1
|
Tian H, Ge K, Wang L, Gao P, Chen A, Wang F, Guo F, Wang F, Zhang Q. Advances in PGD2/PTGDR2 signaling pathway in tumors: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1055-1067. [PMID: 38704736 PMCID: PMC11378995 DOI: 10.17305/bb.2024.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Studies have shown that the prostaglandin (PG) family acts as an allergic inflammatory mediator in malignant diseases. Furthermore, prostaglandin E2 (PGE2) and its related receptors, as well as the prostaglandin D2 (PGD2)/PGD2 receptor (PTGDR2), play irreplaceable roles in tumorigenesis and anti-tumor therapy. Several experiments have demonstrated that PGD2 signaling through PTGDR2 not only directly inhibits cancer cell survival, proliferation, and migration but also reduces resistance toward conventional chemotherapeutic agents. Recent studies from our and other laboratories have shown that PGD2, its ligands, and related metabolites can significantly alter the tumor microenvironment (TME) by promoting the secretion of chemokines and cytokines, thereby inhibiting tumor progression. Additionally, reduced PGD2 expression has been associated with poor prognosis in patients with gastric, breast, lung, and pancreatic cancers, validating the preclinical findings and their clinical relevance. This review focuses on the current understanding of PGD2/PTGDR2 expression patterns and biological activity in cancer, proposing questions to guide the assessment of PGD2 and its receptors as potential targets for effective cancer therapies.
Collapse
Affiliation(s)
- Hengjin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peiyao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Amin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Feifan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Nasry WHS, Jones K, Rodriguez-Lecompte JC, Tesch M, Martin CK. Expression of mPGES1 and p16 in feline and human oral squamous cell carcinoma: A comparative oncology approach. Vet Comp Oncol 2024; 22:204-216. [PMID: 38378135 DOI: 10.1111/vco.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Comparative cancer studies help us determine if discoveries in one species apply to another. Feline and human oral squamous cell carcinoma (FOSCC and HOSCC) are invasive tumours in which inflammation and abnormal p16 expression are reported. Immunohistochemistry was used to determine the expression of p16 and microsomal prostaglandin E2 synthase 1 (mPGES1) in 42 HOSCC and 45 FOSCC samples with known expression of cyclooxygenase 2 (COX2) and cluster of differentiation 147 (CD147). High p16 expression was more common in HOSCC tumour cells compared to adjacent stroma and oral epithelium (p < .05), with a similar but statistically nonsignificant pattern in FOSCC. Interestingly, high mPGES1 expression in FOSCC was more common in the adjacent epithelium compared to the other compartments (p < .05). In HOSCC, mPGES1 was more similar between compartments but was numerically more common in the tumour compartment (p > .05). There were nominal (p > 0.05) differences in marker expression between high and low mPGES1 expressing tumours in both species, including high p16 observed more commonly in high mPGES1 tumours, and COX-2 positive tumours being more common in low mPGES1 tumours. High CD147 HOSCC tumours were more common in the high mPGES1 HOSCC group (p < .05). In the FOSCC cohort, where there was no statistical difference in CD147 expression between high and low mPGES1 tumours, there were numerically higher CD147 cases in the high mPGES1group. Different expression patterns in FOSCC and HOSCC could be related to different risk factors. For example, p16 is a marker of papillomavirus-driven HOSCC, but a causal relationship between papillomaviruses and FOSCC has yet to be definitively demonstrated. The significance of high P16 expression in the absence of papillomavirus infection deserves further study, and the relative contributions of COX2 and mPGES1 to tumour inflammation and progression should be explored. The findings reveal potential similarities in FOSCC and HOSCC biology, while also demonstrating differences that may relate to risk factors and pathogenesis that are unique to each species.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kathleen Jones
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marvin Tesch
- Provincial Health Services, Health PEI, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
3
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2024:S2090-1232(24)00180-2. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
4
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Guo Z, Li K, Liu P, Zhang X, Lv J, Zeng X, Zhang P. Targeted therapy for head and neck squamous cell carcinoma microenvironment. Front Med (Lausanne) 2023; 10:1257898. [PMID: 37711747 PMCID: PMC10498927 DOI: 10.3389/fmed.2023.1257898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates from the squamous epithelium of the oral cavity, oropharynx, larynx, and hypopharynx. HNSCC in the oral cavity and larynx is strongly associated with tobacco smoking and alcohol consumption, while oropharyngeal cancer is increasingly attributed to infection by human papillomavirus (HPV), particularly HPV-16. The tumor microenvironment (TME) is a complex network of cancer cells, immune cells, stromal cells, surrounding blood vessels, and signaling molecules, and plays a critical role in tumor cell survival, invasion, and recurrence. Therefore, it is critical to elucidate the molecular basis of the interaction between tumor cells and the TME in order to develop innovative anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Zhaomeng Guo
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Kang Li
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Peng Liu
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Xiangmin Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| | - Peng Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital and Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Sun J, Wang X, Ding Y, Xiao B, Wang X, Ali MM, Ma L, Xie Z, Gu Z, Chen G, Tao WA. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Proteomics 2023; 23:e2200319. [PMID: 36573687 DOI: 10.1002/pmic.202200319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinxin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Yu D, Liu Z. The research progress in the interaction between Candida albicans and cancers. Front Microbiol 2022; 13:988734. [PMID: 36246294 PMCID: PMC9554461 DOI: 10.3389/fmicb.2022.988734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus, which tends to infect the host with defective immune function including cancer patients. A growing number of studies have shown that C. albicans infection increases the host susceptibility to cancer such as oral, gastric, and colorectal cancer. Cancer and anti-cancer treatment may also affect the colonization of C. albicans. C. albicans may promote the development of cancer by damaging mucosal epithelium, inducing the production of carcinogens, triggering chronic inflammation including Th17 cell-mediated immune response. In this article, we aim to elaborate the interaction between C. albicans and cancers development and summarize the potential molecular mechanisms, so as to provide theoretical basis for prevention, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Dalang Yu
- School of Basic Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Zhiping Liu,
| |
Collapse
|
9
|
Koizume S, Takahashi T, Nakamura Y, Yoshihara M, Ota Y, Sato S, Tadokoro H, Yokose T, Kato H, Miyagi E, Miyagi Y. Lipophagy-ICAM-1 pathway associated with fatty acid and oxygen deficiencies is involved in poor prognoses of ovarian clear cell carcinoma. Br J Cancer 2022; 127:462-473. [PMID: 35449452 PMCID: PMC9346109 DOI: 10.1038/s41416-022-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Serum starvation and hypoxia (SSH) mimics a stress condition in tumours. We have shown that intercellular adhesion molecule-1 (ICAM-1) protein is synergistically expressed in ovarian clear cell carcinoma (CCC) cells under SSH in response to an insufficient supply of fatty acids (FAs). This ICAM-1 expression is responsible for resistance against the lethal condition, thereby promoting tumour growth. However, the underlying mechanisms that link SSH-driven ICAM1 gene expression to impaired FA supply and its clinical relevance are unclear. METHODS The underlying mechanisms of how FA deficiency induces ICAM-1 expression in cooperation with hypoxia were analysed in vitro and in vivo. Clinical significance of CCC cell-derived ICAM-1 and the mechanism associated with the transcriptional synergism were also investigated. RESULTS ICAM-1 expression was mediated through lipophagy-driven lipid droplet degradation, followed by impaired FA-lipid droplet flow. Lipophagy induced ICAM1 expression through stabilisation of NFκB binding to the promoter region via Sam68 and hTERT. Analyses of clinical specimens revealed that expression of ICAM-1 and LC3B, an autophagy marker associated with lipophagy, significantly correlated with poor prognoses of CCC. CONCLUSIONS The lipophagy-ICAM-1 pathway induced under a tumour-like stress conditions contributes to CCC progression and is a potential therapeutic target for this aggressive cancer type.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan. .,Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515, Japan.
| | - Tomoko Takahashi
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Yoshiyasu Nakamura
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Mitsuyo Yoshihara
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Yukihide Ota
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan ,grid.268441.d0000 0001 1033 6139Department of Obstetrics, Gynecology, and Molecular Reproductive Science, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Shinya Sato
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan ,grid.414944.80000 0004 0629 2905Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Hiroko Tadokoro
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Tomoyuki Yokose
- grid.414944.80000 0004 0629 2905Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Hisamori Kato
- grid.414944.80000 0004 0629 2905Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Etsuko Miyagi
- grid.268441.d0000 0001 1033 6139Department of Obstetrics, Gynecology, and Molecular Reproductive Science, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan. .,Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515, Japan.
| |
Collapse
|
10
|
Tsai YT, Lo WL, Chen PY, Ko CY, Chuang JY, Kao TJ, Yang WB, Chang KY, Hung CY, Kikkawa U, Chang WC, Hsu TI. Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation. J Biomed Sci 2022; 29:21. [PMID: 35337344 PMCID: PMC8952270 DOI: 10.1186/s12929-022-00804-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. Methods RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. Results Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid β-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. Conclusion Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00804-3.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wei-Lun Lo
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chiung-Yuan Ko
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Jian-Ying Chuang
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Tzu-Jen Kao
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Wen-Bing Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110. .,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
| | - Tsung-I Hsu
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan. .,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
11
|
Niklander SE. Inflammatory Mediators in Oral Cancer: Pathogenic Mechanisms and Diagnostic Potential. FRONTIERS IN ORAL HEALTH 2022; 2:642238. [PMID: 35047997 PMCID: PMC8757707 DOI: 10.3389/froh.2021.642238] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 15% of cancers are attributable to the inflammatory process, and growing evidence supports an association between oral squamous cell carcinoma (OSCC) and chronic inflammation. Different oral inflammatory conditions, such as oral lichen planus (OLP), submucous fibrosis, and oral discoid lupus, are all predisposing for the development of OSCC. The microenvironment of these conditions contains various transcription factors and inflammatory mediators with the ability to induce proliferation, epithelial-to-mesenchymal transition (EMT), and invasion of genetically predisposed lesions, thereby promoting tumor development. In this review, we will focus on the main inflammatory molecules and transcription factors activated in OSCC, with emphasis on their translational potential.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
12
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
13
|
Nasry WHS, Martin CK. Intersecting Mechanisms of Hypoxia and Prostaglandin E2-Mediated Inflammation in the Comparative Biology of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:539361. [PMID: 34094895 PMCID: PMC8175905 DOI: 10.3389/fonc.2021.539361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The importance of inflammation in the pathogenesis of cancer was first proposed by Rudolph Virchow over 150 years ago, and our understanding of its significance has grown over decades of biomedical research. The arachidonic acid pathway of inflammation, including cyclooxygenase (COX) enzymes, PGE2 synthase enzymes, prostaglandin E2 (PGE2) and PGE2 receptors has been extensively studied and has been associated with different diseases and different types of cancers, including oral squamous cell carcinoma (OSCC). In addition to inflammation in the tumour microenvironment, low oxygen levels (hypoxia) within tumours have also been shown to contribute to tumour progression. Understandably, most of our OSCC knowledge comes from study of this aggressive cancer in human patients and in experimental rodent models. However, domestic animals develop OSCC spontaneously and this is an important, and difficult to treat, form of cancer in veterinary medicine. The primary goal of this review article is to explore the available evidence regarding interaction between hypoxia and the arachidonic acid pathway of inflammation during malignant behaviour of OSCC. Overlapping mechanisms in hypoxia and inflammation can contribute to tumour growth, angiogenesis, and, importantly, resistance to therapy. The benefits and controversies of anti-inflammatory and anti-angiogenic therapies for human and animal OSCC patients will be discussed, including conventional pharmaceutical agents as well as natural products.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
14
|
SNHG15 knockdown inhibits diabetic nephropathy progression in pediatric patients by regulating the miR-141/ICAM-1 axis in vitro. Biosci Rep 2021; 41:227697. [PMID: 33506255 PMCID: PMC7871034 DOI: 10.1042/bsr20204099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are confirmed to be involved in modulating diabetic nephropathy (DN). The present study is aimed to explore the regulatory mechanism of lncRNA small nucleolar RNA host gene 15 (SNHG15) on pediatric DN. Human glomerular mesangial cells (HGMCs) were exposed to high glucose (HG) to produce an in vitro model. The results showed that SNHG15 was remarkably up-regulated in pediatric DN tissues and HG-induced HGMCs. Functional experiments indicated that both silencing of SNHG15 and overexpression of miR-141 elevated the cell viability, and suppressed the inflammation in HG-induced HGMCs. SNHG15 was identified to be a lncRNA that could bind to miR-141, and ICAM-1 was a downstream target gene of miR-141. Both the low expression of miR-141 and high expression of ICAM-1 reversed the inhibiting effect of SNHG15 knockdown on inflammatory response, and the promoting effect on cell viability. To conclude, our study revealed that silencing of SNHG15 ameliorated the malignant behaviors of pediatric DN via modulating the miR-141/ICAM-1 axis in vitro.
Collapse
|
15
|
Liao M, Cheng L, Zhou XD, Ren B. [Research progress of Candida albicans on malignant transformation of oral mucosal diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:431-437. [PMID: 32865364 DOI: 10.7518/hxkq.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral cancer is the most common malignant tumor in the head and neck, and is one of the world's top ten malignancies. Microbial infection is an important risk factor of oral cancer. Candida albicans is the most popular opportunistic fungal pathogen. Epidemiological studies have shown that Candida albicans is closely tied to oral malignancy. Animal experimentation have also proven that infection of Candida albicans can promote the development of oral epithelial carcinogenesis. The current studies have revealed several mechanisms involved in this process, including destroying the epithelial barrier, producing carcinogenic substances (nitrosamines, acetaldehyde), inducing chronic inflammation, activating immune response, etc. However, current researches on mechanisms are still inadequate, and some hypotheses remain controversial. Here, we review the findings related to Candida albicans' effect on the malignant transformation of oral mucosa, hoping to provide reference for deep research and controlling oral cancer clinically.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Magrin GL, Di Summa F, Strauss FJ, Panahipour L, Mildner M, Magalhães Benfatti CA, Gruber R. Butyrate Decreases ICAM-1 Expression in Human Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21051679. [PMID: 32121422 PMCID: PMC7084181 DOI: 10.3390/ijms21051679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Short-chain fatty acids (SCFA) are bacterial metabolites that can be found in periodontal pockets. The expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) within the epithelium pocket is considered to be a key event for the selective transmigration of leucocytes towards the gingival sulcus. However, the impact of SCFA on ICAM-1 expression by oral epithelial cells remains unclear. We therefore exposed the oral squamous carcinoma cell line HSC-2, primary oral epithelial cells and human gingival fibroblasts to SCFA, namely acetate, propionate and butyrate, and stimulated with known inducers of ICAM-1 such as interleukin-1-beta (IL1β) and tumor necrosis factor-alfa (TNFα). We report here that butyrate but not acetate or propionate significantly suppressed the cytokine-induced ICAM-1 expression in HSC-2 epithelial cells and primary epithelial cells. The G-protein coupled receptor-43 (GPR43/ FFAR2) agonist but not the histone deacetylase inhibitor, trichostatin A, mimicked the butyrate effects. Butyrate also attenuated the nuclear translocation of p65 into the nucleus on HSC-2 cells. The decrease of ICAM-1 was independent of Nrf2/HO-1 signaling and phosphorylation of JNK and p38. Nevertheless, butyrate could not reverse an ongoing cytokine-induced ICAM-1 expression in HSC-2 cells. Overall, these observations suggest that butyrate can attenuate cytokine-induced ICAM-1 expression in cells with epithelial origin.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Francesca Di Summa
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
- Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Layla Panahipour
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria;
| | - Cesar Augusto Magalhães Benfatti
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Periodontology, University Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
17
|
Su CW, Chang YC, Chien MH, Hsieh YH, Chen MK, Lin CW, Yang SF. Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death Dis 2019; 10:793. [PMID: 31624299 PMCID: PMC6797751 DOI: 10.1038/s41419-019-2016-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022]
Abstract
The tissue inhibitor of metalloproteinase-3 (TIMP3) is the only member of the TIMP family that binds to the extracellular matrix and suppresses cancer cell growth, angiogenesis, migration, and invasion. However, whether the abnormal expression and promoter methylation of TIMP3 facilitates oral cancer metastasis remain unclear. In this study, the DNA methylation levels of TIMP3 CpG islands were assessed through pyrosequencing. Artificial modulation of TIMP3 was performed to explore the role of TIMP3 in tumor metastasis in vitro and in vivo. Our results showed that the suppression of TIMP3 transcription by DNA methylation involves the inhibition of the binding of the transcription factor Sp1 to the TIMP3 promoter as well as the upregulation of DNMT1 and DNMT3B. Functional analyses revealed that TIMP3 overexpression reduced migration and invasion abilities in oral cancer cells and inhibited lymph node metastasis in vivo. Moreover, TIMP3 regulated epithelial-mesenchymal transition by increasing the expression of the epithelial markers and reducing the expression of the mesenchymal markers. In conclusion, our findings suggested that the suppression of TIMP3 by DNA methylation contributes to oral cancer metastasis.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Alhouayek M, Boldrup L, Fowler CJ. Altered mRNA Expression of Genes Involved in Endocannabinoid Signalling in Squamous Cell Carcinoma of the Oral Tongue. Cancer Invest 2019; 37:327-338. [PMID: 31423851 DOI: 10.1080/07357907.2019.1638394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Little is known about the endocannabinoid (eCB) system in squamous cell carcinoma of the oral tongue (SCCOT). Here we have investigated, at the mRNA level, expression of genes coding for the components of the eCB system in tumour and non-malignant samples from SCCOT patients. Expression of NAPEPLD and PLA2G4E, coding for eCB anabolic enzymes, was higher in the tumour tissue than in non-malignant tissue. Among genes coding for eCB catabolic enzymes, expression of MGLL was lower in tumour tissue while PTGS2 was increased. It is concluded that the eCB system may be dysfunctional in SCCOT.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Umeå University , Umeå , Sweden.,Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain , Bruxelles , Belgium
| | - Linda Boldrup
- Department of Medical Biosciences, Umeå University , Umeå , Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University , Umeå , Sweden
| |
Collapse
|
19
|
Wang Y, Liu S, Li B, Jiang Y, Zhou X, Chen J, Li M, Ren B, Peng X, Zhou X, Cheng L. Staphylococcus aureus induces COX-2-dependent proliferation and malignant transformation in oral keratinocytes. J Oral Microbiol 2019; 11:1643205. [PMID: 31448061 PMCID: PMC6691923 DOI: 10.1080/20002297.2019.1643205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
The COX-2/PGE2 axis can play roles in mediating the progression of tumor. COX-2 induction was observed in oral cancer. In our previous study, we found Staphylococcus aureus, a pathogen prevalent in oral cancer, can activate the COX-2/PGE2 pathway in human oral keratinocyte (HOK) cells. Here, we investigated the proliferation of HOK cells affected by COX-2 induction and the role of COX-2 induction in the malignant transformation of HOK cells. We found S. aureus was able to facilitate HOK cell proliferation through upregulating COX-2 expression. With the induction of COX-2, expression of oral cancer-associated genes cyclin D1 was upregulated and p16 was downregulated. Transcriptome analysis showed that the “NF−kappa B signaling pathway” and “TNF signaling pathway” had the highest enrichment of differentially expressed genes (DEGs) with COX-2 over-expression. Seven upregulated genes (jun, tlr4, cxcl1, lif, cxcl3, tnfrsf1β, and il1β) in these two pathways were critical for the increased proliferation of HOK cells and might be associated with COX-2. Malignant transformation of cells was evaluated by soft agar colony formation assay and S. aureus infection promoted HOK cell colony formation. These results suggest the potential of S. aureus to induce the infection-associated malignant transformation of oral epitheliums through COX-2 activation.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
21
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10100348. [PMID: 30248985 PMCID: PMC6211032 DOI: 10.3390/cancers10100348] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
A significant amount of research indicates that the cyclooxygenase/prostaglandin E2 (PGE2) pathway of inflammation contributes to the development and progression of a variety of cancers, including squamous cell carcinoma of the oral cavity and oropharynx (OSCC). Although there have been promising results from studies examining the utility of anti-inflammatory drugs in the treatment of OSCC, this strategy has been met with only variable success and these drugs are also associated with toxicities that make them inappropriate for some OSCC patients. Improved inflammation-targeting therapies require continued study of the mechanisms linking inflammation and progression of OSCC. In this review, a synopsis of OSCC biology will be provided, and recent insights into inflammation related mechanisms of OSCC pathobiology will be discussed. The roles of prostaglandin E2 and cluster of differentiation factor 147 (CD147) will be presented, and evidence for their interactions in OSCC will be explored. Through continued investigation into the protumourigenic pathways of OSCC, more treatment modalities targeting inflammation-related pathways can be designed with the hope of slowing tumour progression and improving patient prognosis in patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
22
|
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 2018; 37:213-225. [DOI: 10.1007/s10555-018-9742-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
ICAM3 mediates tumor metastasis via a LFA-1-ICAM3-ERM dependent manner. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2566-2578. [PMID: 29729315 DOI: 10.1016/j.bbadis.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
Abstract
ICAM3 was reported to promote metastasis in tumors. However, the underlying mechanism remains elusive. Here, we disclosed that the expression of ICAM3 was closely correlated with the TNM stage of human breast and lung cancer, as well as the dominant overexpression in high aggressive tumor cell lines (231 and A549 cells). Moreover, the knockdown of ICAM3 inhibited tumor metastasis whereas the ectopic expression of ICAM3 promoted tumor metastasis both in vitro and in vivo. In addition, exploration of the underlying mechanism demonstrated that ICAM3 not only binds to LFA-1 with its extracellular domain and structure protein ERM but also to lamellipodia with its intracellular domain which causes a tension that pulls cells apart (metastasis). Furthermore, ICAM3 extracellular or intracellular mutants alternatively abolished ICAM3 mediated tumor metastasis in vitro and in vivo. As a therapy strategy, LFA-1 antibody or Lifitegrast restrained tumor metastasis via targeting ICAM3-LFA-1 interaction. In summary, the aforementioned findings suggest a model of ICAM3 in mediating tumor metastasis. This may provide a promising target or strategy for the prevention of tumor metastasis.
Collapse
|
24
|
Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, Tan BCM. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Am J Cancer Res 2018; 8:486-504. [PMID: 29290822 PMCID: PMC5743562 DOI: 10.7150/thno.22059] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
During neoplastic development, a multitude of changes in genome-encoded information are progressively selected to confer growth and survival advantages to tumor cells. microRNAs-mRNAs regulatory networks, given their role as a critical layer of robust gene expression control, are frequently altered in neoplasm. However, whether and how these gene perturbations impact metabolic homeostasis remains largely unresolved. Methods: Through targeted miRNA expression screening, we uncovered an oral squamous cell carcinoma (OSCC)-associated miRNAome, among which miR-31-5p was identified based on extent of up-regulation, functional impact on OSCC cell migration and invasion, and direct regulation of the rate-limiting enzyme in peroxisomal β-oxidation, ACOX1. Results: We further found that both miR-31-5p and ACOX1 underpin, in an antagonistic manner, the overall cellular lipidome profiles as well as the migratory and invasive abilities of OSCC cells. Interestingly, the extracellular levels of prostaglandin E2 (PGE2), a key substrate of ACOX1, were controlled by the miR-31-5p-ACOX1 axis, and were shown to positively influence the extent of cell motility in correlation with metastatic status. The promigratory effect of this metabolite was mediated by an elevation in EP1-ERK-MMP9 signaling. Of note, functional significance of this regulatory pathway was further corroborated by its clinicopathologically-correlated expression in OSCC patient specimens. Conclusions: Collectively, our findings outlined a model whereby misregulated miR-31-5p-ACOX1 axis in tumor alters lipid metabolomes, consequently eliciting an intracellular signaling change to enhance cell motility. Our clinical analysis also unveiled PGE2 as a viable salivary biomarker for prognosticating oral cancer progression, further underscoring the importance of lipid metabolism in tumorigenesis.
Collapse
|
25
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
26
|
Li X, Yang B, Han G, Li W. The EP4 antagonist, L-161,982, induces apoptosis, cell cycle arrest, and inhibits prostaglandin E2-induced proliferation in oral squamous carcinoma Tca8113 cells. J Oral Pathol Med 2017; 46:991-997. [PMID: 28342204 DOI: 10.1111/jop.12572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent studies suggest that cyclooxygenase 2 (COX-2) inhibitors may enhance the toxic effects of anticancer drugs on tumor cells, including oral squamous cell carcinoma (OSCC), but its long-term use can cause side effects such as stomach ulcers and myocardial infarction. Our aim was to investigate proliferative effects of a downstream product of COX-2, prostaglandin E2 (PGE2), in human oral squamous carcinoma cell line Tca8113 and explore the effects of PGE2 receptors, especially EP4 receptor, on the growth of Tca8113 cells. METHODS To evaluate the effects of PGE2 and EP receptors on Tca8113 cells, CCK8 assay, Western blotting, cell cycle analysis, and apoptosis assay were performed. RESULTS We found that the EP4 receptor agonist, PGE1-OH, could mimick PGE2 rescued the inhibitory effect of celecoxib and induced cell growth via ERK phosphorylation, and the EP4 receptor antagonist, L-161,982, completely blocked PGE2-stimulated ERK phosphorylation and proliferation of Tca8113 cells. Furthermore, L-161,982 may induce apoptosis and block cell cycle progression at s phase by upregulating Bax and p21 protein levels and by downregulating Bcl-2, CDK2, and cyclin A2 protein levels. CONCLUSIONS Our results indicate that EP4 receptor mediates PGE2-induced cell proliferation through ERK signaling, and inhibition of EP4 receptor may represent an alternative therapeutic strategy for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxu Han
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Boutaud O, Sosa IR, Amin T, Oram D, Adler D, Hwang HS, Crews BC, Milne G, Harris BK, Hoeksema M, Knollmann BC, Lammers PE, Marnett LJ, Massion PP, Oates JA. Inhibition of the Biosynthesis of Prostaglandin E2 By Low-Dose Aspirin: Implications for Adenocarcinoma Metastasis. Cancer Prev Res (Phila) 2016; 9:855-865. [PMID: 27554763 PMCID: PMC5093073 DOI: 10.1158/1940-6207.capr-16-0094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Meta-analyses have demonstrated that low-dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the antiplatelet action of low-dose aspirin likely contributes to its antimetastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) also contributes to metastasis, and we addressed the hypothesis that low-dose aspirin also inhibits PGE2 biosynthesis. We show that low-dose aspirin inhibits systemic PGE2 biosynthesis by 45% in healthy volunteers (P < 0.0001). Aspirin is found to be more potent in colon adenocarcinoma cells than in the platelet, and in lung adenocarcinoma cells, its inhibition is equivalent to that in the platelet. Inhibition of COX by aspirin in colon cancer cells is in the context of the metastasis of colon cancer primarily to the liver, the organ exposed to the same high concentrations of aspirin as the platelet. We find that the interaction of activated platelets with lung adenocarcinoma cells upregulates COX-2 expression and PGE2 biosynthesis, and inhibition of platelet COX-1 by aspirin inhibits PGE2 production by the platelet-tumor cell aggregates. In conclusion, low-dose aspirin has a significant effect on extraplatelet cyclooxygenase and potently inhibits COX-2 in lung and colon adenocarcinoma cells. This supports a hypothesis that the remarkable prevention of metastasis from adenocarcinomas, and particularly from colon adenocarcinomas, by low-dose aspirin results from its effect on platelet COX-1 combined with inhibition of PGE2 biosynthesis in metastasizing tumor cells. Cancer Prev Res; 9(11); 855-65. ©2016 AACR.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee.
| | - I. Romina Sosa
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602,Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Taneem Amin
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Denise Oram
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - David Adler
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Hyun S. Hwang
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Brenda C. Crews
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Ginger Milne
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Bradford K. Harris
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Megan Hoeksema
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Bjorn C. Knollmann
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Philip E. Lammers
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602,Department of Medicine, Meharry Medical College, Nashville, TN 37208
| | - Lawrence J. Marnett
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Pierre P. Massion
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - John A. Oates
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602,Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| |
Collapse
|
28
|
Yang HJ, Jiang JH, Yang YT, Yang XD, Guo Z, Qi YP, Zeng FH, Zhang KL, Chen NZ, Xiang BD, Li LQ. Cyclooxygenase-2 expression is associated with initiation of hepatocellular carcinoma, while prostaglandin receptor-1 expression predicts survival. World J Gastroenterol 2016; 22:8798-8805. [PMID: 27818595 PMCID: PMC5075554 DOI: 10.3748/wjg.v22.i39.8798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether cyclooxygenase-2 (COX-2) and prostaglandin E1 receptor (EP1) contribute to disease and whether they help predict prognosis.
METHODS We retrospectively reviewed the records of 116 patients with hepatocellular carcinoma (HCC) who underwent surgery between 2008 and 2011 at our hospital. Expression of COX-2 and EP1 receptor was examined by immunohistochemistry of formalin-fixed, paraffin-embedded tissues using polyclonal antibodies. Possible associations between immunohistochemical scores and survival were determined.
RESULTS Factors associated with poor overall survival (OS) were alpha-fetoprotein > 400 ng/mL, tumor size ≥ 5 cm, and high EP1 receptor expression, but not high COX-2 expression. Disease-free survival was not significantly different between patients with low or high levels of COX-2 or EP1. COX-2 immunoreactivity was significantly higher in well-differentiated HCC tissues (Edmondson grade I-II) than in poorly differentiated tissues (Edmondson grade III-IV) (P = 0.003). EP1 receptor immunoreactivity was significantly higher in poorly differentiated tissue than in well-differentiated tissue (P = 0.001).
CONCLUSION COX-2 expression appears to be linked to early HCC events (initiation), while EP1 receptor expression may participate in tumor progression and predict survival.
Collapse
|
29
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
30
|
Amphiregulin enhances intercellular adhesion molecule-1 expression and promotes tumor metastasis in human osteosarcoma. Oncotarget 2016; 6:40880-95. [PMID: 26503469 PMCID: PMC4747375 DOI: 10.18632/oncotarget.5679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a common, high malignant, and metastatic bone cancer. Amphiregulin (AREG) has been associated with cancer cellular activities. However, the effect of AREG on metastasis activity in human osteosarcoma cells has yet to be determined. We determined that AREG increases the expression of intercellular adhesion molecule-1 (ICAM-1) through PI3K/Akt signaling pathway via its interaction with the epidermal growth factor receptor, thus resulting in the enhanced cell migration of osteosarcoma. Furthermore, AREG stimulation increased the association of NF-κB to ICAM-1 promoter which then up-regulated ICAM-1 expression. Finally, we observed that shRNA silencing of AREG decreased osteosarcoma metastasis in vivo. Our findings revealed a relationship between osteosarcoma metastatic potential and AREG expression and the modulating effect of AREG on ICAM-1 expression.
Collapse
|
31
|
Liu JF, Tsao YT, Hou CH. Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma. Oncotarget 2016; 8:54136-54148. [PMID: 28903329 PMCID: PMC5589568 DOI: 10.18632/oncotarget.11250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and teens. The exact molecular mechanism underlying osteosarcoma progression still remains unclear. The CX3CL1/fractalkine has been implicated in various tumors but not in osteosarcoma. This study is the first to show that fractalkine promotes osteosarcoma metastasis by promoting cell migration. Fractalkine expression was higher in osteosarcoma cell lines than in normal osteoblasts. Fractalkine induced cell migration by upregulating intercellular adhesion molecule-1 (ICAM-1) expression via CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma cells. Knockdown of fractalkine expression markedly inhibited cell migration and lung metastasis in osteosarcoma. Finally, we showed a clinical correlation between CX3CL1 expression and ICAM-1 expression as well as tumor stage in human osteosarcoma tissues. In conclusion, our results indicate that fractalkine promotes cell migration and metastasis of osteosarcoma by upregulating ICAM-1 expression. Thus, fractalkine could serve a novel therapeutic target for preventing osteosarcoma metastasis.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Lin CC, Yang CC, Cho RL, Wang CY, Hsiao LD, Yang CM. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells. Front Pharmacol 2016; 7:80. [PMID: 27065868 PMCID: PMC4815023 DOI: 10.3389/fphar.2016.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with leukocyte recruitment.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Chen-Yu Wang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at LinkouTaoyuan, Taiwan; College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
33
|
Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases. Exp Biol Med (Maywood) 2016; 241:783-99. [PMID: 27013544 DOI: 10.1177/1535370216638770] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
34
|
Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep 2015; 5:17956. [PMID: 26648273 PMCID: PMC4673693 DOI: 10.1038/srep17956] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/09/2015] [Indexed: 01/21/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is activated in response to ischemia and significantly contributes to the neuroinflammatory process. Accumulation of COX-2-derived prostaglandin E2 (PGE2) parallels the substantial increase in stroke-mediated blood-brain barrier (BBB) breakdown. Disruption of the BBB is a serious consequence of ischemic stroke, and is mainly mediated by matrix metalloproteinases (MMPs). This study aimed to investigate the role of PGE2 EP1 receptor in neurovascular injury in stroke. We hypothesized that pharmacological blockade or genetic deletion of EP1 protects against BBB damage and hemorrhagic transformation by decreasing the levels and activity of MMP-3 and MMP-9. We found that post-ischemic treatment with the EP1 antagonist, SC-51089, or EP1 genetic deletion results in a significant reduction in BBB disruption and reduced hemorrhagic transformation in an experimental model of transient focal cerebral ischemia. These neurovascular protective effects of EP1 inactivation are associated with a significant reduction in MMP-9/-3, less peripheral neutrophil infiltration, and a preservation of tight junction proteins (ZO-1 and occludin) composing the BBB. Our study identifies the EP1 signaling pathway as an important link between neuroinflammation and MMP-mediated BBB breakdown in ischemic stroke. Targeting the EP1 receptor could represent a novel approach to diminish the devastating consequences of stroke-induced neurovascular damage.
Collapse
|
35
|
O'Callaghan G, Houston A. Prostaglandin E2 and the EP receptors in malignancy: possible therapeutic targets? Br J Pharmacol 2015; 172:5239-50. [PMID: 26377664 DOI: 10.1111/bph.13331] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
Elevated expression of COX-2 and increased levels of PGE2 are found in numerous cancers and are associated with tumour development and progression. Although epidemiological, clinical and preclinical studies have shown that the inhibition of PGE2 synthesis through the use of either non-steroidal anti-inflammatory drugs (NSAIDs) or specific COX-2 inhibitors (COXibs) has the potential to prevent and treat malignant disease, toxicities due to inhibition of COX-2 have limited their use. Thus, there is an urgent need for the development of strategies whereby COX-2 activity may be reduced without inducing any side effects. The biological effects of PGE2 are mediated by signalling through four distinct E-type prostanoid (EP) receptors - EP1 , EP2 , EP3 and EP4 . In recent years, extensive effort has gone into elucidating the function of PGE2 and the EP receptors in health and disease, with the goal of creating selective inhibitors as a means of therapy. In this review, we focus on PGE2 , and in particular on the role of the individual EP receptors and their signalling pathways in neoplastic disease. As knowledge concerning the role of the EP receptors in cancer grows, so does the potential for exploiting the EP receptors as therapeutic targets for the treatment of cancer and metastatic disease.
Collapse
Affiliation(s)
- G O'Callaghan
- Department of Medicine, University College Cork, Cork, Ireland.,HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - A Houston
- Department of Medicine, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Inada M, Takita M, Yokoyama S, Watanabe K, Tominari T, Matsumoto C, Hirata M, Maru Y, Maruyama T, Sugimoto Y, Narumiya S, Uematsu S, Akira S, Murphy G, Nagase H, Miyaura C. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis. J Biol Chem 2015; 290:29781-93. [PMID: 26475855 DOI: 10.1074/jbc.m115.669481] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Indexed: 01/11/2023] Open
Abstract
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors.
Collapse
Affiliation(s)
- Masaki Inada
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan, the Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Morichika Takita
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan, the Department of Pharmacology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Satoshi Yokoyama
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Kenta Watanabe
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Tsukasa Tominari
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan, the Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Chiho Matsumoto
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Michiko Hirata
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Yoshiro Maru
- the Department of Pharmacology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Takayuki Maruyama
- the Minase Research Institutes, Ono Pharmaceutical Co. Ltd, Osaka 618-8585, Japan
| | - Yukihiko Sugimoto
- the Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Science, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shuh Narumiya
- the Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Uematsu
- the Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan, the Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba 260-8670, Japan, the Division of Innate Immune, Regulation, International Research, and Development, Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shizuo Akira
- the Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Gillian Murphy
- the Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan, the Department of Oncology, University of Cambridge, Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom, and
| | - Hideaki Nagase
- the Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan, the Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Chisato Miyaura
- From the Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan, the Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan,
| |
Collapse
|
37
|
Lee IT, Liu SW, Chi PL, Lin CC, Hsiao LD, Yang CM. TNF-α mediates PKCδ/JNK1/2/c-Jun-dependent monocyte adhesion via ICAM-1 induction in human retinal pigment epithelial cells. PLoS One 2015; 10:e0117911. [PMID: 25675437 PMCID: PMC4326428 DOI: 10.1371/journal.pone.0117911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 12/24/2014] [Indexed: 11/27/2022] Open
Abstract
Retinal inflammatory diseases induced by cytokines, such as tumor necrosis factor-α (TNF-α) are associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the retinal pigment epithelial cells (RPECs). Retinal pigment epithelium (RPE) is a monolayer of epithelial cells that forms the outer blood-retinal barrier in the posterior segment of the eye, and is also implicated in the pathology of, such as neovascularization in age-related macular degeneration (AMD). However, the detailed mechanisms of TNF-α-induced ICAM-1 expression are largely unclear in human RPECs. We demonstrated that in RPECs, TNF-α could induce ICAM-1 protein and mRNA expression and promoter activity, and monocyte adhesion. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of PKCs (Ro318220), PKCδ (Rottlerin), MEK1/2 (U0126), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, TRAF2, JNK2, p42, or c-Jun. We showed that TNF-α could stimulate the TNFR1 and TRAF2 complex formation. TNF-α-stimulated JNK1/2 was also reduced by Rottlerin or SP600125. However, Rottlerin had no effect on TNF-α-induced p42/p44 MAPK phosphorylation. We observed that TNF-α induced c-Jun phosphorylation which was inhibited by Rottlerin or SP600125. On the other hand, TNF-α-stimulated ICAM-1 promoter activity was prominently lost in RPECs transfected with the point-mutated AP-1 ICAM-1 promoter plasmid. These results suggest that TNF-α-induced ICAM-1 expression and monocyte adhesion is mediated through a TNFR1/TRAF2/PKCδ/JNK1/2/c-Jun pathway in RPECs. These findings concerning TNF-α-induced ICAM-1 expression in RPECs imply that TNF-α might play an important role in ocular inflammation and diseases.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Shiau-Wen Liu
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Liu S, Han L, Wang X, Liu Z, Ding S, Lu J, Bi D, Mei Y, Niu Z. Nephroblastoma overexpressed gene (NOV) enhances RCC cell motility through upregulation of ICAM-1 and COX-2 expression via Akt pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1302-1311. [PMID: 25973014 PMCID: PMC4396272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
Renal cell carcinoma (RCC) carries a high risk of malignancy and metastasis. The inducible isoform of prostaglandin synthase, cyclooxygenase (COX)-2, and ICAM-1 may be involved in tumor metastasis. CCN3, also called nephroblastoma overexpressed gene (NOV), has been found to regulate the proliferation and differentiation of cancer cells. The effects of NOV on RCC cell migration and expression of COX-2 and ICAM-1 have not described yet in detail. But here, NOV was found to promote the migration and expression of COX-2 and ICAM-1 in human RCC cells. Akt inhibitor was found to interfere with this NOV-induced migration and up-regulation of COX-2 and ICAM-1 in RCC cells. NOV stimulation was here found to promote the phosphorylation of Akt. RCC tissue chips were subjected to IHC staining, which showed COX-2 expression in RCC tissues to be a significantly closely correlated with NOV expression, with significance determined using Pearson correlation testing (P < 0.05). The results of the current work indicate that NOV activates COX-2 and ICAM-1 through Akt, promoting the migration of RCC cells.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, P. R. China
| | - Liping Han
- Department of neurology, Qianfoshan Hospital Affiliated to Shandong UniversityJinan, People’s Republic of China
| | | | - Zheng Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, P. R. China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, P. R. China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, P. R. China
| | - Dongbin Bi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, P. R. China
| | - Yikun Mei
- West China School of Public Health, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, P. R. China
| |
Collapse
|
39
|
Rajendiran S, Kpetemey M, Maji S, Gibbs LD, Dasgupta S, Mantsch R, Hare RJ, Vishwanatha JK. MIEN1 promotes oral cancer progression and implicates poor overall survival. Cancer Biol Ther 2015; 16:876-85. [PMID: 25996585 PMCID: PMC4622880 DOI: 10.1080/15384047.2015.1040962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022] Open
Abstract
Oral squamous cell carcinoma is a highly malignant tumor with the potential to invade local and distant sites and promote lymph node metastasis. Major players underlying the molecular mechanisms behind tumor progression are yet to be fully explored. Migration and invasion enhancer 1 (MIEN1), a novel protein overexpressed in various cancers, facilitates cell migration and invasion. In the present study we investigated the expression and role of MIEN1 in oral cancer progression using an in vitro model, patient derived oral tissues and existing TCGA data. Expression analysis using immortalized normal and cancer cells demonstrated increased expression of MIEN1 in cancer. Assays performed after MIEN1 knockdown in OSC-2 cells showed decreased migration, invasion and filopodia formation; while MIEN1 overexpression in DOK cells increased these characteristics and also up-regulated some Akt/NF-κB effectors, thereby suggesting an important role for MIEN1 in oral cancer progression. Immunohistochemical staining and analyses of oral tissue specimens, collected from patients over multiple visits, revealed significantly more staining in severe dysplasia and squamous cell carcinoma compared to mildly dysplastic or hyperplastic tissues. Finally, this was corroborated with the TCGA dataset, where MIEN1 expression was not only higher in intermediate and high grade cancer with significantly lower survival but also correlated with smoking. In summary, we demonstrate that MIEN1 expression not only positively correlates with oral cancer progression but also seems to be a critical molecular determinant in migration and invasion of oral cancer cells, thereby, playing a possible role in their metastatic dissemination.
Collapse
Key Words
- CRS, current reformed smoker
- CS, current smoker
- GFP, green fluorescent protein
- HNSCC, head and neck squamous cell carcinoma
- MIEN1
- MIEN1, migration and invasion enhancer 1
- MMP-9, matrix metallopeptidase 9
- NF-κB
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OSCC, oral squamous cell carcinoma
- TCGA HNSCC database
- TCGA, the cancer genome atlas
- VEGF, vascular endothelial growth factor
- filopodia
- invasion
- longitudinal study
- migration
- oral cancer
- siRNA, small interfering RNA
- survival
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Smrithi Rajendiran
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- These authors contributed equally to this work.
| | - Marilyne Kpetemey
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- These authors contributed equally to this work.
| | - Sayantan Maji
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- These authors contributed equally to this work.
| | - Lee D Gibbs
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
| | - Subhamoy Dasgupta
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA
| | - Rebecca Mantsch
- Department of Pathology; Plaza Medical Center; Fort Worth, TX USA
| | - Richard J Hare
- Department of Pathology; Plaza Medical Center; Fort Worth, TX USA
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
| |
Collapse
|
40
|
Randhawa V, Kumar Singh A, Acharya V. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer. MOLECULAR BIOSYSTEMS 2015; 11:3362-77. [DOI: 10.1039/c5mb00468c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Network-based and cheminformatics approaches identify novel lead molecules forCXCR4, a key gene prioritized in oral cancer.
Collapse
Affiliation(s)
- Vinay Randhawa
- Functional Genomics and Complex Systems Laboratory
- Biotechnology Division
- CSIR-Institute of Himalayan Bioresource Technology
- Council of Scientific and Industrial Research
- Palampur
| | - Anil Kumar Singh
- Biotechnology Division
- CSIR-Institute of Himalayan Bioresource Technology
- Council of Scientific and Industrial Research
- Palampur
- India
| | - Vishal Acharya
- Functional Genomics and Complex Systems Laboratory
- Biotechnology Division
- CSIR-Institute of Himalayan Bioresource Technology
- Council of Scientific and Industrial Research
- Palampur
| |
Collapse
|
41
|
Wang SW, Liu SC, Sun HL, Huang TY, Chan CH, Yang CY, Yeh HI, Huang YL, Chou WY, Lin YM, Tang CH. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 2014; 36:104-14. [PMID: 25330803 DOI: 10.1093/carcin/bgu218] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma.
Collapse
Affiliation(s)
- Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hui-Lung Sun
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio state University, Columbus, OH 43210, USA
| | - Te-Yang Huang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chia-Han Chan
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chen-Yu Yang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
| | - Wen-Yi Chou
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital Medical Center, Kaohsiung 833, Taiwan
| | - Yu-Min Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan,
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan, Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan and Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
42
|
Park TY, Baik EJ, Lee SH. Prostaglandin E₂-induced intercellular adhesion molecule-1 expression is mediated by cAMP/Epac signalling modules in bEnd.3 brain endothelial cells. Br J Pharmacol 2014; 169:604-18. [PMID: 23317035 DOI: 10.1111/bph.12103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostaglandin E₂ (PGE₂) has been implicated in the regulation of adhesion molecules, leukocyte adhesion and infiltration into inflamed site. However, the underlying mechanism therein involved remains ill-defined. In this study, we explored its cellular mechanism of action in the regulation of the intercellular adhesion molecule-1 (ICAM-1) expression in the brain endothelial cells. EXPERIMENTAL APPROACH bEnd.3 cells, the murine cerebrovascular endothelial cell line and primary mouse brain endothelial cells were treated with PGE₂ with or without agonists/antagonists of PGE₂ receptors and associated signalling molecules. ICAM-1 expression, Akt phosphorylation and activity of NF-κB were determined by reverse transcription polymerase chain reaction (RT-PCR), immunoblot analysis, luciferase assay and immunocytochemistry. KEY RESULTS PGE₂ significantly up-regulated the expression of ICAM-1, which was blocked by EP4 antagonist (ONO-AE2-227) and knock-down of EP4. PGE₂ effects were mimicked by forskolin, dibutyryl cAMP (dbcAMP) and an exchange protein directly activated by cAMP (Epac) activator (8-Cpt-cAMP) but not a protein kinase A activator (N⁶-Bnz-cAMP). PGE₂-induced ICAM-1 expression was reduced by knock-down of Epac1. A PI3K specific inhibitor (LY294002), Akt inhibitor VIII (Akti) and NF-κB inhibitors (Bay-11-7082 and MG-132) attenuated the induction of ICAM-1 by PGE₂. PGE₂, dbcAMP and 8-Cpt-cAMP induced the phosphorylation of Akt, IκB kinase and IκBα and the translocation of p65 to the nucleus and increased NF-κB dependent reporter gene activity, which was diminished by Akti. CONCLUSION AND IMPLICATIONS Our findings suggest that PGE₂ induces ICAM-1 expression via EP4 receptor and Epac/Akt/NF-κB signalling pathway in bEnd.3 brain endothelial cells, supporting its pathophysiological role in brain inflammation.
Collapse
Affiliation(s)
- Tae Yeop Park
- Department of Physiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | | | | |
Collapse
|
43
|
Bhat FA, Sharmila G, Balakrishnan S, Arunkumar R, Elumalai P, Suganya S, Raja Singh P, Srinivasan N, Arunakaran J. Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. J Nutr Biochem 2014; 25:1132-1139. [PMID: 25150162 DOI: 10.1016/j.jnutbio.2014.06.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/05/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor (EGF) plays an important role in metastasis and tumorigenesis of prostate cancer. Epithelial-mesenchymal transition (EMT) is a process in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. The purpose of this study was to determine the effect of quercetin on EGF-induced EMT in prostate cancer (PC-3) cell line. Quercetin, a plant flavonoid, prevented EGF-induced invasion and migration of PC-3 cells. The protein and mRNA expressions of E-cadherin and N-cadherin were studied by immunocytochemistry, Western blotting and real-time polymerase chain reaction. Quercetin prevented EGF-induced expression of N-cadherin and vimentin and increased the expression of E-cadherin in PC-3 cells, therefore preventing EGF-induced EMT. EGF-induced cell adhesion proteins, intercellular adhesion molecule and vascular cell adhesion molecule were significantly decreased by quercetin treatment. Furthermore, mRNA and protein expressions of Snail, Slug and Twist showed that quercetin significantly decreased EGF-induced expressions of Snail, Slug and Twist. The protein expressions of epidermal growth factor receptor (EGFR)/phosphatidylinositide 3-kinases (PI3K)/Akt/extracellular signal-regulated kinase (ERK)1/2 pathway showed that quercetin prevents EGF-induced EMT via EGFR/PI3k/Akt/ERK1/2 pathway and by suppressing transcriptional repressors Snail, Slug and Twist in PC-3 cells. Thus, it is concluded from the present study that quercetin may prevent cancer metastasis by targeting EMT.
Collapse
Affiliation(s)
- Firdous Ahmad Bhat
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - G Sharmila
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - S Balakrishnan
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - R Arunkumar
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - P Elumalai
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - S Suganya
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - P Raja Singh
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - N Srinivasan
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - J Arunakaran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India.
| |
Collapse
|
44
|
Horng CT, Shieh PC, Tan TW, Yang WH, Tang CH. Paeonol suppresses chondrosarcoma metastasis through up-regulation of miR-141 by modulating PKCδ and c-Src signaling pathway. Int J Mol Sci 2014; 15:11760-72. [PMID: 24992595 PMCID: PMC4139812 DOI: 10.3390/ijms150711760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 01/05/2023] Open
Abstract
Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)d and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCd and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Medical Education Center, Kaohsiung Armed Force General Hospital, Kaohsiung 802, Taiwan.
| | - Po-Chuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| | - Tzu-Wei Tan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Wei-Hung Yang
- Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
45
|
Thrombin induces ICAM-1 expression in human lung epithelial cells via c-Src/PDGFR/PI3K/Akt-dependent NF-κB/p300 activation. Clin Sci (Lond) 2014; 127:171-83. [PMID: 24506791 DOI: 10.1042/cs20130676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Up-regulation of ICAM-1 (intercellular adhesion molecule-1) is frequently implicated in lung inflammation and lung diseases, such as IPF (idiopathic pulmonary fibrosis). Thrombin has been shown to play a key role in inflammation via the induction of adhesion molecules, which then causes lung injury. However, the mechanisms underlying thrombin-induced ICAM-1 expression in HPAEpiCs (human pulmonary alveolar epithelial cells) remain unclear. In the present study, we have shown that thrombin induced ICAM-1 expression in HPAEpiCs. Pre-treatment with the inhibitor of thrombin [PPACK (D-Phe-Pro-Arg-chloromethyl ketone)], c-Src (PP1), PDGFR (platelet-derived growth factor receptor) (AG1296), PI3K (phosohinositide 3-kinase) (LY294002), NF-κB (nuclear factor κB) (Bay11-7082) or p300 (GR343) and transfection with siRNAs of c-Src, PDGFR, Akt, p65 and p300 markedly reduced thrombin-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with thrombin. In addition, we established that thrombin stimulated the phosphorylation of c-Src, PDGFR, Akt and p65, which were inhibited by pre-treatment with their respective inhibitors PP1, AG1296, LY294002 or Bay11-7082. In addition, thrombin also enhanced Akt and NF-κB translocation from the cytosol to the nucleus, which was reduced by PP1, AG1296 or LY294002. Thrombin induced NF-κB promoter activity and the formation of the p65-Akt-p300 complex, which were inhibited by AG1296, LY294002 or PP1. Finally, we have shown that thrombin stimulated in vivo binding of p300, Akt and p65 to the ICAM-1 promoter, which was reduced by AG1296, LY294002, SH-5 or PP1. These results show that thrombin induced ICAM-1 expression and monocyte adherence via a c-Src/PDGFR/PI3K/Akt/NF-κB-dependent pathway in HPAEpiCs. Increased understanding of the signalling mechanisms underlying ICAM-1 gene regulation will create opportunities for the development of anti-inflammatory therapeutic strategies.
Collapse
|
46
|
Hung TH, Chen CM, Tseng CP, Shen CJ, Wang HL, Choo KB, Chong KY. FZD1 activates protein kinase C delta-mediated drug-resistance in multidrug-resistant MES-SA/Dx5 cancer cells. Int J Biochem Cell Biol 2014; 53:55-65. [PMID: 24814288 DOI: 10.1016/j.biocel.2014.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/16/2014] [Accepted: 04/10/2014] [Indexed: 12/13/2022]
Abstract
Multidrug-resistant (MDR) cancer is a major clinical problem in chemotherapy of cancer patients. We have noted inappropriate PKCδ hypomethylation and overexpression of genes in the PKCδ/AP-1 pathway in the human uterus sarcoma drug-resistant cell line, MES-SA/Dx5 cells, which also overexpress p-glycoprotein (ABCB1). Recent studies have indicated that FZD1 is overexpressed in both multidrug-resistant cancer cell lines and in clinical tumor samples. These data have led us to hypothesize that the FZD1-mediated PKCδ signal-transduction pathway may play an important role in drug resistance in MES-SA/Dx5 cells. In this work, the PKCδ inhibitor Rottlerin was found to reduce ABCB1 expression and to inhibit the MDR drug pumping ability in the MES-SA/Dx5 cells when compared with the doxorubicin-sensitive parental cell line, MES-SA. PKCδ was up-regulated with concurrent up-regulation of the mRNA levels of the AP-1-related factors, c-JUN and c-FOS. Activation of AP-1 also correlated with up-regulation of the AP-1 downstream genes HGF and EGR1. Furthermore, AP-1 activities were reduced and the AP-1 downstream genes were down-regulated in Rottlerin-treated or PKCδ shRNA-transfected cells. MES-SA/Dx5 cells were resensitized to doxorubicin-induced toxicity by co-treatment with doxorubicin and Rottlerin or PKCδ shRNA. In addition, cell viability and drug pump-out ability were significantly reduced in the FZD1 inhibitor curcumin-treated and FZD1 shRNA-knockdown MES-SA/Dx5 cells, indicating involvement of PKCδ in FZD1-modulated ABCB1 expression pathway. Taken together, our data demonstrate that FZD1 regulates PKCδ, and the PKCδ/AP-1 signalling transduction pathway plays an important role in drug resistance in MES-SA/Dx5 cells.
Collapse
Affiliation(s)
- Tsai-Hsien Hung
- Graduate Institute of Biomedical Sciences, Division of Biotechnology College of medicine, Chang Gung University,Tao-Yuan, Taiwan, Republic of China
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, Division of Biotechnology College of medicine, Chang Gung University,Tao-Yuan, Taiwan, Republic of China; Department of Medical Biotechnology and Laboratory Science, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China; Molecular Medicine Research Center, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Chih-Jie Shen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Hui-Ling Wang
- Department of Medical Biotechnology and Laboratory Science, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Kowit Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology College of medicine, Chang Gung University,Tao-Yuan, Taiwan, Republic of China; Department of Medical Biotechnology and Laboratory Science, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China; Molecular Medicine Research Center, College of medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| |
Collapse
|
47
|
Yeh CB, Yu YL, Lin CW, Chiou HL, Hsieh MJ, Yang SF. Terminalia catappa attenuates urokinase-type plasminogen activator expression through Erk pathways in Hepatocellular carcinoma. Altern Ther Health Med 2014; 14:141. [PMID: 24886639 PMCID: PMC4012530 DOI: 10.1186/1472-6882-14-141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/25/2014] [Indexed: 01/31/2023]
Abstract
Background The survival rate of malignant tumors, and especially hepatocellular carcinoma (HCC), has not improved primarily because of uncontrolled metastasis. In our previous studies, we have reported that Terminalia catappa leaf extract (TCE) exerts antimetastasis effects on HCC cells. However, the molecular mechanisms of urokinase-type plasminogen activator (u-PA) in HCC metastasis have not been thoroughly investigated, and remain poorly understood. Methods The activities and protein levels of u-PA were determined by casein zymography and western blotting. Transcriptional levels of u-PA were detected by real-time PCR and promoter assays. Results We found that treatment of Huh7 cells with TCE significantly reduced the activities, protein levels and mRNA levels of u-PA. A chromatin immunoprecipitation (ChIP) assay showed that TCE inhibited the transcription protein of nuclear factors SP-1 and NF-κB. TCE also did inhibit the effects of u-PA by reducing the phosphorylation of ERK1/2 pathway. Conclusions These results show that u-PA expression may be a potent therapeutic target in the TCE-mediated suppression of HCC metastasis.
Collapse
|
48
|
Syk/JNK/AP-1 signaling pathway mediates interleukin-6-promoted cell migration in oral squamous cell carcinoma. Int J Mol Sci 2014; 15:545-59. [PMID: 24398980 PMCID: PMC3907824 DOI: 10.3390/ijms15010545] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) typically migrates and metastasizes. Interleukin-6 (IL-6) is a multifunctional cytokine associated with disease status and cancer outcomes. The effect of IL-6 on human OSCC cells, however, is unknown. Here, we showed that IL-6 increased cell migration and Intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. Pretreatment of OSCC cells with IL-6R monoclonal antibody (mAb) significantly abolished IL-6-induced cell migration and ICAM-1 expression. By contrast, IL-6-mediated cell motility and ICAM-1 upregulation were attenuated by the Syk and c-Jun N-terminal kinase (JNK) inhibitors. Stimulation of OSCC cells with IL-6 promoted Syk and JNK phosphorylation. Furthermore, IL-6 enhanced AP-1 activity, and the IL-6R mAb, Syk inhibitor, or JNK inhibitor all reduced IL-6-mediated c-Jun phosphorylation, c-Jun binding to the ICAM-1 promoter, and c-Jun translocation into the nucleus. Our results indicate that IL-6 enhances the migration of OSCC cells by increasing ICAM-1 expression through the IL-6R receptor and the Syk, JNK, and AP-1 signal transduction pathways.
Collapse
|
49
|
Apoptosis signal-regulating kinase 1 is involved in WISP-1-promoted cell motility in human oral squamous cell carcinoma cells. PLoS One 2013; 8:e78022. [PMID: 24205072 PMCID: PMC3804520 DOI: 10.1371/journal.pone.0078022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 11/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a tendency to migrate and metastasize. WNT1-inducible signaling pathway protein 1 (WISP-1) is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov (CCN) family of matrix cellular proteins. The effect of WISP-1 on human OSCC cells, however, is unknown. Here, we showed that WISP-1 increased cell migration and intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. Pretreatment of cells with integrin αvβ3 monoclonal antibody (mAb) significantly abolished WISP-1–induced cell migration and ICAM-1 expression. On the other hand, WISP-1–mediated cell motility and ICAM-1 upregulation were attenuated by ASK1, JNK, and p38 inhibitor. Furthermore, WISP-1 also enhanced activator protein 1 (AP-1) activation, and the integrin αvβ3 mAb, and ASK1, JNK, and p38 inhibitors reduced WISP-1–mediated AP-1 activation. Moreover, WISP-1 and ICAM-1 expression correlated with the tumor stage of patients with OSCC. Our results indicate that WISP-1 enhances the migration of OSCC cells by increasing ICAM-1 expression through the αvβ3 integrin receptor and the ASK1, JNK/p38, and AP-1 signal transduction pathways.
Collapse
|
50
|
Berberine Reduces the Metastasis of Chondrosarcoma by Modulating the α v β 3 Integrin and the PKC δ , c-Src, and AP-1 Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:423164. [PMID: 24027594 PMCID: PMC3763569 DOI: 10.1155/2013/423164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023]
Abstract
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with chondrosarcoma have poor prognosis. Berberine, an active component of the Ranunculaceae and Papaveraceae families of plant, has been proven to induce tumor apoptosis and to prevent the metastasis of cancer cells. However, the effects of berberine in human chondrosarcoma are largely unknown. In this study, we found that berberine did not induce cell apoptosis in human primary chondrocytes and chondrosarcoma cells. However, at noncytotoxic concentrations, berberine reduced the migration and invasion of chondrosarcoma cancer cells. Integrins are the major adhesive molecules in mammalian cells and have been associated with the metastasis of cancer cells. We also found that incubation of chondrosarcoma cells with berberine reduced mRNA transcription for, and cell surface expression of, the αvβ3 integrin, with additional inhibitory effects on PKCδ, c-Src, and NF-κB activation. Thus, berberine may be a novel antimetastasis agent for the treatment of metastatic chondrosarcoma.
Collapse
|