1
|
Riccardi F, Tangredi C, Dal Bo M, Toffoli G. Targeted therapy for multiple myeloma: an overview on CD138-based strategies. Front Oncol 2024; 14:1370854. [PMID: 38655136 PMCID: PMC11035824 DOI: 10.3389/fonc.2024.1370854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological disease characterized by the uncontrolled growth of plasma cells primarily in the bone marrow. Although its treatment consists of the administration of combined therapy regimens mainly based on immunomodulators and proteosome inhibitors, MM remains incurable, and most patients suffer from relapsed/refractory disease with poor prognosis and survival. The robust results achieved by immunotherapy targeting MM-associated antigens CD38 and CD319 (also known as SLAMF7) have drawn attention to the development of new immune-based strategies and different innovative compounds in the treatment of MM, including new monoclonal antibodies, antibody-drug conjugates, recombinant proteins, synthetic peptides, and adaptive cellular therapies. In this context, Syndecan1 (CD138 or SDC1), a transmembrane heparan sulfate proteoglycan that is upregulated in malignant plasma cells, has gained increasing attention in the panorama of MM target antigens, since its key role in MM tumorigenesis, progression and aggressiveness has been largely reported. Here, our aim is to provide an overview of the most important aspects of MM disease and to investigate the molecular functions of CD138 in physiologic and malignant cell states. In addition, we will shed light on the CD138-based therapeutic approaches currently being tested in preclinical and/or clinical phases in MM and discuss their properties, mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Carmela Tangredi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
2
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Dunphy K, Bazou D, Henry M, Meleady P, Miettinen JJ, Heckman CA, Dowling P, O’Gorman P. Proteomic and Metabolomic Analysis of Bone Marrow and Plasma from Patients with Extramedullary Multiple Myeloma Identifies Distinct Protein and Metabolite Signatures. Cancers (Basel) 2023; 15:3764. [PMID: 37568580 PMCID: PMC10417544 DOI: 10.3390/cancers15153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy of plasma cells in the bone marrow. In rare cases, an aggressive form of MM called extramedullary multiple myeloma (EMM) develops, where myeloma cells enter the bloodstream and colonise distal organs or soft tissues. This variant is associated with refractoriness to conventional therapies and a short overall survival. The molecular mechanisms associated with EMM are not yet fully understood. Here, we analysed the proteome of bone marrow mononuclear cells and blood plasma from eight patients (one serial sample) with EMM and eight patients without extramedullary spread. The patients with EMM had a significantly reduced overall survival with a median survival of 19 months. Label-free mass spectrometry revealed 225 proteins with a significant differential abundance between bone marrow mononuclear cells (BMNCs) isolated from patients with MM and EMM. This plasma proteomics analysis identified 22 proteins with a significant differential abundance. Three proteins, namely vascular cell adhesion molecule 1 (VCAM1), pigment epithelium derived factor (PEDF), and hepatocyte growth factor activator (HGFA), were verified as the promising markers of EMM, with the combined protein panel showing excellent accuracy in distinguishing EMM patients from MM patients. Metabolomic analysis revealed a distinct metabolite signature in EMM patient plasma compared to MM patient plasma. The results provide much needed insight into the phenotypic profile of EMM and in identifying promising plasma-derived markers of EMM that may inform novel drug development strategies.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, Maynooth University, W23 F2K8 Kildare, Ireland;
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland; (D.B.); (P.O.)
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland; (M.H.); (P.M.)
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland; (M.H.); (P.M.)
| | - Juho J. Miettinen
- Institute for Molecular Medicine Finland-FIMM, HiLIFE–Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00290 Helsinki, Finland; (J.J.M.); (C.A.H.)
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE–Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00290 Helsinki, Finland; (J.J.M.); (C.A.H.)
| | - Paul Dowling
- Department of Biology, Maynooth University, W23 F2K8 Kildare, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland; (D.B.); (P.O.)
| |
Collapse
|
4
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
5
|
Garishah FM, Boahen CK, Vadaq N, Pramudo SG, Tunjungputri RN, Riswari SF, van Rij RP, Alisjahbana B, Gasem MH, van der Ven AJAM, de Mast Q. Longitudinal proteomic profiling of the inflammatory response in dengue patients. PLoS Negl Trop Dis 2023; 17:e0011041. [PMID: 36595532 PMCID: PMC9838874 DOI: 10.1371/journal.pntd.0011041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/13/2023] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The immunopathogenesis of dengue virus (DENV) infection remains incompletely understood. To increase our understanding of inflammatory response in non-severe dengue, we assessed longitudinal changes in the inflammatory proteome in patients with an acute DENV infection. METHODS Using a multiplex proximity extension assay (PEA), we measured relative levels of 368 inflammatory markers in plasma samples from hospitalized patients with non-severe DENV infection in the acute (n = 43) and convalescence (n = 35) phase of the infection and samples of healthy controls (n = 10). RESULTS We identified 203 upregulated and 39 downregulated proteins in acute versus convalescent plasma samples. The upregulated proteins had a strong representation of interferon (IFN) and IFN-inducible effector proteins, cytokines (e.g. IL-10, IL-33) and cytokine receptors, chemokines, pro-apoptotic proteins (e.g. granzymes) and endothelial markers. A number of differentially expressed proteins (DEPs) have not been reported in previous studies. Functional network analysis highlighted a central role for IFNγ, IL-10, IL-33 and chemokines. We identified different novel associations between inflammatory proteins and circulating concentrations of the endothelial glycocalyx disruption surrogate marker syndecan-1. Conclusion: This unbiased proteome analysis provides a comprehensive insight in the inflammatory response in DENV infection and its association with glycocalyx disruption.
Collapse
Affiliation(s)
- Fadel Muhammad Garishah
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Collins K. Boahen
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Setyo G. Pramudo
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Department of Internal Medicine, William Booth Hospital, Semarang, Indonesia
| | - Rahajeng N. Tunjungputri
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - André J. A. M. van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
7
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Hayashida K, Aquino RS, Park PW. Coreceptor Functions of Cell Surface Heparan Sulfate Proteoglycans. Am J Physiol Cell Physiol 2022; 322:C896-C912. [PMID: 35319900 PMCID: PMC9109798 DOI: 10.1152/ajpcell.00050.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor-ligand interactions play an important role in many biological processes by triggering specific cellular responses. These interactions are frequently regulated by coreceptors that facilitate, alter, or inhibit signaling. Coreceptors work in parallel with other specific and accessory molecules to coordinate receptor-ligand interactions. Cell surface heparan sulfate proteoglycans (HSPGs) function as unique coreceptors because they can bind to many ligands and receptors through their HS and core protein motifs. Cell surface HSPGs are typically expressed in abundance of the signaling receptors and, thus, are capable of mediating the initial binding of ligands to the cell surface. HSPG coreceptors do not possess kinase domains or intrinsic enzyme activities and, for the most part, binding to cell surface HSPGs does not directly stimulate intracellular signaling. Because of these features, cell surface HSPGs primarily function as coreceptors for many receptor-ligand interactions. Given that cell surface HSPGs are widely conserved, they likely serve fundamental functions to preserve basic physiological processes. Indeed, cell surface HSPGs can support specific cellular interactions with growth factors, morphogens, chemokines, extracellular matrix (ECM) components, and microbial pathogens and their secreted virulence factors. Through these interactions, HSPG coreceptors regulate cell adhesion, proliferation, migration and differentiation, and impact the onset, progression, and outcome of pathophysiological processes, such as development, tissue repair, inflammation, infection, and tumorigenesis. This review seeks to provide an overview of the various mechanisms of how cell surface HSPGs function as coreceptors.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Rafael S Aquino
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
10
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
11
|
Nadanaka S, Bai Y, Kitagawa H. Cleavage of Syndecan-1 Promotes the Proliferation of the Basal-Like Breast Cancer Cell Line BT-549 Via Akt SUMOylation. Front Cell Dev Biol 2021; 9:659428. [PMID: 34113616 PMCID: PMC8185021 DOI: 10.3389/fcell.2021.659428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Basal-like breast cancer is characterized by an aggressive clinical outcome and presence of metastasis, for which effective therapies are unavailable. We have previously shown that chondroitin 4-O-sulfotransferase-1 (C4ST-1) controls the invasive properties of the basal-like breast cancer cell line BT-549 by inducing matrix metalloproteinase (MMP) expression through the N-cadherin/β-catenin pathway. Here we report that C4ST-1 controls the proliferation of BT-549 cells via the MMP-dependent cleavage of syndecan-1. Syndecan-1 is a membrane-bound proteoglycan associated with an aggressive phenotype and poor prognosis in breast cancer. In addition, the cleavage of syndecan-1 at a specific juxtamembrane cleavage site is implicated in the pathophysiological response in breast cancer. Knockout of C4ST-1 remarkably suppressed both the cleavage of syndecan-1 and proliferation of BT-549 cells. Kinases (AKT1, ERK1/2, PI3K, and STAT3) comprising cancer proliferative pathways are phosphorylated in C4ST-1 knockout cells at a level similar to that in parental BT-549 cells, whereas levels of phosphorylated S6 kinase and SUMOylated AKT (hyperactivated AKT observed in breast cancer) decreased in C4ST-1 knockout cells. An MMP inhibitor, GM6001, suppressed the small ubiquitin-like modifier (SUMO) modification of AKT, suggesting that cleavage of syndecan-1 by MMPs is involved in the SUMO modification of AKT. Forced expression of the cytoplasmic domain of syndecan-1, which is generated by MMP-dependent cleavage, increased the SUMO modification of AKT and global protein SUMOylation. Furthermore, syndecan-1 C-terminal domain-expressing BT-549 cells were more proliferative and sensitive to a potent SUMOylation inhibitor, tannic acid, compared with BT-549 cells transfected with an empty expression vector. These findings assign new functions to the C-terminal fragment of syndecan-1 generated by MMP-dependent proteolysis, thereby broadening our understanding of their physiological importance and implying that the therapeutic inhibition of syndecan-1 cleavage could affect the progression of basal-like breast cancer.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yaqiang Bai
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
12
|
Computational Investigation Identified Potential Chemical Scaffolds for Heparanase as Anticancer Therapeutics. Int J Mol Sci 2021; 22:ijms22105311. [PMID: 34156395 PMCID: PMC8157885 DOI: 10.3390/ijms22105311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.
Collapse
|
13
|
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Takao T, Adachi J, Tomonaga T, Nonomura N. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci 2021; 112:2033-2045. [PMID: 33721374 PMCID: PMC8088963 DOI: 10.1111/cas.14881] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomic analysis of urinary extracellular vesicles (EVs) is a powerful approach to discover potential bladder cancer (BCa) biomarkers, however urine contains numerous EVs derived from the kidney and normal urothelial epithelium, which can obfuscate information related to BCa cell-derived EVs. In this study, we combined proteomic analysis of urinary EVs and tissue-exudative EVs (Te-EVs), which were isolated from culture medium of freshly resected viable BCa tissues. Urinary EVs were isolated from urine samples of 11 individuals (7 BCa patients and 4 healthy individuals), and Te-EVs were isolated from 7 BCa tissues. We performed tandem mass tag (TMT)-labeling liquid chromatography (LC-MS/MS) analysis for both urinary EVs and Te-EVs and identified 1960 proteins in urinary EVs and 1538 proteins in Te-EVs. Most of the proteins identified in Te-EVs were also present in urinary EVs (82.4%), with 55 of these proteins showing upregulated levels in the urine of BCa patients (fold change > 2.0; P < .1). Among them, we selected 22 membrane proteins as BCa biomarker candidates for validation using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis on urine samples from 70 individuals (40 BCa patients and 30 healthy individuals). Six urinary EV proteins (heat-shock protein 90, syndecan-1, myristoylated alanine-rich C-kinase substrate (MARCKS), MARCKS-related protein, tight junction protein ZO-2, and complement decay-accelerating factor) were quantified using SRM/MRM analysis and validated as significantly upregulated in BCa patients (P < .05). In conclusion, the novel strategy that combined proteomic analysis of urinary EVs and Te-EVs enabled selective detection of urinary BCa biomarkers.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kyosuke Matsuzaki
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of UrologyKindai University Faculty of MedicineSayamaJapan
| | - Takashi Shiromizu
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular PhysiologyOsaka University Graduate School of Pharmaceutical SciencesSuitaJapan
| | - Yoko Koh
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Matsushita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kosuke Nakano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yujiro Hayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Cong Wang
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yu Ishizuya
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koji Hatano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Atsunari Kawashima
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Ujike
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Motohide Uemura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Tetsuya Takao
- Department of UrologyOsaka General Medical CenterOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
14
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
15
|
Ren Z, Spaargaren M, Pals ST. Syndecan-1 and stromal heparan sulfate proteoglycans: key moderators of plasma cell biology and myeloma pathogenesis. Blood 2021; 137:1713-1718. [PMID: 33512430 PMCID: PMC8405055 DOI: 10.1182/blood.2020008188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Plasma cells no longer express a B-cell antigen receptor and are hence deprived of signals crucial for survival throughout B-cell development. Instead, normal plasma cells, as well as their malignant myeloma counterparts, heavily rely on communication with the bone marrow (BM) microenvironment for survival. The plasma cell heparan sulfate proteoglycan (HSPG) syndecan-1 (CD138) and HSPGs in the BM microenvironment act as master regulators of this communication by co-opting specific growth and survival factors from the BM niche. This designates syndecan-1/HSPGs and their synthesis machinery as potential treatment targets in multiple myeloma.
Collapse
Affiliation(s)
- Zemin Ren
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE (Lymphoma and Myeloma Care and Research), Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE (Lymphoma and Myeloma Care and Research), Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE (Lymphoma and Myeloma Care and Research), Amsterdam, The Netherlands
| |
Collapse
|
16
|
Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci 2020; 77:5059-5077. [PMID: 32462405 PMCID: PMC7252873 DOI: 10.1007/s00018-020-03559-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-β-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
18
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
19
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
20
|
Tsubaki M, Seki S, Takeda T, Chihara A, Arai Y, Morii Y, Imano M, Satou T, Shimomura K, Nishida S. The HGF/Met/NF-κB Pathway Regulates RANKL Expression in Osteoblasts and Bone Marrow Stromal Cells. Int J Mol Sci 2020; 21:ijms21217905. [PMID: 33114380 PMCID: PMC7663721 DOI: 10.3390/ijms21217905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM)-induced bone disease occurs through hyperactivation of osteoclasts by several factors secreted by MM cells. MM cell-secreted factors induce osteoclast differentiation and activation via direct and indirect actions including enhanced expression of receptor activator of nuclear factor κB ligand (RANKL) in osteoblasts and bone marrow stromal cells (BMSCs). Hepatocyte growth factor (HGF) is elevated in MM patients and is associated with MM-induced bone disease, although the mechanism by which HGF promotes bone disease remains unclear. In the present study, we demonstrated that HGF induces RANKL expression in osteoblasts and BMSCs, and investigated the mechanism of induction. We found that HGF and MM cell supernatants induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. In addition, HGF increased phosphorylation of Met and nuclear factor κB (NF-κB) in ST2 cells, MC3T3-E1 cells, or mouse BMSCs. Moreover, Met and NF-κB inhibitors suppressed HGF-induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. These results indicated that HGF promotes RANKL expression in osteoblasts and BMSCs via the Met/NF-κB signaling pathway, and Met and NF-κB inhibitors suppressed HGF-induced RANKL expression. Our findings suggest that Met and NF-κB inhibitors are potentially useful in mitigating MM-induced bone disease in patients expressing high levels of HGF.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Akiko Chihara
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Yuuko Arai
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
- Department of Pharmacy, Municipal Ikeda Hospital, Ikeda 563-0025, Japan;
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Kazunori Shimomura
- Department of Pharmacy, Municipal Ikeda Hospital, Ikeda 563-0025, Japan;
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (S.S.); (T.T.); (A.C.); (Y.A.); (Y.M.)
- Correspondence: ; Tel.: +81-6-6721-2332
| |
Collapse
|
21
|
Konala VBR, Bhonde R, Pal R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency. In Vitro Cell Dev Biol Anim 2020; 56:689-700. [PMID: 33006709 DOI: 10.1007/s11626-020-00501-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stromal cells (MSCs) are currently the leading candidate for cell-based therapeutics. While the use of MSCs in transplantation therapies is widely expanding, still, there is a lot of scope for better understanding of the mechanisms underlying their effects. We have generated MSCs from pre- and post-natal human tissue sources such as Wharton's jelly (WJ), stem cells from human exfoliated deciduous teeth (SHED), and bone marrow (BM). We then expanded, banked, and characterized them based on morphology, growth kinetics, senescence, immunophenotype, gene expression, and secretion of growth factors. Although the immunophenotype was very similar across MSCs from the three types of donor tissues, they showed minor variations in their growth kinetics. Further, a higher percentage of senescent cells were observed in BM-MSCs than in WJ-MSCs and SHED. Gene expression analysis showed the increased expression of INF-γ, PDGFA, VEGF, IL10, and SDF in SHED over WJ-MSC and BM-MSC. Comparative secretome profiling by ELISA demonstrated the presence of FGF-2, IL-10, PDGF, SDF-1, Ang-1, TGF-β3, HGF, INF-γ, VEGF, and IL-6 in cell culture supernatants. Based on our findings, WJ-MSC and SHED appear more potent than BM-MSC for managing inflammation, immunomodulation, angiogenesis, fibrosis, and scarring. Due to widespread application of MSCs in cell replacement therapy, these subtle differences need to be taken into consideration while designing stem cell-based clinical trials.
Collapse
Affiliation(s)
- Vijay Bhaskar Reddy Konala
- Department of Marine-Biotechnology, AMET University, Kanathur, Chennai, 600040, India
- Genes & Life Health Care Pvt. Ltd., Punjagutta, Hyderabad, 500082, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| | - Rajarshi Pal
- Department of Marine-Biotechnology, AMET University, Kanathur, Chennai, 600040, India.
| |
Collapse
|
22
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
23
|
Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochem Pharmacol 2020; 178:114084. [DOI: 10.1016/j.bcp.2020.114084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
24
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
25
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
26
|
Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. PLoS Pathog 2020; 16:e1008497. [PMID: 32453780 PMCID: PMC7274463 DOI: 10.1371/journal.ppat.1008497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/05/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Molecular and cell-based studies suggest that HSPG-pathogen interactions promote pathogenesis by facilitating microbial attachment and invasion of host cells. However, the specific identity of HSPGs, precise mechanisms by which HSPGs promote pathogenesis, and the in vivo relevance of HSPG-pathogen interactions remain to be determined. HSPGs also modulate host responses to tissue injury and inflammation, but functions of HSPGs other than facilitating microbial attachment and internalization are understudied in infectious disease. Here we examined the role of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, in mouse models of Listeria monocytogenes (Lm) infection. We show that Sdc1-/- mice are significantly less susceptible to both intragastric and intravenous Lm infection compared to wild type (Wt) mice. This phenotype is not seen in Sdc3-/- or Sdc4-/- mice, indicating that ablation of Sdc1 causes a specific gain of function that enables mice to resist listeriosis. However, Sdc1 does not support Lm attachment or invasion of host cells, indicating that Sdc1 does not promote pathogenesis as a cell surface Lm receptor. Instead, Sdc1 inhibits the clearance of Lm before the bacterium gains access to its intracellular niche. Large intravascular aggregates of neutrophils and neutrophil extracellular traps (NETs) embedded with antimicrobial compounds are formed in Sdc1-/- livers, which trap and kill Lm. Lm infection induces Sdc1 shedding from the surface of hepatocytes in Wt livers, which is directly associated with the decrease in size of intravascular aggregated NETs. Furthermore, administration of purified Sdc1 ectodomains or DNase inhibits the formation of intravascular aggregated neutrophils and NETs and significantly increases the liver bacterial burden in Sdc1-/- mice. These data indicate that Lm induces Sdc1 shedding to subvert the activity of Sdc1 ectodomains to inhibit its clearance by intravascular aggregated NETs.
Collapse
|
27
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Purushothaman A, Sanderson RD. Heparanase: A Dynamic Promoter of Myeloma Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:331-349. [PMID: 32274716 DOI: 10.1007/978-3-030-34521-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been speculated for many years that heparanase plays an important role in the progression of cancer due largely to the finding that its expression is weak or absent in normal tissues but generally as tumors become more aggressive heparanase expression increases. However, it is only in the last decade or so that we have begun to understand the molecular mechanism behind the sinister role that heparanase plays in cancer. In this review, we describe the many functions of heparanase in promoting the growth, angiogenesis and metastasis of multiple myeloma, a devastating cancer that localizes predominantly within the bone marrow and spreads throughout the skeletal system devouring bone and ultimately leading to death of almost all patients diagnosed with this disease. We also explore recent discoveries related to how heparanase primes exosome biogenesis and how heparanase enhances myeloma tumor chemoresistance. Discovery of these multiple tumor-promoting pathways that are driven by heparanase identified the enzyme as an ideal target for therapy, an approach recently tested in a Phase I trial in myeloma patients.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
29
|
Wu L, Davies GJ. An Overview of the Structure, Mechanism and Specificity of Human Heparanase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:139-167. [PMID: 32274709 DOI: 10.1007/978-3-030-34521-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retaining endo-β-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related β-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| |
Collapse
|
30
|
Coombe DR, Gandhi NS. Heparanase: A Challenging Cancer Drug Target. Front Oncol 2019; 9:1316. [PMID: 31850210 PMCID: PMC6892829 DOI: 10.3389/fonc.2019.01316] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase has been viewed as a promising anti-cancer drug target for almost two decades, but no anti-heparanase therapy has yet reached the clinic. This endoglycosidase is highly expressed in a variety of malignancies, and its high expression is associated with greater tumor size, more metastases, and a poor prognosis. It was first described as an enzyme cleaving heparan sulfate chains of proteoglycans located in extracellular matrices and on cell surfaces, but this is not its only function. It is a multi-functional protein with activities that are enzymatic and non-enzymatic and which take place both outside of the cell and intracellularly. Knowledge of the crystal structure of heparanase has assisted the interpretation of earlier structure-function studies as well as in the design of potential anti-heparanase agents. This review re-examines the various functions of heparanase in light of the structural data. The functions of the heparanase variant, T5, and structure and functions of heparanase-2 are also examined as these heparanase related, but non-enzymatic, proteins are likely to influence the in vivo efficacy of anti-heparanase drugs. The anti-heparanase drugs currently under development predominately focus on inhibiting the enzymatic activity of heparanase, which, in the absence of inhibitors with high clinical efficacy, prompts a discussion of whether this is the best approach. The diversity of outcomes attributed to heparanase and the difficulties of unequivocally determining which of these are due to its enzymatic activity is also discussed and leads us to the conclusion that heparanase is a valid, but challenging drug target for cancer.
Collapse
Affiliation(s)
- Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Strømme O, Psonka-Antonczyk KM, Stokke BT, Sundan A, Arum CJ, Brede G. Myeloma-derived extracellular vesicles mediate HGF/c-Met signaling in osteoblast-like cells. Exp Cell Res 2019; 383:111490. [PMID: 31283912 DOI: 10.1016/j.yexcr.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/11/2023]
Abstract
Multiple myeloma is an incurable cancer of antibody-producing plasma cells. Hepatocyte growth factor (HGF), a cytokine aberrantly expressed in half of myeloma patients, is involved in myeloma pathogenesis by enhancing myeloma growth and invasiveness, and may play a role in myeloma bone disease by inhibiting osteoblastogenesis. In this study, we investigated whether extracellular vesicles (EVs) may play a role in HGF signaling between myeloma cells and osteoblast-like target cells. EVs from the HGF-positive cell line JJN-3 and the HGF-negative cell line INA-6, and from bone marrow plasma and primary human myeloma cells, were isolated using sequential centrifugation techniques and the presence of HGF on the EV-surface was investigated with ELISA. EVs from both cell lines were added to an established bioassay where HGF is known to induce interleukin-11 secretion in osteoblast-like cells. Our results show that HGF was bound to the surface of JJN-3-derived EVs, while INA-6-derived EVs were negative for HGF. Only JJN-3-derived EVs induced IL-11 secretion in osteoblast-like recipient cells. When osteoblast-like cells were preincubated with a specific HGF-receptor (c-Met) inhibitor, no induction of interleukin-11 was observed. Downstream c-Met phosphorylation was demonstrated by immunoblotting. EVs isolated from bone marrow plasma and primary myeloma cells were HGF-positive for a subset of myeloma patients. Taken together, this work shows for the first time that HGF bound on the surface of myeloma-derived EVs can effectuate HGF/c-Met signaling in osteoblast-like cells. Myeloma-derived EVs may play a role in myeloma bone disease by induction of the osteoclast-activating cytokine interleukin-11 in osteoblasts.
Collapse
Affiliation(s)
- Olaf Strømme
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Katarzyna M Psonka-Antonczyk
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Bjørn Torger Stokke
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Anders Sundan
- Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Carl-Jørgen Arum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway and Department of Urology, St. Olavs University Hospital, Trondheim, Norway.
| | - Gaute Brede
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
32
|
Yunusova NV, Tugutova EA, Tamkovich SN, Kondakova IV. [The role of exosomal tetraspanins and proteases in tumor progression]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:123-133. [PMID: 29723143 DOI: 10.18097/pbmc20186402123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major (CD9, CD63, CD81) and others (CD82, CD151, Tspan8) tetraspanins are widely represented in exosomes, where they interact with various proteins and form functional tetraspanin complexes. Tetraspanin complexes include proteases. Tetraspanin-associated exosomal proteases (ADAM proteases, MMPs, EMMPRIN) play an important role in the processes of cell motility, migration, invasion and formation of metastases. Also, a significant contribution to tumor progression is made by proteases that are not associated with tetraspanins. They destabilize intercellular contacts, promote migration and invasion of tumor cells, participate in the regulation of the expression IGF-I, VEGF and transcription factors activation/deactivation. The role of other proteases of exosomes in the processes of tumor progression is being clarified.
Collapse
Affiliation(s)
- N V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - E A Tugutova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S N Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Novosibirsk State Medical University, Novosibirsk, Russia
| | - I V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
33
|
Morla S. Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation. Int J Mol Sci 2019; 20:ijms20081963. [PMID: 31013618 PMCID: PMC6514582 DOI: 10.3390/ijms20081963] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) are a class of biomolecules expressed virtually on all mammalian cells and usually covalently attached to proteins, forming proteoglycans. They are present not only on the cell surface, but also in the intracellular milieu and extracellular matrix. GAGs interact with multiple ligands, both soluble and insoluble, and modulate an important role in various physiological and pathological processes including cancer, bacterial and viral infections, inflammation, Alzheimer’s disease, and many more. Considering their involvement in multiple diseases, their use in the development of drugs has been of significant interest in both academia and industry. Many GAG-based drugs are being developed with encouraging results in animal models and clinical trials, showcasing their potential for development as therapeutics. In this review, the role GAGs play in both the development and inhibition of cancer and inflammation is presented. Further, advancements in the development of GAGs and their mimetics as anti-cancer and anti-inflammatory agents are discussed.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
34
|
Abstract
Glycosaminoglycans (GAGs) are a class of biomolecules expressed virtually on all mammalian cells and usually covalently attached to proteins, forming proteoglycans. They are present not only on the cell surface, but also in the intracellular milieu and extracellular matrix. GAGs interact with multiple ligands, both soluble and insoluble, and modulate an important role in various physiological and pathological processes including cancer, bacterial and viral infections, inflammation, Alzheimer's disease, and many more. Considering their involvement in multiple diseases, their use in the development of drugs has been of significant interest in both academia and industry. Many GAG-based drugs are being developed with encouraging results in animal models and clinical trials, showcasing their potential for development as therapeutics. In this review, the role GAGs play in both the development and inhibition of cancer and inflammation is presented. Further, advancements in the development of GAGs and their mimetics as anti-cancer and anti-inflammatory agents are discussed.
Collapse
|
35
|
Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76:405-419. [PMID: 30327839 PMCID: PMC6349487 DOI: 10.1007/s00018-018-2938-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
36
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
37
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
38
|
Li N, Jie MM, Yang M, Tang L, Chen SY, Sun XM, Tang B, Yang SM. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging. NANOSCALE RESEARCH LETTERS 2018; 13:106. [PMID: 29671088 PMCID: PMC5906410 DOI: 10.1186/s11671-018-2518-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/05/2018] [Indexed: 05/03/2023]
Abstract
Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
- Department of Gastroenterology, Institute of Surgery research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042 China
| | - Meng-Meng Jie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Si-Yuan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Xue-Mei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030 China
| |
Collapse
|
39
|
Mesenchymal stem cells expressing osteoprotegerin variants inhibit osteolysis in a murine model of multiple myeloma. Blood Adv 2017; 1:2375-2385. [PMID: 29296887 DOI: 10.1182/bloodadvances.2017007310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022] Open
Abstract
The current treatment options for multiple myeloma (MM) osteolytic lesions are mainly combinations of chemotherapy and other small-molecule inhibitors, but toxic side effects still remain a major concern. Studies have shown that osteoclast activity is enhanced in MM patients through increased expression of receptor activator of nuclear factor κB ligand (RANKL), triggering RANK signaling on osteoclast precursors, which results in aggressive bone resorption. Furthermore, osteoprotegerin (OPG), a decoy receptor for RANKL, and the osteogenic potential of mesenchymal stem cells (MSCs) are significantly decreased in myeloma patients with multiple bone lesions. Thus, the use of OPG as a therapeutic molecule would greatly decrease osteolytic damage and reduce morbidity. However, in addition to inhibiting osteoclast activation, OPG binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), thereby rendering the tumor cells resistant to TRAIL-induced apoptosis and limiting the use of OPG for therapy. The present study developed a bone-disseminated myeloma disease model in mouse and successfully tested a cell therapy approach using MSCs, genetically engineered to express OPG variants that retain the capacity to bind RANKL, but do not bind TRAIL. Our results of skeletal remodeling following this regenerative stem cell therapy with OPG variants indicated a significant protection against myeloma-induced osteolytic bone damage in areas of major myeloma skeletal dissemination, suggesting the potential of this therapy for treating osteolytic damage in myeloma patients.
Collapse
|
40
|
Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, Mobley JA, Zhang Y, Brown EE, Vlodavsky I, Sanderson RD. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 2017; 65:104-118. [PMID: 28888912 DOI: 10.1016/j.matbio.2017.09.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
Abstract
The heparan sulfate-degrading enzyme heparanase promotes the progression of many cancers by driving tumor cell proliferation, metastasis and angiogenesis. Heparanase accomplishes this via multiple mechanisms including its recently described effect on enhancing biogenesis of tumor exosomes. Because we recently discovered that heparanase expression is upregulated in myeloma cells that survive chemotherapy, we were prompted to investigate the impact of anti-myeloma drugs on exosome biogenesis. When myeloma cells were exposed to the commonly utilized anti-myeloma drugs bortezomib, carfilzomib or melphalan, exosome secretion by the cells was dramatically enhanced. These chemotherapy-induced exosomes (chemoexosomes) have a proteome profile distinct from cells not exposed to drug including a dramatic elevation in the level of heparanase present as exosome cargo. The chemoexosome heparanase was not found inside the chemoexosome, but was present on the exosome surface where it was capable of degrading heparan sulfate embedded within an extracellular matrix. When exposed to myeloma cells, chemoexosomes transferred their heparanase cargo to those cells, enhancing their heparan sulfate degrading activity and leading to activation of ERK signaling and an increase in shedding of the syndecan-1 proteoglycan. Exposure of chemoexosomes to macrophages enhanced their secretion of TNF-α, an important myeloma growth factor. Moreover, chemoexosomes stimulated macrophage migration and this effect was blocked by H1023, a monoclonal antibody that inhibits heparanase enzymatic activity. These data suggest that anti-myeloma therapy ignites a burst of exosomes having a high level of heparanase that remodels extracellular matrix and alters tumor and host cell behaviors that likely contribute to chemoresistance and eventual patient relapse. SUMMARY We find that anti-myeloma chemotherapy dramatically stimulates secretion of exosomes and alters exosome composition. Exosomes secreted during therapy contain high levels of heparanase on their surface that can degrade ECM and also can be transferred to both tumor and host cells, altering their behavior in ways that may enhance tumor survival and progression.
Collapse
Affiliation(s)
- Shyam K Bandari
- University of Alabama at Birmingham, Department of Pathology, Birmingham, 35294, USA
| | - Anurag Purushothaman
- University of Alabama at Birmingham, Department of Pathology, Birmingham, 35294, USA
| | - Vishnu C Ramani
- University of Alabama at Birmingham, Department of Pathology, Birmingham, 35294, USA
| | - Garrett J Brinkley
- University of Alabama at Birmingham, Department of Pathology, Birmingham, 35294, USA
| | | | | | - James A Mobley
- University of Alabama at Birmingham, Department of Surgery, Birmingham, 35294, USA
| | - Yi Zhang
- Eli Lilly and Company, New York, 10016, USA
| | - Elizabeth E Brown
- University of Alabama at Birmingham, Department of Pathology, Birmingham, 35294, USA
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, Birmingham, 35294, USA.
| |
Collapse
|
41
|
Tran VM, Wade A, McKinney A, Chen K, Lindberg OR, Engler JR, Persson AI, Phillips JJ. Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 2017; 15:1623-1633. [PMID: 28778876 DOI: 10.1158/1541-7786.mcr-17-0352] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor of adults and confers a poor prognosis due, in part, to diffuse invasion of tumor cells. Heparan sulfate (HS) glycosaminoglycans, present on the cell surface and in the extracellular matrix, regulate cell signaling pathways and cell-microenvironment interactions. In GBM, the expression of HS glycosaminoglycans and the enzymes that regulate their function are altered, but the actual HS content and structure are unknown. However, inhibition of HS glycosaminoglycan function is emerging as a promising therapeutic strategy for some cancers. In this study, we use liquid chromatography-mass spectrometry analysis to demonstrate differences in HS disaccharide content and structure across four patient-derived tumorsphere lines (GBM1, 5, 6, 43) and between two murine tumorsphere lines derived from murine GBM with enrichment of mesenchymal and proneural gene expression (mMES and mPN, respectively) markers. In GBM, the heterogeneous HS content and structure across patient-derived tumorsphere lines suggested diverse functions in the GBM tumor microenvironment. In GBM5 and mPN, elevated expression of sulfatase 2 (SULF2), an extracellular enzyme that alters ligand binding to HS, was associated with low trisulfated HS disaccharides, a substrate of SULF2. In contrast, other primary tumorsphere lines had elevated expression of the HS-modifying enzyme heparanase (HPSE). Using gene editing strategies to inhibit HPSE, a role for HPSE in promoting tumor cell adhesion and invasion was identified. These studies characterize the heterogeneity in HS glycosaminoglycan content and structure across GBM and reveal their role in tumor cell invasion.Implications: HS-interacting factors promote GBM invasion and are potential therapeutic targets. Mol Cancer Res; 15(11); 1623-33. ©2017 AACR.
Collapse
Affiliation(s)
- Vy M Tran
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Anna Wade
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Olle R Lindberg
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Jane R Engler
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Sandler Neurosciences Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
42
|
Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers. Int J Mol Sci 2017; 18:ijms18071361. [PMID: 28672878 PMCID: PMC5535854 DOI: 10.3390/ijms18071361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulation of heparan sulfate biosynthesis has far-reaching effects on many cellular activities related to cancer progression. Given the current focus on developing new anti-cancer therapeutics focused on epigenetic targets, it is important to understand the effects that these emerging therapeutics may have on the synthesis of HSPGs as alterations in HSPG composition may have profound and unanticipated effects. As an introduction, this review will briefly summarize the variety of important roles which HSPGs play in a wide-spectrum of cancer-related cellular and physiological functions and then describe the biosynthesis of the heparan sulfate chains of HSPGs, including how alterations observed in cancer cells serve as potential biomarkers. This review will then focus on detailing the multiple levels of epigenetic regulation of the enzymes in the heparan sulfate synthesis pathway with a particular focus on regulation by miRNA and effects of epigenetic therapies on HSPGs. We will also explore the use of lectins to detect differences in heparan sulfate composition and preview their potential diagnostic and prognostic use in the clinic.
Collapse
|
43
|
Baburajeev CP, Mohan CD, Rangappa S, Mason DJ, Fuchs JE, Bender A, Barash U, Vlodavsky I, Basappa, Rangappa KS. Identification of Novel Class of Triazolo-Thiadiazoles as Potent Inhibitors of Human Heparanase and their Anticancer Activity. BMC Cancer 2017; 17:235. [PMID: 28359266 PMCID: PMC5374561 DOI: 10.1186/s12885-017-3214-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022] Open
Abstract
Background Expression and activity of heparanase, an endoglycosidase that cleaves heparan sulfate (HS) side chains of proteoglycans, is associated with progression and poor prognosis of many cancers which makes it an attractive drug target in cancer therapeutics. Methods In the present work, we report the in vitro screening of a library of 150 small molecules with the scaffold bearing quinolones, oxazines, benzoxazines, isoxazoli(di)nes, pyrimidinones, quinolines, benzoxazines, and 4-thiazolidinones, thiadiazolo[3,2-a]pyrimidin-5-one, 1,2,4-triazolo-1,3,4-thiadiazoles, and azaspiranes against the enzymatic activity of human heparanase. The identified lead compounds were evaluated for their heparanase-inhibiting activity using sulfate [35S] labeled extracellular matrix (ECM) deposited by cultured endothelial cells. Further, anti-invasive efficacy of lead compound was evaluated against hepatocellular carcinoma (HepG2) and Lewis lung carcinoma (LLC) cells. Results Among the 150 compounds screened, we identified 1,2,4-triazolo-1,3,4-thiadiazoles bearing compounds to possess human heparanase inhibitory activity. Further analysis revealed 2,4-Diiodo-6-(3-phenyl-[1, 2, 4]triazolo[3,4-b][1, 3, 4]thiadiazol-6yl)phenol (DTP) as the most potent inhibitor of heparanase enzymatic activity among the tested compounds. The inhibitory efficacy was demonstrated by a colorimetric assay and further validated by measuring the release of radioactive heparan sulfate degradation fragments from [35S] labeled extracellular matrix. Additionally, lead compound significantly suppressed migration and invasion of LLC and HepG2 cells with IC50 value of ~5 μM. Furthermore, molecular docking analysis revealed a favourable interaction of triazolo-thiadiazole backbone with Asn-224 and Asp-62 of the enzyme. Conclusions Overall, we identified biologically active heparanase inhibitor which could serve as a lead structure in developing compounds that target heparanase in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3214-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore, 560001, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.,Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Nagamangala Taluk, Mandya, district-571448, India
| | - Daniel J Mason
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Uri Barash
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore, 560001, India.
| | | |
Collapse
|
44
|
Jin H, Zhou S, Yang S, Cao HM. Heparanase overexpression down-regulates syndecan-1 expression in a gallbladder carcinoma cell line. J Int Med Res 2017; 45:662-672. [PMID: 28351285 PMCID: PMC5536678 DOI: 10.1177/0300060517700323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective To discuss the relevance of heparanase and syndecan-1 and regulation of the heparanase-syndecan1 axis in the invasiveness of gallbladder carcinoma cells. Methods 1. Generation of a gallbladder cancer cell line overexpressing a heparanase (GBD-SD) transgene. 2. Western blot analysis of syndecan-1 levels of GBD-SD and control gallbladder carcinoma (GBC-SD) cells. 3. RT-PCR analysis of syndecan-1 mRNA levels of GBD-SD and GBC-SD. 4. Evaluation of invasion and migration of GBD-SD and GBC-SD cells. Results 1. Heparanase expression in GBD-SD cells was significantly increased. 2. The syndecan-1 mRNA level of GBD-SD cells was significantly lower compared with that of GBC-SD cells. 3. The syndecan-1 DNA copy number in GBD-SD cells was significantly lower compared with that of GBC-SD. 4. The invasiveness and migration of GBD-SD cells were significantly higher compared with GBC-SD cells. Conclusions 1. The expression of heparanase negatively correlated with that of syndecan-1 in a gallbladder carcinoma cell line. 2. The expression of heparanase and syndecan-1 in gallbladder carcinomas negatively correlated, similar to other tumours. 3. The heparanase/syndecan1 axis in gallbladder carcinoma plays an important role in the invasion and metastasis, thus providing a new therapeutic target. 4. Further research is required to identify the detailed mechanisms.
Collapse
Affiliation(s)
- Hao Jin
- 1 Zhuhai People's Hospital, Zhuhai, China
| | | | - Song Yang
- 2 The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | | |
Collapse
|
45
|
Binder Gallimidi A, Nussbaum G, Hermano E, Weizman B, Meirovitz A, Vlodavsky I, Götte M, Elkin M. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma. PLoS One 2017; 12:e0174343. [PMID: 28350804 PMCID: PMC5369774 DOI: 10.1371/journal.pone.0174343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/07/2017] [Indexed: 12/27/2022] Open
Abstract
Syndecan-1 (Sdc1) is an important member of the cell surface heparan sulfate proteoglycan family, highly expressed by epithelial cells in adult organisms. Sdc1 is involved in the regulation of cell migration, cell-cell and cell-matrix interactions, growth-factor, chemokine and integrin activity, and implicated in inflammatory responses and tumorigenesis. Gastrointestinal tract represents an important anatomic site where loss of Sdc1 expression was reported both in inflammation and malignancy. However, the biological significance of Sdc1 in chronic colitis-associated tumorigenesis has not been elucidated. To the best of our knowledge, this study is the first to test the effects of Sdc1 loss on colorectal tumor development in inflammation-driven colon tumorigenesis. Utilizing a mouse model of colitis-related colon carcinoma induced by the carcinogen azoxymethane (AOM), followed by the inflammatory agent dextran sodium sulfate (DSS), we found that Sdc1 deficiency results in increased susceptibility to colitis-associated tumorigenesis. Importantly, colitis-associated tumors developed in Sdc1-defficient mice were characterized by increased local production of IL-6, activation of STAT3, as well as induction of several STAT3 target genes that act as important effectors of colonic tumorigenesis. Altogether, our results highlight a previously unknown effect of Sdc1 loss in progression of inflammation-associated cancer and suggest that decreased levels of Sdc1 may serve as an indicator of colon carcinoma progression in the setting of chronic inflammation.
Collapse
Affiliation(s)
- Adi Binder Gallimidi
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Barak Weizman
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Martin Götte
- Department of Gynecology and Obstetrics, Muenster University, Medical Center, Muenster Germany
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
46
|
Singh P, Blatt A, Feld S, Zohar Y, Saadi E, Barki-Harrington L, Hammond E, Ilan N, Vlodavsky I, Chowers Y, Half E. The Heparanase Inhibitor PG545 Attenuates Colon Cancer Initiation and Growth, Associating with Increased p21 Expression. Neoplasia 2017; 19:175-184. [PMID: 28147305 PMCID: PMC5279702 DOI: 10.1016/j.neo.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
Heparanase activity is highly implicated in cellular invasion and tumor metastasis, a consequence of cleavage of heparan sulfate and remodeling of the extracellular matrix underlying epithelial and endothelial cells. Heparanase expression is rare in normal epithelia, but is often induced in tumors, associated with increased tumor metastasis and poor prognosis. In addition, heparanase induction promotes tumor growth, but the molecular mechanism that underlines tumor expansion by heparanase is still incompletely understood. Here, we provide evidence that heparanase down regulates the expression of p21 (WAF1/CIP1), a cyclin-dependent kinase inhibitor that attenuates the cell cycle. Notably, a reciprocal effect was noted for PG545, a potent heparanase inhibitor. This compound efficiently reduced cell proliferation, colony formation, and tumor xenograft growth, associating with a marked increase in p21 expression. Utilizing the APC Min+/− mouse model, we show that heparanase expression and activity are increased in small bowel polyps, whereas polyp initiation and growth were significantly inhibited by PG545, again accompanied by a prominent induction of p21 levels. Down-regulation of p21 expression adds a novel feature for the emerging pro-tumorigenic properties of heparanase, while the potent p21 induction and anti-tumor effect of PG545 lends optimism that it would prove an efficacious therapeutic in colon carcinoma patients.
Collapse
Affiliation(s)
- Preeti Singh
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Alexandra Blatt
- Department of Gastroenterology, Rambam Health Care Campus and Bruce Rappaport School of Medicine, Technion, Haifa 3109601, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus and Bruce Rappaport School of Medicine, Technion, Haifa 3109601, Israel
| | - Esraa Saadi
- Department of Human Biology, University of Haifa, Haifa 31905, Israel
| | | | | | - Neta Ilan
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus and Bruce Rappaport School of Medicine, Technion, Haifa 3109601, Israel.
| | - Elizabeth Half
- Department of Gastroenterology, Rambam Health Care Campus and Bruce Rappaport School of Medicine, Technion, Haifa 3109601, Israel.
| |
Collapse
|
47
|
Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J 2017; 284:42-55. [PMID: 27758044 PMCID: PMC5226874 DOI: 10.1111/febs.13932] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Because of its impact on multiple biological pathways, heparanase has emerged as a major regulator of cancer, inflammation and other disease processes. Heparanase accomplishes this by degrading heparan sulfate which regulates the abundance and location of heparin-binding growth factors thereby influencing multiple signaling pathways that control gene expression, syndecan shedding and cell behavior. In addition, heparanase can act via nonenzymatic mechanisms that directly activate signaling at the cell surface. Clinical trials testing heparanase inhibitors as anticancer therapeutics are showing early signs of efficacy in patients further emphasizing the biological importance of this enzyme. This review focuses on recent developments in the field of heparanase regulation of cancer and inflammation, including the impact of heparanase on exosomes and autophagy, and novel mechanisms whereby heparanase regulates tumor metastasis, angiogenesis and chemoresistance. In addition, the ongoing development of heparanase inhibitors and their potential for treating cancer and inflammation are discussed.
Collapse
Affiliation(s)
- Ralph D. Sanderson
- Department of Pathology; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alan C. Rapraeger
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
48
|
Xia J, Sheng W, Pei L, Li N, Zhang Z, Wang J, Zu J, Wang N, Wang D. Effects of unfractionated heparin and rivaroxaban on the expression of heparanase and fibroblast growth factor 2 in human osteoblasts. Mol Med Rep 2017; 16:361-366. [DOI: 10.3892/mmr.2017.6570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
49
|
Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 2016; 29:54-75. [PMID: 27912844 DOI: 10.1016/j.drup.2016.10.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Heparanase expression is enhanced in almost all cancers examined including various carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently demonstrated that upregulation of heparanase expression correlates with increased tumor size, tumor angiogenesis, enhanced metastasis and poor prognosis. In contrast, knockdown of heparanase or treatments of tumor-bearing mice with heparanase-inhibiting compounds, markedly attenuate tumor progression further underscoring the potential of anti-heparanase therapy for multiple types of cancer. Heparanase neutralizing monoclonal antibodies block myeloma and lymphoma tumor growth and dissemination; this is attributable to a combined effect on the tumor cells and/or cells of the tumor microenvironment. In fact, much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis and chemoresistance. The repertoire of the physio-pathological activities of heparanase is expanding. Specifically, heparanase regulates gene expression, activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and non-enzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive inflammatory responses, tumor survival, growth, dissemination and drug resistance; but in the same time, may fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, stress response, and heparan sulfate turnover. Heparanase is upregulated in response to chemotherapy in cancer patients and the surviving cells acquire chemoresistance, attributed, at least in part, to autophagy. Consequently, heparanase inhibitors used in tandem with chemotherapeutic drugs overcome initial chemoresistance, providing a strong rationale for applying anti-heparanase therapy in combination with conventional anti-cancer drugs. Heparin-like compounds that inhibit heparanase activity are being evaluated in clinical trials for various types of cancer. Heparanase neutralizing monoclonal antibodies are being evaluated in pre-clinical studies, and heparanase-inhibiting small molecules are being developed based on the recently resolved crystal structure of the heparanase protein. Collectively, the emerging premise is that heparanase expressed by tumor cells, innate immune cells, activated endothelial cells as well as other cells of the tumor microenvironment is a master regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a prime target for therapy.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Preeti Singh
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Lilach Gutter-Kapon
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ralph D Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
50
|
Heyman B, Yang Y. Mechanisms of heparanase inhibitors in cancer therapy. Exp Hematol 2016; 44:1002-1012. [PMID: 27576132 DOI: 10.1016/j.exphem.2016.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains contributing to breakdown of the extracellular matrix. Increased expression of heparanase has been observed in numerous malignancies and is associated with a poor prognosis. It has generated significant interest as a potential antineoplastic target because of the multiple roles it plays in tumor growth and metastasis. The protumorigenic effects of heparanase are enhanced by the release of heparan sulfate side chains, with subsequent increase in bioactive fragments and cytokine levels that promote tumor invasion, angiogenesis, and metastasis. Preclinical experiments have found heparanase inhibitors to substantially reduce tumor growth and metastasis, leading to clinical trials with heparan sulfate mimetics. In this review, we examine the role of heparanase in tumor biology and its interaction with heparan surface proteoglycans, specifically syndecan-1, as well as the mechanism of action for heparanase inhibitors developed as antineoplastic therapeutics.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Immunology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|