The analysis quantified the initial rate of arrestin recruitment (kτ), a biologically-meaningful kinetic drug efficacy parameter, by fitting time course data using routine curve-fitting methods. Biased agonism was assessed by comparing kτ values for arrestin recruitment with those for Gq signaling via the AT1 receptor. The kτ ratio values were in good agreement with bias estimates from existing methods. This platform potentially improves and simplifies assessment of biased agonism because the same assay modality is used to compare pathways (potentially in the same cells), the analysis method is parsimonious and intuitive, and kinetic context is factored into the bias measurement.
Collapse
Affiliation(s)
- Sam R J Hoare
- Pharmechanics LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA.
| | - Paul H Tewson
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Anne Marie Quinn
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Thomas E Hughes
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA.
| |
Collapse
|
26
|
Hellman K, Ohlsson J, Malo M, Olsson R, Ek F. Discovery of Procognitive Antipsychotics by Combining Muscarinic M 1 Receptor Structure-Activity Relationship with Systems Response Profiles in Zebrafish Larvae. ACS Chem Neurosci 2020; 11:173-183. [PMID: 31850734 DOI: 10.1021/acschemneuro.9b00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current antipsychotic drugs are notably ineffective at addressing the cognitive deficits associated with schizophrenia. N-Desmethylclozapine (NDMC), the major metabolite of clozapine, displays muscarinic M1 receptor (M1) agonism, an activity associated with improvement in cognitive functioning. Preclinical and clinical data support that M1 agonism may be a desired activity in antipsychotic drugs. However, NDMC failed clinical phase II studies in acute psychotic patients. NDMC analogues were synthesized to establish a structure-activity relationship (SAR) at the M1 receptor as an indication of potential procognitive properties. In vitro evaluation revealed a narrow SAR in which M1 agonist activity was established by functionalization in the 4- and 8-positions in the tricyclic core. In vivo behavioral response profiles were used to evaluate antipsychotic efficacy and exposure in zebrafish larvae and peripheral side effect related M1 activity in adult zebrafish. The NDMC analogue 13f demonstrated antipsychotic activity similar to clozapine including M1 agonist activity. Cotreatment with trospium chloride, an M1 peripheral acting antagonist, counteracted peripheral side effects. Thus, the NDMC analogue 13f, in combination with a peripherally acting anticholinergic compound, could be suitable for further development as an antipsychotic compound with potential procognitive activity.
Collapse
Affiliation(s)
- Karin Hellman
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Jörgen Ohlsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Marcus Malo
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
27
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
28
|
Buchwald P. A Receptor Model With Binding Affinity, Activation Efficacy, and Signal Amplification Parameters for Complex Fractional Response Versus Occupancy Data. Front Pharmacol 2019; 10:605. [PMID: 31244653 PMCID: PMC6580154 DOI: 10.3389/fphar.2019.00605] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/14/2019] [Indexed: 12/28/2022] Open
Abstract
In quantitative pharmacology, multi-parameter receptor models are needed to account for the complex nonlinear relationship between fractional occupancy and response that can occur due to the intermixing of the effects of partial receptor activation and post-receptor signal amplification. Here, a general two-state receptor model and corresponding quantitative forms are proposed that unify three distinct processes, each characterized with its own parameter: 1) receptor binding, characterized by Kd, the equilibrium dissociation constant used for binding affinity; 2) receptor activation, characterized by an (intrinsic) efficacy parameter ε; and 3) post-activation signal transduction (amplification), characterized by a gain parameter γ. Constitutive activity is accommodated via an additional εR0 parameter quantifying the activation of the ligand-free receptor. Receptors can be active or inactive in both their ligand-free and ligand-bound states (two-state receptor theory), but ligand binding alters the likelihood of activation (induced fit). Because structural data now confirm that for most receptors in their active conformation, the small-molecule ligand-binding site is buried inside, straightforward binding to the active form (direct conformational selection) is unlikely. The proposed general equation has parameters that are more intuitive and better suited for optimization by nonlinear regression than those of the operational (Black and Leff) or del Castillo–Katz model. The model provides a unified framework for fitting complex data including a) fractional responses that do not match independently measured fractional occupancies, b) responses measured after partial irreversible inactivation of the “receptor reserve” (Furchgott method), c) fractional responses that are different along distinct downstream pathways (biased agonism), and d) responses with constitutive receptor activity. Furthermore, unlike previous models, the present one can be reduced back for special cases of its parameters to consecutively nested simplified forms that can be used on their own when adequate (e.g., εR0 = 0, no constitutive activity; γ = 1: Emax model for partial agonism; ε = 1: Clark equation).
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
29
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
30
|
Stanczyk MA, Livingston KE, Chang L, Weinberg ZY, Puthenveedu MA, Traynor JR. The δ-opioid receptor positive allosteric modulator BMS 986187 is a G-protein-biased allosteric agonist. Br J Pharmacol 2019; 176:1649-1663. [PMID: 30710458 DOI: 10.1111/bph.14602] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The δ-opioid receptor is an emerging target for the management of chronic pain and depression. Biased signalling, the preferential activation of one signalling pathway over another downstream of δ-receptors, may generate better therapeutic profiles. BMS 986187 is a positive allosteric modulator of δ-receptors. Here, we ask if BMS 986187 can directly activate the receptor from an allosteric site, without an orthosteric ligand, and if a signalling bias is generated. EXPERIMENTAL APPROACH We used several clonal cell lines expressing δ-receptors, to assess effects of BMS 986187 on events downstream of δ-receptors by measuring G-protein activation, β-arrestin 2 recruitment, receptor phosphorylation, loss of surface receptor expression, ERK1/ERK2 phosphorylation, and receptor desensitization. KEY RESULTS BMS 986187 is a G protein biased allosteric agonist, relative to β-arrestin 2 recruitment. Despite showing direct and potent G protein activation, BMS 986187 has a low potency to recruit β-arrestin 2. This appears to reflect the inability of BMS 986187 to elicit any significant receptor phosphorylation, consistent with low receptor internalization and a slower onset of desensitization, compared with the full agonist SNC80. CONCLUSIONS AND IMPLICATIONS This is the first evidence of biased agonism mediated through direct binding to an allosteric site on an opioid receptor, without a ligand at the orthosteric site. Our data suggest that agonists targeting δ-receptors, or indeed any GPCR, through allosteric sites may be a novel way to promote signalling bias and thereby potentially produce a more specific pharmacology than can be observed by activation via the orthosteric site.
Collapse
Affiliation(s)
- M Alexander Stanczyk
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kathryn E Livingston
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Louise Chang
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zara Y Weinberg
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manojkumar A Puthenveedu
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Capelli R, Bochicchio A, Piccini G, Casasnovas R, Carloni P, Parrinello M. Chasing the Full Free Energy Landscape of Neuroreceptor/Ligand Unbinding by Metadynamics Simulations. J Chem Theory Comput 2019; 15:3354-3361. [DOI: 10.1021/acs.jctc.9b00118] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Riccardo Capelli
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-54245 Jülich, Germany
| | - Anna Bochicchio
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-54245 Jülich, Germany
| | - GiovanniMaria Piccini
- Department of Chemistry and Applied Biosciences, ETH Zürich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
| | - Rodrigo Casasnovas
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-54245 Jülich, Germany
- JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-54245 Jülich, Germany
- Department of Physics, RWTH Aachen University, D-52078 Aachen, Germany
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zürich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
- Istituto Italiano
di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
32
|
|
33
|
Banerjee AA, Mahale SD. Extracellular loop 3 substitutions K589N and A590S in FSH receptor increase FSH-induced receptor internalization and along with S588T substitution exhibit impaired ERK1/2 phosphorylation. Arch Biochem Biophys 2018; 659:57-65. [DOI: 10.1016/j.abb.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
|
34
|
Vass M, Podlewska S, de Esch IJP, Bojarski AJ, Leurs R, Kooistra AJ, de Graaf C. Aminergic GPCR-Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. J Med Chem 2018; 62:3784-3839. [PMID: 30351004 DOI: 10.1021/acs.jmedchem.8b00836] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aminergic family of G protein-coupled receptors (GPCRs) plays an important role in various diseases and represents a major drug discovery target class. Structure determination of all major aminergic subfamilies has enabled structure-based ligand design for these receptors. Site-directed mutagenesis data provides an invaluable complementary source of information for elucidating the structural determinants of binding of different ligand chemotypes. The current study provides a comparative analysis of 6692 mutation data points on 34 aminergic GPCR subtypes, covering the chemical space of 540 unique ligands from mutagenesis experiments and information from experimentally determined structures of 52 distinct aminergic receptor-ligand complexes. The integrated analysis enables detailed investigation of structural receptor-ligand interactions and assessment of the transferability of combined binding mode and mutation data across ligand chemotypes and receptor subtypes. An overview is provided of the possibilities and limitations of using mutation data to guide the design of novel aminergic receptor ligands.
Collapse
Affiliation(s)
- Márton Vass
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Sabina Podlewska
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Sosei Heptares , Steinmetz Building, Granta Park, Great Abington , Cambridge CB21 6DG , U.K
| |
Collapse
|
35
|
Moo EV, Sexton PM, Christopoulos A, Valant C. Utility of an "Allosteric Site-Impaired" M 2 Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Mol Pharmacol 2018; 94:1298-1309. [PMID: 30213802 DOI: 10.1124/mol.118.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are exemplar models for understanding G protein-coupled receptor (GPCR) allostery, possessing a "common" allosteric site in an extracellular vestibule (ECV) for synthetic modulators including gallamine, strychnine, and brucine. In addition, there is intriguing evidence of endogenous peptides/proteins that may target this region at the M2 mAChR. A common feature of synthetic and endogenous M2 mAChR negative allosteric modulators (NAMs) is their cationic nature. Using a structure-based approach, we previously designed a mutant M2 mAChR (N410K+T423K) to specifically abrogate binding of ECV cationic modulators (Dror et al., 2013). Herein, we used this "allosteric site-impaired" receptor to investigate allosteric interactions of synthetic modulators as well as basic peptides (poly-l-arginine, endogenously produced protamine, and major basic protein). Using [3H]N-methylscopolamine equilibrium and kinetic binding and functional assays of guanosine 5'-O-[γ-thio]triphosphate [35S] binding and extracellular signal-regulated kinases 1 and 2 phosphorylation, we found modest effects of the mutations on potencies of orthosteric antagonists and an increase in the affinity of the cognate agonist, acetylcholine, likely reflecting the effect of the mutations on the access/egress of these ligands into the orthosteric pocket. More importantly, we noted a significant abrogation in affinity for all synthetic or peptidic modulators at the mutant mAChR, validating their allosteric nature. Collectively, these findings provide evidence for a hitherto-unappreciated role of endogenous cationic peptides interacting allosterically at the M2 mAChR and identify the allosteric site-impaired GPCR as a tool for validating NAM activity as well as a potential candidate for future chemogenetic strategies to understand the physiology of endogenous allosteric substances.
Collapse
Affiliation(s)
- Ee Von Moo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Clement N, Renault N, Guillaume J, Cecon E, Journé A, Laurent X, Tadagaki K, Cogé F, Gohier A, Delagrange P, Chavatte P, Jockers R. Importance of the second extracellular loop for melatonin MT 1 receptor function and absence of melatonin binding in GPR50. Br J Pharmacol 2018; 175:3281-3297. [PMID: 28898928 PMCID: PMC6057912 DOI: 10.1111/bph.14029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/09/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent crystal structures of GPCRs have emphasized the previously unappreciated role of the second extracellular (E2) loop in ligand binding and gating and receptor activation. Here, we have assessed the role of the E2 loop in the activation of the melatonin MT1 receptor and in the inactivation of the closely related orphan receptor GPR50. EXPERIMENTAL APPROACH Chimeric MT1 -GPR50 receptors were generated and functionally analysed in terms of 2-[125 I]iodomelatonin binding, Gi /cAMP signalling and β-arrestin2 recruitment. We also used computational molecular dynamics (MD) simulations. KEY RESULTS MD simulations of 300 ns revealed (i) the tight hairpin structure of the E2 loop of the MT1 receptor (ii) the most suitable features for melatonin binding in MT1 receptors and (iii) major predicted rearrangements upon MT1 receptor activation, stabilizing interaction networks between Phe179 or Gln181 in the E2 loop and transmembrane helixes 5 and 6. Functional assays confirmed these predictions, because reciprocal replacement of MT1 and GPR50 residues/domains led to the predicted loss- and gain-of-melatonin action of MT1 receptors and GPR50 respectively. CONCLUSIONS AND IMPLICATIONS Our work demonstrated the crucial role of the E2 loop for MT1 receptor and GPR50 function by proposing a model in which the E2 loop is important in stabilizing active MT1 receptor conformations and by showing how evolutionary processes appear to have selected for modifications in the E2 loop in order to make GPR50 unresponsive to melatonin. LINKED ARTICLES This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Nathalie Clement
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Nicolas Renault
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International CenterLilleFrance
| | - Jean‐Luc Guillaume
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Erika Cecon
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Anne‐Sophie Journé
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Xavier Laurent
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International CenterLilleFrance
| | - Kenjiro Tadagaki
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Francis Cogé
- Pôle d'Innovation Thérapeutique NeuropsychiatrieInstitut de Recherches SERVIERCroissy/SeineFrance
| | - Arnaud Gohier
- Pôle d'Innovation Thérapeutique NeuropsychiatrieInstitut de Recherches SERVIERCroissy/SeineFrance
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique NeuropsychiatrieInstitut de Recherches SERVIERCroissy/SeineFrance
| | - Philippe Chavatte
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International CenterLilleFrance
| | - Ralf Jockers
- Inserm, U1016, Institut CochinParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
37
|
Keller AN, Kufareva I, Josephs TM, Diao J, Mai VT, Conigrave AD, Christopoulos A, Gregory KJ, Leach K. Identification of Global and Ligand-Specific Calcium Sensing Receptor Activation Mechanisms. Mol Pharmacol 2018; 93:619-630. [PMID: 29636377 DOI: 10.1124/mol.118.112086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Calcium sensing receptor (CaSR) positive allosteric modulators (PAMs) are therapeutically important. However, few are approved for clinical use, in part due to complexities in assessing allostery at a receptor where the endogenous agonist (extracellular calcium) is present in all biologic fluids. Such complexity impedes efforts to quantify and optimize allosteric drug parameters (affinity, cooperativity, and efficacy) that dictate PAM structure-activity relationships (SARs). Furthermore, an underappreciation of the structural mechanisms underlying CaSR activation hinders predictions of how PAM SAR relates to in vitro and in vivo activity. Herein, we combined site-directed mutagenesis and calcium mobilization assays with analytical pharmacology to compare modes of PAM binding, positive modulation, and agonism. We demonstrate that 3-(2-chlorophenyl)-N-((1R)-1-(3-methoxyphenyl)ethyl)-1-propanamine (NPS R568) binds to a 7 transmembrane domain (7TM) cavity common to class C G protein-coupled receptors and used by (αR)-(-)-α-methyl-N-[3-[3-[trifluoromethylphenyl]propyl]-1-napthalenemethanamine (cinacalcet) and 1-benzothiazol-2-yl-1-(2,4-dimethylphenyl)-ethanol (AC265347); however, there are subtle distinctions in the contribution of select residues to the binding and transmission of cooperativity by PAMs. Furthermore, we reveal some common activation mechanisms used by different CaSR activators, but also demonstrate some differential contributions of residues within the 7TM bundle and extracellular loops to the efficacy of the PAM-agonist, AC265347, versus cooperativity. Finally, we show that PAMS potentiate the affinity of divalent cations. Our results support the existence of both global and ligand-specific CaSR activation mechanisms and reveal that allosteric agonism is mediated in part via distinct mechanisms to positive modulation.
Collapse
Affiliation(s)
- Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Irina Kufareva
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Vyvyan T Mai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| |
Collapse
|
38
|
Li Q, Chen HF. Synergistic regulation mechanism of iperoxo and LY2119620 for muscarinic acetylcholine M2 receptor. RSC Adv 2018; 8:13067-13074. [PMID: 35542505 PMCID: PMC9079678 DOI: 10.1039/c8ra01545g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors are GPCRs that regulate the activity of a diverse array of central and peripheral functions in the human body, including the parasympathetic actions of acetylcholine. The M2 muscarinic receptor subtype plays a key role in modulating cardiac function and many important central processes. The orthosteric agonist and allosteric modulator can bind the pocket of M2. However, the detailed relationship between orthosteric agonist and allosteric modulator of M2 is still unclear. In this study, we intend to elucidate the residue-level regulation mechanism and pathway via a combined approach of dynamical correlation network and molecular dynamics simulation. Specifically computational residue-level fluctuation correlation data was analyzed to reveal detailed dynamics signatures in the regulation process. A hypothesis of "synergistic regulation" is proposed to reveal the cooperation affection between the orthosteric agonist and allosteric modulator, which is subsequently validated by perturbation and mutation analyses. Two possible synergistic regulation pathways of 2CU-I178-Y403-W400-F396-L114-Y440-Nb9 and IXO-V111-F396-L114-Y440-Nb9 were identified by the shortest path algorithm and were confirmed by the mutation of junction node. Furthermore, the efficiency of information transfer of bound M2 is significant higher than any single binding system. Our study shows that targeting the synergistic regulation pathways may better regulate the calcium channel of M2. The knowledge gained in this study may help develop drugs for diseases of the central nervous system and metabolic disorders.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiaotong University Shanghai 200240 China +86-21-34204348 +86-21-34204348
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiaotong University Shanghai 200240 China +86-21-34204348 +86-21-34204348
- Shanghai Center for Bioinformation Technology Shanghai 200235 China
| |
Collapse
|
39
|
Gao N, Liang T, Yuan Y, Xiao X, Zhao Y, Guo Y, Li M, Pu X. Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study. Phys Chem Chem Phys 2018; 18:29412-29422. [PMID: 27735961 DOI: 10.1039/c6cp03710k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G-protein-coupled receptors (GPCRs) are important drug targets and generally activated by ligands. However, some experiments found that GPCRs also give rise to constitutive activity through some mutations (viz., CAM), which are usually associated with different kinds of diseases. However, the mechanisms of CAMs and their roles in interactions with drug-ligands are unclear in experiments. Herein, we used microsecond molecular dynamics simulations to study the effect of one important F282L mutation on β2AR in order to address the questions above. With the aid of principle component and correlation analysis, our results revealed that the F282L mutation could increase the instability of the overall structure, increase the dramatic fluctuations of NPxxY and extracellular loops, and decrease restraint of the helices through weakening interhelical H-bonding and correlations between residues, which could partly contribute to the constitutive activity reported by the experiments. The observations from the protein structure network (PSN) analysis indicate that the mutant exhibits less information flow than the wild β2AR and weakens the role of TM5 and TM6 in the signal transmission, but it enhances the impact of TM3 on the orthosteric pathway and TM4 on the allosteric one. In addition, the results from the virtual screening reveal that the mutant prefers to select agonists rather than antagonists, similar to the active state but opposite of the inactive state, further confirming that the F282L mutation advances the activation of β2AR. Our observations provide valuable information for understanding the mechanism of the mutation-caused constitutive activity of GPCR and related drug-design.
Collapse
Affiliation(s)
- Nan Gao
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Tao Liang
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Xiuchan Xiao
- Department of Architecture and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan 611730, China
| | - Yihuan Zhao
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yanzhi Guo
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Menglong Li
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Xuemei Pu
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| |
Collapse
|
40
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
41
|
Burgueño J, Pujol M, Monroy X, Roche D, Varela MJ, Merlos M, Giraldo J. A Complementary Scale of Biased Agonism for Agonists with Differing Maximal Responses. Sci Rep 2017; 7:15389. [PMID: 29133887 PMCID: PMC5684405 DOI: 10.1038/s41598-017-15258-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Compelling data in the literature from the recent years leave no doubt about the pluridimensional nature of G protein-coupled receptor function and the fact that some ligands can couple with different efficacies to the multiple pathways that a receptor can signal through, a phenomenon most commonly known as functional selectivity or biased agonism. Nowadays, transduction coefficients (log(τ/KA)), based on the Black and Leff operational model of agonism, are widely used to calculate bias. Nevertheless, combining both affinity and efficacy in a single parameter can result in compounds showing a defined calculated bias of one pathway over other though displaying varying experimental bias preferences. In this paper, we present a novel scale (log(τ)), that attempts to give extra substance to different compound profiles in order to better classify compounds and quantify their bias. The efficacy-driven log(τ) scale is not proposed as an alternative to the affinity&efficacy-driven log(τ/KA) scale but as a complement in those situations where partial agonism is present. Both theoretical and practical approaches using μ-opioid receptor agonists are presented.
Collapse
Affiliation(s)
- Javier Burgueño
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Marta Pujol
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Xavier Monroy
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - David Roche
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.,Universitat Internacional de Catalunya, Faculty of Economics and Social Sciences, 08017, Barcelona, Spain
| | - Maria Jose Varela
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidad de Santiago de Compostela, La Coruña, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
42
|
Pronin AN, Wang Q, Slepak VZ. Teaching an Old Drug New Tricks: Agonism, Antagonism, and Biased Signaling of Pilocarpine through M3 Muscarinic Acetylcholine Receptor. Mol Pharmacol 2017; 92:601-612. [PMID: 28893976 DOI: 10.1124/mol.117.109678] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Pilocarpine is a prototypical drug used to treat glaucoma and dry mouth and is classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1000 times less potent in stimulating mouse-eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), although all three ligands have similar Kd values for M3R. In contrast to CCh or Oxo-M, pilocarpine does not induce Ca2+ mobilization via endogenous M3R in human embryonic kidney cell line 293T (HEK293T) or mouse insulinoma (MIN6) cells. Pilocarpine also fails to stimulate insulin secretion and, instead, antagonizes the insulinotropic effect of Oxo-M and CCh-induced Ca2+ upregulation; however, in HEK293T or Chinese hamster ovary-K1 cells overexpressing M3R, pilocarpine induces Ca2+ transients like those recorded with another cognate G protein-coupled muscarinic receptor, M1R. Stimulation of cells overexpressing M1R or M3R with CCh resulted in a similar reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). In contrast to CCh, pilocarpine stimulated PIP2 hydrolysis only in cells overexpressing M1R but not M3R. Moreover, pilocarpine blocked CCh-stimulated PIP2 hydrolysis in M3R-overexpressing cells, thus, it acted as an antagonist. Pilocarpine activates extracellular regulated kinase 1/2 in MIN6 cells. The stimulatory effect on extracellular regulated kinase (ERK1/2) was blocked by the Src family kinase inhibitor PP2, indicating that the action of pilocarpine on endogenous M3R is biased toward β-arrestin. Taken together, our findings show that pilocarpine can act as either an agonist or antagonist of M3R, depending on the cell type, expression level, and signaling pathway downstream of this receptor.
Collapse
Affiliation(s)
- Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
43
|
Woolley MJ, Conner AC. Understanding the common themes and diverse roles of the second extracellular loop (ECL2) of the GPCR super-family. Mol Cell Endocrinol 2017; 449:3-11. [PMID: 27899324 DOI: 10.1016/j.mce.2016.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 11/16/2022]
Abstract
The extracellular loops (ECLs) of G protein-coupled receptors (GPCRs) can bind directly to docked orthosteric or allosteric ligands, they can contain transient contact points for ligand entry into the transmembrane (TM) bundle and they can regulate the activation of the receptor signalling pathways. Of the three ECLs, ECL2 is the largest and most structurally diverse reflecting its functional importance. This has been shown through biochemical techniques and has been supported by the many subsequent crystal structures of GPCRs bound to both agonists and antagonists. ECL2 shares common structural features between (and sometimes across) receptor sub-families and can facilitate ligand entry to the TM core or act directly as a surface of the ligand-binding pocket. Structural similarities seem to underpin common binding mechanisms; however, where these exist, variations in primary sequence ensure ligand-binding specificity. This review will compare current understanding of the structural themes and main functional roles of ECL2 in ligand binding, activation and regulation of the major families of GPCRs.
Collapse
Affiliation(s)
- Michael J Woolley
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
44
|
Abstract
G-protein-coupled receptors (GPCRs) constitute a large group of integral membrane proteins that transduce extracellular signals from a wide range of agonists into targeted intracellular responses. Although the responses can vary depending on the category of G-proteins activated by a particular receptor, responses were also found to be triggered by interactions of the receptor with β-arrestins. It was subsequently discovered that for the same receptor molecule (e.g., the β-adrenergic receptor), some agonists have a propensity to specifically favor responses by G-proteins, others by β-arrestins, as has now been extensively studied. This feature of the GPCR system is known as biased agonism and is subject to various interpretations, including agonist-induced conformational change versus selective stabilization of preexisting active conformations. Here, we explore a complete allosteric framework for biased agonism based on alternative preexisting conformations that bind more strongly, but nonexclusively, either G-proteins or β-arrestins. The framework incorporates reciprocal effects among all interacting molecules. As a result, G-proteins and β-arrestins are in steric competition for binding to the cytoplasmic surface of either the G-protein-favoring or β-arrestin-favoring GPCR conformation. Moreover, through linkage relations, the strength of the interactions of G-proteins or β-arrestins with the corresponding active conformation potentiates the apparent affinity for the agonist, effectively equating these two proteins to allosteric modulators. The balance between response alternatives can also be influenced by the physiological concentrations of either G-proteins or β-arrestins, as well as by phosphorylation or interactions with positive or negative allosteric modulators. The nature of the interactions in the simulations presented suggests novel experimental tests to distinguish more fully among alternative mechanisms.
Collapse
|
45
|
Barchad-Avitzur O, Priest MF, Dekel N, Bezanilla F, Parnas H, Ben-Chaim Y. A Novel Voltage Sensor in the Orthosteric Binding Site of the M2 Muscarinic Receptor. Biophys J 2017; 111:1396-1408. [PMID: 27705763 DOI: 10.1016/j.bpj.2016.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate many signal transduction processes in the body. The discovery that these receptors are voltage-sensitive has changed our understanding of their behavior. The M2 muscarinic acetylcholine receptor (M2R) was found to exhibit depolarization-induced charge movement-associated currents, implying that this prototypical GPCR possesses a voltage sensor. However, the typical domain that serves as a voltage sensor in voltage-gated channels is not present in GPCRs, making the search for the voltage sensor in the latter challenging. Here, we examine the M2R and describe a voltage sensor that is comprised of tyrosine residues. This voltage sensor is crucial for the voltage dependence of agonist binding to the receptor. The tyrosine-based voltage sensor discovered here constitutes a noncanonical by which membrane proteins may sense voltage.
Collapse
Affiliation(s)
- Ofra Barchad-Avitzur
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Michael F Priest
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Noa Dekel
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Hanna Parnas
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Yair Ben-Chaim
- Natural and Life Sciences, Open University of Israel, Raanana, Israel.
| |
Collapse
|
46
|
McAnally D, Siddiquee K, Sharir H, Qi F, Phatak S, Li JL, Berg E, Fishman J, Smith L. A Systematic Approach to Identify Biased Agonists of the Apelin Receptor through High-Throughput Screening. SLAS DISCOVERY 2017; 22:867-878. [PMID: 28314120 DOI: 10.1177/2472555217699158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biased agonists are defined by their ability to selectively activate distinct signaling pathways of a receptor, and they hold enormous promise for the development of novel drugs that specifically elicit only the desired therapeutic response and avoid potential adverse effects. Unfortunately, most high-throughput screening (HTS) assays are designed to detect signaling of G protein-coupled receptors (GPCRs) downstream of either G protein or β-arrestin-mediated signaling but not both. A comprehensive drug discovery program seeking biased agonists must employ assays that report on the activity of each compound at multiple discrete pathways, particularly for HTS campaigns. Here, we report a systematic approach to the identification of biased agonists of human apelin receptor (APJ). We synthesized 448 modified versions of apelin and screened them against a cascade of cell-based assays, including intracellular cAMP and β-arrestin recruitment to APJ, simultaneously. The screen yielded potent and highly selective APJ agonists. Representative hits displaying preferential signaling via either G-protein or β-arrestin were subjected to a battery of confirmation assays. These biased agonists will be useful as tools to probe the function and pharmacology of APJ and provide proof of concept of our systematic approach to the discovery of biased ligands. This approach is likely universally applicable to the search for biased agonists of GPCRs.
Collapse
Affiliation(s)
- Danielle McAnally
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,2 Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Khandaker Siddiquee
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,2 Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Haleli Sharir
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,2 Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Feng Qi
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Sharangdhar Phatak
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Jian-Liang Li
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Eric Berg
- 3 21st Century Biochemicals Inc., Marlborough, MA, USA
| | | | - Layton Smith
- 1 Conrad Prebys Center for Chemical Genomics, and Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,2 Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
47
|
Fronik P, Gaiser BI, Sejer Pedersen D. Bitopic Ligands and Metastable Binding Sites: Opportunities for G Protein-Coupled Receptor (GPCR) Medicinal Chemistry. J Med Chem 2017; 60:4126-4134. [DOI: 10.1021/acs.jmedchem.6b01601] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philipp Fronik
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Birgit I. Gaiser
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
48
|
De Min A, Matera C, Bock A, Holze J, Kloeckner J, Muth M, Traenkle C, De Amici M, Kenakin T, Holzgrabe U, Dallanoce C, Kostenis E, Mohr K, Schrage R. A New Molecular Mechanism To Engineer Protean Agonism at a G Protein–Coupled Receptor. Mol Pharmacol 2017; 91:348-356. [DOI: 10.1124/mol.116.107276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
|
49
|
Gundry J, Glenn R, Alagesan P, Rajagopal S. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors. Front Neurosci 2017; 11:17. [PMID: 28174517 PMCID: PMC5258729 DOI: 10.3389/fnins.2017.00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/09/2017] [Indexed: 01/11/2023] Open
Abstract
Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a "biased" agonist compared to a "balanced" agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in "system bias" that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs.
Collapse
Affiliation(s)
- Jaimee Gundry
- Trinity College of Arts and Sciences, Duke University Durham, NC, USA
| | - Rachel Glenn
- Trinity College of Arts and Sciences, Duke University Durham, NC, USA
| | - Priya Alagesan
- Trinity College of Arts and Sciences, Duke University Durham, NC, USA
| | - Sudarshan Rajagopal
- Department of Medicine and Biochemistry, Duke University Medical Center Durham, NC, USA
| |
Collapse
|
50
|
Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors. Sci Rep 2017; 7:40381. [PMID: 28091608 PMCID: PMC5238504 DOI: 10.1038/srep40381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023] Open
Abstract
Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.
Collapse
|