1
|
Firoozi Z, Shahi A, Mohammadisoleimani E, Afzali S, Mansoori B, Bahmanyar M, Mohaghegh P, Dastsooz H, Pezeshki B, Nikfar G, Kouhpayeh SA, Mansoori Y. CircRNA-associated ceRNA networks (circCeNETs) in chronic obstructive pulmonary disease (COPD). Life Sci 2024; 349:122715. [PMID: 38740326 DOI: 10.1016/j.lfs.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a chronic airway disorder, which is mostly brought on by cigarette smoke extract (CSE), is a leading cause of death which has a high frequency. In COPD patients, smoking cigarette could also trigger the epithelial-mesenchymal transition (EMT) of airway remodeling. One of the most significant elements of environmental contaminants that is linked to pulmonary damage is fine particulate matter (PM2.5). However, the basic processes of lung injury brought on by environmental contaminants and cigarette smoke are poorly understood, particularly the molecular pathways involved in inflammation. For the clinical management of COPD, investigating the molecular process and identifying workable biomarkers will be important. According to newly available research, circular RNAs (circRNAs) are aberrantly produced and serve as important regulators in the pathological processes of COPD. This class of non-coding RNAs (ncRNAs) functions as microRNA (miRNA) sponges to control the levels of gene expression, changing cellular phenotypes and advancing disease. These findings led us to concentrate our attention in this review on new studies about the regulatory mechanism and potential roles of circRNA-associated ceRNA networks (circCeNETs) in COPD.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Mohammadisoleimani
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hassan Dastsooz
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Candiolo, C/o IRCCS, IIGM-Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer (IT), FPO-IRCCS, Candiolo Cancer Institute, Turin, Italy
| | - Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghasem Nikfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
3
|
Wang Y, Zhang H, Zhang X, Mu P, Zhao L, Qi R, Zhang Y, Zhu X, Dong Y. The role of IGFBP-3 in tumor development and progression: enlightenment for diagnosis and treatment. Med Oncol 2024; 41:141. [PMID: 38714554 DOI: 10.1007/s12032-024-02373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 05/10/2024]
Abstract
IGFBP-3 is aberrantly expressed in many tumor types, and its serum and tumor tissue levels provide auxiliary information for assessing the degree of tumor malignancy and patient prognosis, making it a potential therapeutic target for human malignancies and conferring it remarkable clinical value for determining patient prognosis. In this review, we provide a comprehensive overview of the aberrant expression, diverse biological effects, and clinical implications of IGFBP-3 in tumors and its role as a potential prognostic marker and therapeutic target for tumors. In addition, we summarize the signaling pathways through which IGFBP-3 exerts its effects. IGFBP-3 comprises an N-terminal, an intermediate region, and a C-terminal structural domain, each exerting different biological effects in several tumor cell types in an IGF-dependent/non-independent manner. IGFBP-3 shares an intricate relationship with the tumor microenvironment, thereby affecting tumor growth. Overall, IGFBP-3 is an essential regulatory factor that mediates tumor occurrence and progression. Gaining deeper insights into the fundamental characteristics of IGFBP-3 and its role in various tumor types will provide new perspectives and allow for the development of novel strategies for cancer diagnosis, treatment, and prognostic evaluation.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Ruomei Qi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China.
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
White JA, Kaninjing ET, Adeniji KA, Jibrin P, Obafunwa JO, Ogo CN, Mohammed F, Popoola A, Fatiregun OA, Oluwole OP, Thorpe RJ, Karanam B, Elhussin I, Ambs S, Tang W, Davis M, Polak P, Campbell MJ, Brignole KR, Rotimi SO, Dean-Colomb W, Odedina FT, Yates C. Whole-exome sequencing of Nigerian benign prostatic hyperplasia reveals increased alterations in apoptotic pathways. Prostate 2024; 84:460-472. [PMID: 38192023 PMCID: PMC10922327 DOI: 10.1002/pros.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Through whole-exome sequencing of 60 formalin-fixed paraffin-embedded Nigerian (NGRn) benign prostatic hyperplasia (BPH) samples, we identified germline and somatic alterations in apoptotic pathways impacting BPH development and progression. Prostate enlargement is a common occurrence in male aging; however, this enlargement can lead to lower urinary tract symptoms that negatively impact quality of life. This impact is disproportionately present in men of African ancestry. BPH pathophysiology is poorly understood and studies examining non-European populations are lacking. METHODS In this study, NGRn BPH, normal prostate, and prostate cancer (PCa) tumor samples were sequenced and compared to characterize genetic alterations in NGRn BPH. RESULTS Two hundred and two nonbenign, ClinVar-annotated germline variants were present in NGRn BPH samples. Six genes [BRCA1 (92%), HSD3B1 (85%), TP53 (37%), PMS2 (23%), BARD1 (20%), and BRCA2 (17%)] were altered in at least 10% of samples; however, compared to NGRn normal and tumor, the frequency of alterations in BPH samples showed no significant differences at the gene or variant level. BRCA2_rs11571831 and TP53_rs1042522 germline alterations had a statistically significant co-occurrence interaction in BPH samples. In at least two BPH samples, 173 genes harbored somatic variants known to be clinically actionable. Three genes (COL18A1, KIF16B, and LRP1) showed a statistically significant (p < 0.05) higher frequency in BPH. NGRn BPH also had five gene pairs (PKD1/KIAA0100, PKHD1/PKD1, DNAH9/LRP1B, NWD1/DCHS2, and TCERG1/LMTK2) with statistically significant co-occurring interactions. Two hundred and seventy-nine genes contained novel somatic variants in NGRn BPH. Three genes (CABP1, FKBP1C, and RP11-595B24.2) had a statistically significant (p < 0.05) higher alteration frequency in NGRn BPH and three were significantly higher in NGRn tumor (CACNA1A, DMKN, and CACNA2D2). Pairwise Fisher's exact tests showed 14 gene pairs with statistically significant (p < 0.05) interactions and four interactions approaching significance (p < 0.10). Mutational patterns in NGRn BPH were similar to COSMIC (Catalog of Somatic Mutations in Cancer) signatures associated with aging and dysfunctional DNA damage repair. CONCLUSIONS NGRn BPH contained significant germline alteration interactions (BRCA2_rs11571831 and TP53_rs1042522) and increased somatic alteration frequencies (LMTK2, LRP1, COL18A1, CABP1, and FKBP1C) that impact apoptosis. Normal prostate development is maintained by balancing apoptotic and proliferative activity. Dysfunction in either mechanism can lead to abnormal prostate growth. This work is the first to examine genomic sequencing in NGRn BPH and provides data that fill known gaps in the understanding BPH and how it impacts men of African ancestry.
Collapse
Affiliation(s)
- Jason A White
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Genetics, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ernest T Kaninjing
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- School of Health and Human Performance, Georgia College & State University, Milledgeville, Georgia, USA
| | - Kayode A Adeniji
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- College of Health Sciences, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Paul Jibrin
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- College of Health Sciences, National Hospital Abuja, Abuja, Federal Capital Territory, Nigeria
| | - John O Obafunwa
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Chidiebere N Ogo
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Surgery, Federal Medical Centre, Abeokuta, Ogun State, Nigeria
| | - Faruk Mohammed
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ademola Popoola
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- College of Health Sciences, University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Omolara A Fatiregun
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Clinical Oncology, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja, Abuja, Federal Capital Territory, Nigeria
| | - Roland J Thorpe
- Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Balasubramanyam Karanam
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Brady Urological Institute, Baltimore, Maryland, USA
| | - Stefan Ambs
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Melissa Davis
- Department of Genetics, Morehouse School of Medicine, Atlanta, Georgia, USA
- Department of Surgery, New York Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Paz Polak
- Quest Diagnostics, Secaucus, New Jersey, USA
| | - Moray J Campbell
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathryn R Brignole
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Solomon O Rotimi
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Biochemistry and Covenant Applied Informatics and Communication Africa Centre of Excellence, Covenant University, Ota, Nigeria
| | - Windy Dean-Colomb
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Piedmont Medical Oncology-Newnan, Newnan, Georgia, USA
| | - Folake T Odedina
- Center for Health Equity and Community Engagement Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Clayton Yates
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
- Prostate Cancer Transatlantic Consortium (CaPTC), Abuja, Wuse Zone 1, Nigeria
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, Johns Hopkins University School of Medicine, Brady Urological Institute, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
6
|
Tang C, Yang C, Wang P, Li L, Lin Y, Yi Q, Tang F, Liu L, Zhou W, Liu D, Zhang L, Yuan X. Identification and Validation of Glomeruli Cellular Senescence-Related Genes in Diabetic Nephropathy by Multiomics. Adv Biol (Weinh) 2024; 8:e2300453. [PMID: 37957539 DOI: 10.1002/adbi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Indexed: 11/15/2023]
Abstract
Accumulating evidence indicates that cellular premature senescence of the glomerulus, including endothelial cells, mesangial cells, and podocytes leads to diabetic nephropathy (DN), and DN is regarded as a clinical model of premature senescence. However, the role of cellular senescence-associated genes in the glomerulus in DN progression remains unclear. Therefore, this work aims to identify and validate potential cellular aging-related genes in the glomerulus in DN to provide novel clues for DN treatment based on anti-aging. The microarray GSE96804 dataset, including 41 diabetic glomeruli and 20 control glomeruli, is retrieved from the Gene Expression Omnibus (GEO) database and cellular senescence-related genes (CSRGs) are obtained from the GeneCards database and literature reports. Subsequently, PPI, GO, and KEGG enrichment are analyzed by screening the intersection between differentially expressed genes (DEGs) and CSRGs. scRNA-seq dataset GSE127235 is used to verify core genes expression in glomerulocytes of mice. Finally, db/db mice are utilized to validate the hub gene expression in the glomeruli, and high glucose-induced mesangial cells are used to confirm key gene expression. This study reveals that FOS and ZFP36 may play an anti-aging role in DN to ameliorate cell intracellular premature aging in mesangial cells of glomeruli.
Collapse
Affiliation(s)
- Chunyin Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Chunsong Yang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yunzhu Lin
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Qiusha Yi
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Fengru Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Lantao Liu
- Postgraduate Department, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Wei Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Dongwen Liu
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Lingli Zhang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| |
Collapse
|
7
|
Ansari A, Gheysarzadeh A, Sharifi A, Mofid MR. Clinicopathological correlation of insulin-like growth factor binding protein 3 and their death receptor in patients with gastric cancer. Res Pharm Sci 2024; 19:42-52. [PMID: 39006978 PMCID: PMC11244704 DOI: 10.4103/1735-5362.394819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/29/2023] [Accepted: 01/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The insulin-like growth factor binding protein 3 (IGFBP-3) and its novel death receptor (IGFBP-3R) have been exhibited to have tumor suppressor effects. Despite their prognostic value in some cancers, they have not been elucidated in gastric cancer. Experimental approach We collected 68 samples from patients with gastric cancer. IGFBP-3 and IGFBP-3R expression levels were evaluated with quantitative real-time polymerase chain reaction (RT-PCR) and western blotting in patients. The relationship between prognostic factors and IGFBP-3/IGFBP-3R expression was also evaluated. Findings/Results Our results showed that IGFBP-3 and IGFBP-3R expression was reduced significantly in tumor tissues. We found that there was an association between the reduction of IGFBP-3 with lymph node metastasis and tumor-node-metastasis (TNM) staging. Besides, IGFBP-3R expression was associated with tumor size, lymph node metastasis, differentiation, and TNM classification. Interestingly, we presented that the downregulation of IGFBP-3R was stage-dependent. In survival analysis, our findings showed that low levels of IGFBP-3R mRNA expression exhibited a close correlation with survival rate. Conclusion and implications The findings of this study showed that the expression levels of IGFBP-3 and IGFBP-3R are valuable prognostic factors. Despite the potential of IGFBP-3, IGFBP-3R plays a significant role as a prognostic factor in gastric cancer. However, these findings need to be developed and confirmed by further studies.
Collapse
Affiliation(s)
- Amir Ansari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Gheysarzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Sharifi
- Department of Internal Medicine, School of Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
8
|
Liu X, Yi J, Li T, Wen J, Huang K, Liu J, Wang G, Kim P, Song Q, Zhou X. DRMref: comprehensive reference map of drug resistance mechanisms in human cancer. Nucleic Acids Res 2024; 52:D1253-D1264. [PMID: 37986230 PMCID: PMC10767840 DOI: 10.1093/nar/gkad1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial-mesenchymal transition, cell-cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug's Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user's exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiahao Yi
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang 550025, China
| | - Tina Li
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kexin Huang
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Grant Wang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Pora Kim
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Wei L, Liping Z, Suya K. Expression of insulin-like growth factor binding protein-3 in HELLP syndrome. BMC Pregnancy Childbirth 2023; 23:778. [PMID: 37950229 PMCID: PMC10637003 DOI: 10.1186/s12884-023-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE To investigate the expression of insulin-like growth factor binding protein-3(IGFBP-3) in HELLP syndrome and its possible role in the pathogenesis of this disease. METHODS 1) 87 subjects were enrolled, including 29 patients with HELLP syndrome, 29 patients with pre-eclampsia (PE), and 29 healthy gravidae as control. The levels of IGFBP-3, IGF-1, TGF-β1, and VEGF in maternal and umbilical blood of them were detected using ELISA. Correlation analysis was used to observe the correlation between IGFBP-3 and IGF-1/TGF-β1/VEGF in maternal and umbilical blood, as well as that between maternal serum IGFBP-3 and clinical diagnostic indicators of HELLP syndrome. 2) Human hepatic sinusoid endothelial cells (HLSEC) and human umbilical vein endothelial cells (HUVEC) were cultured with different concentrations of IGFBP-3. After 72 h of culture, cell apoptosis and the normal living cells rate were detected and compared. RESULTS 1) In both maternal and umbilical blood of HELLP group, levels of IGFBP-3 and TGF-β1 were higher than control and PE group, IGF-1was lower than control group, VEGF was lower than control and PE group. IGFBP-3 in maternal blood was correlated with IGF-1/TGF-β1/ VEGF, while IGFBP-3 in umbilical blood was linked to IGF-1/TGF-β1. In maternal blood, there was a negative correlation between PLT and IGFBP-3, and a positive correlation between ALT/AST/LDH and IGFBP-3. 2) After cultured with IGFBP-3, the total apoptosis rate of either HLSEC or HUVEC was considerably elevated, while the normal living rate was decreased. CONCLUSION The expression of IGFBP-3 is elevated in HELLP syndrome, which may subsequently promote cell apoptosis by affecting the expression and function of IGF-1, VEGF, and TGFβ1 in the IGF/PI3K/Akt, TGF-β1/Smad3, and VEGF/eNOS/NO pathways. IGFBP-3 aggravates inflammatory reactions of the vascular endothelium and liver under hypoxia, affects the normal function of cells, and plays a role in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Li Wei
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, Jiangsu, China
| | - Zhou Liping
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, Jiangsu, China
| | - Kang Suya
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Xiao Y, Jiang C, Li H, Xu D, Liu J, Huili Y, Nie S, Guan X, Cao F. Genes associated with inflammation for prognosis prediction for clear cell renal cell carcinoma: a multi-database analysis. Transl Cancer Res 2023; 12:2629-2645. [PMID: 37969384 PMCID: PMC10643973 DOI: 10.21037/tcr-23-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the largest subtype of kidney tumour, with inflammatory responses characterising all stages of the tumour. Establishing the relationship between the genes related to inflammatory responses and ccRCC may help the diagnosis and treatment of patients with ccRCC. Methods First, we obtained the data for this study from a public database. After differential analysis and Cox regression analysis, we obtained the genes for the establishment of a prognostic model for ccRCC. As we used data from multiple databases, we standardized all the data using the surrogate variable analysis (SVA) package to make the data from different sources comparable. Next, we used a least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model of genes related to inflammation. The data used for modelling and internal validation came from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) series (GSE29609) databases. ccRCC data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Tumour data from the E-MTAB-1980 cohort were used for external validation. The GSE40453 and GSE53757 datasets were used to verify the differential expression of inflammation-related gene model signatures (IRGMS). The immunohistochemistry of IRGMS was queried through the Human Protein Atlas (HPA) database. After the adequate validation of the IRGM, we further explored its application by constructing nomograms, pathway enrichment analysis, immunocorrelation analysis, drug susceptibility analysis, and subtype identification. Results The IRGM can robustly predict the prognosis of samples from patients with ccRCC from different databases. The verification results show that nomogram can accurately predict the survival rate of patients. Pathway enrichment analysis showed that patients in the high-risk (HR) group were associated with a variety of tumorigenesis biological processes. Immune-related analysis and drug susceptibility analysis suggested that patients with higher IRGM scores had more treatment options. Conclusions The IRGMS can effectively predict the prognosis of ccRCC. Patients with higher IRGM scores may be better candidates for treatment with immune checkpoint inhibitors and have more chemotherapy options.
Collapse
Affiliation(s)
- Yonggui Xiao
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Chonghao Jiang
- Department of Urology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Hubo Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Danping Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinzheng Liu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Youlong Huili
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Shiwen Nie
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Xiaohai Guan
- Department of Urology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Fenghong Cao
- Department of Urology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
12
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
13
|
Chen J, Zhuang W, Xia Y, Yin X, Tu M, Zhang Y, Zhang L, Huang H, Zhang S, You L, Huang Y. Construction and validation of a novel IGFBP3-related signature to predict prognosis and therapeutic decision making for Hepatocellular Carcinoma. PeerJ 2023; 11:e15554. [PMID: 37397026 PMCID: PMC10312159 DOI: 10.7717/peerj.15554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Background IGFBP3 plays a pivotal role in carcinogenesis by being anomalously expressed in some malignancies. However, the clinical value of IGFBP3 and the role of IGFBP3-related signature in HCC remain unclear. Methods Multiple bioinformatics methods were used to determine the expression and diagnostic values of IGFBP3. The expression level of IGFBP3 was validated by RT-qPCR and IHC. A IGFBP3-related risk score (IGRS) was built via correlation analysis and LASSO Cox regression analysis. Further analyses, including functional enrichment, immune status of risk groups were analyzed, and the role of IGRS in guiding clinical treatment was also evaluated. Results IGFBP3 expression was significantly downregulated in HCC. IGFBP3 expression correlated with multiple clinicopathological characteristics and demonstrated a powerful diagnostic capability for HCC. In addition, a novel IGRS signature was developed in TCGA, which exhibited good performance for prognosis prediction and its role was further validated in GSE14520. In TCGA and GSE14520, Cox analysis also confirmed that the IGRS could serve as an independent prognostic factor for HCC. Moreover, a nomogram with good accuracy for predicting the survival of HCC was further formulated. Additionally, enrichment analysis showed that the high-IGRS group was enriched in cancer-related pathways and immune-related pathways. Additionally, patients with high IGRS exhibited an immunosuppressive phenotype. Therefore, patients with low IGRS scores may benefit from immunotherapy. Conclusions IGFBP3 can act as a new diagnostic factor for HCC. IGRS signature represents a valuable predictive tool in the prognosis prediction and therapeutic decision making for Hepatocellular Carcinoma.
Collapse
Affiliation(s)
- Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Wanzhen Zhuang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
| | - Yu Xia
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoqing Yin
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingshu Tu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
| | - Yi Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
| | - Liangming Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
| | - Hengbin Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
| | - Songgao Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
| | - Lisheng You
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, china
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
14
|
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal 2023:10.1007/s12079-023-00768-5. [PMID: 37245184 DOI: 10.1007/s12079-023-00768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023] Open
Abstract
CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).
Collapse
Affiliation(s)
- Vivi Talstad Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
Green CJ, Span M, Rayhanna MH, Perera M, Day ML. Insulin-like Growth Factor Binding Protein 3 Increases Mouse Preimplantation Embryo Cleavage Rate by Activation of IGF1R and EGFR Independent of IGF1 Signalling. Cells 2022; 11:cells11233762. [PMID: 36497022 PMCID: PMC9736160 DOI: 10.3390/cells11233762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The viability of embryos cultured in vitro is poor compared to those that develop in vivo. The lack of maternally derived growth factors in vitro may contribute to this problem. Insulin-like growth factor binding protein 3 (IGFBP3) is one such growth factor that has been identified in the maternal reproductive system. This study examined the role of autocrine and exogenous IGFBP3 in mouse preimplantation embryos. Embryos expressed IGFBP3 across all stages of preimplantation development, and addition of exogenous IGFBP3 to embryo culture media increased the rate of development to the 2-, 4-, 5-, and 8-cell stages. Addition of inhibitors of the IGF1 and EGF receptors prevented this IGFBP3-mediated improvement in developmental rate, but the effect was not cumulative, indicating that both receptors are transactivated downstream of IGFBP3 as part of the same signalling pathway. Acute exposure to IGFBP3 increased phosphorylation of Akt and rps6 in 4-8 cell embryos, suggesting activation of the PI3-kinase/Akt pathway downstream of the IGF1 and EGFR receptors to promote cell proliferation and survival. In conclusion, addition of IGFBP3 to embryo culture media increases early cleavage rates independent of IGF1 signalling and therefore, IGFBP3 addition to IVF culture media should be considered.
Collapse
|
16
|
Alpha-1 Antitrypsin Inhibits Tumorigenesis and Progression of Colitis-Associated Colon Cancer through Suppression of Inflammatory Neutrophil-Activated Serine Proteases and IGFBP-3 Proteolysis. Int J Mol Sci 2022; 23:ijms232213737. [PMID: 36430216 PMCID: PMC9698049 DOI: 10.3390/ijms232213737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Colitis-associated colon cancer (CAC) accompanies the massive infiltration of neutrophils during tumorigenesis and progression of CAC. Depletion of neutrophils in circulation results in significant inhibition of tumor incidence in CAC. However, the underlying mechanisms are largely unclear. In this study, we provide evidence for the crucial involvement of inflammatory neutrophil-activated serine proteases (NSPs) on the dysregulation of the anti-inflammatory and antitumor IGFBP-3/IGFBP-3R signaling axis in CAC using a chronic AOM/DSS mouse model. We also provide preclinical evidence for α1-antitrypsin (AAT) as a preventive and as a therapeutic for CAC. AAT administration not only prevented colitis-associated tumorigenesis but also inhibited established CAC. AOM/DSS treatment results in the significant activation of NSPs, leading to CAC through increased pro-inflammatory cytokines and decreased anti-inflammatory and antitumor IGFBP-3. Collectively, these data suggest that the NSPs proteolyze IGFBP-3, whereas AAT inhibits chronic colonic inflammation-induced NSP activity and subsequently suppresses IGFBP-3 proteolysis. Therefore, the anti-inflammatory and antitumor functions of the IGFBP-3/IGFBP-3R axis are restored. AAT mimicking small peptides also showed their inhibitory effects on NSP-induced IGFBP-3 proteolysis. These results suggest that targeting the NSP-IGFBP-3/IGFBP-3R axis using NSP inhibitors such as AAT and the AAT mimics and IGFBP-3R agonists could lead to novel approaches for the prevention and treatment of CAC.
Collapse
|
17
|
Barisano G, Kisler K, Wilkinson B, Nikolakopoulou AM, Sagare AP, Wang Y, Gilliam W, Huuskonen MT, Hung ST, Ichida JK, Gao F, Coba MP, Zlokovic BV. A "multi-omics" analysis of blood-brain barrier and synaptic dysfunction in APOE4 mice. J Exp Med 2022; 219:e20221137. [PMID: 36040482 PMCID: PMC9435921 DOI: 10.1084/jem.20221137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023] Open
Abstract
Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer's disease, leads to blood-brain barrier (BBB) breakdown in humans and mice. Remarkably, BBB dysfunction predicts cognitive decline and precedes synaptic deficits in APOE4 human carriers. How APOE4 affects BBB and synaptic function at a molecular level, however, remains elusive. Using single-nucleus RNA-sequencing and phosphoproteome and proteome analysis, we show that APOE4 compared with APOE3 leads to an early disruption of the BBB transcriptome in 2-3-mo-old APOE4 knock-in mice, followed by dysregulation in protein signaling networks controlling cell junctions, cytoskeleton, clathrin-mediated transport, and translation in brain endothelium, as well as transcription and RNA splicing suggestive of DNA damage in pericytes. Changes in BBB signaling mechanisms paralleled an early, progressive BBB breakdown and loss of pericytes, which preceded postsynaptic interactome disruption and behavioral deficits that developed 2-5 mo later. Thus, dysregulated signaling mechanisms in endothelium and pericytes in APOE4 mice reflect a molecular signature of a progressive BBB failure preceding changes in synaptic function and behavior.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brent Wilkinson
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - William Gilliam
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mikko T. Huuskonen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shu-Ting Hung
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA
| | - Justin K. Ichida
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA
| | - Fan Gao
- Caltech Bioinformatics Resource Center, Caltech, Pasadena, CA
| | - Marcelo P. Coba
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
18
|
Miao Y, Wu J, Wu R, Wang E, Wang J. Circ_0040929 Serves as Promising Biomarker and Potential Target for Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:2079-2092. [PMID: 36101791 PMCID: PMC9464637 DOI: 10.2147/copd.s364553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Circular RNAs (circRNAs) can act as essential regulators in many diseases, including chronic obstructive pulmonary disease (COPD). We aimed to explore the role and underlying mechanism of circ_0040929 in COPD. Methods A cellular model of COPD was constructed by treating human bronchial epithelial cells (16HBE) with cigarette smoke extract (CSE). The levels of circ_0040929, microRNA-515-5p (miR-515-5p) and insulin-like growth factor-binding protein 3 (IGFBP3) were measured by quantitative real-time PCR. Cell proliferation was assessed by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell apoptosis was evaluated by flow cytometry. Protein expression was measured using Western blot assay. The levels of inflammatory factors and airway remodeling were assayed via enzyme-linked immunosorbent assay. The interaction between miR-515-5p and circ_0040929/IGFBP3 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. Exosomes were detected using transmission electron microscopy. Results Circ_0040929 expression and IGFBP3 expression were upregulated in the serum of smokers (n = 22) compared to non-smokers (n = 22) and more significantly upregulated in the serum of COPD patients (n = 22). However, miR-515-5p expression was decreased in the serum of smokers compared to non-smokers and further reduced in the serum of COPD. Circ_0040929 knockdown attenuated CSE-induced cell injury by increasing proliferation and reducing apoptosis, inflammation, and airway remodeling in 16HBE cells. MiR-515-5p was a direct target of circ_0040929, and miR-515-5p inhibition reversed the effect of circ_0040929 knockdown in CSE-treated 16HBE cells. IGFBP3 was a direct target of miR-515-5p, and miR-515-5p overexpression alleviated CSE-induced cell injury via targeting IGFBP3. Moreover, circ_0040929 regulated IGFBP3 expression by targeting miR-515-5p. Importantly, circ_0040929 was upregulated in serum exosomes from COPD patients. Conclusion Circ_0040929 played a promoting role in CSE-induced COPD by regulating miR-515-5p/IGFBP3 axis, suggesting that it might be a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Junfang Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Runmiao Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Enguang Wang
- Department of Respiratory and Critical Care, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi City, 830000, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| |
Collapse
|
19
|
Unveiling the m6A Methylation Regulator Links between Prostate Cancer and Periodontitis by Transcriptomic Analysis. DISEASE MARKERS 2022; 2022:4030046. [PMID: 36133437 PMCID: PMC9484949 DOI: 10.1155/2022/4030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Objective To identify the N6-methyladenosine (m6A) methylation regulator genes linking prostate adenocarcinoma (PRAD) and periodontitis (PD). Materials and Methods PD and TCGA-PRAD GEO datasets were downloaded and analyzed through differential expression analysis to determine the differentially expressed genes (DEGs) deregulated in both conditions. Twenty-three m6A RNA methylation-related genes were downloaded in total. The m6A-related genes that overlapped between PRAD and PD were identified as crosstalk genes. Survival analysis was performed on these genes to determine their prognostic values in the overall survival outcomes of prostate cancer. The KEGG pathways were the most significantly enriched by m6A-related crosstalk genes. We also performed lasso regression analysis and univariate survival analysis to identify the most important m6A-related crosstalk genes, and a protein-protein interaction (PPI) network was built from these genes. Results Twenty-three m6A methylation-related regulator genes were differentially expressed and deregulated in PRAD and PD. Among these, seven (i.e., ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as m6A-related cross-talk genes. Survival analysis showed that only the FMR1 gene was a prognostic indicator for PRAD. All other genes had no significant influence on the overall survival of patients with PRAD. Lasso regression analysis and univariate survival analysis identified four m6A-related cross-talk genes (i.e., ALKBH5, IGFBP3, RBM15B, and FMR1) that influenced risk levels. A PPI network was constructed from these genes, and 183 genes from this network were significantly enriched in pathogenic Escherichia coli infection, p53 signaling pathway, nucleocytoplasmic transport, and ubiquitin-mediated proteolysis. Conclusion Seven m6A methylation-related genes (ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as cross-talk genes between prostate cancer and PD.
Collapse
|
20
|
Birzniece V, Lam T, McLean M, Reddy N, Shahidipour H, Hayden A, Gurney H, Stone G, Hjortebjerg R, Frystyk J. Insulin-like growth factor role in determining the anti-cancer effect of metformin: RCT in prostate cancer patients. Endocr Connect 2022; 11:EC-21-0375. [PMID: 35324467 PMCID: PMC9066575 DOI: 10.1530/ec-21-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Androgen deprivation therapy (ADT), a principal therapy in patients with prostate cancer, is associated with the development of obesity, insulin resistance, and hyperinsulinemia. Recent evidence indicates that metformin may slow cancer progression and improves survival in prostate cancer patients, but the mechanism is not well understood. Circulating insulin-like growth factors (IGFs) are bound to high-affinity binding proteins, which not only modulate the bioavailability and signalling of IGFs but also have independent actions on cell growth and survival. The aim of this study was to investigate whether metformin modulates IGFs, IGF-binding proteins (IGFBPs), and the pregnancy-associated plasma protein A (PAPP-A) - stanniocalcin 2 (STC2) axis. DESIGN AND METHODS In a blinded, randomised, cross-over design, 15 patients with prostate cancer on stable ADT received metformin and placebo treatment for 6 weeks each. Glucose metabolism along with circulating IGFs and IGFBPs was assessed. RESULTS Metformin significantly reduced the homeostasis model assessment as an index of insulin resistance (HOMA IR) and hepatic insulin resistance. Metformin also reduced circulating IGF-2 (P < 0.05) and IGFBP-3 (P < 0.01) but increased IGF bioactivity (P < 0.05). At baseline, IGF-2 correlated significantly with the hepatic insulin resistance (r2= 0.28, P < 0.05). PAPP-A remained unchanged but STC2 declined significantly (P < 0.05) following metformin administration. During metformin treatment, change in HOMA IR correlated with the change in STC2 (r2= 0.35, P < 0.05). CONCLUSION Metformin administration alters many components of the circulating IGF system, either directly or indirectly via improved insulin sensitivity. Reduction in IGF-2 and STC2 may provide a novel mechanism for a potential metformin-induced antineoplastic effect.
Collapse
Affiliation(s)
- Vita Birzniece
- School of Medicine, Western Sydney University, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
- Correspondence should be addressed to V Birzniece:
| | - Teresa Lam
- School of Medicine, Western Sydney University, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, New South Wales, Australia
| | - Mark McLean
- School of Medicine, Western Sydney University, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
| | - Navneeta Reddy
- Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
| | - Haleh Shahidipour
- School of Medicine, Western Sydney University, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
| | - Amy Hayden
- School of Medicine, Western Sydney University, New South Wales, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, New South Wales, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, New South Wales, Australia
| | - Glenn Stone
- School of Computing, Engineering and Mathematics, Western Sydney University, New South Wales, Australia
| | - Rikke Hjortebjerg
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Cohick WS. The role of the IGF system in mammary physiology of ruminants. Domest Anim Endocrinol 2022; 79:106709. [PMID: 35078102 DOI: 10.1016/j.domaniend.2021.106709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IGF system plays a central role in all stages of mammary development, lactation and involution. IGFs exert their effects on the mammary gland through both endocrine and paracrine/autocrine mechanisms and the importance of circulating versus local IGF action remains an open question, especially in ruminants. At the whole organ level, a critical role for IGFs in ductal morphogenesis and lobuloalveolar development has been established, while at the cellular level the ability of IGFs to stimulate cell proliferation and control cell survival contributes to the number of milk-secreting cells in the gland. Much of this work has been conducted in rodents which provide an affordable research model and allow for genetic manipulation of specific components of the IGF system. Research into the role of the IGF system in dairy cows has generally supported information obtained with rodents though large gaps in our knowledge remain and species differences are not well defined. Examples include whether exogenous somatotropin exerts its effects on the mammary gland through local IGF-1 synthesis which is accepted dogma in rodents, what the role of IGF-1 versus IGF-2 is in the mammary gland, and how the IGFBPs regulate IGF bioactivity. This last area is particularly under-investigated in ruminants both at the whole animal and the cellular and molecular levels. Given that the IGF system may underlie many management practices that could contribute to enhancing productive efficiency of lactation, more research into the basic biology of this important system is warranted.
Collapse
Affiliation(s)
- Wendie S Cohick
- Rutgers, The State University of New Jersey, Department of Animal Science, New Brunswick, NJ 08901, USA.
| |
Collapse
|
22
|
Naseri N, Mirian M, Mofid MR. Expression of Recombinant Insulin-Like Growth Factor-Binding Protein-3 Receptor in Mammalian Cell Line and Prokaryotic ( Escherichia coli) Expression Systems. Adv Biomed Res 2022; 11:19. [PMID: 35386539 PMCID: PMC8977618 DOI: 10.4103/abr.abr_197_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Insulin-like growth factor binding protein-3 receptor (IGFBP-3R) (Transmembrane protein 219 [TMEM219]) binds explicitly to IGFBP-3 and exerts its apoptotic and autophagy signalling pathway. Constructing a Henrietta Lacks (HeLa) h6-TMEM219 cell characterize the therapeutic potent of TMEM219 that could interrupt the IGFBP-3/TMEM219 pathway, in cancer treatment and destructive cell illnesses such as diabetes and Alzheimer's. Materials and Methods First, to develop stable overexpressed HeLa h6-TMEM219 cells, and Escherichia coli BL21 (DE3) with high IGFBP-3R expression, the purchased pcDNA3.1-h6-TMEM219 plasmid was transformed and integrated using CaCl2 and chemical transfection reagents, respectively. The pcDNA3.1-h6-TMEM219 transfection and protein expression was evaluated by the polymerase chain reaction (PCR), western blotting, and flow cytometry. Following the induction of h6-TMEM219 expression, a protein was purified using Ni-NTA chromatography and evaluated by the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Results The 606 base pairs sequence in PCR outcomes confirmed successful pcDNA3.1-h6-TMEM219 transformation in E. Coli BL21 and integration into the HeLa genome. The analysis of protein samples from induced E. Coli BL21 and purified protein demonstrate a band of approximately 22 kDa on SDS-PAGE. Moreover, besides western blot analysis, flow cytometry findings illustrate approximately 84% of transfected HeLa cells (HeLa h6-TMEM219) overexpressed h6-TMEM219 on their surface. Conclusion We designed a new experiment in the h6-TMEM219 expression procedure in both eukaryotic and prokaryotic hosts. All of our results confirm appropriate transformation and transfection and importantly, approve h6-TMEM 219 membrane expression. Finally, the HeLa h6-TMEM219 cells and the newly purified h6-TMEM219 leverage new studies for molecular diagnostic studies and characterize the therapeutic agents against IGFBP-3/TMEM219 signalling pathway in devastating illnesses in vitro and in vivo.
Collapse
Affiliation(s)
- Nima Naseri
- Department of of Clinical Biochemistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of of Clinical Biochemistry, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Mohammad Reza Mofid, Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
23
|
Zhao X, Ge L, Wang J, Song Z, Ni B, He X, Ruan Z, You Y. Exploration of Potential Integrated Models of N6-Methyladenosine Immunity in Systemic Lupus Erythematosus by Bioinformatic Analyses. Front Immunol 2022; 12:752736. [PMID: 35197962 PMCID: PMC8859446 DOI: 10.3389/fimmu.2021.752736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in immunity is emerging. However, few studies have focused on SLE and m6A immune regulation. In this study, we aimed to explore a potential integrated model of m6A immunity in SLE. The models were constructed based on RNA-seq data of SLE. A consensus clustering algorithm was applied to reveal the m6A-immune signature using principal component analysis (PCA). Univariate and multivariate Cox regression analyses and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups. The effects of m6A immune-related characteristics were investigated, including risk evaluation of m6A immune phenotype-related characteristics, immune cell infiltration profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were used to identify key m6A regulators, pathways, gene modules, and the coexpression network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of SLE. The potential integrated models of m6A immunity that we developed could guide clinical management and may contribute to the development of personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaochong He
- Department of Nursing Administration, Faculty of Nursing, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yi You, ; Xiaochong He, ; Zhihua Ruan,
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yi You, ; Xiaochong He, ; Zhihua Ruan,
| | - Yi You
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yi You, ; Xiaochong He, ; Zhihua Ruan,
| |
Collapse
|
24
|
D'Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, Loretelli C, Bertuzzi F, Antonioli B, Cardarelli F, El Essawy B, Solini A, Gerling IC, Bianchi C, Becchi G, Mazzucchelli S, Corradi D, Fadini GP, Foschi D, Markmann JF, Orsi E, Škrha J, Camboni MG, Abdi R, James Shapiro AM, Folli F, Ludvigsson J, Del Prato S, Zuccotti G, Fiorina P. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun 2022; 13:684. [PMID: 35115561 PMCID: PMC8813914 DOI: 10.1038/s41467-022-28360-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Loss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis. In vitro and in vivo short-term IGFBP3/TMEM219 inhibition and TMEM219 genetic ablation preserved beta cells and prevented/delayed diabetes onset, while long-term IGFBP3/TMEM219 blockade allowed for beta cell expansion. Interestingly, in several patients' cohorts restoration of appropriate IGFBP3 levels was associated with improved beta cell function. The IGFBP3/TMEM219 pathway is thus shown to be a physiological regulator of beta cell homeostasis and is also demonstrated to be disrupted in T1D/T2D. IGFBP3/TMEM219 targeting may therefore serve as a therapeutic option in diabetes.
Collapse
MESH Headings
- Adult
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Gene Expression Regulation
- Homeostasis/genetics
- Humans
- Immunoblotting
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Secreting Cells/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Mice
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Federico Bertuzzi
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Barbara Antonioli
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Basset El Essawy
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
- Medicine, Al-Azhar University, Cairo, Egypt
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriella Becchi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Serena Mazzucchelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | | | - Diego Foschi
- General Surgery, DIBIC, L. Sacco Hospital, Università di Milano, Milan, Italy
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS Cà Granda - Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Jan Škrha
- 3rd Department of Internal Medicine, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | | | - Reza Abdi
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università di Milano, ASST Santi Paolo e Carlo, Milan, Italy
| | - Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano and Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
| |
Collapse
|
25
|
Chen C, Huang FW, Huang SS, Huang JS. IGFBP-3 and TGF-β inhibit growth in epithelial cells by stimulating type V TGF-β receptor (TβR-V)-mediated tumor suppressor signaling. FASEB Bioadv 2021; 3:709-729. [PMID: 34485840 PMCID: PMC8409558 DOI: 10.1096/fba.2021-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The TGF-β type V receptor (TβR-V) mediates growth inhibition by IGFBP-3 and TGF-β in epithelial cells and loss of TβR-V expression in these cells leads to development of carcinoma. The mechanisms by which TβR-V mediates growth inhibition (tumor suppressor) signaling remain elusive. Previous studies revealed that IGFBP-3 and TGF-β inhibit growth in epithelial cells by stimulating TβR-V-mediated IRS-1/2-dependent activation and cytoplasm-to-nucleus translocation of IGFBP-3- or TGF-β-stimulated protein phosphatase (PPase), resulting in dephosphorylation of pRb-related proteins (p107, p130) or pRb, and growth arrest. To define the signaling, we characterized/identified the IGFBP-3- and TGF-β-stimulated PPases in cell lysates and nucleus fractions in Mv1Lu cells treated with IGFBP-3 and TGF-β, using a cell-free assay with 32P-labeled casein as a substrate. Both IGFBP-3- and TGF-β-stimulated PPase activities in cell lysates are abolished when cells are co-treated with TGF-β/IGFBP-3 antagonist or RAP (LRP-1/TβR-V antagonist). However, the IGFBP-3-stimulated PPase activity, but not TGF-β-stimulated PPase activity, is sensitive to inhibition by okadaic acid (OA). In addition, OA or PP2Ac siRNA reverses IGFBP-3 growth inhibition, but not TGF-β growth inhibition, in Mv1Lu and 32D cells. These suggest that IGFBP-3- and TGF-β-stimulated PPases are identical to PP2A and PP1, respectively. By Western blot/phosphorimager/immunofluorescence-microscopy analyses, IGFBP-3 and TGF-β stimulate TβR-V-mediated IRS-2-dependent activation and cytoplasm-to-nucleus translocation of PP2Ac and PP1c, resulting in dephosphorylation of p130/p107 and pRb, respectively, and growth arrest. Small molecule TGF-β enhancers, which potentiate TGF-β growth inhibition by enhancing TβR-I-TβR-II-mediated canonical signaling and thus activating TβR-V-mediated tumor suppressor signaling cascade (TβR-V/IRS-2/PP1/pRb), could be used to prevent and treat carcinoma.
Collapse
Affiliation(s)
- Chun‐Lin Chen
- Department of Biological ScienceNational Sun Yat‐sen UniversityKaohsiungTaiwan
- Departments of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| | - Franklin W. Huang
- Division of Hematology and OncologyDepartment of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | | | - Jung San Huang
- Departments of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| |
Collapse
|
26
|
Mucosal ribosomal stress-induced PRDM1 promotes chemoresistance via stemness regulation. Commun Biol 2021; 4:543. [PMID: 33972671 PMCID: PMC8110964 DOI: 10.1038/s42003-021-02078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The majorities of colorectal cancer (CRC) cases are sporadic in origin and a large proportion of etiologies are associated with environmental stress responses. In response to external and internal stress, the ribosome stands sentinel and stress-driven ribosomal dysfunction triggers the cellular decision pathways via transcriptional reprogramming. In the present study, PR domain zinc finger protein (PRDM) 1, a master transcriptional regulator, was found to be closely associated with ribosomal actions in patients with CRC and the murine models. Stress-driven ribosomal dysfunction enhanced PRDM1 levels in intestinal cancer cells, which contributed to their survival and enhanced cancer cell stemness against cancer treatment. Mechanistically, PRDM1 facilitated clustering modulation of insulin-like growth factor (IGF) receptor-associated genes, which supported cancer cell growth and stemness-linked features. Ribosomal dysfunction-responsive PRDM1 facilitated signaling remodeling for the survival of tumor progenitors, providing compelling evidence for the progression of sporadic CRC.
Collapse
|
27
|
Rudnytska OV, Khita OO, Minchenko DO, Tsymbal DO, Yefimova YV, Sliusar MY, Minchenko O. The low doses of SWCNTs affect the expression of proliferation and apoptosis related genes in normal human astrocytes. Curr Res Toxicol 2021; 2:64-71. [PMID: 34345851 PMCID: PMC8320633 DOI: 10.1016/j.crtox.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
The unique properties of single-walled carbon nanotubes (SWCNTs) make them viable candidates for versatile implementation in the biomedical devices. They are able to cross the blood-brain barrier, enter cells and accumulate in cell nuclei. We studied the effect of these carbon nanoparticles on the expression of genes associated with endoplasmic reticulum stress and proliferation, cell viability and cancerogenesis as well as microRNAs in normal human astrocytes. We have shown that treatment of normal human astrocytes by small doses of SWCNTs (2 and 8 ng/ml of medium for 24 hrs) affect the expression of DNAJB9, IGFBP3, IGFBP6, CLU, ZNF395, KRT18, GJA1, HILPDA, and MEST mRNAs as well as several miRNAs, which have binding sites at 3'-UTR of these mRNAs. These changes in the expression profile of individual mRNAs introduced by SWCNTs are dissimilar in magnitude and direction and are the result of both transcriptional and posttranscriptional mechanisms of regulation. It is possible that these changes in gene expressions are mediated by the endoplasmic reticulum stress introduced by carbon nanotubes and reflect the disturbance of the genome stability. In conclusion, the low doses of SWCNTs disrupt the functional integrity of the genome and possibly exhibit a genotoxic effect.
Collapse
Affiliation(s)
- Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine.,Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - Dariia O Tsymbal
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Yuliia V Yefimova
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Oleksandr Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| |
Collapse
|
28
|
Insulin-Like Growth Factor Binding Protein-3 Binds to Histone 3. Int J Mol Sci 2021; 22:ijms22010407. [PMID: 33401705 PMCID: PMC7796407 DOI: 10.3390/ijms22010407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) is an essential protein that regulates cellular processes such as cell proliferation, apoptosis, and differentiation. It is known to bind with several proteins to carry out various cellular functions. In this study, we report for the first time that IGFBP-3 is a histone 3 (H3) binding protein. Sub-cellular fractionation was performed to separate into cytosolic fraction, nucleic acid binding protein fraction and insoluble nuclear fraction. Using ligand blot analysis, we identified a ~15 kDa protein that can interact with IGFBP-3 in the insoluble nuclear fraction. The 15 kDa protein was confirmed as histone 3 by far-Western blot analysis and co-immunoprecipitation experiments. A dot-blot experiment further validated the binding of IGFBP-3 with H3. The intensity of IGFBP-3 on dot-blot showed a proportional increase with H3 concentrations between 2.33 pmol–37.42 pmol. Our results support the presence of protein-protein interaction between IGFBP-3 and H3. The physical binding between IGFBP-3 and H3 could indicate its yet another cellular role in regulating the chromatin remodeling for gene transcription.
Collapse
|
29
|
Mofid MR, Gheysarzadeh A, Bakhtiyari S. Insulin-like growth factor binding protein 3 chemosensitizes pancreatic ductal adenocarcinoma through its death receptor. Pancreatology 2020; 20:1442-1450. [PMID: 32830034 DOI: 10.1016/j.pan.2020.07.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/15/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Gemcitabine and doxorubicin are commonly used as the chemotherapy agents, but most of PDAC tumors eventually acquired resistance to chemotherapy. Accumulating evidence indicates that Insulin-like growth factor binding protein 3 (IGFBP-3) plays a key role against tumor growth but its expression has commonly suppressed. The present study was designed to evaluate IGFBP-3 effects in chemotherapy sensitization of PDAC cells. Here, we report that the re-sensitization of chemoresistant PDAC cells was occurred by IGFBP-3 through recruitment of its death receptor (IGFBP-3R). Using gemcitabine, doxorubicin-resistant PDAC cell lines, we found that IGFBP-3 sensitized chemoresistant cells by activating apoptosis (as evaluated by Bax up-regulation, Bcl-2 down-regulation as well as Caspase-3 and Caspase 8 activation). IGFBP-3R was also found to have higher expression level in resistant AsPc-1 and MIA PaCa-2 cells in comparison to parental cells. IGFBP-3R was also highly expressed in PDAC tumor which exposed to chemotherapy in comparison to un-treated PDAC tumors. In addition, we confirmed our finding by using specific siRNA to knocking down of IGFBP-3R which prevents IGFBP-3 Chemosensitization. Taken together, the present study for the first time indicates the clinical relevance for combining IGFBP-3 with chemotherapy to reduce chemoresistance in PDAC.
Collapse
Affiliation(s)
- Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gheysarzadeh
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Biology, Faculty of Science, Ilam University, Ilam, Iran; Department of Clinical Biochemistry, Ilam University of Medical Sciences, Ilam, Iran.
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
30
|
Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther 2020; 5:201. [PMID: 32929074 PMCID: PMC7490424 DOI: 10.1038/s41392-020-00303-7] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-enzymatic chitinase-3 like-protein-1 (CHI3L1) belongs to glycoside hydrolase family 18. It binds to chitin, heparin, and hyaluronic acid, and is regulated by extracellular matrix changes, cytokines, growth factors, drugs, and stress. CHI3L1 is synthesized and secreted by a multitude of cells including macrophages, neutrophils, synoviocytes, chondrocytes, fibroblast-like cells, smooth muscle cells, and tumor cells. It plays a major role in tissue injury, inflammation, tissue repair, and remodeling responses. CHI3L1 has been strongly associated with diseases including asthma, arthritis, sepsis, diabetes, liver fibrosis, and coronary artery disease. Moreover, following its initial identification in the culture supernatant of the MG63 osteosarcoma cell line, CHI3L1 has been shown to be overexpressed in a wealth of both human cancers and animal tumor models. To date, interleukin-13 receptor subunit alpha-2, transmembrane protein 219, galectin-3, chemo-attractant receptor-homologous 2, and CD44 have been identified as CHI3L1 receptors. CHI3L1 signaling plays a critical role in cancer cell growth, proliferation, invasion, metastasis, angiogenesis, activation of tumor-associated macrophages, and Th2 polarization of CD4+ T cells. Interestingly, CHI3L1-based targeted therapy has been increasingly applied to the treatment of tumors including glioma and colon cancer as well as rheumatoid arthritis. This review summarizes the potential roles and mechanisms of CHI3L1 in oncogenesis and disease pathogenesis, then posits investigational strategies for targeted therapies.
Collapse
|
31
|
Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells 2020; 9:cells9051261. [PMID: 32443727 PMCID: PMC7290346 DOI: 10.3390/cells9051261] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a p53 tumor suppressor-regulated protein and a major carrier for IGFs in circulation. Among six high-affinity IGFBPs, which are IGFBP-1 through 6, IGFBP-3 is the most extensively investigated IGFBP species with respect to its IGF/IGF-I receptor (IGF-IR)-independent biological actions beyond its endocrine/paracrine/autocrine role in modulating IGF action in cancer. Disruption of IGFBP-3 at transcriptional and post-translational levels has been implicated in the pathophysiology of many different types of cancer including breast, prostate, and lung cancer. Over the past two decades, a wealth of evidence has revealed both tumor suppressing and tumor promoting effects of IGF/IGF-IR-independent actions of IGFBP-3 depending upon cell types, post-translational modifications, and assay methods. However, IGFBP-3′s anti-tumor function has been well accepted due to identification of functional IGFBP-3-interacting proteins, putative receptors, or crosstalk with other signaling cascades. This review mainly focuses on transmembrane protein 219 (TMEM219), which represents a novel IGFBP-3 receptor mediating antitumor effect of IGFBP-3. Furthermore, this review delineates the potential underlying mechanisms involved and the subsequent biological significance, emphasizing the clinical significance of the IGFBP-3/TMEM219 axis in assessing both the diagnosis and the prognosis of cancer as well as the therapeutic potential of TMEM219 agonists for cancer treatment.
Collapse
Affiliation(s)
- Qing Cai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
| | - Mikhail Dozmorov
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA; (Q.C.); (M.D.)
- Correspondence: ; Tel.: +1-804-827-1324
| |
Collapse
|
32
|
Varma Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front Cell Dev Biol 2020; 8:286. [PMID: 32478064 PMCID: PMC7232603 DOI: 10.3389/fcell.2020.00286] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), one of the six members of the IGFBP family, is a key protein in the IGF pathway. IGFBP-3 can function in an IGF-dependent as well as in an IGF-independent manner. The IGF-dependent roles of IGFBP-3 include its endocrine role in the delivery of IGFs from the site of synthesis to the target cells that possess IGF receptors and the activation of associated downstream signaling. IGF-independent role of IGFBP-3 include its interactions with the proteins of the extracellular matrix and the proteins of the plasma membrane, its translocation through the plasma membrane into the cytoplasm and into the nucleus. The C-terminal domain of IGFBP-3 has the ability to undergo cell penetration therefore, generating a short 8-22-mer C-terminal domain peptides that can be conjugated to drugs or genes for effective intracellular delivery. This has opened doors for biotechnological applications of the molecule in molecular medicine. The aim of this this review is to summarize the complex roles of IGFBP-3 within the cell, including its mechanisms of cellular uptake and its translocation into the nucleus, various molecules with which it is capable of interacting, and its ability to regulate IGF-independent cell growth, survival and apoptosis. This would pave way into understanding the modus operandi of IGFBP-3 in regulating IGF-independent processes and its pleiotropic ability to bind with potential partners thus regulating several cellular functions implicated in metabolic diseases, including cancer.
Collapse
Affiliation(s)
- Shailly Varma Shrivastav
- VastCon Inc., Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Kumar Alok Pathak
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
33
|
Lam T, Birzniece V, McLean M, Gurney H, Hayden A, Cheema BS. The Adverse Effects of Androgen Deprivation Therapy in Prostate Cancer and the Benefits and Potential Anti-oncogenic Mechanisms of Progressive Resistance Training. SPORTS MEDICINE-OPEN 2020; 6:13. [PMID: 32056047 PMCID: PMC7018888 DOI: 10.1186/s40798-020-0242-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022]
Abstract
Prostate cancer has the second highest incidence of all cancers amongst men worldwide. Androgen deprivation therapy (ADT) remains a common form of treatment. However, in reducing serum testosterone to castrate levels and rendering men hypogonadal, ADT contributes to a myriad of adverse effects which can affect prostate cancer prognosis. Physical activity is currently recommended as synergistic medicine in prostate cancer patients to alleviate the adverse effects of treatment. Progressive resistance training (PRT) is an anabolic exercise modality which may be of benefit in prostate cancer patients given its potency in maintaining and positively adapting skeletal muscle. However, currently, there is a scarcity of RCTs which have evaluated the use of isolated PRT in counteracting the adverse effects of prostate cancer treatment. Moreover, although physical activity in general has been found to reduce relapse rates and improve survival in prostate cancer, the precise anti-oncogenic effects of specific exercise modalities, including PRT, have not been fully established. Thus, the overall objective of this article is to provide a rationale for the in-depth investigation of PRT and its biological effects in men with prostate cancer on ADT. This will be achieved by (1) summarising the metabolic effects of ADT in patients with prostate cancer and its effect on prostate cancer progression and prognosis, (2) reviewing the existing evidence regarding the metabolic benefits of PRT in this cohort, (3) exploring the possible oncological pathways by which PRT can affect prostate cancer prognosis and progression and (4) outlining avenues for future research.
Collapse
Affiliation(s)
- Teresa Lam
- School of Medicine, Western Sydney University, Penrith, NSW, Australia. .,Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, NSW, Australia. .,Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, NSW, Australia.
| | - Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, NSW, Australia.,School of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Translational Health Research Institute, Penrith, NSW, Australia
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead, NSW, Australia
| | - Amy Hayden
- Crown Princess Mary Cancer Centre, Westmead, NSW, Australia.,Department of Radiation Oncology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Birinder S Cheema
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
34
|
Silencing of NAMPT leads to up-regulation of insulin receptor substrate 1 gene expression in U87 glioma cells. Endocr Regul 2020; 54:31-42. [DOI: 10.2478/enr-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Objective. The aim of the present study was to investigate the effect of adipokine NAMPT (nicotinamide phosphoribosyltransferase) silencing on the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other proliferation related proteins in U87 glioma cells for evaluation of the possible significance of this adipokine in intergenic interactions.
Methods. The silencing of NAMPT mRNA was introduced by NAMPT specific siRNA. The expression level of NAMPT, IGFBP3, IRS1, HK2, PER2, CLU, BNIP3, TPD52, GADD45A, and MKI67 genes was studied in U87 glioma cells by quantitative polymerase chain reaction. Anti-visfatin antibody was used for detection of NAMPT protein by Western-blot analysis.
Results. It was shown that the silencing of NAMPT mRNA led to a strong down-regulation of NAMPT protein and significant modification of the expression of IRS1, IGFBP3, CLU, HK2, BNIP3, and MKI67 genes in glioma cells and a strong up-regulation of IGFBP3 and IRS1 and down-regulation of CLU, BNIP3, HK2, and MKI67 gene expressions. At the same time, no significant changes were detected in the expression of GADD45A, PER2, and TPD52 genes in glioma cells treated by siRNA specific to NAMPT. Furthermore, the silencing of NAMPT mRNA suppressed the glioma cell proliferation.
Conclusions. Results of this investigation demonstrated that silencing of NAMPT mRNA with corresponding down-regulation of NAMPT protein and suppression of the glioma cell proliferation affected the expression of IRS1 gene as well as many other genes encoding the proliferation related proteins. It is possible that dysregulation of most of the studied genes in glioma cells after silencing of NAMPT is reflected by a complex of intergenic interactions and that NAMPT is an important factor for genome stability and regulatory mechanisms contributing to the control of glioma cell metabolism and proliferation.
Collapse
|
35
|
Vassilieva I, Kosheverova V, Vitte M, Kamentseva R, Shatrova A, Tsupkina N, Skvortsova E, Borodkina A, Tolkunova E, Nikolsky N, Burova E. Paracrine senescence of human endometrial mesenchymal stem cells: a role for the insulin-like growth factor binding protein 3. Aging (Albany NY) 2020; 12:1987-2004. [PMID: 31951594 PMCID: PMC7053595 DOI: 10.18632/aging.102737] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Stress-induced premature cell senescence is well recognized to be accompanied by emerging the senescence-associated secretory phenotype (SASP). Secreted SASP factors can promote the senescence of normal neighboring cells through autocrine/paracrine pathways and regulate the senescence response, as well. Regarding human endometrium-derived mesenchymal stem cells (MESCs), the SASP regulation mechanisms as well as paracrine activity of senescent cells have not been studied yet. Here, we examined the role of insulin-like growth factor binding protein 3 (IGFBP3) in the paracrine senescence induction in young MESCs. The H2O2-induced premature senescence of MESCs led to increased IGFBP3 in conditioned media (CM). The inhibitory analysis of both MAPK and PI3K signaling pathways showed that IGFBP3 releasing from senescent cells is mainly regulated by PI3K/Akt pathway activity. IGFBP3 appears to be an important senescence-mediating factor as its immunodepletion from the senescent CM weakened the pro-senescent effect of CM on young MESCs and promoted their growth. In contrast, young MESCs acquired the senescence phenotype in response to simultaneous addition of recombinant IGFBP3 (rIGFBP3). The mechanism of extracellular IGFBP3 internalization was also revealed. The present study is the first to demonstrate a significant role of extracellular IGFBP3 in paracrine senescence induction of young MESCs.
Collapse
Affiliation(s)
- Irina Vassilieva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vera Kosheverova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Mikhail Vitte
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Rimma Kamentseva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalia Tsupkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Skvortsova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Tolkunova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
36
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
37
|
Joyce S, Nour AM. Blocking transmembrane219 protein signaling inhibits autophagy and restores normal cell death. PLoS One 2019; 14:e0218091. [PMID: 31220095 PMCID: PMC6586287 DOI: 10.1371/journal.pone.0218091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/24/2019] [Indexed: 02/04/2023] Open
Abstract
Autophagy plays a vital role in tumor therapy and survival of dormant tumor cells. Here we describe a novel function of a protein known as Transmembrane 219 (TM219) as an autophagy activator. TM219 is a small membrane protein expressed in all known human tissues except the thymus. We used biochemical approaches to identify calmodulin and calmodulin dependent protein kinase II as a part of TM219 protein complex. Then, we employed in vitro reconstitution system and fluorescence anisotropy to study the requirements of TM219 to bind calmodulin in vitro. We also used this system to study the effects of a synthetic peptide derived from the sequence of the short cytoplasmic tail of TM219 (SCTT) on calmodulin-TM219 receptor interactions. We conjugated SCTT peptide with a pH Low Insertion peptide (pHLIP) for optimal cellular delivery. We finally tested the effects of SCTT-pHLIP on triple negative human breast cancer cells in three dimension culture. Our data defined a novel function of TM219 protein and an efficient approach to inhibit it.
Collapse
Affiliation(s)
- Sean Joyce
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Adel M. Nour
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
38
|
Kostopoulou E, Dastamani A, Caiulo S, Antell H, Flanagan SE, Shah P. Hyperinsulinaemic hypoglycaemia: A new presentation of 16p11.2 deletion syndrome. Clin Endocrinol (Oxf) 2019; 90:766-769. [PMID: 30776145 DOI: 10.1111/cen.13951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Eirini Kostopoulou
- Research Laboratory of the Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, School of Medicine, University of Patras, Patras, Greece
| | - Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Silvana Caiulo
- Endocrinology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Hannah Antell
- Endocrinology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, UK
| | - Pratik Shah
- Endocrinology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
- Genetics and Genomics Medicine Program, Genetics and Epigenetics in Health and Disease Section, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
39
|
de Silva HC, Lin MZ, Phillips L, Martin JL, Baxter RC. IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci 2019; 76:2015-2030. [PMID: 30725116 PMCID: PMC11105386 DOI: 10.1007/s00018-019-03033-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Women with triple-negative breast cancer (TNBC) are generally treated by chemotherapy but their responsiveness may be blunted by DNA double-strand break (DSB) repair. We previously reported that IGFBP-3 forms nuclear complexes with EGFR and DNA-dependent protein kinase (DNA-PKcs) to modulate DSB repair by non-homologous end-joining (NHEJ) in TNBC cells. To discover IGFBP-3 binding partners involved in chemoresistance through stimulation of DSB repair, we analyzed the IGFBP-3 interactome by LC-MS/MS and confirmed interactions by coimmunoprecipitation and proximity ligation assay. Functional effects were demonstrated by DNA end-joining in vitro and measurement of γH2AX foci. In response to 20 µM etoposide, the DNA/RNA-binding protein, non-POU domain-containing octamer-binding protein (NONO) and its dimerization partner splicing factor, proline/glutamine-rich (SFPQ) formed complexes with IGFBP-3, demonstrated in basal-like TNBC cell lines HCC1806 and MDA-MB-468. NONO binding to IGFBP-3 was also shown in a cell-free biochemical assay. IGFBP-3 complexes with NONO and SFPQ were blocked by inhibiting EGFR with gefitinib or DNA-PKcs with NU7026, and by the PARP inhibitors veliparib and olaparib, which also reduced DNA end-joining activity and delayed the resolution of the γH2AX signal (i.e. inhibited DNA DSB repair). Downregulation of the long noncoding RNA in NHEJ pathway 1 (LINP1) by siRNA also blocked IGFBP-3 interaction with NONO-SFPQ. These findings suggest a PARP-dependent role for NONO and SFPQ in IGFBP-3-dependent DSB repair and the involvement of LINP1 in the complex formation. We propose that targeting of the DNA repair function of IGFBP-3 may enhance chemosensitivity in basal-like TNBC, thus improving patient outcomes.
Collapse
Affiliation(s)
- Hasanthi C de Silva
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Mike Z Lin
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
- Orange Family Medical Centre, 95 Peisley Street, Orange, NSW, 2800, Australia
| | - Leo Phillips
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Janet L Martin
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Robert C Baxter
- Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
40
|
Kalledsøe L, Dragsted LO, Hansen L, Kyrø C, Grønbæk H, Tjønneland A, Olsen A. The insulin-like growth factor family and breast cancer prognosis: A prospective cohort study among postmenopausal women in Denmark. Growth Horm IGF Res 2019; 44:33-42. [PMID: 30622040 DOI: 10.1016/j.ghir.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Circulating levels of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) have been associated with breast cancer (BC) risk. The evidence in relation to BC prognosis is limited. We aimed to evaluate the association between pre-diagnostic serum levels of IGF-I, IGF-II, IGFBP-2, IGFBP-3 and BC prognosis (i.e. recurrence, BC specific mortality and all-cause mortality) among women diagnosed with BC. We hypothesized that higher serum levels of IGFs and IGFBPs were associated with poor BC prognosis and that the associations were modified by estrogen receptor (ER) status. DESIGN From the Danish Diet, Cancer and Health cohort, 412 postmenopausal women diagnosed with incident BC within 5 years of cohort baseline (1993-1997) were identified. Baseline serum samples were analyzed for IGF-I, IGF-II, IGFBP-2 and IGFBP-3. Follow-up was carried out through 2014 by linkage to national Danish registries. Exposures were related to BC prognosis by Cox Proportional Hazard models; effect modification by ER status was investigated and sensitivity analyses by follow-up time were made. RESULTS During a median of 15 years, 106 women experienced recurrence and 172 died (118 due to BC). Overall, no associations were observed between IGF-I, IGF-II, IGFBP-2, IGFBP-3 and BC prognosis and no effect modification by ER status was observed. However, higher levels of IGF-II were associated with higher BC specific mortality [Hazard Ratio (HR) (95% Confidence Intervals (CI)): 1.43 (1.01-2.04)] within 10 years of follow-up. Likewise, higher levels of IGFBP-2 were associated with higher BC specific mortality [HR (95% CI): 1.87 (1.19-2.94)] within 5 years of follow-up. In contrast, higher levels of IGFBP-3 were associated with lower risk of recurrence [HR (95% CI): 0.76 (0.60-0.97)] at 5 years of follow-up and BC specific mortality [HR (95% CI): 0.80 (0.65-0.98)] within 10 years of follow-up. CONCLUSIONS The present study did not support an association between higher serum levels of IGFs, IGFBPs and adverse BC prognosis. However, it is possible that the role of the IGF family in the etiology of the 5-10 year BC prognosis is different from that of longer-term BC prognosis.
Collapse
Affiliation(s)
- Loa Kalledsøe
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Louise Hansen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Cecilie Kyrø
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Anja Olsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
41
|
Zang T, Cuttle L, Broszczak DA, Broadbent JA, Tanzer C, Parker TJ. Characterization of the Blister Fluid Proteome for Pediatric Burn Classification. J Proteome Res 2019; 18:69-85. [PMID: 30520305 DOI: 10.1021/acs.jproteome.8b00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Blister fluid (BF) is a novel and viable research matrix for burn injury study, which can reflect both systemic and local microenvironmental responses. The protein abundance in BF from different burn severities were initially observed using a 2D SDS-PAGE approach. Subsequently, a quantitative data independent acquisition (DIA) method, SWATH, was employed to characterize the proteome of pediatric burn blister fluid. More than 600 proteins were quantitatively profiled in 87 BF samples from different pediatric burn patients. These data were correlated with clinically assessed burn depth and time until complete wound re-epithelialization through several different statistical analyses. Several proteins from these analyses exhibited significant abundance change between different burn depth or re-epithelialization groups, and can be considered as potential biomarker candidates. Further gene ontology (GO) enrichment analysis of the significant proteins revealed the most significant burn related biological processes (BP) that are altered with burn depth, including homeostasis and oxygen transport. However, for wounds with re-epithelialization times more or less than 21 days, the significant GO annotations were related to enzyme activity. This quantitative proteomics investigation of burn BF may enable objective classification of burn wound severity and assist with clinical decision-making. Data are available via ProteomeXchange with identifier PXD011102.
Collapse
Affiliation(s)
- Tuo Zang
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,Wound Management Innovation Co-operative Research Centre , Brisbane , Queensland 4000 , Australia
| | - Leila Cuttle
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,Centre for Children's Burns and Trauma Research, Queensland University of Technology , Institute of Health and Biomedical Innovation at the Centre for Children's Health Research , South Brisbane , Queensland 4101 , Australia
| | - Daniel A Broszczak
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia.,School of Science, Faculty of Health Sciences , Australian Catholic University , Brisbane , Queensland 4014 , Australia
| | - James A Broadbent
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia
| | - Catherine Tanzer
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,Wound Management Innovation Co-operative Research Centre , Brisbane , Queensland 4000 , Australia.,Centre for Children's Burns and Trauma Research, Queensland University of Technology , Institute of Health and Biomedical Innovation at the Centre for Children's Health Research , South Brisbane , Queensland 4101 , Australia
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program , Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia.,School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Queensland 4000 , Australia
| |
Collapse
|
42
|
Scully T, Scott CD, Firth SM, Pintar JE, Twigg SM, Baxter RC. Contrasting effects of IGF binding protein-3 expression in mammary tumor cells and the tumor microenvironment. Exp Cell Res 2018; 374:38-45. [PMID: 30419192 DOI: 10.1016/j.yexcr.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/29/2022]
Abstract
IGFBP-3 has both stimulatory and inhibitory effects on cancer progression. The growth of EO771 mammary carcinoma cells as syngeneic tumors in C57BL/6 mice is reduced in Igfbp3-null (BP3KO) mice, suggesting that systemic IGFBP-3 enhances tumor progression. In this study we assessed the growth of EO771 cells expressing human IGFBP-3 in BP3KO mice. Cells expressing hIGFBP-3 showed decreased proliferation in vitro and increased levels of IGF-1 receptor (IGF1R) protein but not mRNA, consistent with sequestration of endogenous IGF by IGFBP-3. The growth rate of these cells was restored by exposure to IGF-1 or analogues with reduced affinity for IGFBP-3 (long Arg3-IGF-1) or IGF1R (Leu24-IGF-1). In EO771 cells implanted orthotopically into mice, hIGFBP-3 expression by the cells inhibited tumor establishment in BP3KO but not wild-type mice. For tumors that successfully established, final weight was not affected significantly by hIGFBP-3 expression. However, final tumor weight was inversely related to intratumoral T cell counts, and sera from BP3KO mice with tumors showed low-titer immunoreactivity against IGFBP-3. The contrasting effects on tumor establishment and progression of IGFBP-3 expressed by mammary carcinoma cells, compared to systemic stromal and circulating IGFBP-3, highlights the complexity of growth regulation by IGFBP-3 in mammary tumors.
Collapse
Affiliation(s)
- Tiffany Scully
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia.
| | - Carolyn D Scott
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia.
| | - Sue M Firth
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia.
| | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, NJ 08854, USA.
| | - Stephen M Twigg
- Charles Perkins Centre, Sydney Medical School, University of Sydney, New South Wales 2006, Australia.
| | - Robert C Baxter
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia.
| |
Collapse
|
43
|
Zhao S, Løvf M, Carm KT, Bakken AC, Hoff AM, Skotheim RI. Novel transcription-induced fusion RNAs in prostate cancer. Oncotarget 2018; 8:49133-49143. [PMID: 28467780 PMCID: PMC5564755 DOI: 10.18632/oncotarget.17099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is a clinically and pathologically heterogeneous disease with a broad spectrum of molecular abnormalities in the genome and transcriptome. One key feature is the involvement of chromosomal rearrangements creating fusion genes. Recent RNA-sequencing technology has uncovered that fusions which are not caused by chromosomal rearrangements, but rather meditated at transcription level, are common in both healthy and diseased cells. Such fusion transcripts have been proven highly associated with prostate cancer development and progression. To discover novel fusion transcripts, we analyzed RNA sequencing data from 44 primary prostate tumors and matched benign tissues from The Cancer Genome Atlas. Twenty-one high-confident candidates were significantly enriched in malignant vs. benign samples. Thirteen of the candidates have not previously been described in prostate cancer, and among them, five long intergenic non-coding RNAs are involved as fusion partners. Their expressions were validated in 50 additional prostate tumor samples and seven prostate cancer cell lines. For four fusion transcripts, we found a positive correlation between their expression and the expression of the 3′ partner gene. Among these, differential exon usage and qRT-PCR analyses in particular support that SLC45A3-ELK4 is mediated by an RNA polymerase read-through mechanism.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marthe Løvf
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Totland Carm
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Cathrine Bakken
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Informatics, Faculty of Natural Science and Mathematics, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Insulin-like growth factor binding protein-3 links obesity and breast cancer progression. Oncotarget 2018; 7:55491-55505. [PMID: 27448965 PMCID: PMC5342431 DOI: 10.18632/oncotarget.10675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
Obesity is associated epidemiologically with poor breast cancer prognosis, but the mechanisms remain unclear. Since IGF binding protein-3 (IGFBP-3) influences both breast cancer growth and adipocyte maturation, it may impact on how obesity promotes breast oncogenesis. This study investigated the role of endogenous IGFBP-3 on the development of obesity and subsequently on breast tumor growth. Wild-type (WT) C57BL/6 or IGFBP-3-null (BP3KO) mice were fed a high-fat diet (HFD) or control chow-diet for 15 weeks before orthotopic injection with syngeneic EO771 murine breast cancer cells. When the largest tumor reached 1000 mm3, tissues and tumors were excised for analysis. Compared to WT, BP3KO mice showed significantly reduced weight gain and mammary fat pad mass (contralateral to tumor) in response to HFD, despite similar food intake. EO771 tumor weight and volume were increased by HFD and decreased by BP3KO. Despite differences in tumor size, tumors in BP3KO mice showed no differences from WT in the number of mitotically active (Ki67+) and apoptotic (cleaved caspase-3+) cells, but had greater infiltration of CD3+ T-cells. These data suggest that endogenous (circulating and/or stromal) IGFBP-3 is stimulatory to adipose tissue expansion and enhances mammary tumor growth in immune-competent mice, potentially by suppressing T-cell infiltration into tumors.
Collapse
|
45
|
Garcia de la Serrana D, Macqueen DJ. Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Front Endocrinol (Lausanne) 2018; 9:80. [PMID: 29593649 PMCID: PMC5857546 DOI: 10.3389/fendo.2018.00080] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of physiological functions and a fascinating evolutionary history. This review focuses on the Igfbps of teleost fishes, where genome duplication events have diversified gene repertoire, function, and physiological regulation-with six core Igfbps expanded into a family of over twenty genes in some lineages. In addition to briefly summarizing the current state of knowledge on teleost Igfbp evolution, function, and expression-level regulation, we highlight gaps in our understanding and promising areas for future work.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Daniel Garcia de la Serrana,
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
46
|
Minchenko DO, Tsymbal DO, Yavorovsky OP, Solokha NV, Minchenko OH. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles. Endocr Regul 2017; 51:84-95. [PMID: 28609285 DOI: 10.1515/enr-2017-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. METHODS Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. RESULTS Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. CONCLUSIONS The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.
Collapse
|
47
|
Harrison S, Lennon R, Holly J, Higgins JPT, Gardner M, Perks C, Gaunt T, Tan V, Borwick C, Emmet P, Jeffreys M, Northstone K, Rinaldi S, Thomas S, Turner SD, Pease A, Vilenchick V, Martin RM, Lewis SJ. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control 2017; 28:497-528. [PMID: 28361446 PMCID: PMC5400803 DOI: 10.1007/s10552-017-0883-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/10/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE To establish whether the association between milk intake and prostate cancer operates via the insulin-like growth factor (IGF) pathway (including IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3). METHODS Systematic review, collating data from all relevant studies examining associations of milk with IGF, and those examining associations of IGF with prostate cancer risk and progression. Data were extracted from experimental and observational studies conducted in either humans or animals, and analyzed using meta-analysis where possible, with summary data presented otherwise. RESULTS One hundred and seventy-two studies met the inclusion criteria: 31 examining the milk-IGF relationship; 132 examining the IGF-prostate cancer relationship in humans; and 10 animal studies examining the IGF-prostate cancer relationship. There was moderate evidence that circulating IGF-I and IGFBP-3 increase with milk (and dairy protein) intake (an estimated standardized effect size of 0.10 SD increase in IGF-I and 0.05 SD in IGFBP-3 per 1 SD increase in milk intake). There was moderate evidence that prostate cancer risk increased with IGF-I (Random effects meta-analysis OR per SD increase in IGF-I 1.09; 95% CI 1.03, 1.16; n = 51 studies) and decreased with IGFBP-3 (OR 0.90; 0.83, 0.98; n = 39 studies), but not with other growth factors. The IGFBP-3 -202A/C single nucleotide polymorphism was positively associated with prostate cancer (pooled OR for A/C vs. AA = 1.22; 95% CI 0.84, 1.79; OR for C/C vs. AA = 1.51; 1.03, 2.21, n = 8 studies). No strong associations were observed for IGF-II, IGFBP-1 or IGFBP-2 with either milk intake or prostate cancer risk. There was little consistency within the data extracted from the small number of animal studies. There was additional evidence to suggest that the suppression of IGF-II can reduce tumor size, and contradictory evidence with regards to the effect of IGFBP-3 suppression on tumor progression. CONCLUSION IGF-I is a potential mechanism underlying the observed associations between milk intake and prostate cancer risk.
Collapse
Affiliation(s)
- Sean Harrison
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Rosie Lennon
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Jeff Holly
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences at North Bristol, Southmead Hospital, BS10 5NB, Bristol, UK
| | - Julian P T Higgins
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Mike Gardner
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Perks
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences at North Bristol, Southmead Hospital, BS10 5NB, Bristol, UK
| | - Tom Gaunt
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Vanessa Tan
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Cath Borwick
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Cardiff University, Cardiff, UK
| | - Pauline Emmet
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mona Jeffreys
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Sabina Rinaldi
- International Agency for Research on Cancer, Lyon, France
| | - Stephen Thomas
- School of Oral and Dental Sciences,, University of Bristol, Bristol, UK
| | | | - Anna Pease
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vicky Vilenchick
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, BS2 8AE, Bristol, UK
| | - Sarah J Lewis
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.
| |
Collapse
|
48
|
Hegyi H. Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs. Sci Rep 2017; 7:45494. [PMID: 28382934 PMCID: PMC5382542 DOI: 10.1038/srep45494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated “expression neighbors” of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases.
Collapse
Affiliation(s)
- Hedi Hegyi
- CEITEC - Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
49
|
Yan J, Yang X, Li L, Liu P, Wu H, Liu Z, Li Q, Liao G, Wang X. Low expression levels of insulin-like growth factor binding protein-3 are correlated with poor prognosis for patients with hepatocellular carcinoma. Oncol Lett 2017; 13:3395-3402. [PMID: 28521445 PMCID: PMC5431398 DOI: 10.3892/ol.2017.5934] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) has previously been identified as a putative tumor suppressor gene. The present study investigated the clinical and prognostic significance of IGFBP-3 expression levels in patients with hepatocellular carcinoma (HCC). Immunohistochemistry (IHC) probing for IGFBP-3 was performed on paraffin-embedded tissue samples obtained from 120 patients with HCC, including tissue samples from 120 primary cancer sites and 50 matched adjacent non-malignant sites. Receiver-operator curve (ROC) analysis was used to determine the cut-off scores for the presence of IGFBP-3-positive tumor cells and to estimate the survival time of the patients. The threshold for marking the positive expression of IGFBP-3 was 65%, based on the area under the ROC. Positive expression of IGFBP-3 was observed in 65/120 (54.2%) of the HCC tissues, and in 36/50 (72%) of the adjacent non-malignant liver tissues. Low levels of IGFBP-3 expression were correlated with tumor size (P=0.003), tumor multiplicity (P=0.044), node (P=0.008), metastasis (P=0.001) and clinical stage (P=0.001), as well as reduced survival time (P=0.015). Using univariate survival analysis, a significant direct correlation between high and low IGFBP-3 expression levels, and patient survival time (mean survival time high IGFBP-3, 39.4 vs. low IGFBP-3, 18.7 months) was identified. Kaplan-Meier analysis demonstrated that IGFBP-3 expression levels and patients survival time were significantly correlated (P<0.001). Multivariate analysis revealed IGFBP-3 expression to be an independent parameter (P=0.003). Therefore, low levels of IGFBP-3 expression are associated with advance clinicopathological classification and may be a predictor of poor survival in patients with HCC. Furthermore, these findings suggest that IGFBP-3 may serve as an independent molecular marker for the evaluation of prognosis in patients with HCC.
Collapse
Affiliation(s)
- Jinjin Yan
- Department of Pharmacology, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Xinzheng Yang
- Department of Pharmacology, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Lin Li
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Pengtao Liu
- Department of Clinical Medicine, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Honghui Wu
- Department of Clinical Medicine, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Zhanao Liu
- Department of Clinical Medicine, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Qingyi Li
- Department of Clinical Medicine, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Guozhen Liao
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Xinlong Wang
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| |
Collapse
|
50
|
Wang YA, Sun Y, Palmer J, Solomides C, Huang LC, Shyr Y, Dicker AP, Lu B. IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling. Mol Cancer Res 2017; 15:896-904. [PMID: 28330997 DOI: 10.1158/1541-7786.mcr-16-0390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/03/2016] [Accepted: 03/16/2017] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor binding protein 3 (IGFBP3) modulates cell growth through IGF-dependent and -independent mechanisms. Reports suggest that the serum levels of IGFBP3 are associated with various cancers and that IGFBP3 expression is significantly decreased in cisplatin (CDDP)-resistant lung cancer cells. Based on these findings, we investigated whether Igfbp3 deficiency accelerates mouse lung tumorigenesis and if expression of IGFBP3 enhances CDDP response by focusing on the IGF1 signaling cascade. To this end, an Igfbp3-null mouse model was generated in combination with KrasG12D to compare the tumor burden. Then, IGF-dependent signaling was assessed after expressing wild-type or a mutant IGFBP3 without IGF binding capacity in non-small cell lung cancer (NSCLC) cells. Finally, the treatment response to CDDP chemotherapy was evaluated under conditions of IGFBP3 overexpression. Igfbp3-null mice had increased lung tumor burden (>2-fold) and only half of human lung cancer cells survived after expression of IGFBP3, which corresponded to increased cleaved caspase-3 (10-fold), inactivation of IGF1 and MAPK signaling. In addition, overexpression of IGFBP3 increased susceptibility to CDDP treatment in lung cancer cells. These results, for the first time, demonstrate that IGFBP3 mediates lung cancer progression in a KrasG12D mouse model. Furthermore, overexpression of IGFBP3 induced apoptosis and enhanced cisplatin response in vitro and confirmed that the suppression is in part by blocking IGF1 signaling.Implications: These findings reveal that IGFBP3 is effective in lung cancer cells with high IGF1 signaling activity and imply that relevant biomarkers are essential in selecting lung cancer patients for IGF1-targeted therapy. Mol Cancer Res; 15(7); 896-904. ©2017 AACR.
Collapse
Affiliation(s)
- Yong Antican Wang
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yunguang Sun
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joshua Palmer
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Li-Ching Huang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|