1
|
Carpentieri G, Leoni C, Pietraforte D, Cecchetti S, Iorio E, Belardo A, Pietrucci D, Di Nottia M, Pajalunga D, Megiorni F, Mercurio L, Tatti M, Camero S, Marchese C, Rizza T, Tirelli V, Onesimo R, Carrozzo R, Rinalducci S, Chillemi G, Zampino G, Tartaglia M, Flex E. Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species. Hum Mol Genet 2021; 31:561-575. [PMID: 34508588 DOI: 10.1093/hmg/ddab270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Germline activating mutations in HRAS cause Costello Syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via ROS-dependent AMPKα and p38 hyperactivation, occurs in CS, resulting in accelerated glycolysis, and increased fatty acid synthesis and storage as lipid droplets in primary fibroblasts. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.
Collapse
Affiliation(s)
- Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | | | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Michela Di Nottia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy
| | - Massimo Tatti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simona Camero
- Department Maternal Infantile and Urological Sciences, SAPIENZA University, 00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Teresa Rizza
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rosalba Carrozzo
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
2
|
Møller LLV, Jaurji M, Kjøbsted R, Joseph GA, Madsen AB, Knudsen JR, Lundsgaard AM, Andersen NR, Schjerling P, Jensen TE, Krauss RS, Richter EA, Sylow L. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. J Physiol 2020; 598:5351-5377. [PMID: 32844438 DOI: 10.1113/jp280294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Lisbeth L V Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Merna Jaurji
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Agnete B Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Microsystems Laboratory 2, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
You K, Yi Y, Kwak SJ, Seong YS. Inhibition of RPTOR overcomes resistance to EGFR inhibition in triple-negative breast cancer cells. Int J Oncol 2018; 52:828-840. [DOI: 10.3892/ijo.2018.4244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kyu You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Yong Yi
- ExoCoBio Inc, Seoul 08594, Republic of Korea
| | - Sahng-June Kwak
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Signal and regulatory effects of methylglyoxal in eukaryotic cells (review). APPL BIOCHEM MICRO+ 2017; 53:273-289. [DOI: 10.1134/s0003683817030103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Li Z, Ni CL, Yao Z, Chen LM, Niu WY. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism 2014; 63:1022-30. [PMID: 24972503 DOI: 10.1016/j.metabol.2014.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Liraglutide is an anti-diabetic drug and human glucagon-like peptide-1 (GLP-1) analog that primarily functions in the pancreas. However, its extra-pancreatic functions are not clear. Skeletal muscle tissue is an important determinant of blood glucose and cells take in approximately 80% of dietary glucose via glucose transporter 4 (GLUT4) on the plasma membrane. Insulin and muscle contraction are two physiological stimuli of GLUT4 translocation to the cell membrane from intracellular storage compartments, but the signaling mechanisms that mediate these processes are different. AMP-activated protein kinase (AMPK) and Akt are the key signal molecules mediating the effects of muscle contraction and insulin, respectively, on GLUT4 translocation. Here, we investigate the effect of liraglutide on GLUT4 translocation and the roles of AMPK and Akt in this mechanism in skeletal muscle cells by stably expressing GLUT4myc with an exofacial myc-epitope C(2)C(12)-GLUT4myc. MATERIALS/METHODS The cell surface GLUT4myc levels were determined by an antibody-coupled colorimetric assay. The phosphorylation levels of AMPK, Akt, AS160, TBC1D1, and GLUT4 were determined by western blotting. The cAMP levels were measured by an ELISA kit. siRNA was transfected with Lipofectamine 2000. Analysis of variance (ANOVA) was used for data analysis. RESULTS Liraglutide stimulated GLUT4 translocation in C(2)C(12)-GLUT4myc myotubes. Liraglutide increased the intracellular cAMP levels and the phosphorylation of AMPK, AS160, and TBC1D1. Akt phosphorylation and GLUT4 expression were not affected. Inhibition of AMPK by siRNA or Compound C reduced liraglutide-induced GLUT4 translocation. CONCLUSION Our results suggest that liraglutide may induce GLUT4 translocation by activation of AMPK in muscle cells.
Collapse
Affiliation(s)
- Zhu Li
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070 China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Chang-Lin Ni
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070 China
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Wen-Yan Niu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070 China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 2014; 306:C879-86. [DOI: 10.1152/ajpcell.00069.2014] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays (“software”) that engage structural/mechanical elements (“hardware”) to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Tim Ting Chiu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Kevin P. Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 2013; 62:1865-75. [PMID: 23423567 PMCID: PMC3661612 DOI: 10.2337/db12-1148] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The actin cytoskeleton-regulating GTPase Rac1 is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Rac1 and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been investigated. We hypothesized that Rac1 and its downstream target, p21-activated kinase (PAK), are regulators of insulin-stimulated glucose uptake in mouse and human skeletal muscle and are dysregulated in insulin-resistant states. Muscle-specific inducible Rac1 knockout (KO) mice and pharmacological inhibition of Rac1 were used to determine whether Rac1 regulates insulin-stimulated glucose transport in mature skeletal muscle. Furthermore, Rac1 and PAK1 expression and signaling were investigated in muscle of insulin-resistant mice and humans. Inhibition and KO of Rac1 decreased insulin-stimulated glucose transport in mouse soleus and extensor digitorum longus muscles ex vivo. Rac1 KO mice showed decreased insulin and glucose tolerance and trended toward higher plasma insulin concentrations after intraperitoneal glucose injection. Rac1 protein expression and insulin-stimulated PAK(Thr423) phosphorylation were decreased in muscles of high fat-fed mice. In humans, insulin-stimulated PAK activation was decreased in both acute insulin-resistant (intralipid infusion) and chronic insulin-resistant states (obesity and diabetes). These findings show that Rac1 is a regulator of insulin-stimulated glucose uptake and a novel candidate involved in skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Diabetes Research Center, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bente Kiens
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Department of Biomedical Sciences, Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Corresponding author: Erik A. Richter,
| |
Collapse
|
8
|
Chiu TT, Sun Y, Koshkina A, Klip A. Rac-1 superactivation triggers insulin-independent glucose transporter 4 (GLUT4) translocation that bypasses signaling defects exerted by c-Jun N-terminal kinase (JNK)- and ceramide-induced insulin resistance. J Biol Chem 2013; 288:17520-31. [PMID: 23640896 DOI: 10.1074/jbc.m113.467647] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin. Stimulation of endogenous Rac-1 by Tiam1 overexpression elicited a similar hormone-independent gain in surface GLUT4. This effect on GLUT4 traffic could also be reproduced by acutely activating a Rac-1 construct via rapamycin-mediated heterodimerization. Strategies triggering Rac-1 "superactivation" (i.e. to levels above those attained by insulin alone) produced a modest gain in plasma membrane phosphatidylinositol 3,4,5-trisphosphate, moderate Akt activation, and substantial AS160 phosphorylation, which translated into GLUT4 translocation and negated the requirement for IRS-1. This unique signaling capacity exerted by Rac-1 superactivation bypassed the defects imposed by JNK- and ceramide-induced insulin resistance and allowed full and partial restoration of the GLUT4 translocation response, respectively. We propose that potent elevation of Rac-1 activation alone suffices to drive insulin-independent GLUT4 translocation in muscle cells, and such a strategy might be exploited to bypass signaling defects during insulin resistance.
Collapse
Affiliation(s)
- Tim Ting Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
9
|
Skrzypski M, T Le T, Kaczmarek P, Pruszynska-Oszmalek E, Pietrzak P, Szczepankiewicz D, Kolodziejski PA, Sassek M, Arafat A, Wiedenmann B, Nowak KW, Strowski MZ. Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 2011; 54:1841-52. [PMID: 21505958 DOI: 10.1007/s00125-011-2152-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS Orexin A (OXA) modulates body weight, food intake and energy expenditure. In vitro, OXA increases PPARγ (also known as PPARG) expression and inhibits lipolysis, suggesting direct regulation of lipid metabolism. Here, we characterise the metabolic effects and mechanisms of OXA action in adipocytes. METHODS Isolated rat adipocytes and differentiated murine 3T3-L1 adipocytes were exposed to OXA in the presence or absence of phosphoinositide 3-kinase (PI3K) inhibitors. Pparγ expression was silenced using small interfering RNA. Glucose uptake, GLUT4 translocation, phosphatidylinositol (3,4,5)-trisphosphate production, lipogenesis, lipolysis, and adiponectin secretion were measured. Adiponectin plasma levels were determined in rats treated with OXA for 4 weeks. RESULTS OXA PI3K-dependently stimulated active glucose uptake by translocating the glucose transporter GLUT4 from cytoplasm into the plasma membrane. OXA increased cellular triacylglycerol content via PI3K. Cellular triacylglycerol accumulation resulted from increased lipogenesis as well as from a decrease of lipolysis. Adiponectin levels in chow- and high-fat diet-fed rats treated chronically with OXA were increased. OXA stimulated adiponectin expression and secretion in adipocytes. Both pharmacological blockade of peroxisome proliferator-activated receptor γ (PPARγ) activity or silencing Pparγ expression prevented OXA from stimulating triacylglycerol accumulation and adiponectin production. CONCLUSIONS/INTERPRETATION Our study demonstrates that OXA stimulates glucose uptake in adipocytes and that the evolved energy is stored as lipids. OXA increases lipogenesis, inhibits lipolysis and stimulates the secretion of adiponectin. These effects are conferred via PI3K and PPARγ2. Overall, OXA's effects on lipids and adiponectin secretion resemble that of insulin sensitisers, suggesting a potential relevance of this peptide in metabolic disorders.
Collapse
Affiliation(s)
- M Skrzypski
- Department of Hepatology and Gastroenterology and Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Koumanov F, Richardson JD, Murrow BA, Holman GD. AS160 phosphotyrosine-binding domain constructs inhibit insulin-stimulated GLUT4 vesicle fusion with the plasma membrane. J Biol Chem 2011; 286:16574-82. [PMID: 21454690 PMCID: PMC3089500 DOI: 10.1074/jbc.m111.226092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/16/2011] [Indexed: 01/14/2023] Open
Abstract
AS160 (TBC1D4) is a known Akt substrate that is phosphorylated downstream of insulin action and that leads to regulated traffic of GLUT4. As GLUT4 vesicle fusion with the plasma membrane is a highly regulated step in GLUT4 traffic, we investigated whether AS160 and 14-3-3 interactions are involved in this process. Fusion was inhibited by a human truncated AS160 variant that encompasses the first N-terminal phosphotyrosine-binding (PTB) domain, by either of the two N-terminal PTB domains, and by a tandem construct of both PTB domains of rat AS160. We also found that in vitro GLUT4 vesicle fusion was strongly inhibited by the 14-3-3-quenching inhibitors R18 and fusicoccin. To investigate the mode of interaction of AS160 and 14-3-3, we examined insulin-dependent increases in the levels of these proteins on GLUT4 vesicles. 14-3-3γ was enriched on insulin-stimulated vesicles, and its binding to AS160 on GLUT4 vesicles was inhibited by the AS160 tandem PTB domain construct. These data suggest a model for PTB domain action on GLUT4 vesicle fusion in which these constructs inhibit insulin-stimulated 14-3-3γ interaction with AS160 rather than AS160 phosphorylation.
Collapse
Affiliation(s)
- Françoise Koumanov
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Judith D. Richardson
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Beverley A. Murrow
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Geoffrey D. Holman
- From the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
11
|
Shi L, Qin N, Hu L, Liu L, Duan H, Niu W. Tiliroside-derivatives enhance GLUT4 translocation via AMPK in muscle cells. Diabetes Res Clin Pract 2011; 92:e41-6. [PMID: 21376414 DOI: 10.1016/j.diabres.2011.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 01/08/2023]
Abstract
Tiliroside isolated from Chinese herb Potentilla chinensis showed therapeutic activities in diabetes. We synthesized 7 tiliroside-derivatives and examined their effects on surface GLUT4myc levels in muscle cells. Derivatives 2a and 3 increased surface GLUT4myc levels, and derivative 3 has the greatest potential. AMPK may be involved in tiliroside-derivatives-regulated GLUT4myc traffic.
Collapse
Affiliation(s)
- Lihuan Shi
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | |
Collapse
|
12
|
Zhao HL, Liu LZ, Sui Y, Ho SKS, Tam SK, Lai FMM, Chan JCN, Tong PCY. Fatty acids inhibit insulin-mediated glucose transport associated with actin remodeling in rat L6 muscle cells. Acta Diabetol 2010; 47:331-9. [PMID: 20848165 DOI: 10.1007/s00592-010-0225-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/05/2010] [Indexed: 12/18/2022]
Abstract
In skeletal muscle cells, insulin stimulates cytoskeleton actin remodeling to facilitate the translocation of glucose transporter GLUT4 to plasma membrane. Defect of insulin-induced GLUT4 translocation and actin remodeling may cause insulin resistance. Free fatty acids cause insulin resistance in skeletal muscle. The aim of this study was to investigate the effects of fatty acids on glucose transport and actin remodeling. Differentiated L6 muscle cells expressing c-myc epitope-tagged GLUT4 were treated with palmitic acid, linoleic acid and oleic acid. Surface GLUT4 and 2-deoxyglucose uptake were measured in parallel with the morphological imaging of actin remodeling and GLUT4 immunoreactivity with fluorescence, confocal and transmission electron microscopy. Differentiated L6 cells showed concentration responses of insulin-induced actin remodeling and glucose uptake. The ultrastructure of insulin-induced actin remodeling was cell projections clustered with actin and GLUT4. Acute and chronic treatment with the 3 fatty acids had no effect on insulin-induced actin remodeling and GLUT4 immunoreactivity. However, insulin-mediated glucose uptake significantly decreased by palmitic acid (25, 50, 75, 100 μmol/L), oleic acid (180, 300 μmol/L) and linoleic acid (120, 180, 300 μmol/L). Oleic acid (120, 300 μmol/L) and linoleic acid (300 μmol/L), but not palmitic acid, significantly decreased insulin-mediated GLUT4 translocation. These data suggest that fatty acids inhibit insulin-induced glucose transport associated with actin remodeling in L6 muscle cells.
Collapse
Affiliation(s)
- Hai-Lu Zhao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Beh JE, Latip J, Abdullah MP, Ismail A, Hamid M. Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:23-33. [PMID: 20193753 DOI: 10.1016/j.jep.2010.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/31/2009] [Accepted: 02/08/2010] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. MATERIALS AND METHODS Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. RESULTS Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. CONCLUSIONS Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties.
Collapse
Affiliation(s)
- Joo Ee Beh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
14
|
Abstract
We have recently shown that an entire oxytocin (OT) system, a peptide and its cognate receptors, is synthesized in the heart. In fetal and newborn hearts, OT exists in its extended three-amino acid form, OT-Gly-Lys-Arg (OT-GKR). OT translocates glucose transporter type 4 to the plasma membrane in human endothelial cells. Therefore, we hypothesized that the cardiac OT/OT-GKR system may be involved in the regulation of myocardial glucose uptake in physiological conditions and during metabolic stress such as hypoxia. Primary cultures of neonatal rat cardiomyocytes (CM) and cardiac progenitor cells expressing ATP-binding cassette efflux transporter G2 transporter (stem cell marker) were studied. OT (10 nm) increased basal glucose uptake in CM to 4.0 +/- 0.2 fmol/mg protein, with OT-GKR (10 nm) elevating it to 5.3 +/- 0.4 fmol/mg protein (P < 0.001) in comparison with 2.2 fmol/mg in control cells. OT had a moderate synergistic effect with 0.1 mm 2,4-dinitrophenol, augmenting basal glucose uptake to 5.5 +/- 0.5 fmol/mg. OT-GKR (10 nm) was even more potent in combination with 2,4-dinitrophenol, increasing glucose uptake to 9.0 +/- 1.0 fmol/mg. Wortmannin (0.1 microm), an inhibitor of phosphatidylinositol-3-kinase, significantly suppressed the effect of OT and insulin (10 nm) (P < 0.001), indicating common pathways. Our data suggest that OT and OT-GKR influence glucose uptake in neonatal rat CM and may thus play a role in the maintenance of cardiac function and cell survival during metabolic stress.
Collapse
Affiliation(s)
- Maria Florian
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Hôtel-Dieu, Pavillon Masson, 3850 Saint-Urbain Street, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Stuart CA, Howell MEA, Zhang Y, Yin D. Insulin-stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. J Clin Endocrinol Metab 2009; 94:3535-42. [PMID: 19549745 PMCID: PMC2741719 DOI: 10.1210/jc.2009-0162] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT GLUT4 is the predominant glucose transporter isoform expressed in fat and muscle. In GLUT4 null mice, insulin-stimulated glucose uptake into muscle was diminished but not eliminated, suggesting that another insulin-sensitive system was present. OBJECTIVE This study was intended to determine whether insulin caused GLUT12 translocation in muscle. DESIGN Six normal volunteers had muscle biopsies before and after euglycemic insulin infusions. SETTING Infusions and biopsies were performed in an outpatient clinic. PARTICIPANTS Subjects were nonobese, young adults with no family history of diabetes. MAIN OUTCOME MEASURES GLUT12, GLUT4, and GLUT1 proteins were quantified in muscle biopsy fractions. Cultured myoblasts were used to determine whether GLUT12 translocation was phosphatidyl inositol-3 kinase (PI3-K)-dependent. INTERVENTION Insulin was infused at 40 mU/m(2) x min for 3 h. RESULTS In human muscle, insulin caused a shift of a portion of GLUT12 from intracellular low-density microsomes to the plasma membrane (PM) fraction (17% in PM at baseline, 38% in PM after insulin). Insulin increased GLUT4 in PM from 13 to 42%. GLUT1 was predominantly in the PM fractions at baseline and did not change significantly after insulin. L6 myoblasts in culture also expressed and translocated GLUT12 in response to insulin, but inhibiting PI3-K prevented the translocation of GLUT12 and GLUT4. CONCLUSIONS Insulin causes GLUT12 to translocate from an intracellular location to the plasma membrane in normal human skeletal muscle. Translocation of GLUT12 in cultured myoblasts was dependent on activation of PI3-K. GLUT12 may have evolutionarily preceded GLUT4 and now provides redundancy to the dominant GLUT4 system in muscle.
Collapse
Affiliation(s)
- Charles A Stuart
- Department of Internal Medicine, East Tennessee State University, Quillen College of Medicine, P.O. Box 70622, Johnson City, Tennessee 37614-0622, USA.
| | | | | | | |
Collapse
|
16
|
Kishikawa H, Nishida J, Ichikawa H, Kaida S, Morishita T, Miura S, Hibi T. Lipopolysaccharides stimulate adrenomedullin synthesis in intestinal epithelial cells: release kinetics and secretion polarity. Peptides 2009; 30:906-12. [PMID: 19428768 DOI: 10.1016/j.peptides.2009.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Adrenomedullin (AM), a potent vasodilator peptide initially isolated from a human pheochromocytoma, functions as an antimicrobial peptide in host defense. In this study, we investigated changes in AM levels in intestinal epithelial cells and the mechanism of its secretion and cellular polarity after exposure to lipopolysaccharides (LPS). When a rat small intestinal cell line (IEC-18 cells) was exposed to LPS, enzyme-linked immunosorbent assay revealed a dose-dependent increase in AM together with an increase in AM mRNA expression, as determined by real-time polymerase chain reaction. Up-regulation of AM by LPS was dose-dependently inhibited by LY294002, PD98059, SP600125 and calphostin-C, suggesting the involvement of the phosphatidylinositol 3 kinase, extracellular signal-regulated kinase, c-Jun NH2-terminal kinase and protein kinase C pathways, respectively, in this process. When polarized IEC-18 cells in a Transwell chamber were stimulated with LPS, AM secretion was directed primarily toward the side of LPS administration (either the apical or basolateral side). In situ hybridization revealed that AM mRNA was expressed in epithelial cells and in the connective tissue in the lamina propria of the jejunum after intraperitoneal or oral administration of LPS. Higher levels of AM mRNA expression were observed in rats treated with LPS via the intraperitoneal route, compared with those treated via the oral route. These findings suggest that intestinal AM plays an important role in mucosal defense in the case of intestinal luminal infection, as well as in the modulation of hemodynamics in endotoxemia.
Collapse
Affiliation(s)
- Hiroshi Kishikawa
- Department of Gastroenterology, Tokyo Dental College, Ichikawa General Hospital, 5-11-13 Sugano Ichikawa, Chiba 272-8513, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Ikonomov OC, Sbrissa D, Shisheva A. YM201636, an inhibitor of retroviral budding and PIKfyve-catalyzed PtdIns(3,5)P2 synthesis, halts glucose entry by insulin in adipocytes. Biochem Biophys Res Commun 2009; 382:566-70. [PMID: 19289105 DOI: 10.1016/j.bbrc.2009.03.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 01/06/2023]
Abstract
Silencing of PIKfyve, the sole enzyme for PtdIns(3,5)P(2) biosynthesis that controls proper endosome dynamics, inhibits retroviral replication. A novel PIKfyve-specific inhibitor YM201636 disrupts retroviral budding at 800 nM, suggesting its potential use as an antiretroviral therapeutic. Because PIKfyve is also required for optimal insulin activation of GLUT4 surface translocation and glucose influx, we tested the outcome of YM201636 application on insulin responsiveness in 3T3L1 adipocytes. YM201636 almost completely inhibited basal and insulin-activated 2-deoxyglucose uptake at doses as low as 160 nM, with IC(50)=54+/-4 nM for the net insulin response. Insulin-induced GLUT4 translocation was partially inhibited at substantially higher doses, comparable to those required for inhibition of insulin-induced phosphorylation of Akt/PKB. In addition to PIKfyve, YM201636 also completely inhibited insulin-dependent activation of class IA PI 3-kinase. We suggest that apart from PIKfyve, there are at least two additional targets for YM201636 in the context of insulin signaling to GLUT4 and glucose uptake: the insulin-activated class IA PI 3-kinase and a here-unidentified high-affinity target responsible for the greater inhibition of glucose entry vs. GLUT4 translocation. The profound inhibition of the net insulin effect on glucose influx at YM201636 doses markedly lower than those required for efficient retroviral budding disruption warns of severe perturbations in glucose homeostasis associated with potential YM201636 use in antiretroviral therapy.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, United States
| | | | | |
Collapse
|
18
|
Hayata K, Sakano K, Nishinaka S. Establishment of new highly insulin-sensitive cell lines and screening of compounds to facilitate glucose consumption. J Pharmacol Sci 2008; 108:348-54. [PMID: 19008648 DOI: 10.1254/jphs.08148fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To obtain compounds that promote glucose uptake in muscle cells, the novel cell lines A31-IS derived from Balb/c 3T3 A31 and C2C12-IS from mouse myoblast C2C12 were established. In both cell lines, glucose consumption was induced by insulin and suppressed by the addition of Akt-activating kinase inhibitor. The A31-IS cells highly express the insulin receptor beta chains, Glut4, and uncoupling protein-3, as compared to the parent Balb/c 3T3 A31 cells, and C2C12-IS cells highly express the insulin receptor beta chain as compared to its parent cell line. Using A31-IS cells, we screened our library compounds and obtained three compounds, DF-4394, DF-4451, and DG-5451. These compounds dose-dependently promoted glucose consumption in A31-IS cells and facilitated [3H]-2-deoxyglucose uptake in differentiated C2C12-IS cells. The compounds that we obtained from the library screening will be good candidates for improving insulin resistance in muscle cells.
Collapse
Affiliation(s)
- Kenji Hayata
- R&D Division, Exploratory Research Laboratories II, Daiichi-Sankyo Co., Ltd., Tokyo, Japan.
| | | | | |
Collapse
|
19
|
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008; 134:933-44. [PMID: 18805087 DOI: 10.1016/j.cell.2008.07.048] [Citation(s) in RCA: 837] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/05/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Haiming Cao
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Stöckli J, Davey JR, Hohnen-Behrens C, Xu A, James DE, Ramm G. Regulation of glucose transporter 4 translocation by the Rab guanosine triphosphatase-activating protein AS160/TBC1D4: role of phosphorylation and membrane association. Mol Endocrinol 2008; 22:2703-15. [PMID: 18801932 DOI: 10.1210/me.2008-0111] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane in muscle and fat cells depends on the phosphatidylinositide 3-kinase/Akt pathway. The downstream target AS160/TBC1D4 is phosphorylated upon insulin stimulation and contains a TBC domain (Tre-2/Bub2/Cdc16) that is present in most Rab guanosine triphosphatase-activating proteins. TBC1D4 associates with GLUT4-containing membranes under basal conditions and dissociates from membranes with insulin. Here we show that the association of TBC1D4 with membranes is required for its inhibitory action on GLUT4 translocation under basal conditions. Whereas the insulin-dependent dissociation of TBC1D4 from membranes was not required for GLUT4 translocation, its phosphorylation was essential. Many agonists that stimulate GLUT4 translocation failed to trigger TBC1D4 translocation to the cytosol, but in most cases these agonists stimulated TBC1D4 phosphorylation at T642, and their effects on GLUT4 translocation were inhibited by overexpression of the TBC1D4 phosphorylation mutant (TBC1D4-4P). We postulate that TBC1D4 acts to impede GLUT4 translocation by disarming a Rab protein found on GLUT4-containing-membranes and that phosphorylation of TBC1D4 per se is sufficient to overcome this effect, allowing GLUT4 translocation to the cell surface to proceed.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Niu W, Bilan PJ, Hayashi M, Da Y, Yao Z. Insulin sensitivity and inhibition by forskolin, dipyridamole and pentobarbital of glucose transport in three L6 muscle cell lines. ACTA ACUST UNITED AC 2007; 50:739-47. [PMID: 17882384 DOI: 10.1007/s11427-007-0088-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 07/14/2007] [Indexed: 10/22/2022]
Abstract
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58+/-0.01 fold and the GLUT4 content 1.96+/-0.11 fold, as well as the 2-deoxyglucose uptake 1.53+/-0.09 and 1.86+/-0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.
Collapse
Affiliation(s)
- WenYan Niu
- Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | | | | | | | | |
Collapse
|
23
|
Roffey BWC, Atwal AS, Johns T, Kubow S. Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. JOURNAL OF ETHNOPHARMACOLOGY 2007; 112:77-84. [PMID: 17363205 DOI: 10.1016/j.jep.2007.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 01/27/2007] [Accepted: 02/06/2007] [Indexed: 05/14/2023]
Abstract
To examine the effects of Momordica charantia on glucose uptake and adiponectin secretion in adipose cells, 3T3-L1 adipocytes were treated with three concentrations (0.2, 0.3 and 0.4mg/ml) of water and ethanol extracts of Momordica charantia fruit and seeds alone and in combination with either 0.5nM or 50nM insulin. The treatment combination of 0.2mg/ml water extract and 0.5nM insulin was associated with significant (p<0.05) increases in glucose uptake (61%) and adiponectin secretion (75%) over control levels. The ethanol extract was not associated with an increase in glucose uptake; however, a dose-dependent decrease in basal glucose uptake and insulin-mediated glucose uptake was observed with the ethanol extract in combination with 50nM insulin. In the absence of insulin, no effects on glucose uptake were observed in adipocytes exposed to the water extracts whereas the highest concentration (0.4mg/ml) of the ethanol extract was associated with a significant (p<0.05) decrease in glucose uptake relative to controls. The present results indicate that water-soluble component(s) in Momordica charantia enhance the glucose uptake at sub-optimal concentrations of insulin in 3T3-L1 adipocytes, which is accompanied by and may be a result of increased adiponectin secretion from the 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Ben W C Roffey
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Que., Canada H9X 3V9
| | | | | | | |
Collapse
|
24
|
Yao XH, Grégoire Nyomba BL. Abnormal glucose homeostasis in adult female rat offspring after intrauterine ethanol exposure. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1926-33. [PMID: 17218436 DOI: 10.1152/ajpregu.00822.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adverse events during pregnancy, including prenatal ethanol (EtOH) exposure, are associated with insulin-resistant diabetes in male rat offspring, but it is unclear whether this is true for female offspring. We investigated whether prenatal EtOH exposure alters glucose metabolism in adult female rat offspring and whether this is associated with reduced in vivo insulin signaling in skeletal muscle. Female Sprague-Dawley rats were given EtOH, 4 g.kg(-1).day(-1) by gavage throughout pregnancy. Glucose tolerance test and hyperinsulinemic euglycemic clamp were performed, and insulin signaling was investigated in skeletal muscle, in adult female offspring. We gave insulin intravenously to these rats and determined the association of glucose transporter-4 with plasma membranes, as well as the phosphorylation of phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCzeta. Although EtOH offspring had normal birth weight, they were overweight as adults and had fasting hyperglycemia, hyperinsulinemia, and reduced insulin-stimulated glucose uptake. After insulin treatment, EtOH-exposed rats had decreased membrane glucose transporter-4, PDK1, Akt, and PKCzeta in the gastrocnemius muscle, compared with control rats. Insulin stimulation of PDK1, Akt, and PKCzeta phosphorylation was also reduced. In addition, the expression of the protein tribbles-3 and the phosphatase enzyme activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which prevent Akt activation, were increased in muscle from EtOH-exposed rats. Female rat offspring exposed to EtOH in utero develop insulin-resistant diabetes in association with excessive PTEN and tribbles-3 signaling downstream of the phosphatidylinositol 3-kinase pathway in skeletal muscle, which may be a mechanism for the abnormal glucose tolerance.
Collapse
Affiliation(s)
- Xing-Hai Yao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
25
|
Roffey B, Atwal A, Kubow S. Cinnamon water extracts increase glucose uptake but inhibit adiponectin secretion in 3T3-L1 adipose cells. Mol Nutr Food Res 2006; 50:739-45. [PMID: 16835867 DOI: 10.1002/mnfr.200500253] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of three concentrations (0.2, 0.3, and 0.4 mg/mL) of a cinnamon extract (CE) (Cinnamomum zeylanicum) on glucose uptake and adiponectin secretion in 3T3-L1 adipocytes were examined in the presence and absence of 0.5 nM and 50 nM insulin. In the absence of insulin, adipocytes exposed to 0.2 mg/mL CE showed an approximate two-fold increase in glucose uptake relative to controls although glucose uptake was unaffected by the two higher concentrations of CE. No effect of CE on glucose uptake was noted in the presence of 0.5 nM insulin whereas the two highest concentrations (0.3 and 0.4 mg/mL) of CE showed a significant dose-dependent decrease in glucose uptake in the presence of 50 nM insulin. Treatment of the adipocytes with 50 nM wortmannin, an irreversible inhibitor of the p110 isoform of phosphoinositide 3'-kinase, was associated with complete inhibition of the stimulated glucose uptake induced by 0.2 mg/mL CE. Treatment of the adipocytes with 0.2 mg/mL CE was associated with an inhibition of adiponectin secretion to levels that were nondetectable. The present study indicates that although 0.2 mg/mL CE has insulin-mimetic action in 3T3-adipocytes in terms of glucose uptake, secretion of the antidiabetic hormone adiponectin is adversely affected.
Collapse
Affiliation(s)
- Benjamin Roffey
- School of Dietetics and Human Nutrition, McGill University, Sainte Anne de Bellevue, Canada
| | | | | |
Collapse
|
26
|
DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem 2006; 281:32841-51. [PMID: 16950770 PMCID: PMC2724003 DOI: 10.1074/jbc.m513087200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[(3)H]deoxyglucose uptake and metabolism. In contrast, akt2(-/-) mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2(-/-) mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2(-/-) hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.
Collapse
Affiliation(s)
- Brian DeBosch
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nandakumar Sambandam
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Carla Weinheimer
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael Courtois
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Anthony J. Muslin
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
27
|
Abstract
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Recently, several key molecules linking insulin receptor signals and membrane trafficking have been identified, and emerging evidence supports the importance of subcellular compartmentalization of signaling components at the right time and in the right place. In addition, the translocation of GLUT4 in adipocytes requires insulin stimulation of dynamic actin remodeling at the inner surface of the plasma membrane (cortical actin) and in the perinuclear region. This results from at least two independent insulin receptor signals, one leading to the activation of phosphatidylinositol (PI) 3-kinase and the other to the activation of the Rho family small GTP-binding protein TC10. Thus, both spatial and temporal regulations of actin dynamics, both beneath the plasma membrane and around endomembranes, by insulin receptor signals are also involved in the process of GLUT4 translocation.
Collapse
Affiliation(s)
- Makoto Kanzaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Gordon A, Swartz H, Shwartz H. 3,5,3' Triiodo-L-thyronine stimulates 2-deoxy-D-glucose transport into L6 muscle cells through the phosphorylation of insulin receptor beta and the activation of PI-3k. Thyroid 2006; 16:521-9. [PMID: 16839253 DOI: 10.1089/thy.2006.16.521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
3,5,3' Triiodo-L-thyronine (T3) stimulated the uptake of 2-deoxy-D-glucose (2-DOG) into L6 cells, nongenomically, starting at subpicomolar concentrations and reaching a peak at concentrations of 1-10 nM. Stimulation at the peak was usually approximately 250%. The uptake of 2-DOG declined with higher concentrations of T(3). The dose-response curve of insulin is similar in shape to that of T(3), and its peak stimulation can even reach 600% over the control. Wortmannin, an inhibitor of the PI-3k, completely inhibited the stimulation of 2-DOG uptake by T(3), with no effect on the control cells. L6 cells exposed for 10 minutes to T3 resulted in a 200%-300% stimulation of PI-3k, as measured by the production of labeled (32)P-PI-3P. Similar results were obtained with insulin. After incubation for 5 minutes with L6 cells, T(3) increased phosphorylation of the insulin receptor beta subunit; this correlated significantly with the degree of stimulation of 2-DOG uptake at 90 minutes (r = 0.89, p <or= 0.01). These findings suggest that T(3) stimulates the uptake of 2-DOG into L6 muscle cells, in a manner similar to that of insulin.
Collapse
Affiliation(s)
- Amirav Gordon
- Hebrew University, Hadassah Medical School, Experimental Medicine & Cancer Research, Jerusalem, Israel.
| | | | | |
Collapse
|
29
|
Mari M, Monzo P, Kaddai V, Keslair F, Gonzalez T, Le Marchand-Brustel Y, Cormont M. The Rab4 effector Rabip4 plays a role in the endocytotic trafficking of Glut 4 in 3T3-L1 adipocytes. J Cell Sci 2006; 119:1297-306. [PMID: 16522682 DOI: 10.1242/jcs.02850] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insulin regulates glucose uptake in the adipocytes by modulating Glut 4 localization, a traffic pathway involving the endocytic small GTPases Rab4, Rab5, and RabThe expression of the Rab4 effector Rabip4 leads to a 30% increase in glucose uptake and Glut 4 translocation in the presence of insulin, without modifications in the basal condition. This effect was not due to modifications of Glut 4 expression or insulin signaling, suggesting that Rabip4 controls Glut 4 trafficking. We present evidence that Rabip4 defines a subdomain of early endosomes and that Rabip4 is redistributed to the plasma membrane by insulin. Rabip4 is mostly absent from structures positive for early endosome antigen 1, Rab11 or transferrin receptors and from Glut 4 sequestration compartments. However, Rabip4 vesicles can be reached by internalized transferrin and Glut 4. Thus, Rabip4 probably defines an endocytic sorting platform for Glut 4 towards its sequestration pool. The expression of a form of Rabip4 unable to bind Rab4 does not modify basal and insulin-induced glucose transport. However, it induces an increase in the amount of Glut 4 at the plasma membrane and perturbs Glut 4 traffic from endosomes towards its sequestration compartments. These observations suggest that the uncoupling between Rabip4 and Rab4 induces the insertion of Glut 4 molecules that are unable to transport glucose into the plasma membrane.
Collapse
|
30
|
Liao H, Keller SR, Castle JD. Insulin-Regulated Aminopeptidase Marks an Antigen-Stimulated Recycling Compartment in Mast Cells. Traffic 2006; 7:155-67. [PMID: 16420524 DOI: 10.1111/j.1600-0854.2006.00373.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Insulin-regulated aminopeptidase (IRAP) is a marker for insulin-sensitive recycling compartments of fat and muscle cells that contain the glucose transporter isoform GLUT4. Unlike GLUT4, IRAP is expressed in many other cell types. Thus, it is a potential marker for regulated recycling compartments that are analogous to GLUT4 vesicles. In bone marrow-derived mast cells, IRAP is highly expressed and localizes to an intracellular compartment different from secretory granules. Using cell-surface biotinylation, we determined that IRAP underwent rapid redistribution to the plasma membrane on antigen/immunoglobulin E (IgE) stimulation and was re-internalized within 30 min. When granule exocytosis was inhibited, by removing extracellular calcium, adding the protein kinase C inhibitor bisindolylmaleimide or the phosphatidylinositol 3-kinase inhibitor wortmannin, IRAP redistribution was still detected in stimulated cells. However, the redistribution of IRAP required intracellular calcium. By immunofluorescence, IRAP significantly co-localized with the transferrin receptor (TfR), a marker for constitutively recycling endosomes. However, antigen/IgE stimulation did not increase TfR on the cell surface, indicating that IRAP and TfR may follow different pathways to the plasma membrane. In rat peritoneal mast cells, the distributions of IRAP and TfR overlapped to only a limited extent, indicating that overlap may decrease with cell differentiation. We propose that IRAP vesicles represent a second IgE-sensitive exocytotic compartment in mast cells, which is regulated differently from secretory granules, and that these vesicles may be similar to GLUT4 vesicles.
Collapse
Affiliation(s)
- Haini Liao
- Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
31
|
Yamaguchi S, Katahira H, Ozawa S, Nakamichi Y, Tanaka T, Shimoyama T, Takahashi K, Yoshimoto K, Imaizumi MO, Nagamatsu S, Ishida H. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2005; 289:E643-9. [PMID: 15928020 DOI: 10.1152/ajpendo.00456.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine whether the increase in glucose uptake following AMP-activated protein kinase (AMPK) activation in adipocytes is mediated by accelerated GLUT4 translocation into plasma membrane, we constructed a chimera between GLUT4 and enhanced green fluorescent protein (GLUT4-eGFP) and transferred its cDNA into the nucleus of 3T3-L1 adipocytes. Then, the dynamics of GLUT4-eGFP translocation were visualized in living cells by means of laser scanning confocal microscopy. It was revealed that the stimulation with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and 2,4-dinitrophenol (DNP), known activators of AMPK, promptly accelerates its translocation within 4 min, as was found in the case of insulin stimulation. The insulin-induced GLUT4 translocation was markedly inhibited after addition of wortmannin (P < 0.01). However, the GLUT4 translocation through AMPK activators AICAR and DNP was not affected by wortmannin. Insulin- and AMPK-activated translocation of GLUT4 was not inhibited by SB-203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Glucose uptake was significantly increased after addition of AMPK activators AICAR and DNP (P < 0.05). AMPK- and insulin-stimulated glucose uptake were similarly suppressed by wortmannin (P < 0.05-0.01). In addition, SB-203580 also significantly prevented the enhancement of glucose uptake induced by AMPK and insulin (P < 0.05). These results suggest that AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-kinase or through a signaling system distinct from that activated by insulin. On the other hand, the increase of glucose uptake dependent on AMPK activators AICAR and DNP would be additionally due to enhancement of the intrinsic activity in translocated GLUT4 protein, possibly through a p38 MAPK-dependent mechanism.
Collapse
Affiliation(s)
- Shinya Yamaguchi
- Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:163-80. [PMID: 16198626 DOI: 10.1016/j.bbalip.2005.08.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Cellular long-chain fatty acid (LCFA) uptake constitutes a process that is not yet fully understood. LCFA uptake likely involves both passive diffusion and protein-mediated transport. Several lines of evidence support the involvement of a number of plasma membrane-associated proteins, including fatty acid translocase (FAT)/CD36, plasma membrane-bound fatty acid binding protein (FABPpm), and fatty acid transport protein (FATP). In heart and skeletal muscle primary attention has been given to unravel the mechanisms by which FAT/CD36 expression and function are regulated. It appears that both insulin and contractions induce the translocation of intracellular stored FAT/CD36 to the plasma membrane to increase cellular LCFA uptake. This review focuses on this novel mechanism of regulation of LCFA uptake in heart and skeletal muscle in health and disease. The distinct signaling pathways underlying insulin-induced and contraction-induced FAT/CD36 translocation will be discussed and a comparison will be made with the well-defined glucose transport system involving the glucose transporter GLUT4. Finally, it is hypothesized that malfunctioning of recycling of these transporters may lead to intracellular triacylglycerol (TAG) accumulation and cellular insulin resistance. Current data indicate a pivotal role for FAT/CD36 in the regulation of LCFA utilization in heart and skeletal muscle under normal conditions as well as during the altered LCFA utilization observed in obesity and insulin resistance. Hence, FAT/CD36 might provide a useful therapeutic target for the prevention or treatment of insulin resistance.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, NL-6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
33
|
Ferreira IA, Mocking AIM, Urbanus RT, Varlack S, Wnuk M, Akkerman JWN. Glucose Uptake via Glucose Transporter 3 by Human Platelets Is Regulated by Protein Kinase B. J Biol Chem 2005; 280:32625-33. [PMID: 16049004 DOI: 10.1074/jbc.m507221200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In insulin-responsive tissues, insulin is a potent activator of protein kinase B (PKB)-mediated glucose uptake through the facilitative glucose transporter GLUT4. In platelets, glucose uptake is mediated through GLUT3, which is present in plasma (15%) and intracellular alpha-granule (85%) membranes. Here we report the PKB-mediated glucose uptake by platelets by agents that do (thrombin) or do not (insulin) induce alpha-granule translocation to the plasma membrane. Both thrombin and insulin activate PKB and induce glucose uptake albeit with different kinetics. Inhibition of PKB by the pharmacological inhibitor ML-9 decreases thrombin-induced alpha-granule release and thrombin- and insulin-induced glucose uptake. At low glucose (0.1 mm), both agents stimulate glucose uptake by lowering the Km for glucose (thrombin and insulin) and increasing Vmax (thrombin). At high glucose (5 mm), stimulation of glucose uptake by insulin disappears, and insulin becomes an inhibitor of thrombin-induced glucose uptake via mechanisms independent of PKB. We conclude that in platelets glucose transport through GLUT3 is regulated by changes in surface expression and affinity modulation, which are both under control of PKB.
Collapse
Affiliation(s)
- Irlando Andrade Ferreira
- Thrombosis and Haemostasis Laboratory, Department of Hematology, University Medical Center Utrecht
| | | | | | | | | | | |
Collapse
|
34
|
Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA, Bilan PJ, Klip A. Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 2005; 146:3773-81. [PMID: 15947002 DOI: 10.1210/en.2005-0404] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKalpha and p38MAPKbeta (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38alpha and/or p38beta. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38alpha (drug-resistant p38alpha) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38alpha or p38beta reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38alpha or p38beta by 60-70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.
Collapse
Affiliation(s)
- C N Antonescu
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen L, Yao XH, Nyomba BLG. In vivo insulin signaling through PI3-kinase is impaired in skeletal muscle of adult rat offspring exposed to ethanol in utero. J Appl Physiol (1985) 2005; 99:528-34. [PMID: 15790685 DOI: 10.1152/japplphysiol.01098.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor β-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform ζ phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform ζ were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.
Collapse
Affiliation(s)
- Li Chen
- Diabetes Research Group, University of Manitoba, 715 McDermot Ave., Rm. 834, Winnipeg, Manitoba, Canada R3E 3P4
| | | | | |
Collapse
|
36
|
Smith JL, Patil PB, Fisher JS. AICAR and hyperosmotic stress increase insulin-stimulated glucose transport. J Appl Physiol (1985) 2005; 99:877-83. [PMID: 15860681 DOI: 10.1152/japplphysiol.01297.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensitivity of glucose transport to stimulation by insulin has been shown to occur concomitant with activation of the AMP-activated protein kinase (AMPK) in skeletal muscle, suggesting a role of AMPK in regulation of insulin action. The purpose of the present study was to evaluate a possible role of AMPK in potentiation of insulin action in muscle cells. The experimental model involved insulin-responsive C2C12 myotubes that exhibit a twofold increase in glucose transport in the presence of insulin. Treatment of myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), followed by a 2-h recovery, augmented the ability of insulin to stimulate glucose transport. Similarly, incubation in hyperosmotic medium, another AMPK-activating treatment, acted synergistically with insulin to stimulate glucose transport. Furthermore, the increase in insulin action caused by hyperosmotic stress was prevented by inclusion of compound C, an AMPK inhibitor, in hyperosmotic medium. In addition, iodotubercidin, a general kinase inhibitor that is effective against AMPK, also prevented the combined effects of insulin and hyperosmotic stress on glucose transport. The new information provided by these data is that previously reported AICAR effects on insulin action are generalizable to myotubes, hyperosmotic stress and insulin synergistically increase glucose transport, and AMPK appears to mediate potentiation of insulin action.
Collapse
Affiliation(s)
- Jill L Smith
- Dept. of Biology, Saint Louis Univ., 3507 Laclede Ave., St. Louis, MO 63103, USA
| | | | | |
Collapse
|
37
|
Ribé D, Yang J, Patel S, Koumanov F, Cushman SW, Holman GD. Endofacial competitive inhibition of glucose transporter-4 intrinsic activity by the mitogen-activated protein kinase inhibitor SB203580. Endocrinology 2005; 146:1713-7. [PMID: 15661859 DOI: 10.1210/en.2004-1294] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The translocation of glucose transporter-4 (GLUT4) to the cell surface is a complex multistep process that involves movement of GLUT4 vesicles from a reservoir compartment, and docking and fusion of the vesicles with the plasma membrane. It has recently been proposed that a p38 mitogen-activated protein kinase (MAPK)-dependent step may lead to intrinsic activation of the transporters exposed at the cell surface. In contrast to data obtained in muscle and adipocyte cell lines, we found that no insulin activation of p38 MAPK occurred in rat adipose cells. However, the p38 MAPK inhibitor SB203580 consistently inhibited transport activity after preincubation with the adipose cells. These apparently contradictory findings led us to hypothesize that the inhibitor may have a direct effect on the transport catalytic activity of GLUT4 that was independent of inhibition of the kinase. Kinetic analysis of 3-O-methyl-d-glucose transport activity revealed that SB203580 was a noncompetitive inhibitor of zero-trans (substrate outside but not inside) transport, but was a competitive inhibitor of equilibrium-exchange (substrate inside and outside) transport. This pattern of inhibition of GLUT4 was also observed with cytochalasin B. The pattern of inhibition is consistent with interaction at the endofacial surface, but not the exofacial surface of the transporter. Occupation of the endofacial substrate site reduces maximum velocity under zero-trans conditions, because return of the substrate site to the outside is blocked, and no substrate is present inside to displace the inhibitor. Under equilibrium-exchange conditions, internal substrate competitively displaces the inhibitor, and the transport K(m) is increased.
Collapse
Affiliation(s)
- David Ribé
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Lam E, Tredget EE, Marcoux Y, Li Y, Ghahary A. Insulin suppresses collagenase stimulatory effect of stratifin in dermal fibroblasts. Mol Cell Biochem 2005; 266:167-74. [PMID: 15646039 DOI: 10.1023/b:mcbi.0000049156.82563.2d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A delicate balance between synthesis and degradation of extracellular matrix (ECM) by matrix metalloproteinases (MMPs) is an essential feature of tissue remodeling. We have recently demonstrated that keratinocyte releasable stratifin, also known as 14-3-3 sigma protein, plays a critical role in modulating collagenase (MMP-1) mRNA expression in human dermal fibroblasts. In this study, we further characterized the collagenase stimulatory effect of stratifin in dermal fibroblasts and evaluated its effect in the presence and absence of insulin. Our data indicate that stratifin increases the expression of collagenase mRNA more than 20-fold in dermal fibroblasts, grown in either Dulbecco's modified Eagle's medium (DMEM) plus 2% or 10% fetal bovine serum (FBS). Collagenase stimulatory effect of stratifin was completely blocked, when fibroblasts were cultured in test medium consisting of 50% keratinocyte serum-free medium (KSFM) and 50% DMEM. The collagenase suppressive effect of test medium was directly proportional to the volume of KSFM used. As this medium contained insulin, we then evaluated the collagenase stimulatory effect of stratifin in dermal fibroblasts in the presence and absence of insulin. The results revealed that stratifin significantly increased the expression of collagenase mRNA/18S (*p < 0.05, n = 3) ratio, while insulin significantly decreased the expression of collagenase mRNA/18S (*p < 0.05, n = 3) ratio. The insulin inhibitory effect on collagenase mRNA expression was time and dose dependent. The maximal inhibitory effect of insulin was seen at 36 h post treatment. In conclusion, stratifin stimulates the expression of collagenase mRNA expression in dermal fibroblasts and this effect is suppressed by insulin treatment.
Collapse
Affiliation(s)
- Eugene Lam
- Department of Surgery, Wound Healing Research Group, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
39
|
Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. ACTA ACUST UNITED AC 2005; 183:3-12. [PMID: 15654916 DOI: 10.1111/j.1365-201x.2004.01382.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A great deal of evidence has accumulated indicating that the activity of PI 3-kinase is necessary, and in some cases sufficient, for a wide range of insulin's actions in the cell. Most biochemical, genetic and pharmacological studies have focused on identifying potential roles for the class-Ia PI 3-kinases which are rapidly activated following insulin stimulation. However, recent evidence indicates the alpha isoform of class-II PI 3-kinase (PI3K-C2alpha) may also play a role as insulin causes a very rapid activation of this as well. The basic mechanisms by which insulin activates the various members of the PI 3-kinase family are increasingly well understood and these studies reveal multiple mechanisms for modulating the activity and functionality of PI 3-kinase and for down regulating the signals they generate. These include inhibitory phosphorylation events, lipid phosphatases such as PTEN and SHIP2 and inhibitor proteins of the suppressors of cytokine signalling (SOCS) family. The current review will focus on these mechanisms and how defects in these might contribute to the development of insulin resistance.
Collapse
Affiliation(s)
- P R Shepherd
- Department of Biochemistry and Molecular Biology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
40
|
Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 2005; 48:132-9. [PMID: 15619075 DOI: 10.1007/s00125-004-1609-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 07/28/2004] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether adiponectin elicits glucose uptake via increased GLUT4 translocation and to investigate the metabolic fate of glucose in skeletal muscle cells treated with globular adiponectin. MATERIALS AND METHODS Basal and insulin-stimulated 2-deoxy-D: -[(3)H]glucose uptake, cell surface myc-tagged GLUT4 content, production of (14)CO(2) by oxidation of D: -[U-(14)C]glucose and [1-(14)C]oleate, and incorporation of D: -[U-(14)C]glucose into glycogen and lactate were measured in the presence and absence of globular adiponectin. RESULTS RT-PCR and Western blot analysis revealed that L6 cells and rat skeletal muscle cells express AdipoR1 mRNA and protein. Globular adiponectin increased both GLUT4 translocation and glucose uptake by increasing the transport V(max) of glucose without altering the K(m). Interestingly, the incorporation of D: -[U-(14)C]glucose into glycogen under basal and insulin-stimulated conditions was significantly decreased by globular adiponectin, whereas lactate production was increased. Furthermore, globular adiponectin did not affect glucose oxidation, but enhanced phosphorylation of AMP kinase and acetyl-CoA carboxylase, and fatty acid oxidation. CONCLUSIONS/INTERPRETATION The present study is the first to show that globular adiponectin increases glucose uptake in skeletal muscle cells via GLUT4 translocation and subsequently reduces the rate of glycogen synthesis and shifts glucose metabolism toward lactate production. These effects are consistent with the increased phosphorylation of AMP kinase and acetyl-CoA carboxylase and oxidation of fatty acids induced by globular adiponectin.
Collapse
Affiliation(s)
- R B Ceddia
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Andrade Ferreira I, Akkerman JWN. IRS-1 and Vascular Complications in Diabetes Mellitus. VITAMINS AND HORMONES 2005; 70:25-67. [PMID: 15727801 DOI: 10.1016/s0083-6729(05)70002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The expected explosive increase in the number of patients with diabetes mellitus will increase the stress on health care. Treatment is focused on preventing vascular complications associated with the disorder. In order to develop better treatment regimens, the field of research has made a great effort in understanding this disorder. This chapter summarizes the current views on the insulin signaling pathway with emphasis on intracellular signaling events associated with insulin resistance, which lead to the prothrombotic condition in the vasculature of patience with diabetes mellitus.
Collapse
Affiliation(s)
- I Andrade Ferreira
- Thrombosis and Haemostasis Laboratory, Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Shiue H, Musch MW, Wang Y, Chang EB, Turner JR. Akt2 phosphorylates ezrin to trigger NHE3 translocation and activation. J Biol Chem 2004; 280:1688-95. [PMID: 15531580 PMCID: PMC1237052 DOI: 10.1074/jbc.m409471200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Initiation of Na(+)-glucose cotransport in intestinal absorptive epithelia causes NHE3 to be translocated to the apical plasma membrane, leading to cytoplasmic alkalinization. We reported recently that this NHE3 translocation requires ezrin phosphorylation. However, the kinase that phosphorylates ezrin in this process has not been identified. Because Akt has also been implicated in NHE3 translocation, we investigated the hypothesis that Akt phosphorylates ezrin. After initiation of Na(+)-glucose cotransport, Akt is activated with kinetics that parallel those of ezrin phosphorylation. Inhibition of p38 MAP kinase, which blocks ezrin phosphorylation, also prevents Akt activation. Purified Akt directly phosphorylates recombinant ezrin at threonine 567 in vitro in an ATP-dependent manner. This in vitro phosphorylation can be prevented by Akt inhibitors. In intact cells, inhibition of either phosphoinositide 3-kinase, an upstream regulator of Akt, or inhibition of Akt itself using inhibitors validated in vitro prevents ezrin phosphorylation after initiation of Na(+)-glucose cotransport. Specific small interfering RNA knockdown of Akt2 prevented ezrin phosphorylation in intact cells. Pharmacological Akt inhibition or Akt2 knockdown also prevented NHE3 translocation and activation after initiation of Na(+)-glucose cotransport, confirming the functional role of Akt2. These studies therefore identify Akt2 as a critical kinase that regulates ezrin phosphorylation and activation. This Akt2-dependent ezrin phosphorylation leads to NHE3 translocation and activation.
Collapse
Affiliation(s)
| | - Mark W. Musch
- Medicine, The University of Chicago, Chicago, Illinois 60637
| | | | - Eugene B. Chang
- Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Jerrold R. Turner
- From the Departments of Pathology and
- || To whom correspondence should be addressed: 5841 S. Maryland Ave., MC 1089, Chicago, IL 60637. Tel.: 773-702-2433; Fax: 773-834-5251; E-mail:
| |
Collapse
|
43
|
Sweeney G, Garg RR, Ceddia RB, Li D, Ishiki M, Somwar R, Foster LJ, Neilsen PO, Prestwich GD, Rudich A, Klip A. Intracellular delivery of phosphatidylinositol (3,4,5)-trisphosphate causes incorporation of glucose transporter 4 into the plasma membrane of muscle and fat cells without increasing glucose uptake. J Biol Chem 2004; 279:32233-42. [PMID: 15166230 DOI: 10.1074/jbc.m402897200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin stimulates glucose uptake into muscle and fat cells by translocating glucose transporter 4 (GLUT4) to the cell surface, with input from phosphatidylinositol (PI) 3-kinase and its downstream effector Akt/protein kinase B. Whether PI 3,4,5-trisphosphate (PI(3,4,5)P(3)) suffices to produce GLUT4 translocation is unknown. We used two strategies to deliver PI(3,4,5)P(3) intracellularly and two insulin-sensitive cell lines to examine Akt activation and GLUT4 translocation. In 3T3-L1 adipocytes, the acetoxymethyl ester of PI(3,4,5)P(3) caused GLUT4 migration to the cell periphery and increased the amount of plasma membrane-associated phospho-Akt and GLUT4. Intracellular delivery of PI(3,4,5)P(3) using polyamine carriers also induced translocation of myc-tagged GLUT4 to the surface of intact L6 myoblasts, demonstrating membrane insertion of the transporter. GLUT4 translocation caused by carrier-delivered PI(3,4,5)P(3) was not reproduced by carrier-PI 4,5-bisphosphate or carrier alone. Like insulin, carrier-mediated delivery of PI(3,4,5)P(3) elicited redistribution of perinuclear GLUT4 and Akt phosphorylation at the cell periphery. In contrast to its effect on GLUT4 mobilization, delivered PI(3,4,5)P(3) did not increase 2-deoxyglucose uptake in either L6GLUT4myc myoblasts or 3T3-L1 adipocytes. The ability of exogenously delivered PI(3,4,5)P(3) to augment plasma membrane GLUT4 content without increasing glucose uptake suggests that input at the level of PI 3-kinase suffices for GLUT4 translocation but is insufficient to stimulate glucose transport.
Collapse
Affiliation(s)
- Gary Sweeney
- Programme in Cell Biology, Hospital for Sick Children, and Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Roberts MS, Woods AJ, Dale TC, Van Der Sluijs P, Norman JC. Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of alpha v beta 3 and alpha 5 beta 1 integrins. Mol Cell Biol 2004; 24:1505-15. [PMID: 14749368 PMCID: PMC344170 DOI: 10.1128/mcb.24.4.1505-1515.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.
Collapse
Affiliation(s)
- Marnie S Roberts
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Misra UK, Pizzo SV. Activation of Akt/PDK signaling in macrophages upon binding of receptor-recognized forms of ?2-macroglobulin to its cellular receptor: Effect of silencing theCREB gene. J Cell Biochem 2004; 93:1020-32. [PMID: 15389876 DOI: 10.1002/jcb.20233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Macrophage binding of receptor-recognized forms of alpha2-macrogobulin (alpha2M*) significantly increases cAMP, CREB, and activated CREB. We have now examined the participation of the PI 3-kinase/PDK/Akt/p70s6k signaling cascade in alpha2M*-induced cellular proliferation and also studied the role of CREB in these events. Exposure of cells to alpha2M* caused an approximately 2-fold increase in CREB and its phosphorylation at Ser133, phosphorylation of the regulatory subunit of PI 3-kinase, Akt phosphorylation at Ser473 or Thr308, and phosphorylated 70s6k. Silencing of the CREB gene with dsRNA homologous in sequence to the target gene, markedly reduced the levels of CREB mRNA activation of CREB, PI 3-kinase, Akt, and p70s6k in alpha2M*-stimulated macrophages. We conclude that in murine peritoneal macrophages, alpha2M*-induced increase of cAMP is involved in cellular proliferation and this process is mediated by the PI 3-kinase signaling cascade.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
46
|
Arndt PG, Suzuki N, Avdi NJ, Malcolm KC, Worthen GS. Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-Kinase and Syk-mediated pathways. J Biol Chem 2003; 279:10883-91. [PMID: 14699155 DOI: 10.1074/jbc.m309901200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.
Collapse
Affiliation(s)
- Patrick G Arndt
- Department of Medicine and Division of Cell Biology, National Jewish Medical and Research Center, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|
47
|
Tajmir P, Kwan JJM, Kessas M, Mozammel S, Sweeney G. Acute and chronic leptin treatment mediate contrasting effects on signaling, glucose uptake, and GLUT4 translocation in L6-GLUT4myc myotubes. J Cell Physiol 2003; 197:122-30. [PMID: 12942548 DOI: 10.1002/jcp.10351] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown that in L6-GLUT4myc rat skeletal muscle cells, acute treatment with leptin reduced insulin-stimulated glucose uptake without altering insulin-stimulated GLUT4 translocation. In contrast, we show here that the ability of leptin to increase phosphorylation of its receptor and to reduce insulin-stimulated glucose uptake was lost in cells that were continuously exposed to leptin for 24 h. This desensitization correlated with an increase in expression of suppressor of cytokine signaling-3 (SOCS-3). Time course analysis demonstrated that the transition from acute to chronic effects of leptin occurs after 2 h. The desensitization of leptin action at 24 h was not reversed by 30 min washout period prior to re-exposing cells to leptin. However, despite insulin-stimulated glucose uptake being unaffected upon 24 h preincubation with leptin, a small but significant decrease (37%) in insulin-stimulated GLUT4 translocation and phosphorylation of Akt on T308 was detected. Insulin-stimulated phosphorylation of Akt on S473 or of p38 MAPK were unaffected. These results suggest that the chronic leptin treatment leads to desensitization of leptin signaling yet can simultaneously decrease the ability of insulin to phosphorylate Akt on T308 and translocate GLUT4. However, this does not manifest as a reduction in total glucose uptake into L6 myotubes.
Collapse
|
48
|
Sampaio de Freitas M, Garcia De Souza EP, Vargas da Silva S, da Rocha Kaezer A, da Silva Vieira R, Sanchez Moura A, Barja-Fidalgo C. Up-regulation of phosphatidylinositol 3-kinase and glucose transporter 4 in muscle of rats subjected to maternal undernutrition. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1639:8-16. [PMID: 12943963 DOI: 10.1016/s0925-4439(03)00096-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early postnatal nutrition has been associated with the long-term effects on glucose homeostasis in adulthood. To elucidate the molecular mechanisms by which undernutrition during early life leads to changes in insulin sensitivity, we investigated the insulin signaling in skeletal muscle of rats during development. Offspring of dams fed with either protein-free or normal diets during the first 10 days of lactation were studied from lactation period until adulthood. Early maternal undernutrition impaired secretion of insulin but maintained normal blood glucose levels until adulthood. Insulin receptor (IR) activation after insulin stimulation was decreased during the period of protein restriction. In addition, glucose uptake, insulin receptor substrate 1 (IRS-1) phosphorylation and glucose transporter 4 (GLUT-4) translocation in muscle were reduced in response to insulin during suckling. In contrast, non- or insulin-stimulated glucose uptake and GLUT-4 translocation were found significantly increased in muscle of adult offspring. Finally, basal association of phosphatidylinositol 3-kinase (PI3-kinase) with IRS-1 was increased and was highly stimulated by insulin in muscle from adult rats. Our findings suggest that early postnatal undernutrition increases insulin sensitivity in adulthood, which appears to be directly related to changes in critical steps required for glucose metabolism.
Collapse
Affiliation(s)
- Marta Sampaio de Freitas
- Departamento de Farmacologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
49
|
Maffucci T, Brancaccio A, Piccolo E, Stein RC, Falasca M. Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J 2003; 22:4178-89. [PMID: 12912916 PMCID: PMC175792 DOI: 10.1093/emboj/cdg402] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns-3-P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3-kinase (PI 3-K) and the small GTP-binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns-3-P in insulin- responsive cells. The insulin-mediated formation of PtdIns-3-P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns-3-P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns-3-P is specifically produced downstream from insulin-mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns-3-P and shed light on some aspects of insulin signalling so far not completely understood.
Collapse
Affiliation(s)
- Tania Maffucci
- The Sackler Institute, University College London, 5 University Street, London WC1E 6JJ, UK
| | | | | | | | | |
Collapse
|
50
|
Jensen J, Sharikabad MN, Østbye KM, Melien Ø, Brørs O. Evidence that nitroprusside stimulates glucose uptake in isolated rat cardiomyocytes via mitogen-activated protein kinase. Arch Physiol Biochem 2003; 111:239-45. [PMID: 14972746 DOI: 10.1076/apab.111.3.239.23463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sodium nitroprusside (SNP), a nitric oxide (NO.) donor, stimulates glucose uptake in skeletal muscle. We investigated the stimulatory effect of SNP on glucose uptake in cardiomyocytes and the possible role of soluble guanylate cyclase, phosphatidylinositol-3-kinase (PI-3-kinase) and the mitogen-activated protein kinases (MAPKs). Cardiomyocytes were isolated from adult male Wistar rats by trypsin/collagenase perfusion and glucose uptake determined from the accumulation of 3H-2-deoxyglucose. SNP caused a dose-dependent increase in glucose uptake with 200-300% increase at 30 mM. Cytochalasin B completely prevented the SNP-induced increase in glucose uptake. 8-Br-cGMP (100 microM) and the NO. donor spermineNONOate (100 microM) were without effect on basal glucose uptake. SNP-stimulated glucose uptake was not inhibited by the guanylate cyclase inhibitor ODQ (10 microM). Sodium ferrocyanide (Na4Fe(CN)6), a compound structurally related to SNP, but without any NO. group, also stimulated glucose uptake in cardiomyocytes suggesting that the effect of SNP could be unrelated to liberation of NO. Wortmannin, an inhibitor of PI-3-kinase, inhibited insulin-stimulated glucose uptake completely but did not affect SNP-stimulated glucose uptake. SNP-stimulated glucose uptake was inhibited by 50 microM PD 098059 (inhibitor of the MAPK-kinases that activate external regulated kinase [ERK1/2]) and by 50 microM SB203580 (inhibitor of p38MAPK). In conclusion, high SNP concentrations dose-dependently stimulate glucose uptake in cardiomyocytes and our data suggest a role for MAPK signalling, but not PI-3-kinase and soluble guanylate cyclase, in stimulation of glucose uptake.
Collapse
Affiliation(s)
- J Jensen
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | | |
Collapse
|