1
|
Everett J, Brooks J, Tjendana Tjhin V, Lermyte F, Hands-Portman I, Plascencia-Villa G, Perry G, Sadler PJ, O’Connor PB, Collingwood JF, Telling ND. Label-Free In Situ Chemical Characterization of Amyloid Plaques in Human Brain Tissues. ACS Chem Neurosci 2024; 15:1469-1483. [PMID: 38501754 PMCID: PMC10995949 DOI: 10.1021/acschemneuro.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer's disease. Altered metabolism of essential biometals is another feature of Alzheimer's, with amyloid plaques representing sites of disturbed metal homeostasis. Despite these observations, metal-targeting disease treatments have not been therapeutically effective to date. A better understanding of amyloid plaque composition and the role of the metals associated with them is critical. To establish this knowledge, the ability to resolve chemical variations at nanometer length scales relevant to biology is essential. Here, we present a methodology for the label-free, nanoscale chemical characterization of amyloid plaques within human Alzheimer's disease tissue using synchrotron X-ray spectromicroscopy. Our approach exploits a C-H carbon absorption feature, consistent with the presence of lipids, to visualize amyloid plaques selectively against the tissue background, allowing chemical analysis to be performed without the addition of amyloid dyes that alter the native sample chemistry. Using this approach, we show that amyloid plaques contain elevated levels of calcium, carbonates, and iron compared to the surrounding brain tissue. Chemical analysis of iron within plaques revealed the presence of chemically reduced, low-oxidation-state phases, including ferromagnetic metallic iron. The zero-oxidation state of ferromagnetic iron determines its high chemical reactivity and so may contribute to the redox burden in the Alzheimer's brain and thus drive neurodegeneration. Ferromagnetic metallic iron has no established physiological function in the brain and may represent a target for therapies designed to lower redox burdens in Alzheimer's disease. Additionally, ferromagnetic metallic iron has magnetic properties that are distinct from the iron oxide forms predominant in tissue, which might be exploitable for the in vivo detection of amyloid pathologies using magnetically sensitive imaging. We anticipate that this label-free X-ray imaging approach will provide further insights into the chemical composition of amyloid plaques, facilitating better understanding of how plaques influence the course of Alzheimer's disease.
Collapse
Affiliation(s)
- James Everett
- School
of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Jake Brooks
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Vindy Tjendana Tjhin
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Frederik Lermyte
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Ian Hands-Portman
- School
of Life Sciences, University of Warwick, Gibbet Hill Campus,Coventry CV4 7AL, U.K.
| | - Germán Plascencia-Villa
- Department
of Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - George Perry
- Department
of Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | | | - Neil D. Telling
- School
of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
| |
Collapse
|
2
|
Frieg B, Han M, Giller K, Dienemann C, Riedel D, Becker S, Andreas LB, Griesinger C, Schröder GF. Cryo-EM structures of lipidic fibrils of amyloid-β (1-40). Nat Commun 2024; 15:1297. [PMID: 38351005 PMCID: PMC10864299 DOI: 10.1038/s41467-023-43822-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease characterized by the extracellular deposition of amyloid plaques. Investigation into the composition of these plaques revealed a high amount of amyloid-β (Aβ) fibrils and a high concentration of lipids, suggesting that fibril-lipid interactions may also be relevant for the pathogenesis of AD. Therefore, we grew Aβ40 fibrils in the presence of lipid vesicles and determined their structure by cryo-electron microscopy (cryo-EM) to high resolution. The fold of the major polymorph is similar to the structure of brain-seeded fibrils reported previously. The majority of the lipids are bound to the fibrils, as we show by cryo-EM and NMR spectroscopy. This apparent lipid extraction from vesicles observed here in vitro provides structural insights into potentially disease-relevant fibril-lipid interactions.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Mookyoung Han
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
4
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
5
|
Furber KL, Lacombe RJS, Caine S, Thangaraj MP, Read S, Rosendahl SM, Bazinet RP, Popescu BF, Nazarali AJ. Biochemical Alterations in White Matter Tracts of the Aging Mouse Brain Revealed by FTIR Spectroscopy Imaging. Neurochem Res 2022; 47:795-810. [PMID: 34820737 DOI: 10.1007/s11064-021-03491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts. A decrease in the number of myelinated axons was associated with altered lipid profiles in the corpus callosum of aged mice. FTIR spectroscopic imaging revealed alterations in functional groups associated with phospholipids, including the lipid acyl, lipid ester and phosphate vibrations. Biochemical changes in white matter were observed prior to structural changes and most predominant in the anterior regions of the corpus callosum. This was supported by biochemical analysis of fatty acid composition that demonstrated an overall trend towards increased monounsaturated fatty acids and decreased polyunsaturated fatty acids with age. To further explore the molecular mechanisms underlying these biochemical alterations, gene expression profiles of lipid metabolism and oxidative stress pathways were investigated. A decrease in the expression of several genes involved in glutathione metabolism suggests that oxidative damage to lipids may contribute to age-related white matter degeneration.
Collapse
Affiliation(s)
- Kendra L Furber
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Merlin P Thangaraj
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, SK, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Synthesis of human amyloid restricted to liver results in an Alzheimer disease-like neurodegenerative phenotype. PLoS Biol 2021; 19:e3001358. [PMID: 34520451 PMCID: PMC8439475 DOI: 10.1371/journal.pbio.3001358] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that genetic modification of C57BL/6J mice engineered to synthesise human Aß only in liver (hepatocyte-specific human amyloid (HSHA) strain) has marked neurodegeneration concomitant with capillary dysfunction, parenchymal extravasation of lipoprotein-Aß, and neurovascular inflammation. Moreover, the HSHA mice showed impaired performance in the passive avoidance test, suggesting impairment in hippocampal-dependent learning. Transmission electron microscopy shows marked neurovascular disruption in HSHA mice. This study provides causal evidence of a lipoprotein-Aß /capillary axis for onset and progression of a neurodegenerative process. It has been suggested that peripheral metabolism of amyloid-beta is associated with risk for Alzheimer’s disease. This study reveals that the expression of human amyloid exclusively in the liver induces Alzheimer’s disease-like pathologies in mice, potentially indicating a completely novel pathway of Alzheimer’s disease aetiology and therapies.
Collapse
|
7
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
8
|
Tian Y, Liang R, Kumar A, Szwedziak P, Viles JH. 3D-visualization of amyloid-β oligomer interactions with lipid membranes by cryo-electron tomography. Chem Sci 2021; 12:6896-6907. [PMID: 34123318 PMCID: PMC8153238 DOI: 10.1039/d0sc06426b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyloid-β (Aβ) assemblies have been shown to bind to lipid bilayers. This can disrupt membrane integrity and cause a loss of cellular homeostasis, that triggers a cascade of events leading to Alzheimer's disease. However, molecular mechanisms of Aβ cytotoxicity and how the different assembly forms interact with the membrane remain enigmatic. Here we use cryo-electron tomography (cryoET) to obtain three-dimensional nano-scale images of various Aβ assembly types and their interaction with liposomes. Aβ oligomers and curvilinear protofibrils bind extensively to the lipid vesicles, inserting and carpeting the upper-leaflet of the bilayer. Aβ oligomers concentrate at the interface of vesicles and form a network of Aβ-linked liposomes, while crucially, monomeric and fibrillar Aβ have relatively little impact on the membrane. Changes to lipid membrane composition highlight a significant role for GM1-ganglioside in promoting Aβ-membrane interactions. The different effects of Aβ assembly forms observed align with the highlighted cytotoxicity reported for Aβ oligomers. The wide-scale incorporation of Aβ oligomers and curvilinear protofibrils into the lipid bilayer suggests a mechanism by which membrane integrity is lost. Cryo-electron tomography 3D imaging of amyloid-β oligomers carpeting the surface of lipid bilayers in near native conditions.![]()
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Ruina Liang
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Amit Kumar
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Piotr Szwedziak
- Laboratory of Structural Cell Biology, Centre of New Technologies, University of Warsaw 02-097 Warsaw Poland .,ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw 02-097 Warsaw Poland
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
9
|
Early neurotransmission impairment in non-invasive Alzheimer Disease detection. Sci Rep 2020; 10:16396. [PMID: 33009473 PMCID: PMC7532202 DOI: 10.1038/s41598-020-73362-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer Disease (AD) is a pathology suffered by millions of people worldwide and it has a great social and economic impact. Previous studies reported a relationship between alterations in different amino acids and derivatives involved in neurotransmission systems and cognitive impairment. Therefore, in this study the neurotransmission impairment associated to early AD has been evaluated. For this purpose, different amino acids and derivatives were determined in saliva samples from AD patients and healthy subjects, by means of an analytical method based on chromatography coupled to tandem mass spectrometry. Results showed statistically significant differences in salivary levels for the compounds myo-inositol, creatine and acetylcholine; and other compounds (myo-inositol, glutamine, creatine, acetylcholine) showed significant correlations with some cognitive tests scores. Therefore, these compounds were included in a multivariate analysis and the corresponding diagnosis model showed promising indices (AUC 0.806, sensitivity 61%, specificity 92%). In conclusion, some amino acids and derivatives involved in neurotransmission impairment could be potential biomarkers in early and non-invasive AD detection.
Collapse
|
10
|
Wang Y, Jia B, You M, Fan H, Cao S, Li H, Zhang W, Ma G. Modulation of Surface-Catalyzed Secondary Nucleation during Amyloid Fibrillation of Hen Egg White Lysozyme by Two Common Surfactants. J Phys Chem B 2019; 123:6200-6211. [DOI: 10.1021/acs.jpcb.9b04036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Baohuan Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Min You
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Haoran Fan
- Department of Chemistry, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Siyu Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
11
|
Bode DC, Freeley M, Nield J, Palma M, Viles JH. Amyloid-β oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy. J Biol Chem 2019; 294:7566-7572. [PMID: 30948512 DOI: 10.1074/jbc.ac118.007195] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
The ability of amyloid-β peptide (Aβ) to disrupt membrane integrity and cellular homeostasis is believed to be central to Alzheimer's disease pathology. Aβ is reported to have various impacts on the lipid bilayer, but a clearer picture of Aβ influence on membranes is required. Here, we use atomic force and transmission electron microscopies to image the impact of different isolated Aβ assembly types on lipid bilayers. We show that only oligomeric Aβ can profoundly disrupt the bilayer, visualized as widespread lipid extraction and subsequent deposition, which can be likened to an effect expected from the action of a detergent. We further show that Aβ oligomers cause widespread curvature and discontinuities within lipid vesicle membranes. In contrast, this detergent-like effect was not observed for Aβ monomers and fibers, although Aβ fibers did laterally associate and embed into the upper leaflet of the bilayer. The marked impact of Aβ oligomers on membrane integrity identified here reveals a mechanism by which these oligomers may be cytotoxic.
Collapse
Affiliation(s)
- David C Bode
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Mark Freeley
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jon Nield
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Matteo Palma
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
12
|
Pushie MJ, Kelly ME, Hackett MJ. Direct label-free imaging of brain tissue using synchrotron light: a review of new spectroscopic tools for the modern neuroscientist. Analyst 2019; 143:3761-3774. [PMID: 29961790 DOI: 10.1039/c7an01904a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The incidence of brain disease and brain disorders is increasing on a global scale. Unfortunately, development of new therapeutic strategies has not increased at the same rate, and brain diseases and brain disorders now inflict substantial health and economic impacts. A greater understanding of the fundamental neurochemistry that underlies healthy brain function, and the chemical pathways that manifest in brain damage or malfunction, are required to enable and accelerate therapeutic development. A previous limitation to the study of brain function and malfunction has been the limited number of techniques that provide both a wealth of biochemical information, and spatially resolved information (i.e., there was a previous lack of techniques that provided direct biochemical or elemental imaging at the cellular level). In recent times, a suite of direct spectroscopic imaging techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence microscopy (XFM), and X-ray absorption spectroscopy (XAS) have been adapted, optimized and integrated into the field of neuroscience, to fill the above mentioned capability-gap. Advancements at synchrotron light sources, such as improved light intensity/flux, increased detector sensitivities and new capabilities of imaging/optics, has pushed the above suite of techniques beyond "proof-of-concept" studies, to routine application to study complex research problems in the field of neuroscience (and other scientific disciplines). This review examines several of the major advancements that have occurred over the last several years, with respect to FTIR, XFM and XAS capabilities at synchrotron facilities, and how the increases in technical capabilities have being integrated and used in the field of neuroscience.
Collapse
Affiliation(s)
- M J Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
13
|
Fimognari N, Hollings A, Lam V, Tidy RJ, Kewish CM, Albrecht MA, Takechi R, Mamo JCL, Hackett MJ. Biospectroscopic Imaging Provides Evidence of Hippocampal Zn Deficiency and Decreased Lipid Unsaturation in an Accelerated Aging Mouse Model. ACS Chem Neurosci 2018; 9:2774-2785. [PMID: 29901988 DOI: 10.1021/acschemneuro.8b00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Western society is facing a health epidemic due to the increasing incidence of dementia in aging populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Aging is the greatest risk factor for memory loss that occurs during the natural aging process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Greater understanding of the biochemical pathways that drive a healthy aging brain toward dementia (pathological aging or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein overexpression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural aging process. A promising animal model reported to model mechanisms of accelerated natural aging and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain aging. A limitation to traditional methods of biochemical characterization is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or microspatial resolution. Therefore, in this investigation, we report the first multimodal biospectroscopic characterization of the SAMP8 model, and have identified important biochemical and elemental alterations, and colocalizations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of Zn deficiency within specific subregions of the hippocampal CA3 sector, which colocalize with decreased lipid unsaturation. Our findings also revealed colocalization of decreased lipid unsaturation and increased lactate in the corpus callosum white matter, adjacent to the hippocampus. Such findings may have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas Fimognari
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Ashley Hollings
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Bentley, WA 6845, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Rebecca J. Tidy
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Bentley, WA 6845, Australia
| | - Cameron M. Kewish
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Matthew A. Albrecht
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Mark J. Hackett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University, Bentley, WA 6845, Australia
| |
Collapse
|
14
|
Summers KL, Fimognari N, Hollings A, Kiernan M, Lam V, Tidy RJ, Paterson D, Tobin MJ, Takechi R, George GN, Pickering IJ, Mamo JC, Harris HH, Hackett MJ. A Multimodal Spectroscopic Imaging Method To Characterize the Metal and Macromolecular Content of Proteinaceous Aggregates (“Amyloid Plaques”). Biochemistry 2017; 56:4107-4116. [DOI: 10.1021/acs.biochem.7b00262] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kelly L. Summers
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Nicholas Fimognari
- School
of Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ashley Hollings
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| | - Mitchell Kiernan
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| | - Virginie Lam
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of
Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Rebecca J. Tidy
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| | - David Paterson
- Australian Synchrotron, Clayton, Victoria 3068, Australia
| | - Mark J. Tobin
- Australian Synchrotron, Clayton, Victoria 3068, Australia
| | - Ryu Takechi
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of
Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Graham N. George
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Ingrid J. Pickering
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - John C. Mamo
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- School of
Public Health, Curtin University, Bentley, Western Australia 6102, Australia
| | - Hugh H. Harris
- Department
of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark J. Hackett
- Curtin
Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Bentley, Western Australia 6845, Australia
- Curtin Institute
of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6845, Australia
| |
Collapse
|
15
|
Siposova K, Kozar T, Musatov A. Interaction of nonionic detergents with the specific sites of lysozyme amyloidogenic region - inhibition of amyloid fibrillization. Colloids Surf B Biointerfaces 2016; 150:445-455. [PMID: 27842932 DOI: 10.1016/j.colsurfb.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
Abstract
Two nonionic detergents, Triton X-100 (TX-100) and n-dodecyl-β-d-maltoside (DDM) were tested for their ability to affect lysozyme amyloid aggregation. We have demonstrated that fibrillization of lysozyme is completely inhibited by low sub-micellar concentrations of both of these detergents. The apparent IC50 values were calculated to be 22μM and 26μM for TX-100 and DDM, respectively. The detergent/protein ratio is not the only parameter controlling inhibition. The precise timing of the detergent addition was found to be also crucial. It appears that the primary inhibitory activity of detergents resulted from inhibition of nuclei formation, in addition to inhibition of fibril polymerization at the early stage of protofibrils growth. The docking study revealed that Asn-59, Trp-63 and Ala-107, all present within the lysozyme amyloidogenic region, were involved in the interaction with both detergents. In addition, TX-100 also interacted with Gln-57 and Asp-103 within lysozyme. Moreover, based on our computational results, TX-100 bridges the Gln-57 and Ala-107 amino acids of the amyloidogenic segment of lysozyme and therefore inhibits more effectively the amyloid fibril formation. Along these lines, the knowledge gained from our study indicates that the detergents or their derivatives may be applicable as a promising strategy for the modulation of lysozyme protein aggregation.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia.
| | - Tibor Kozar
- Center for multimodal imaging, Institute of Physics, Faculty of Science, P.J. Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
16
|
Ami D, Lavatelli F, Rognoni P, Palladini G, Raimondi S, Giorgetti S, Monti L, Doglia SM, Natalello A, Merlini G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 2016; 6:29096. [PMID: 27373200 PMCID: PMC4931462 DOI: 10.1038/srep29096] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
17
|
Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, Suen B, Szmigielski A, Jiang Z, Sylvain NJ, Nichol H, Kelly ME. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis 2016; 91:132-42. [DOI: 10.1016/j.nbd.2016.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/13/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
|
18
|
Andres RH, Ducray AD, Andereggen L, Hohl T, Schlattner U, Wallimann T, Widmer HR. The effects of creatine supplementation on striatal neural progenitor cells depend on developmental stage. Amino Acids 2016; 48:1913-27. [PMID: 27129463 DOI: 10.1007/s00726-016-2238-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Transplantation of neural progenitor cells (NPCs) is a promising experimental therapy for Huntington's disease (HD). The variables responsible for the success of this approach, including selection of the optimal developmental stage of the grafted cells, are however largely unknown. Supporting cellular energy metabolism by creatine (Cr) supplementation is a clinically translatable method for improving cell transplantation strategies. The present study aims at investigating differences between early (E14) and late (E18) developmental stages of rat striatal NPCs in vitro. NPCs were isolated from E14 and E18 embryos and cultured for 7 days with or without Cr [5 mM]. Chronic treatment significantly increased the percentage of GABA-immunoreactive neurons as compared to untreated controls, both in the E14 (170.4 ± 4.7 %) and the E18 groups (129.3 ± 9.3 %). This effect was greater in E14 cultures (p < 0.05). Similarly, short-term treatment for 24 h resulted in increased induction (p < 0.05) of the GABA-ergic phenotype in E14 (163.0 ± 10.4 %), compared to E18 cultures (133.3 ± 9.5 %). Total neuronal cell numbers and general viability were not affected by Cr (p > 0.05). Protective effects of Cr against a metabolic insult were equal in E14 and E18 NPCs (p > 0.05). Cr exposure promoted morphological differentiation of GABA-ergic neurons, including neurite length in both groups (p < 0.05), but the number of branching points was increased only in the E18 group (p < 0.05). Our results demonstrate that the role of Cr as a GABA-ergic differentiation factor depends on the developmental stage of striatal NPCs, while Cr-mediated neuroprotection is not significantly influenced. These findings have potential implications for optimizing future cell replacement strategies in HD.
Collapse
Affiliation(s)
- Robert H Andres
- Department of Neurosurgery, University of Berne, Inselspital, Freiburgstrasse 10, 3010, Berne, Switzerland
| | - Angelique D Ducray
- Department of Neurosurgery, University of Berne, Inselspital, Freiburgstrasse 10, 3010, Berne, Switzerland
| | - Lukas Andereggen
- Department of Neurosurgery, University of Berne, Inselspital, Freiburgstrasse 10, 3010, Berne, Switzerland.,Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tabea Hohl
- Department of Neurosurgery, University of Berne, Inselspital, Freiburgstrasse 10, 3010, Berne, Switzerland
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Université Grenoble Alpes, BP53, 38041, Grenoble Cedex, France.,Inserm, U1055, BP53, 38041, Grenoble Cedex, France
| | - Theo Wallimann
- Professor emeritus, formerly at Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), Schafmattstrasse 18, 8093, Zurich, Switzerland
| | - Hans R Widmer
- Department of Neurosurgery, University of Berne, Inselspital, Freiburgstrasse 10, 3010, Berne, Switzerland.
| |
Collapse
|
19
|
Hackett MJ, Smith SE, Caine S, Nichol H, George GN, Pickering IJ, Paterson PG. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat. Free Radic Biol Med 2015; 89:806-18. [PMID: 26454085 PMCID: PMC5509437 DOI: 10.1016/j.freeradbiomed.2015.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/16/2015] [Accepted: 08/31/2015] [Indexed: 10/22/2022]
Abstract
Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.e., therapeutic hypothermia) or development of new therapies. A major limitation to elucidating the mechanisms that contribute to neurodegeneration and understanding how these are influenced by potential therapies is the inability to relate biochemical markers to alterations in the morphology of individual neurons. Although immunocytochemistry allows imaging of numerous biochemical markers at the sub-cellular level, it is not a direct chemical imaging technique and requires successful "tagging" of the desired analyte. Consequently, important biochemical parameters, particularly those that manifest from oxidative damage to biological molecules, such as aggregated protein levels, have been notoriously difficult to image at the cellular or sub-cellular level. It has been hypothesized that reactive oxygen species (ROS) generated during ischemia and reperfusion facilitate protein aggregation, impairing neuronal protein homeostasis (i.e., decreasing protein synthesis) that in turn promotes neurodegeneration. Despite indirect evidence for this theory, direct measurements of morphology and ROS induced biochemical damage, such as increased protein aggregates and decreased protein synthesis, within the same neuron is lacking, due to the unavailability of a suitable imaging method. Our experimental approach has incorporated routine histology with novel wide-field synchrotron radiation Fourier transform infrared imaging (FTIRI) of the same neurons, ex vivo within brain tissue sections. The results demonstrate for the first time that increased protein aggregation and decreased levels of total protein occur in the same CA1 pyramidal neurons 1 day after global ischemia. Further, analysis of serial tissue sections using X-ray absorption spectroscopy at the sulfur K-edge has revealed that CA1 pyramidal neurons have increased disulfide levels, a direct indicator of oxidative stress, at this time point. These changes at 1 day after ischemia precede a massive increase in aggregated protein and disulfide levels concomitant with loss of neuron integrity 2 days after ischemia. Therefore, this study has provided direct support for a correlative mechanistic link in both spatial and temporal domains between oxidative stress, protein aggregation and altered protein homeostasis prior to irreparable neuron damage following global ischemia.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Shari E Smith
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Sally Caine
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
20
|
Hackett MJ, Aitken JB, El-Assaad F, McQuillan JA, Carter EA, Ball HJ, Tobin MJ, Paterson D, de Jonge MD, Siegele R, Cohen DD, Vogt S, Grau GE, Hunt NH, Lay PA. Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites. SCIENCE ADVANCES 2015; 1:e1500911. [PMID: 26824064 PMCID: PMC4730848 DOI: 10.1126/sciadv.1500911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Using a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe-free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies.
Collapse
Affiliation(s)
- Mark J. Hackett
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B. Aitken
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fatima El-Assaad
- Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - James A. McQuillan
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth A. Carter
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Helen J. Ball
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark J. Tobin
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - David Paterson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Martin D. de Jonge
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Rainer Siegele
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - David D. Cohen
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Georges E. Grau
- Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicholas H. Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A. Lay
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
AliMohammadi M, Eshraghian M, Zarindast MR, Aliaghaei A, Pishva H. Effects of creatine supplementation on learning, memory retrieval, and apoptosis in an experimental animal model of Alzheimer disease. Med J Islam Repub Iran 2015; 29:273. [PMID: 26793664 PMCID: PMC4715403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 01/07/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Alzheimer disease is the main cause of dementia in middle-aged and elderly people. Considering the improving effects of creatine supplementation on cognitive performance, this study aimed to determine the effects of creatine supplementation on learning, memory, and apoptosis in an experimental model of Alzheimer's disease. METHODS Thirty-two male Wistar rats each weighing 250±50 grams were divided into four groups. The AdCr+ (Aβ injection, creatine supplementation) and AdCr- groups (Aβ injection, no creatine supplementation) were injected bilaterally with amyloid beta (Aβ) (0.2μg in each CA1 area), and the sham group was injected with normal saline in the same area. After the injection, the AdCr+ group received a diet of 2% creatine for six weeks. The control group underwent no surgical or dietary intervention. After six weeks the Morris Water Maze (MWM) test was administered, to measure learning and memory retrieval. After sacrificing the animals, TUNEL staining for an anti-apoptosis assay was performed for the sham, AdCr+, and AdCr- groups. All groups were compared by independent ttest using SPSS software. RESULTS RESULTS of MWM show that rats in sham and control groups performed better than those in the AdCr- and AdCr+ groups. Compared to sham group, AdCr+ and AdCr- groups had more TUNEL positive neurons count. RESULTS indicated no differences between the AdCr+ and AdCrgroups in learning, memory retrieval, and percentage of TUNEL positive neurons. CONCLUSION After Aβ injection, creatine supplementation had no effect on learning, memory retrieval, or neuron apoptosis in male Wistar rats.
Collapse
Affiliation(s)
- Malek AliMohammadi
- 1 MSc graduated, Department of Cellular- Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Eshraghian
- 2 Professor, Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Zarindast
- 3 Professor, Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran, Iran.
| | - Abbas Aliaghaei
- 4 PhD student, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamideh Pishva
- 5 Assistant Professor, Department of Cellular, Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. ,(Corresponding author) Assistant Professor, Department of Cellular, Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Plaque-associated lipids in Alzheimer's diseased brain tissue visualized by nonlinear microscopy. Sci Rep 2015; 5:13489. [PMID: 26311128 PMCID: PMC4550829 DOI: 10.1038/srep13489] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
By simultaneous coherent anti-Stokes Raman scattering (CARS) and 2-photon fluorescence microscopy of Thioflavin-S stained Alzheimer´s diseased human brain tissues, we show evidence of lipid deposits co-localizing with fibrillar β-amyloid (Aβ) plaques. Two lipid morphologies can be observed; lamellar structures and coalescing macro-aggregates of sub-micron sizes to ~25 μm. No significant lipid deposits were observed in non-fibrillar, diffuse plaques identified by Aβ immuno-staining. CARS microscopy of unlabeled samples confirms the lamellar and macro-aggregate lipid morphologies. The composition of the plaques was analyzed by CARS microspectroscopy and Raman microscopy; vibrational signatures of lipids with long acyl chains co-localize with the β-sheet vibrations. The lipid fluidity was evaluated from the CARS spectra, illustrating that the lipid composition/organization varies throughout the plaques. Altogether this indicates close amyloid-lipid interplay in fibrillar Aβ plaques, rendering them more dynamic compositions than previously believed and, hence, potential sources of toxic oligomers.
Collapse
|
23
|
Hackett MJ, Britz CJ, Paterson PG, Nichol H, Pickering IJ, George GN. In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain. ACS Chem Neurosci 2015; 6:226-38. [PMID: 25350866 PMCID: PMC4372066 DOI: 10.1021/cn500157j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
Rapid advances in
imaging technologies have pushed novel spectroscopic
modalities such as Fourier transform infrared spectroscopy (FTIR)
and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the
forefront of direct in situ investigation of brain biochemistry. However,
few studies have examined the extent to which sample preparation artifacts
confound results. Previous investigations using traditional analyses,
such as tissue dissection, homogenization, and biochemical assay,
conducted extensive research to identify biochemical alterations that
occur ex vivo during sample preparation. In particular, altered metabolism
and oxidative stress may be caused by animal death. These processes
were a concern for studies using biochemical assays, and protocols
were developed to minimize their occurrence. In this investigation,
a similar approach was taken to identify the biochemical alterations
that are detectable by two in situ spectroscopic methods (FTIR, XAS)
that occur as a consequence of ischemic conditions created during
humane animal killing. FTIR and XAS are well suited to study markers
of altered metabolism such as lactate and creatine (FTIR) and markers
of oxidative stress such as aggregated proteins (FTIR) and altered
thiol redox (XAS). The results are in accordance with previous investigations
using biochemical assays and demonstrate that the time between animal
death and tissue dissection results in ischemic conditions that alter
brain metabolism and initiate oxidative stress. Therefore, future
in situ biospectroscopic investigations utilizing FTIR and XAS must
take into consideration that brain tissue dissected from a healthy
animal does not truly reflect the in vivo condition, but rather reflects
a state of mild ischemia. If studies require the levels of metabolites
(lactate, creatine) and markers of oxidative stress (thiol redox)
to be preserved as close as possible to the in vivo condition, then
rapid freezing of brain tissue via decapitation into liquid nitrogen,
followed by chiseling the brain out at dry ice temperatures is required.
Collapse
Affiliation(s)
- Mark J. Hackett
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Carter J. Britz
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Phyllis G. Paterson
- College
of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Helen Nichol
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ingrid J. Pickering
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N. George
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
24
|
Findlay CR, Wiens R, Rak M, Sedlmair J, Hirschmugl CJ, Morrison J, Mundy CJ, Kansiz M, Gough KM. Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA. Analyst 2015; 140:2493-503. [DOI: 10.1039/c4an01982b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel high spatial resolution (1 × 1 μm pixel) FTIR imaging with commercial benchtop instrument yields data comparable to that from synchrotron sources.
Collapse
Affiliation(s)
- C. R. Findlay
- Department of Chemistry
- University of Manitoba
- Winnipeg MB
- Canada R3T2N2
| | - R. Wiens
- Department of Chemistry
- University of Manitoba
- Winnipeg MB
- Canada R3T2N2
| | - M. Rak
- Department of Chemistry
- University of Manitoba
- Winnipeg MB
- Canada R3T2N2
| | - J. Sedlmair
- Physics Department
- University of Wisconsin-Milwaukee
- USA
| | | | - Jason Morrison
- Department of Biosystems Engineering
- University of Manitoba
- Winnipeg MB
- Canada R3T2N2
| | - C. J. Mundy
- Centre for Earth Observation Science
- Department of Environment and Geography
- University of Manitoba
- Winnipeg MB
- Canada
| | - M. Kansiz
- Agilent Technologies Pty Ltd
- Mulgrave
- Australia
| | - K. M. Gough
- Department of Chemistry
- University of Manitoba
- Winnipeg MB
- Canada R3T2N2
| |
Collapse
|
25
|
Yaseen Z, Rehman SU, Tabish M, Shalla AH, Kabir-ud-Din KUD. Modulation of bovine serum albumin fibrillation by ester bonded and conventional gemini surfactants. RSC Adv 2015. [DOI: 10.1039/c5ra08923a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of bovine serum albumin fibrillation by gemini surfactants.
Collapse
Affiliation(s)
- Zahid Yaseen
- Department of Chemistry
- Islamic University of Science and Technology
- Pulwama 192122
- India
| | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Aabid H. Shalla
- Department of Chemistry
- Islamic University of Science and Technology
- Pulwama 192122
- India
| | | |
Collapse
|
26
|
Yu W, Bonnet M, Farso M, Ma K, Chabot JG, Martin E, Torriglia A, Guan Z, McLaurin J, Quirion R, Krantic S. The expression of apoptosis inducing factor (AIF) is associated with aging-related cell death in the cortex but not in the hippocampus in the TgCRND8 mouse model of Alzheimer's disease. BMC Neurosci 2014; 15:73. [PMID: 24915960 PMCID: PMC4070095 DOI: 10.1186/1471-2202-15-73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence has suggested that Alzheimer's disease (AD)-associated neuronal loss may occur via the caspase-independent route of programmed cell death (PCD) in addition to caspase-dependent mechanisms. However, the brain region specificity of caspase-independent PCD in AD-associated neurodegeneration is unknown. We therefore used the transgenic CRND8 (TgCRND8) AD mouse model to explore whether the apoptosis inducing factor (AIF), a key mediator of caspase-independent PCD, contributes to cell loss in selected brain regions in the course of aging. RESULTS Increased expression of truncated AIF (tAIF), which is directly responsible for cell death induction, was observed at both 4- and 6-months of age in the cortex. Concomitant with the up-regulation of tAIF was an increase in the nuclear translocation of this protein. Heightened tAIF expression or translocation was not observed in the hippocampus or cerebellum, which were used as AD-vulnerable and relatively AD-spared regions, respectively. The cortical alterations in tAIF levels were accompanied by increased Bax expression and mitochondrial translocation. This effect was preceded by a significant reduction in ATP content and an increase in reactive oxygen species (ROS) production, detectable at 2 months of age despite negligible amounts of amyloid-beta peptides (Aβ). CONCLUSIONS Taken together, these data suggest that AIF is likely to play a region-specific role in AD-related caspase-independent PCD, which is consistent with aging-associated mitochondrial impairment and oxidative stress.
Collapse
Affiliation(s)
- Wenfeng Yu
- Key laboratory of Molecular Biology, Guiyang Medical University, Guiyang 550004, China
- Department of Psychiatry, Douglas Mental Health University Institute (DMHUI), McGill University, Verdun Montréal, Québec H4H 1R3, Canada
| | - Mathilde Bonnet
- Department of Psychiatry, Douglas Mental Health University Institute (DMHUI), McGill University, Verdun Montréal, Québec H4H 1R3, Canada
| | - Mark Farso
- Department of Psychiatry, Douglas Mental Health University Institute (DMHUI), McGill University, Verdun Montréal, Québec H4H 1R3, Canada
| | - Keran Ma
- Department Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jean-Guy Chabot
- Department of Psychiatry, Douglas Mental Health University Institute (DMHUI), McGill University, Verdun Montréal, Québec H4H 1R3, Canada
| | | | | | - Zhizhong Guan
- Key laboratory of Molecular Biology, Guiyang Medical University, Guiyang 550004, China
- Department of Pathology in the Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China
| | - JoAnne McLaurin
- Department Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rémi Quirion
- Department of Psychiatry, Douglas Mental Health University Institute (DMHUI), McGill University, Verdun Montréal, Québec H4H 1R3, Canada
| | - Slavica Krantic
- Department of Psychiatry, Douglas Mental Health University Institute (DMHUI), McGill University, Verdun Montréal, Québec H4H 1R3, Canada
- Centre de Recherche des Cordeliers, UMRS872, Paris, France
| |
Collapse
|
27
|
Liao CR, Rak M, Lund J, Unger M, Platt E, Albensi BC, Hirschmugl CJ, Gough KM. Synchrotron FTIR reveals lipid around and within amyloid plaques in transgenic mice and Alzheimer's disease brain. Analyst 2013; 138:3991-7. [PMID: 23586070 DOI: 10.1039/c3an00295k] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While the basis of neuronal degeneration in Alzheimer's disease (AD) continues to be debated, the amyloid cascade hypothesis remains central. Amyloid plaques are a required pathological marker for post mortem diagnosis, and Aβ peptide is regarded by most as a critical trigger at the very least. We present spectrochemical image analysis of brain tissue sections obtained with the mid-infrared beamline IRENI (InfraRed ENvironmental Imaging, Synchrotron Radiation Center, U Wisconsin-Madison), where the pixel resolution of 0.54 × 0.54 µm(2) permits analysis at sub-cellular dimensions. Spectrochemical images of dense core plaque found in hippocampus and cortex sections of two transgenic mouse models of AD (TgCRND8 and 3×Tg) are compared with plaque images from a 91 year old apoE43 human AD case. Spectral analysis was done in conjunction with histochemical stains of serial sections. A lipid membrane-like spectral signature surrounded and infiltrated the dense core plaques in all cases. Remarkable compositional similarities in early stage plaques suggest similar routes to plaque formation, regardless of genetic predisposition or mammalian origin.
Collapse
Affiliation(s)
- Catherine R Liao
- Department of Chemistry, University of Manitoba, 360 Parker Building,144 Dysart Road, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Chembiochem 2013; 14:1692-704. [PMID: 23983094 DOI: 10.1002/cbic.201300262] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is the most common of the protein misfolding ("amyloid") diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so-called amyloid β-peptides (Aβ peptides): fragments of the amyloid precursor protein of 39-43 residues in length. This review focuses on biophysical studies of the Aβ peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of Aβ with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high-resolution and solid-state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of Aβ peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the Aβ peptides and the prion protein, where the latter is involved in other protein misfolding diseases.
Collapse
Affiliation(s)
- Sebastian Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91 Stockholm (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abelein A, Kaspersen JD, Nielsen SB, Jensen GV, Christiansen G, Pedersen JS, Danielsson J, Otzen DE, Gräslund A. Formation of dynamic soluble surfactant-induced amyloid β peptide aggregation intermediates. J Biol Chem 2013; 288:23518-28. [PMID: 23775077 DOI: 10.1074/jbc.m113.470450] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intermediate amyloidogenic states along the amyloid β peptide (Aβ) aggregation pathway have been shown to be linked to neurotoxicity. To shed more light on the different structures that may arise during Aβ aggregation, we here investigate surfactant-induced Aβ aggregation. This process leads to co-aggregates featuring a β-structure motif that is characteristic for mature amyloid-like structures. Surfactants induce secondary structure in Aβ in a concentration-dependent manner, from predominantly random coil at low surfactant concentration, via β-structure to the fully formed α-helical state at high surfactant concentration. The β-rich state is the most aggregation-prone as monitored by thioflavin T fluorescence. Small angle x-ray scattering reveals initial globular structures of surfactant-Aβ co-aggregated oligomers and formation of elongated fibrils during a slow aggregation process. Alongside this slow (minutes to hours time scale) fibrillation process, much faster dynamic exchange (k(ex) ∼1100 s(-1)) takes place between free and co-aggregate-bound peptide. The two hydrophobic segments of the peptide are directly involved in the chemical exchange and interact with the hydrophobic part of the co-aggregates. Our findings suggest a model for surfactant-induced aggregation where free peptide and surfactant initially co-aggregate to dynamic globular oligomers and eventually form elongated fibrils. When interacting with β-structure promoting substances, such as surfactants, Aβ is kinetically driven toward an aggregation-prone state.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hackett MJ, Lee J, El-Assaad F, McQuillan JA, Carter EA, Grau GE, Hunt NH, Lay PA. FTIR imaging of brain tissue reveals crystalline creatine deposits are an ex vivo marker of localized ischemia during murine cerebral malaria: general implications for disease neurochemistry. ACS Chem Neurosci 2012; 3:1017-24. [PMID: 23259037 DOI: 10.1021/cn300093g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/11/2012] [Indexed: 12/13/2022] Open
Abstract
Phosphocreatine is a major cellular source of high energy phosphates, which is crucial to maintain cell viability under conditions of impaired metabolic states, such as decreased oxygen and energy availability (i.e., ischemia). Many methods exist for the bulk analysis of phosphocreatine and its dephosphorylated product creatine; however, no method exists to image the distribution of creatine or phosphocreatine at the cellular level. In this study, Fourier transform infrared (FTIR) spectroscopic imaging has revealed the ex vivo development of creatine microdeposits in situ in the brain region most affected by the disease, the cerebellum of cerebral malaria (CM) diseased mice; however, such deposits were also observed at significantly lower levels in the brains of control mice and mice with severe malaria. In addition, the number of deposits was observed to increase in a time-dependent manner during dehydration post tissue cutting. This challenges the hypotheses in recent reports of FTIR spectroscopic imaging where creatine microdeposits found in situ within thin sections from epileptic, Alzheimer's (AD), and amlyoid lateral sclerosis (ALS) diseased brains were proposed to be disease specific markers and/or postulated to contribute to the brain pathogenesis. As such, a detailed investigation was undertaken, which has established that the creatine microdeposits exist as the highly soluble HCl salt or zwitterion and are an ex-vivo tissue processing artifact and, hence, have no effect on disease pathogenesis. They occur as a result of creatine crystallization during dehydration (i.e., air-drying) of thin sections of brain tissue. As ischemia and decreased aerobic (oxidative metabolism) are common to many brain disorders, regions of elevated creatine-to-phosphocreatine ratio are likely to promote crystal formation during tissue dehydration (due to the lower water solubility of creatine relative to phosphocreatine). The results of this study have demonstrated that although the deposits do not occur in vivo, and do not directly play any role in disease pathogenesis, increased levels of creatine deposits within air-dried tissue sections serve as a highly valuable marker for the identification of tissue regions with an altered metabolic status. In this study, the location of crystalline creatine deposits were used to identify whether an altered metabolic state exists within the molecular and granular layers of the cerebellum during CM, which complements the recent discovery of decreased oxygen availability in the brain during this disease.
Collapse
Affiliation(s)
- Mark J. Hackett
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Joonsup Lee
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | - Peter A. Lay
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Liu S, Fu R, Cheng X, Chen SP, Zhou LH. Exploring the binding of BACE-1 inhibitors using comparative binding energy analysis (COMBINE). BMC STRUCTURAL BIOLOGY 2012; 12:21. [PMID: 22925713 PMCID: PMC3533579 DOI: 10.1186/1472-6807-12-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 08/03/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND The inhibition of the activity of β-secretase (BACE-1) is a potentially important approach for the treatment of Alzheimer disease. To explore the mechanism of inhibition, we describe the use of 46 X-ray crystallographic BACE-1/inhibitor complexes to derive quantitative structure-activity relationship (QSAR) models. The inhibitors were aligned by superimposing 46 X-ray crystallographic BACE-1/inhibitor complexes, and gCOMBINE software was used to perform COMparative BINding Energy (COMBINE) analysis on these 46 minimized BACE-1/inhibitor complexes. The major advantage of the COMBINE analysis is that it can quantitatively extract key residues involved in binding the ligand and identify the nature of the interactions between the ligand and receptor. RESULTS By considering the contributions of the protein residues to the electrostatic and van der Waals intermolecular interaction energies, two predictive and robust COMBINE models were developed: (i) the 3-PC distance-dependent dielectric constant model (built from a single X-ray crystal structure) with a q2 value of 0.74 and an SDEC value of 0.521; and (ii) the 5-PC sigmoidal electrostatic model (built from the actual complexes present in the Brookhaven Protein Data Bank) with a q2 value of 0.79 and an SDEC value of 0.41. CONCLUSIONS These QSAR models and the information describing the inhibition provide useful insights into the design of novel inhibitors via the optimization of the interactions between ligands and those key residues of BACE-1.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Rao Fu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Xiao Cheng
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Sheng-Ping Chen
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
32
|
Maulik M, Ghoshal B, Kim J, Wang Y, Yang J, Westaway D, Kar S. Mutant human APP exacerbates pathology in a mouse model of NPC and its reversal by a β-cyclodextrin. Hum Mol Genet 2012; 21:4857-75. [PMID: 22869680 DOI: 10.1093/hmg/dds322] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick type C (NPC) disease, an autosomal recessive disorder caused primarily by loss-of-function mutations in NPC1 gene, is characterized neuropathologically by intracellular cholesterol accumulation, gliosis and neuronal loss in selected brain regions. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease (AD), including the presence of tau-positive neurofibrillary tangles (NFTs) and β-amyloid (Aβ)-related peptides in vulnerable brain regions. Since enhanced cholesterol level, which acts as a risk factor for AD, can increase Aβ production by regulating amyloid precursor protein (APP) metabolism, it is possible that APP overexpression can influence cholesterol-regulated NPC pathology. We have addressed this issue in a novel bigenic mice (ANPC) generated by crossing heterozygous Npc1-deficient mice with mutant human APP transgenic mice. These mice exhibited decreased lifespan, early object memory and motor impairments, and exacerbated glial pathology compared with other littermates. Neurodegeneration observed in the cerebellum of ANPC mice was found to be accelerated along with a selective increase in the phosphorylation/cleavage of tau protein. Additionally, enhanced levels/activity of cytosolic cathepsin D together with cytochrome c and Bcl-2-associated X protein suggest a role for the lysosomal enzyme in the caspase-induced degeneration of neurons in ANPC mice. The reversal of cholesterol accretion by 2-hydroxypropyl-β-cyclodextrin (2-HPC) treatment increased longevity and attenuated behavioral/pathological abnormalities in ANPC mice. Collectively, our results reveal that overexpression of APP in Npc1-deficient mice can negatively influence longevity and a wide spectrum of behavioral/neuropathological abnormalities, thus raising the possibility that APP and NPC1 may interact functionally to regulate the development of AD and NPC pathologies.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Mattson EC, Nasse MJ, Rak M, Gough KM, Hirschmugl CJ. Restoration and Spectral Recovery of Mid-Infrared Chemical Images. Anal Chem 2012; 84:6173-80. [DOI: 10.1021/ac301080h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric C. Mattson
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211,
United States
| | - Michael J. Nasse
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211,
United States
- Synchrotron
Radiation Center,
University of Wisconsin, Wisconsin 53589,
United States
| | - Margaret Rak
- Department
of Chemistry, University of Manitoba, Winnipeg,
Canada, R3T 2N2
| | - Kathleen M. Gough
- Department
of Chemistry, University of Manitoba, Winnipeg,
Canada, R3T 2N2
| | - Carol J. Hirschmugl
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211,
United States
| |
Collapse
|
34
|
Caine S, Heraud P, Tobin MJ, McNaughton D, Bernard CC. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. Neuroimage 2012; 59:3624-40. [DOI: 10.1016/j.neuroimage.2011.11.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 12/13/2022] Open
|
35
|
Kastyak-Ibrahim MZ, Nasse MJ, Rak M, Hirschmugl C, Del Bigio MR, Albensi BC, Gough KM. Biochemical label-free tissue imaging with subcellular-resolution synchrotron FTIR with focal plane array detector. Neuroimage 2011; 60:376-83. [PMID: 22197789 DOI: 10.1016/j.neuroimage.2011.11.069] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/13/2022] Open
Abstract
The critical questions into the cause of neural degeneration, in Alzheimer disease and other neurodegenerative disorders, are closely related to the question of why certain neurons survive. Answers require detailed understanding of biochemical changes in single cells. Fourier transform infrared microspectroscopy is an excellent tool for biomolecular imaging in situ, but resolution is limited. The mid-infrared beamline IRENI (InfraRed ENvironmental Imaging) at the Synchrotron Radiation Center, University of Wisconsin-Madison, enables label-free subcellular imaging and biochemical analysis of neurons with an increase of two orders of magnitude in pixel spacing over current systems. With IRENI's capabilities, it is now possible to study changes in individual neurons in situ, and to characterize their surroundings, using only the biochemical signatures of naturally-occurring components in unstained, unfixed tissue. We present examples of analyses of brain from two transgenic mouse models of Alzheimer disease (TgCRND8 and 3xTg) that exhibit different features of pathogenesis. Data processing on spectral features for nuclei reveals individual hippocampal neurons, and neurons located in the proximity of amyloid plaque in TgCRND8 mouse. Elevated lipids are detected surrounding and, for the first time, within the dense core of amyloid plaques, offering support for inflammatory and aggregation roles. Analysis of saturated and unsaturated fatty acid ester content in retina allows characterization of neuronal layers. IRENI images also reveal spatially-resolved data with unprecedented clarity and distinct spectral variation, from sub-regions including photoreceptors, neuronal cell bodies and synapses in sections of mouse retina. Biochemical composition of retinal layers can be used to study changes related to disease processes and dietary modification.
Collapse
Affiliation(s)
- M Z Kastyak-Ibrahim
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | | | | | |
Collapse
|
36
|
High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 2011; 8:413-6. [PMID: 21423192 DOI: 10.1038/nmeth.1585] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/22/2011] [Indexed: 02/06/2023]
Abstract
Conventional Fourier-transform infrared (FTIR) microspectroscopic systems are limited by an inevitable trade-off between spatial resolution, acquisition time, signal-to-noise ratio (SNR) and sample coverage. We present an FTIR imaging approach that substantially extends current capabilities by combining multiple synchrotron beams with wide-field detection. This advance allows truly diffraction-limited high-resolution imaging over the entire mid-infrared spectrum with high chemical sensitivity and fast acquisition speed while maintaining high-quality SNR.
Collapse
|