1
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Fecht S, Paracuellos P, Subramoni S, Tan CAZ, Ilangovan A, Costa TRD, Filloux A. Functionality of chimeric TssA proteins in the type VI secretion system reveals sheath docking specificity within their N-terminal domains. Nat Commun 2024; 15:4283. [PMID: 38769318 PMCID: PMC11106082 DOI: 10.1038/s41467-024-48487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The genome of Pseudomonas aeruginosa encodes three type VI secretion systems, each comprising a dozen distinct proteins, which deliver toxins upon T6SS sheath contraction. The least conserved T6SS component, TssA, has variations in size which influence domain organisation and structure. Here we show that the TssA Nt1 domain interacts directly with the sheath in a specific manner, while the C-terminus is essential for oligomerisation. We built chimeric TssA proteins by swapping C-termini and showed that these can be functional even when made of domains from different TssA sub-groups. Functional specificity requires the Nt1 domain, while the origin of the C-terminal domain is more permissive for T6SS function. We identify two regions in short TssA proteins, loop and hairpin, that contribute to sheath binding. We propose a docking mechanism of TssA proteins with the sheath, and a model for how sheath assembly is coordinated by TssA proteins from this position.
Collapse
Affiliation(s)
- Selina Fecht
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Patricia Paracuellos
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Casandra Ai Zhu Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Aravindan Ilangovan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Tiago R D Costa
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Alain Filloux
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
3
|
Du X, Kang M, Yang C, Yao X, Zheng L, Wu Y, Zhang P, Zhang H, Zhou Y, Sun Y. Construction and analysis of the immune effect of two different vaccine types based on Vibrio harveyi VgrG. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109494. [PMID: 38499217 DOI: 10.1016/j.fsi.2024.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.
Collapse
Affiliation(s)
- Xiangyu Du
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Minjie Kang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Chunhuan Yang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinping Yao
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Lvliang Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Panpan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Han Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yun Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Neff SL, Doing G, Reiter T, Hampton TH, Greene CS, Hogan DA. Pseudomonas aeruginosa transcriptome analysis of metal restriction in ex vivo cystic fibrosis sputum. Microbiol Spectr 2024; 12:e0315723. [PMID: 38385740 PMCID: PMC10986534 DOI: 10.1128/spectrum.03157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic Pseudomonas aeruginosa lung infections are a feature of cystic fibrosis (CF) that many patients experience even with the advent of highly effective modulator therapies. Identifying factors that impact P. aeruginosa in the CF lung could yield novel strategies to eradicate infection or otherwise improve outcomes. To complement published P. aeruginosa studies using laboratory models or RNA isolated from sputum, we analyzed transcripts of strain PAO1 after incubation in sputum from different CF donors prior to RNA extraction. We compared PAO1 gene expression in this "spike-in" sputum model to that for P. aeruginosa grown in synthetic cystic fibrosis sputum medium to determine key genes, which are among the most differentially expressed or most highly expressed. Using the key genes, gene sets with correlated expression were determined using the gene expression analysis tool eADAGE. Gene sets were used to analyze the activity of specific pathways in P. aeruginosa grown in sputum from different individuals. Gene sets that we found to be more active in sputum showed similar activation in published data that included P. aeruginosa RNA isolated from sputum relative to corresponding in vitro reference cultures. In the ex vivo samples, P. aeruginosa had increased levels of genes related to zinc and iron acquisition which were suppressed by metal amendment of sputum. We also found a significant correlation between expression of the H1-type VI secretion system and CFTR corrector use by the sputum donor. An ex vivo sputum model or synthetic sputum medium formulation that imposes metal restriction may enhance future CF-related studies.IMPORTANCEIdentifying the gene expression programs used by Pseudomonas aeruginosa to colonize the lungs of people with cystic fibrosis (CF) will illuminate new therapeutic strategies. To capture these transcriptional programs, we cultured the common P. aeruginosa laboratory strain PAO1 in expectorated sputum from CF patient donors. Through bioinformatic analysis, we defined sets of genes that are more transcriptionally active in real CF sputum compared to a synthetic cystic fibrosis sputum medium. Many of the most differentially active gene sets contained genes related to metal acquisition, suggesting that these gene sets play an active role in scavenging for metals in the CF lung environment which may be inadequately represented in some models. Future studies of P. aeruginosa transcript abundance in CF may benefit from the use of an expectorated sputum model or media supplemented with factors that induce metal restriction.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Georgia Doing
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Taylor Reiter
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Casey S. Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Booth SC, Meacock OJ, Foster KR. Cell motility empowers bacterial contact weapons. THE ISME JOURNAL 2024; 18:wrae141. [PMID: 39073907 PMCID: PMC11482024 DOI: 10.1093/ismejo/wrae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Many bacteria kill competitors using short-range weapons, such as the Type VI secretion system and contact dependent inhibition (CDI). Although these weapons can deliver powerful toxins, they rely on direct contact between attacker and target cells. We hypothesized that movement enables attackers to contact more targets and thus greatly empower their weapons. To explore this, we developed individual-based and continuum models of contact-dependent combat which show that motility greatly improves toxin delivery through two underlying processes. First, genotypic mixing increases the inter-strain contact probability of attacker and sensitive cells. Second, target switching ensures attackers constantly attack new cells, instead of repeatedly hitting the same cell. We test our predictions with the pathogen Pseudomonas aeruginosa, using genetically engineered strains to study the interaction between CDI and twitching motility. As predicted, we find that motility works synergistically with CDI, in some cases increasing weapon efficacy up to 10,000-fold compared with non-motile scenarios. Moreover, we demonstrate that both mixing processes occur using timelapse single-cell microscopy and quantify their relative importance by combining experimental data with our model. Our work shows how bacteria can combine cell movement with contact-based weapons to launch powerful attacks on their competitors.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Oliver J Meacock
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, United Kingdom
| |
Collapse
|
7
|
Booth SC, Smith WPJ, Foster KR. The evolution of short- and long-range weapons for bacterial competition. Nat Ecol Evol 2023; 7:2080-2091. [PMID: 38036633 PMCID: PMC10697841 DOI: 10.1038/s41559-023-02234-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Bacteria possess a diverse range of mechanisms for inhibiting competitors, including bacteriocins, tailocins, type VI secretion systems and contact-dependent inhibition (CDI). Why bacteria have evolved such a wide array of weapon systems remains a mystery. Here we develop an agent-based model to compare short-range weapons that require cell-cell contact, with long-range weapons that rely on diffusion. Our model predicts that contact weapons are useful when an attacking strain is outnumbered, facilitating invasion and establishment. By contrast, ranged weapons tend to be effective only when attackers are abundant. We test our predictions with the opportunistic pathogen Pseudomonas aeruginosa, which naturally carries multiple weapons, including CDI and diffusing tailocins. As predicted, short-range CDI can function at low and high frequencies, while long-range tailocins require high frequency and cell density to function effectively. Head-to-head competition experiments with the two weapon types further support our predictions: a tailocin attacker defeats CDI only when it is numerically dominant, but then we find it can be devastating. Finally, we show that the two weapons work well together when one strain employs both. We conclude that short- and long-range weapons serve different functions and allow bacteria to fight both as individuals and as a group.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - William P J Smith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Neff SL, Doing G, Reiter T, Hampton TH, Greene CS, Hogan DA. Analysis of Pseudomonas aeruginosa transcription in an ex vivo cystic fibrosis sputum model identifies metal restriction as a gene expression stimulus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554169. [PMID: 37662412 PMCID: PMC10473638 DOI: 10.1101/2023.08.21.554169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Chronic Pseudomonas aeruginosa lung infections are a distinctive feature of cystic fibrosis (CF) pathology, that challenge adults with CF even with the advent of highly effective modulator therapies. Characterizing P. aeruginosa transcription in the CF lung and identifying factors that drive gene expression could yield novel strategies to eradicate infection or otherwise improve outcomes. To complement published P. aeruginosa gene expression studies in laboratory culture models designed to model the CF lung environment, we employed an ex vivo sputum model in which laboratory strain PAO1 was incubated in sputum from different CF donors. As part of the analysis, we compared PAO1 gene expression in this "spike-in" sputum model to that for P. aeruginosa grown in artificial sputum medium (ASM). Analyses focused on genes that were differentially expressed between sputum and ASM and genes that were most highly expressed in sputum. We present a new approach that used sets of genes with correlated expression, identified by the gene expression analysis tool eADAGE, to analyze the differential activity of pathways in P. aeruginosa grown in CF sputum from different individuals. A key characteristic of P. aeruginosa grown in expectorated CF sputum was related to zinc and iron acquisition, but this signal varied by donor sputum. In addition, a significant correlation between P. aeruginosa expression of the H1-type VI secretion system and corrector use by the sputum donor was observed. These methods may be broadly useful in looking for variable signals across clinical samples.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Georgia Doing
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Taylor Reiter
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Casey S. Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
9
|
Ghasemieshkaftaki M, Vasquez I, Eshraghi A, Gamperl AK, Santander J. Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon ( Salmo salar). Microorganisms 2023; 11:1736. [PMID: 37512908 PMCID: PMC10385127 DOI: 10.3390/microorganisms11071736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Ulcer diseases are a recalcitrant issue at Atlantic salmon (Salmo salar) aquaculture cage-sites across the North Atlantic region. Classical ulcerative outbreaks (also called winter ulcer disease) refer to a skin infection caused by Moritella viscosa. However, several bacterial species are frequently isolated from ulcer disease events, and it is unclear if other undescribed pathogens are implicated in ulcer disease in Atlantic salmon. Although different polyvalent vaccines are used against M. viscosa, ulcerative outbreaks are continuously reported in Atlantic salmon in Canada. This study analyzed the phenotypical and genomic characteristics of Vibrio sp. J383 isolated from internal organs of vaccinated farmed Atlantic salmon displaying clinical signs of ulcer disease. Infection assays conducted on vaccinated farmed Atlantic salmon and revealed that Vibrio sp. J383 causes a low level of mortalities when administered intracelomic at doses ranging from 107-108 CFU/dose. Vibrio sp. J383 persisted in the blood of infected fish for at least 8 weeks at 10 and 12 °C. Clinical signs of this disease were greatest 12 °C, but no mortality and bacteremia were observed at 16 °C. The Vibrio sp. J383 genome (5,902,734 bp) has two chromosomes of 3,633,265 bp and 2,068,312 bp, respectively, and one large plasmid of 201,166 bp. Phylogenetic and comparative analyses indicated that Vibrio sp. J383 is related to V. splendidus, with 93% identity. Furthermore, the phenotypic analysis showed that there were significant differences between Vibrio sp. J383 and other Vibrio spp, suggesting J383 is a novel Vibrio species adapted to cold temperatures.
Collapse
Affiliation(s)
- Maryam Ghasemieshkaftaki
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Anthony Kurt Gamperl
- Fish Physiology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
10
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
11
|
Rudzite M, Subramoni S, Endres RG, Filloux A. Effectiveness of Pseudomonas aeruginosa type VI secretion system relies on toxin potency and type IV pili-dependent interaction. PLoS Pathog 2023; 19:e1011428. [PMID: 37253075 PMCID: PMC10281587 DOI: 10.1371/journal.ppat.1011428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
The type VI secretion system (T6SS) is an antibacterial weapon that is used by numerous Gram-negative bacteria to gain competitive advantage by injecting toxins into adjacent prey cells. Predicting the outcome of a T6SS-dependent competition is not only reliant on presence-absence of the system but instead involves a multiplicity of factors. Pseudomonas aeruginosa possesses 3 distinct T6SSs and a set of more than 20 toxic effectors with diverse functions including disruption of cell wall integrity, degradation of nucleic acids or metabolic impairment. We generated a comprehensive collection of mutants with various degrees of T6SS activity and/or sensitivity to each individual T6SS toxin. By imaging whole mixed bacterial macrocolonies, we then investigated how these P. aeruginosa strains gain a competitive edge in multiple attacker/prey combinations. We observed that the potency of single T6SS toxin varies significantly from one another as measured by monitoring the community structure, with some toxins acting better in synergy or requiring a higher payload. Remarkably the degree of intermixing between preys and attackers is also key to the competition outcome and is driven by the frequency of contact as well as the ability of the prey to move away from the attacker using type IV pili-dependent twitching motility. Finally, we implemented a computational model to better understand how changes in T6SS firing behaviours or cell-cell contacts lead to population level competitive advantages, thus providing conceptual insight applicable to all types of contact-based competition.
Collapse
Affiliation(s)
- Marta Rudzite
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Robert G. Endres
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Pothula R, Lee MW, Patricia Stock S. Type 6 Secretion System components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. J Invertebr Pathol 2023; 198:107925. [PMID: 37087093 DOI: 10.1016/j.jip.2023.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Xenorhabdus, like other Gram-negative bacteria, possesses a Type 6 Secretion System (T6SS) which acts as a contact-dependent molecular syringe, delivering diverse proteins (effectors) directly into other cells. The number of T6SS loci encoded in Xenorhabdus genomes are variable both at the inter and intraspecific level. Some environmental isolates of Xenorhabdus bovienii, encode at least one T6SS locus while others possess two loci. Previous work conducted by our team demonstrated that X. bovienii [Jollieti strain SS-2004], which has two T6SSs (T6SS-1 and T6SS-2), hcp genes are required for biofilm formation. Additionally, while T6SS-1 hcp gene plays a role in the antibacterial competition, T6SS-2 hcp does not. In this study, we tested the hypothesis that vgrG genes are also involved in mutualistic and pathogenic interactions. For this purpose, targeted mutagenesis together with wet lab experiments including colonization, competition, biofilm, and virulence experiments, were carried out to assess the role of vgrG in the mutualistic and antagonistic interactions in the life cycle of XBJ. Our results revealed that vgrG genes are not required for biofilm formation but play a role in outcompeting other Xenorhabdus bacteria. Additionally, both vgrG and hcp genes are required to fully colonize the nematode host. We also demonstrated that hcp and vgrG genes in both T6SS clusters are needed to support the reproductive fitness of the nematodes. Overall, results from this study revealed that in X. bovieni jollieti strain, the twoT6SS clusters play an important role in the fitness of the nematodes in relation to colonization and reproduction. These results lay a foundation for further investigations on the functional significance of T6SSs in the mutualistic and pathogenic lifecycle of Xenorhabdus spp.
Collapse
Affiliation(s)
- Ratnasri Pothula
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Min-Woo Lee
- Corn, Soybean, and Wheat Quality Research Lab, USDA-ARS Wooster, OH, United States
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; College of Agriculture, California State University, Chico, CA, United States.
| |
Collapse
|
13
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
14
|
Haas AL, Zemke AC, Melvin JA, Armbruster CR, Hendricks MR, Moore J, Nouraie SM, Thibodeau PH, Lee SE, Bomberger JM. Iron bioavailability regulates Pseudomonas aeruginosa interspecies interactions through type VI secretion expression. Cell Rep 2023; 42:112270. [PMID: 36930643 PMCID: PMC10586262 DOI: 10.1016/j.celrep.2023.112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The cystic fibrosis (CF) respiratory tract harbors pathogenic bacteria that cause life-threatening chronic infections. Of these, Pseudomonas aeruginosa becomes increasingly dominant with age and is associated with worsening lung function and declining microbial diversity. We aimed to understand why P. aeruginosa dominates over other pathogens to cause worsening disease. Here, we show that P. aeruginosa responds to dynamic changes in iron concentration, often associated with viral infection and pulmonary exacerbations, to become more competitive via expression of the TseT toxic effector. However, this behavior can be therapeutically targeted using the iron chelator deferiprone to block TseT expression and competition. Overall, we find that iron concentration and TseT expression significantly correlate with microbial diversity in the respiratory tract of people with CF. These findings improve our understanding of how P. aeruginosa becomes increasingly dominant with age in people with CF and provide a therapeutically targetable pathway to help prevent this shift.
Collapse
Affiliation(s)
- Allison L Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Anna C Zemke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Catherine R Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - John Moore
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stella E Lee
- Division of Otolaryngology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
15
|
Liang X, Zheng HY, Zhao YJ, Zhang YQ, Pei TT, Cui Y, Tang MX, Xu P, Dong T. VgrG Spike Dictates PAAR Requirement for the Assembly of the Type VI Secretion System. J Bacteriol 2023; 205:e0035622. [PMID: 36655996 PMCID: PMC9945574 DOI: 10.1128/jb.00356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Widely employed by Gram-negative pathogens for competition and pathogenesis, the type six protein secretion system (T6SS) can inject toxic effectors into neighboring cells through the penetration of a spear-like structure comprising a long Hcp tube and a VgrG-PAAR spike complex. The cone-shaped PAAR is believed to sharpen the T6SS spear for penetration but it remains unclear why PAAR is required for T6SS functions in some bacteria but dispensable in others. Here, we report the conditional requirement of PAAR for T6SS functions in Aeromonas dhakensis, an emerging human pathogen that may cause severe bacteremia. By deleting the two PAAR paralogs, we show that PAAR is not required for T6SS secretion, bacterial killing, or specific effector delivery in A. dhakensis. By constructing combinatorial PAAR and vgrG deletions, we demonstrate that deletion of individual PAAR moderately reduced T6SS functions but double or triple deletions of PAAR in the vgrG deletion mutants severely impaired T6SS functions. Notably, the auxiliary-cluster-encoded PAAR2 and VgrG3 are less critical than the main-cluster-encoded PAAR1 and VgrG1&2 proteins to T6SS functions. In addition, PAAR1 but not PAAR2 contributes to antieukaryotic virulence in amoeba. Our data suggest that, for a multi-PAAR T6SS, the variable role of PAAR paralogs correlates with the VgrG-spike composition that collectively dictates T6SS assembly. IMPORTANCE Gram-negative bacteria often encode multiple paralogs of the cone-shaped PAAR that sits atop the VgrG-spike and is thought to sharpen the spear-like T6SS puncturing device. However, it is unclear why PAAR is required for the assembly of some but not all T6SSs and why there are multiple PAARs if they are not required. Our data delineate a VgrG-mediated conditional requirement for PAAR and suggest a core-auxiliary relationship among different PAAR-VgrG modules that may have been acquired sequentially by the T6SS during evolution.
Collapse
Affiliation(s)
- Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Tang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
16
|
The Anti-Listeria Activity of Pseudomonas fluorescens Isolated from the Horticultural Environment in New Zealand. Pathogens 2023; 12:pathogens12020349. [PMID: 36839621 PMCID: PMC9960311 DOI: 10.3390/pathogens12020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Beneficial bacteria with antibacterial properties are attractive alternatives to chemical-based antibacterial or bactericidal agents. Our study sourced such bacteria from horticultural produce and environments to explore the mechanisms of their antimicrobial properties. Five strains of Pseudomonas fluorescens were studied that possessed antibacterial activity against the pathogen Listeria monocytogenes. The vegetative culture of these strains (Pseudomonas fluorescens-PFR46I06, Pseudomonas fluorescens-PFR46H06, Pseudomonas fluorescens-PFR46H07, Pseudomonas fluorescens-PFR46H08 and Pseudomonas fluorescens-PFR46H09) were tested against Listeria monocytogenes (n = 31), Listeria seeligeri (n = 1) and Listeria innocua (n = 1) isolated from seafood and horticultural sources and from clinical cases (n = 2) using solid media coculture and liquid media coculture. All Listeria strains were inhibited by all strains of P. fluorescens; however, P. fluorescens-PFR46H07, P. fluorescens-PFR46H08 and P. fluorescens-PFR46H09 on solid media showed good inhibition, with average zones of inhibition of 14.8 mm, 15.1 mm and 18.2 mm, respectively, and the other two strains and P. fluorescens-PFR46H09 had a significantly greater zone of inhibition than the others (p < 0.05). There was no inhibition observed in liquid media coculture or in P. fluorescens culture supernatants against Listeria spp. by any of the P. fluorescens strains. Therefore, we hypothesized that the structural apparatus that causes cell-to-cell contact may play a role in the ejection of ant-listeria molecules on solid media to inhibit Listeria isolates, and we investigated the structural protein differences using whole-cell lysate proteomics. We paid special attention to the type VI secretion system (TSS-T6SS) for the transfer of effector proteins or bacteriocins. We found significant differences in the peptide profiles and protein summaries between these isolates' lysates, and PFR46H06 and PFR46H07 possessed the fewest secretion system structural proteins (12 and 11, respectively), while PFR46H08 and PFR46H09 had 18 each. P. fluorescens-PFR46H09, which showed the highest antimicrobial effect, had nine tss-T6SS structural proteins compared to only four in the other three strains.
Collapse
|
17
|
Robinson LA, Collins ACZ, Murphy RA, Davies JC, Allsopp LP. Diversity and prevalence of type VI secretion system effectors in clinical Pseudomonas aeruginosa isolates. Front Microbiol 2023; 13:1042505. [PMID: 36687572 PMCID: PMC9846239 DOI: 10.3389/fmicb.2022.1042505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and a major driver of morbidity and mortality in people with Cystic Fibrosis (CF). The Type VI secretion system (T6SS) is a molecular nanomachine that translocates effectors across the bacterial membrane into target cells or the extracellular environment enabling intermicrobial interaction. P. aeruginosa encodes three T6SS clusters, the H1-, H2- and H3-T6SS, and numerous orphan islands. Genetic diversity of T6SS-associated effectors in P. aeruginosa has been noted in reference strains but has yet to be explored in clinical isolates. Here, we perform a comprehensive bioinformatic analysis of the pangenome and T6SS effector genes in 52 high-quality clinical P. aeruginosa genomes isolated from CF patients and housed in the Personalised Approach to P. aeruginosa strain repository. We confirm that the clinical CF isolate pangenome is open and principally made up of accessory and unique genes that may provide strain-specific advantages. We observed genetic variability in some effector/immunity encoding genes and show that several well-characterised vgrG and PAAR islands are absent from numerous isolates. Our analysis shows clear evidence of disruption to T6SS genomic loci through transposon, prophage, and mobile genetic element insertions. We identified an orphan vgrG island in P. aeruginosa strain PAK and five clinical isolates using in silico analysis which we denote vgrG7, predicting a gene within this cluster to encode a Tle2 lipase family effector. Close comparison of T6SS loci in clinical isolates compared to reference P. aeruginosa strain PAO1 revealed the presence of genes encoding eight new T6SS effectors with the following putative functions: cytidine deaminase, lipase, metallopeptidase, NADase, and pyocin. Finally, the prevalence of characterised and putative T6SS effectors were assessed in 532 publicly available P. aeruginosa genomes, which suggests the existence of accessory effectors. Our in silico study of the P. aeruginosa T6SS exposes a level of genetic diversity at T6SS genomic loci not seen to date within P. aeruginosa, particularly in CF isolates. As understanding the effector repertoire is key to identifying the targets of T6SSs and its efficacy, this comprehensive analysis provides a path for future experimental characterisation of these mediators of intermicrobial competition and host manipulation.
Collapse
Affiliation(s)
- Luca A. Robinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alice C. Z. Collins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ronan A. Murphy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Li WR, Zhang ZQ, Liao K, Wang BB, Liu HZ, Shi QS, Huang XB, Xie XB. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front Microbiol 2022; 13:1105921. [PMID: 36620018 PMCID: PMC9816134 DOI: 10.3389/fmicb.2022.1105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a common cause of severe chronic infections, has developed heteroresistance to several antibiotics, thus hindering successful treatment. In this study, we aimed to investigate the characteristics and mechanisms underlying levofloxacin (LVX) heteroresistance in P. aeruginosa PAS71 and PAS81 clinical isolates using a combination of physiological and biochemical methods, bacterial genomics, transcriptomics, and qRT-PCR. The six P. aeruginosa strains, namely PAS71, PAS72, PAS81, PAS82, ATCC27853, and PAO1, were studied. The Kirby-Bauer (K-B), minimum inhibitory concentration (MIC) test, and population analysis profile (PAP) experimental results showed that PAS71, PAS81, ATCC27853, and PAO1 were heteroresistant to LVX, with MIC of 0.25, 1, 0.5, and 2 μg/ml, respectively; PAS72 and PAS82 were susceptible to LVX with a MIC of 0.25 and 0.5 μg/ml, respectively. The resistance of PAS71 and PAS81 heteroresistant subpopulations was unstable and had a growth fitness cost. Genomic and transcriptomic results proved that the unstable heteroresistance of PAS71 and PAS81 was caused by elevated expression of essential genes involved in DNA replication and repair, and homologous recombination, rather than their genomic single-nucleotide polymorphism (SNP) and insertion-deletion (InDel) mutations. Additionally, PAS71 and PAS81 enhanced virulence and physiological metabolism, including bacterial secretion systems and biosynthesis of siderophore group nonribosomal peptides, in response to LVX stress. Our results suggest that the upregulation of key genes involved in DNA replication and repair, and homologous recombination causes unstable heteroresistance in P. aeruginosa against LVX. This finding provides novel insights into the occurrence and molecular regulation pathway of P. aeruginosa heteroresistant strains.
Collapse
Affiliation(s)
- Wen-Ru Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhi-Qing Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bei-Bei Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hui-Zhong Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xu-Bin Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Xu-Bin Huang,
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China,*Correspondence: Xiao-Bao Xie,
| |
Collapse
|
19
|
An Important Role of the Type VI Secretion System of Pseudomonas aeruginosa Regulated by Dnr in Response to Anaerobic Environments. Microbiol Spectr 2022; 10:e0153322. [PMID: 36301114 PMCID: PMC9769707 DOI: 10.1128/spectrum.01533-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The type VI secretion system (T6SS) is capable of secreting a variety of metal-binding proteins involved in metal ion uptake, and it mediates an active metal ion transport system that contributes to competition between bacteria. Pseudomonas aeruginosa H2-T6SS can increase molybdenum ion acquisition and enhance bacterial survival advantage by promoting the secretion of the molybdate-binding protein ModA, in which the expression of H2-T6SS core genes hcp2, hsiA2, and clpV2 is activated by anaerobic conditions and are all regulated by the global regulator Anr. Here, we report the regulation of T6SS by Dnr, a dedicated dissimilatory nitrate respiration regulator in P. aeruginosa. Of the three distinct T6SS loci carried by P. aeruginosa, only the anaerobic expression of H2-T6SS was activated by Dnr; H1-T6SS or H3-T6SS did not respond to anaerobically induced activation. We also demonstrated that Dnr promotes the anaerobic secretion of ModA, which acts as a potential substrate for H2-T6SS, providing an advantage not only for the anaerobic growth of bacteria but also for functional competition. Overall, this study elucidates the important role played by Dnr in mediating the anaerobic expression of T6SS in P. aeruginosa, indicating that the functional advantage of H2-T6SS in response to anaerobic induction may be a conditional environmental adaptation. It also extends our understanding of the function of Dnr as a specific regulator of dissimilatory nitrate respiration. IMPORTANCE The type VI secretion system (T6SS) plays an important role in bacterial competition by mediating the transport of active metal ions. Pseudomonas aeruginosa carries three distinct T6SS loci (H1-, H2-, and H3-T6SS). The H2-T6SS promotes the secretion of the molybdate-binding protein ModA for the acquisition of molybdenum ions to adapt to anaerobic survival. Here, we report that the specialized dissimilatory nitrate respiration regulator Dnr in P. aeruginosa controls the anaerobic expression of H2-T6SS and that this regulation is essential for ModA protein secretion, anaerobic growth, and bacterial competition. This study elucidates the regulatory mechanism of Dnr on H2-T6SS in P. aeruginosa, revealing an important role played by H2-T6SS in adapting to an anaerobic environment.
Collapse
|
20
|
González-Magaña A, Altuna J, Queralt-Martín M, Largo E, Velázquez C, Montánchez I, Bernal P, Alcaraz A, Albesa-Jové D. The P. aeruginosa effector Tse5 forms membrane pores disrupting the membrane potential of intoxicated bacteria. Commun Biol 2022; 5:1189. [PMID: 36335275 PMCID: PMC9637101 DOI: 10.1038/s42003-022-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The type VI secretion system (T6SS) of Pseudomonas aeruginosa injects effector proteins into neighbouring competitors and host cells, providing a fitness advantage that allows this opportunistic nosocomial pathogen to persist and prevail during the onset of infections. However, despite the high clinical relevance of P. aeruginosa, the identity and mode of action of most P. aeruginosa T6SS-dependent effectors remain to be discovered. Here, we report the molecular mechanism of Tse5-CT, the toxic auto-proteolytic product of the P. aeruginosa T6SS exported effector Tse5. Our results demonstrate that Tse5-CT is a pore-forming toxin that can transport ions across the membrane, causing membrane depolarisation and bacterial death. The membrane potential regulates a wide range of essential cellular functions; therefore, membrane depolarisation is an efficient strategy to compete with other microorganisms in polymicrobial environments.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Jon Altuna
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Eneko Largo
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940, Leioa, Spain
| | - Carmen Velázquez
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Itxaso Montánchez
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940, Leioa, Spain
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - David Albesa-Jové
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
21
|
de Oliveira HL, Dias GM, Neves BC. Genome sequence of Pseudomonas aeruginosa PA1-Petro—A role model of environmental adaptation and a potential biotechnological tool. Heliyon 2022; 8:e11566. [DOI: 10.1016/j.heliyon.2022.e11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
22
|
An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. Mol Cell 2022; 82:3484-3498.e11. [PMID: 36070765 DOI: 10.1016/j.molcel.2022.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.
Collapse
|
23
|
A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in Chromobacterium violaceum. Microbiol Spectr 2022; 10:e0157622. [PMID: 35876575 PMCID: PMC9430734 DOI: 10.1128/spectrum.01576-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.
Collapse
|
24
|
Zhou Y, Gu S, Li J, Ji P, Zhang Y, Wu C, Jiang Q, Gao X, Zhang X. Complete Genome Analysis of Highly Pathogenic Non-O1/O139 Vibrio cholerae Isolated From Macrobrachium rosenbergii Reveals Pathogenicity and Antibiotic Resistance-Related Genes. Front Vet Sci 2022; 9:882885. [PMID: 35664858 PMCID: PMC9159153 DOI: 10.3389/fvets.2022.882885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Non-O1/O139 Vibrio cholerae is a highly virulent pathogen that causes mass mortalities of various aquatic animals. In the present study, we sequenced the whole genome of non-O1/O139 V. cholerae GXFL1-4, isolated from Macrobrachium rosenbergii, to reveal the pathogenicity and antibiotic resistance. The result showed its genome contained two circular chromosomes and one plasmid with a total size of 4,282,243 bp, which harbored 3,869 coding genes. Among them, 3,047, 2,659, and 3,661 genes were annotated in the Clusters of Orthologous Genes (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively. In addition, 372 potential virulence genes were predicted based on the Virulence Factor Database (VFDB) database, such as type II, III, IV, and VI secretion systems related genes, flagella genes, and pilus formation or motility-related genes. Blast results in the Comprehensive Antibiotic Resistance Database (CARD) database showed that the strain contained 148 antibiotic resistance-related genes belonging to 27 categories, such as efflux pump complex antibiotic resistance genes and antibiotic resistance gene cluster genes. The Pathogen-Host Interaction (PHI) database annotated 320 genes related to pathogen-host interaction, such as T3SS, virulence regulatory factors, transcriptional regulators, and two-component response regulator related genes. The whole-genome analysis suggested that the pathogenic non-O1/O139 V. cholerae strain GXFL1-4 might have a complex molecular mechanism of pathogenicity and antibiotic resistance. This study provides a wealth of information about non-O1/O139 V. cholerae genes related to its pathogenicity and drug resistance and will facilitate the understanding of its pathogenesis as well as the development of prevention and treatment strategies for the pathogen.
Collapse
|
25
|
Li Y, Yan X, Tao Z. Two Type VI Secretion DNase Effectors are Utilized for Interbacterial Competition in the Fish Pathogen Pseudomonas plecoglossicida. Front Microbiol 2022; 13:869278. [PMID: 35464968 PMCID: PMC9020831 DOI: 10.3389/fmicb.2022.869278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative fish pathogen that possesses three distinct type VI secretion systems (named T6SS-1, T6SS-2, and T6SS-3). Our previous work indicated that only T6SS-2 of P. plecoglossicida mediates interbacterial competition. However, the antibacterial T6SS effectors and their functions are unclear. Here, we reported two T6SS effectors that mediate antibacterial activity. We first identified four putative antibacterial effectors (denoted as Txe1, Txe2, Txe3, and Txe4) and their cognate immunity proteins encoded in P. plecoglossicida strain XSDHY-P by analyzing the regions downstream of three vgrG genes. We showed that the growth of Escherichia coli cells expressing Txe1, Txe2, and Txe4 was inhibited, and these three effectors exhibited nuclease activity in vivo. The interbacterial competition assays with single- or multi-effector deletion mutants as attackers revealed that Txe1 was the predominant T6SS toxin of P. plecoglossicida strain XSDHY-P mediating the interbacterial killing. This work contributes to our understanding of bacterial effectors involved in the interbacterial competition.
Collapse
Affiliation(s)
- Yanyan Li
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Xiaojun Yan
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Zhen Tao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
26
|
Allsopp LP, Collins ACZ, Hawkins E, Wood TE, Filloux A. RpoN/Sfa2-dependent activation of the Pseudomonas aeruginosa H2-T6SS and its cognate arsenal of antibacterial toxins. Nucleic Acids Res 2022; 50:227-243. [PMID: 34928327 PMCID: PMC8855297 DOI: 10.1093/nar/gkab1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa uses three type six secretion systems (H1-, H2- and H3-T6SS) to manipulate its environment, subvert host cells and for microbial competition. These T6SS machines are loaded with a variety of effectors/toxins, many being associated with a specific VgrG. How P. aeruginosa transcriptionally coordinates the main T6SS clusters and the multiple vgrG islands spread through the genome is unknown. Here we show an unprecedented level of control with RsmA repressing most known T6SS-related genes. Moreover, each of the H2- and H3-T6SS clusters encodes a sigma factor activator (SFA) protein called, Sfa2 and Sfa3, respectively. SFA proteins are enhancer binding proteins necessary for the sigma factor RpoN. Using a combination of RNA-seq, ChIP-seq and molecular biology approaches, we demonstrate that RpoN coordinates the T6SSs of P. aeruginosa by activating the H2-T6SS but repressing the H1- and H3-T6SS. Furthermore, RpoN and Sfa2 control the expression of the H2-T6SS-linked VgrGs and their effector arsenal to enable very effective interbacterial killing. Sfa2 is specific as Sfa3 from the H3-T6SS cannot complement loss of Sfa2. Our study further delineates the regulatory mechanisms that modulate the deployment of an arsenal of T6SS effectors likely enabling P. aeruginosa to adapt to a range of environmental conditions.
Collapse
Affiliation(s)
- Luke P Allsopp
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Alice C Z Collins
- National Heart and Lung Institute, Imperial College
London, London, UK
| | - Eleanor Hawkins
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Thomas E Wood
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular
Bacteriology and Infection, Imperial College London,
London, UK
| |
Collapse
|
27
|
Liang X, Pei TT, Li H, Zheng HY, Luo H, Cui Y, Tang MX, Zhao YJ, Xu P, Dong T. VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS Pathog 2021; 17:e1010116. [PMID: 34852023 PMCID: PMC8668125 DOI: 10.1371/journal.ppat.1010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/13/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly. Effectors of bacterial secretion systems are generally considered as secreted proteins for interspecies interactions rather than components of the secretion apparatus. Our results reveal the complex interactions of effectors, chaperones, and structural proteins are crucial for T6SS assembly, suggesting an integral role of effectors as parts of the apparatus and distinctive from other secretion systems.
Collapse
Affiliation(s)
- Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- * E-mail:
| |
Collapse
|
28
|
Dadashi M, Chen L, Nasimian A, Ghavami S, Duan K. Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:12561. [PMID: 34830443 PMCID: PMC8619066 DOI: 10.3390/ijms222212561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity.
Collapse
Affiliation(s)
- Maryam Dadashi
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Lin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Ahmad Nasimian
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Medical Microbiology and Infectious Disease, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
29
|
The two-component system FleS/FleR represses H1-T6SS via c-di-GMP signaling in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 88:e0165521. [PMID: 34731046 DOI: 10.1128/aem.01655-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) is an important translocation apparatus that is widely employed by Gram-negative bacteria to deliver toxic effectors into eukaryotic and prokaryotic target cells, causing host damage and providing competitive advantages in polymicrobial environments. The genome of P. aeruginosa harbors three T6SS clusters (H1-T6SS, H2-T6SS, H3-T6SS). Activities of these systems are tightly regulated by a complicated signaling network which remains largely elusive. In this study, we focused on a previously characterized two-component system FleS/FleR and performed comparative transcriptome analysis between the PAO1 wild-type strain and its isogenic ΔfleR mutant, which revealed the important role of FleS/FleR in regulating multiple physiological pathways including T6SS. Gene expression and bacterial killing assays showed that the expression and activity of H1-T6SS are repressed in the wild-type strain owing to the high intracellular c-di-GMP content. Further explorations demonstrated that c-di-GMP relies on the transcription factor FleQ to repress H1-T6SS and its synthesis is controlled by a global regulator AmrZ which is induced by the active FleS/FleR. Interestingly, FleS/FleR regulates H1-T6SS in PAO1 is independent of RetS which is known to regulate H1-T6SS by controlling the central post-transcriptional factor RsmA. Together, our results identified a novel regulator of H1-T6SS and provided detailed mechanisms of this signaling pathway in PAO1. IMPORTANCE P. aeruginosa is an opportunistic human pathogen distributed widely in the environment. The genome of this pathogen contains three T6SS clusters which contribute significantly to its virulence. Understanding the complex regulatory network that controls the activity of T6SS is essential for the development of effective therapeutic treatments for P. aeruginosa infections. In this study, transcriptome analysis led to the identification of a novel regulator FleS/FleR which inversely regulates H1-T6SS and H2-T6SS in P. aeruginosa PAO1. We further revealed a detailed FleS/FleR-mediated regulatory pathway of H1-T6SS in PAO1 which involves two additional transcriptional regulators AmrZ and FleQ and the second messenger c-di-GMP, providing important implications to develop novel anti-infective strategies and antimicrobial drugs.
Collapse
|
30
|
Jin J, Li Y, Huang M, Li S, Mao Z. Preliminary studies on the different roles of T6SSs in pathogenicity of Pseudomonas plecoglossicida NB2011. JOURNAL OF FISH DISEASES 2021; 44:1669-1679. [PMID: 34431107 DOI: 10.1111/jfd.13479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas plecoglossicida, the causative agent of visceral granulomas in the large yellow croaker (Larimichthys crocea) in China, encodes three sets of type Ⅵ secretion systems (T6SS1-3). The purpose of this study was to characterize the different roles of T6SSs involved in infection. In-frame deletion of T6SSs was constructed, which resulted in 8 mutants. Competition against E. coli DH5α, virulence against the croaker and in vivo survival ability of the mutants were tested. The expression and secretion of Hcp by P. plecoglossicida NB2011 were investigated. The results showed T6SS2 mutant failed to inhibit the growth of E. coli, which is an indication of T6SS2 acting against environmental bacteria. The LD50 value of T6SS1 mutant strongly increased; T6SS2 and T6SS3 mutants were similar to that of the wild type; and the virulence of double deletion or triple deletion mutant was drastically alleviated, indicating that T6SS1 being one of the major virulence factors, and T6SS2 and T6SS3 directly or indirectly being involved in the pathogenicity. T6SS1 mutant disappeared in the fish spleen in 3 days, while other strains kept increasing, indicating the T6SS1 stimulation bacteria replication in vivo. Hcp1 secreted at 12-28°C and Hcp2 secreted at 12-35°C, while Hcp3 secretion not detected in vitro. This study has thrown some insights on the understanding of pathogenicity mechanisms of this pathogen.
Collapse
Affiliation(s)
- Jiamin Jin
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Yiying Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Mengxia Huang
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Shanshan Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
31
|
Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DA, Filloux A. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat Microbiol 2021; 6:1199-1210. [PMID: 34413503 PMCID: PMC7611593 DOI: 10.1038/s41564-021-00950-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers toxic effectors to kill competitors or subvert some of their key functions. Here, we use transposon directed insertion-site sequencing to identify T6SS toxins associated with the H1-T6SS, one of the three T6SS machines found in Pseudomonas aeruginosa. This approach identified several putative toxin-immunity pairs, including Tse8-Tsi8. Full characterization of this protein pair demonstrated that Tse8 is delivered by the VgrG1a spike complex into prey cells where it targets the transamidosome, a multiprotein complex involved in protein synthesis in bacteria that lack either one, or both, of the asparagine and glutamine transfer RNA synthases. Biochemical characterization of the interactions between Tse8 and the transamidosome components GatA, GatB and GatC suggests that the presence of Tse8 alters the fine-tuned stoichiometry of the transamidosome complex, and in vivo assays demonstrate that Tse8 limits the ability of prey cells to synthesize proteins. These data expand the range of cellular components targeted by the T6SS by identifying a T6SS toxin affecting protein synthesis and validate the use of a transposon directed insertion site sequencing-based global genomics approach to expand the repertoire of T6SS toxins in T6SS-encoding bacteria.
Collapse
Affiliation(s)
- Laura M. Nolan
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Amy K. Cain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Thomas Clamens
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - R. Christopher D. Furniss
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Maria A. Sainz-Polo
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Despoina A.I. Mavridou
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom,Department of Molecular Biosciences, University of Texas at Austin, Austin, 78712, Texas, USA,Correspondence to Alain Filloux: ; Despoina Mavridou:
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom,Correspondence to Alain Filloux: ; Despoina Mavridou:
| |
Collapse
|
32
|
Robinson L, Liaw J, Omole Z, Xia D, van Vliet AHM, Corcionivoschi N, Hachani A, Gundogdu O. Bioinformatic Analysis of the Campylobacter jejuni Type VI Secretion System and Effector Prediction. Front Microbiol 2021; 12:694824. [PMID: 34276628 PMCID: PMC8285248 DOI: 10.3389/fmicb.2021.694824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and is a commensal coloniser of birds. Although recently discovered, the T6SS biological functions and identities of its effectors are still poorly defined in C. jejuni. Here, we perform a comprehensive bioinformatic analysis of the C. jejuni T6SS by investigating the prevalence and genetic architecture of the T6SS in 513 publicly available genomes using C. jejuni 488 strain as reference. A unique and conserved T6SS cluster associated with the Campylobacter jejuni Integrated Element 3 (CJIE3) was identified in the genomes of 117 strains. Analyses of the T6SS-positive 488 strain against the T6SS-negative C. jejuni RM1221 strain and the T6SS-positive plasmid pCJDM202 carried by C. jejuni WP2-202 strain defined the “T6SS-containing CJIE3” as a pathogenicity island, thus renamed as Campylobacter jejuni Pathogenicity Island-1 (CJPI-1). Analysis of CJPI-1 revealed two canonical VgrG homologues, CJ488_0978 and CJ488_0998, harbouring distinct C-termini in a genetically variable region downstream of the T6SS operon. CJPI-1 was also found to carry a putative DinJ-YafQ Type II toxin-antitoxin (TA) module, conserved across pCJDM202 and the genomic island CJIE3, as well as several open reading frames functionally predicted to encode for nucleases, lipases, and peptidoglycan hydrolases. This comprehensive in silico study provides a framework for experimental characterisation of T6SS-related effectors and TA modules in C. jejuni.
Collapse
Affiliation(s)
- Luca Robinson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dong Xia
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Abderrahman Hachani
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
33
|
Sensing of intracellular Hcp levels controls T6SS expression in Vibrio cholerae. Proc Natl Acad Sci U S A 2021; 118:2104813118. [PMID: 34161288 DOI: 10.1073/pnas.2104813118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 6 secretion system (T6SS) is a bacterial weapon broadly distributed in gram-negative bacteria and used to kill competitors and predators. Featuring a long and double-tubular structure, this molecular machine is energetically costly to produce and thus is likely subject to diverse regulation strategies that are largely ill defined. In this study, we report a quantity-sensing control of the T6SS that down-regulates the expression of secreted components when they accumulate in the cytosol due to T6SS inactivation. Using Vibrio cholerae strains that constitutively express an active T6SS, we demonstrate that mRNA levels of secreted components, including the inner-tube protein component Hcp, were down-regulated in T6SS structural gene mutants while expression of the main structural genes remained unchanged. Deletion of both hcp gene copies restored expression from their promoters, while Hcp overexpression negatively impacted expression. We show that Hcp directly interacts with the RpoN-dependent T6SS regulator VasH, and deleting the N-terminal regulator domain of VasH abolishes this interaction as well as the expression difference of hcp operons between T6SS-active and inactive strains. We find that negative regulation of hcp also occurs in other V. cholerae strains and the pathogens Aeromonas dhakensis and Pseudomonas aeruginosa This Hcp-dependent sensing control is likely an important energy-conserving mechanism that enables T6SS-encoding organisms to quickly adjust T6SS expression and prevent wasteful build-up of its major secreted components in the absence of their efficient export out of the bacterial cell.
Collapse
|
34
|
Reales-Calderón JA, Sun Z, Mascaraque V, Pérez-Navarro E, Vialás V, Deutsch EW, Moritz RL, Gil C, Martínez JL, Molero G. A wide-ranging Pseudomonas aeruginosa PeptideAtlas build: A useful proteomic resource for a versatile pathogen. J Proteomics 2021; 239:104192. [PMID: 33757883 PMCID: PMC8668395 DOI: 10.1016/j.jprot.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen with high prevalence in nosocomial infections. This microorganism is a good model for understanding biological processes such as the quorum-sensing response, the metabolic integration of virulence, the mechanisms of global regulation of bacterial physiology, and the evolution of antibiotic resistance. Till now, P. aeruginosa proteomic data, although available in several on-line repositories, were dispersed and difficult to access. In the present work, proteomes of the PAO1 strain grown under different conditions and from diverse cellular compartments have been joined to build the Pseudomonas PeptideAtlas. This resource is a comprehensive mass spectrometry-derived peptide and inferred protein database with 71.3% coverage of the total predicted proteome of P. aeruginosa PAO1, the highest coverage among bacterial PeptideAtlas datasets. The proteins included cover 89% of metabolic proteins, 72% of proteins involved in genetic information processing, 83% of proteins responsible for environmental information processing, more than 88% of the ones related to quorum sensing and biofilm formation, and 89% of proteins responsible for antimicrobial resistance. It exemplifies a necessary tool for targeted proteomics studies, system-wide observations, and cross-species observational studies. The manuscript describes the building of the PeptideAtlas and the contribution of the different proteomic data used. SIGNIFICANCE: Pseudomonas aeruginosa is among the most versatile human bacterial pathogens. Studies of its proteome are very important as they can reveal virulence factors and mechanisms of antibiotic resistance. The construction of a proteomic resource such as the PeptideAtlas enables targeted proteomics studies, system-wide observations, and cross-species observational studies.
Collapse
Affiliation(s)
- J A Reales-Calderón
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Z Sun
- Institute for Systems Biology, Seattle, WA, USA
| | - V Mascaraque
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E Pérez-Navarro
- Unidad de Proteómica de la Universidad Complutense de Madrid, Spain
| | - V Vialás
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E W Deutsch
- Institute for Systems Biology, Seattle, WA, USA
| | - R L Moritz
- Institute for Systems Biology, Seattle, WA, USA
| | - C Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain; Unidad de Proteómica de la Universidad Complutense de Madrid, Spain
| | - J L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - G Molero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
35
|
Wang S, Geng Z, Zhang H, She Z, Dong Y. The Pseudomonas aeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector. FEBS J 2021; 288:5755-5767. [PMID: 33838074 DOI: 10.1111/febs.15870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 01/10/2023]
Abstract
The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in inter-bacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from the virulence of their own effectors. The T6SS injects its inner-needle Hcp tube, the sharpening tip complex -consisting of VgrG and proline-alanine-alanine-arginine repeats (PAAR) proteins- and toxic effectors into neighboring cells. Its functions are largely determined by the activities of its delivered effectors. Five PAAR proteins were found in the Pseudomonas aeruginosa PAO1 genome with three of them shown to facilitate the delivery of various effectors. Here, we report a putative virus-type replication-repair nuclease domain-containing effector TseV encoded by the least investigated P. aeruginosa PAAR2 cluster. The crystal structure of its putative cognate effector TsiV is presented at 1.6 Å resolution. Through structure and sequence comparisons, we propose TseV-TsiV to be a putative novel effector-immunity (E-I) pair and we discuss the roles of other PAAR2 cluster encoded proteins.
Collapse
Affiliation(s)
- Shuangyue Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Zhi Geng
- Multidiscipline Research Center, Institte of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- Multidiscipline Research Center, Institte of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhun She
- Multidiscipline Research Center, Institte of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Dong
- Multidiscipline Research Center, Institte of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Stolle AS, Meader BT, Toska J, Mekalanos JJ. Endogenous membrane stress induces T6SS activity in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2021; 118:e2018365118. [PMID: 33443205 PMCID: PMC7817224 DOI: 10.1073/pnas.2018365118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The type 6 secretion system (T6SS) is a dynamic organelle encoded by many gram-negative bacteria that can be used to kill competing bacterial prey species in densely occupied niches. Some predatory species, such as Vibrio cholerae, use their T6SS in an untargeted fashion while in contrast, Pseudomonas aeruginosa assembles and fires its T6SS apparatus only after detecting initial attacks by other bacterial prey cells; this targeted attack strategy has been termed the T6SS tit-for-tat response. Molecules that interact with the P. aeruginosa outer membrane such as polymyxin B can also trigger assembly of T6SS organelles via a signal transduction pathway that involves protein phosphorylation. Recent work suggests that a phospholipase T6SS effector (TseL) of V. cholerae can induce T6SS dynamic activity in P. aeruginosa when delivered to or expressed in the periplasmic space of this organism. Here, we report that inhibiting expression of essential genes involved in outer membrane biogenesis can also trigger T6SS activation in P. aeruginosa Specifically, we developed a CRISPR interference (CRISPRi) system to knock down expression of bamA, tolB, and lptD and found that these knockdowns activated T6SS activity. This increase in T6SS activity was dependent on the same signal transduction pathway that was previously shown to be required for the tit-for-tat response. We conclude that outer membrane perturbation can be sensed by P. aeruginosa to activate the T6SS even when the disruption is generated by aberrant cell envelope biogenesis.
Collapse
Affiliation(s)
- Anne-Sophie Stolle
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | | | - Jonida Toska
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
37
|
González-Magaña A, Sainz-Polo MÁ, Pretre G, Çapuni R, Lucas M, Altuna J, Montánchez I, Fucini P, Albesa-Jové D. Structural insights into Pseudomonas aeruginosaType six secretion system exported effector 8. J Struct Biol 2020; 212:107651. [PMID: 33096229 DOI: 10.1016/j.jsb.2020.107651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Recent reports indicate that the Type six secretion system exported effector 8 (Tse8) is a cytoactive effector secreted by the Type VI secretion system (T6SS) of the human pathogen Pseudomonas aeruginosa. The T6SS is a nanomachine that assembles inside of the bacteria and injects effectors/toxins into target cells, providing a fitness advantage over competing bacteria and facilitating host colonisation. Here we present the first crystal structure of Tse8 revealing that it conserves the architecture of the catalytic triad Lys84-transSer162-Ser186 that characterises members of the Amidase Signature superfamily. Furthermore, using binding affinity experiments, we show that the interaction of phenylmethylsulfonyl fluoride (PMSF) to Tse8 is dependent on the putative catalytic residue Ser186, providing support for its nucleophilic reactivity. This work thus demonstrates that Tse8 belongs to the Amidase Signature (AS) superfamily. Furthermore, it highlights Tse8 similarity to two family members: the Stenotrophomonas maltophilia Peptide Amidase and the Glutamyl-tRNAGln amidotransferase subunit A from Staphylococcus aureus.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940 Leioa, Spain
| | - M Ángela Sainz-Polo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Gabriela Pretre
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940 Leioa, Spain
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - María Lucas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011 Cantabria, Spain
| | - Jon Altuna
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Itxaso Montánchez
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940 Leioa, Spain
| | - Paola Fucini
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David Albesa-Jové
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
38
|
Zhang Z, Yu YX, Wang YG, Liu X, Wang LF, Zhang H, Liao MJ, Li B. Complete genome analysis of a virulent Vibrio scophthalmi strain VSc190401 isolated from diseased marine fish half-smooth tongue sole, Cynoglossus semilaevis. BMC Microbiol 2020; 20:341. [PMID: 33176689 PMCID: PMC7661262 DOI: 10.1186/s12866-020-02028-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Vibrio scophthalmi is an opportunistic bacterial pathogen, which is widely distributed in the marine environment. Earlier studies have suggested that it is a normal microorganism in the turbot gut. However, recent studies have confirmed that this bacterial strain can cause diseases in many different marine animals. Therefore, it is necessary to investigate its whole genome for better understanding its physiological and pathogenic mechanisms. Results In the present study, we obtained a pathogenic strain of V. scophthalmi from diseased half-smooth tongue sole (Cynoglossus semilaevis) and sequenced its whole genome. Its genome contained two circular chromosomes and two plasmids with a total size of 3,541,838 bp, which harbored 3185 coding genes. Among these genes, 2648, 2298, and 1915 genes could be found through annotation information in COG, Blast2GO, and KEGG databases, respectively. Moreover, 10 genomic islands were predicted to exist in the chromosome I through IslandViewer online system. Comparison analysis in VFDB and PHI databases showed that this strain had 334 potential virulence-related genes and 518 pathogen-host interaction-related genes. Although it contained genes related to four secretion systems of T1SS, T2SS, T4SS, and T6SS, there was only one complete T2SS secretion system. Based on CARD database blast results, 180 drug resistance genes belonging to 27 antibiotic resistance categories were found in the whole genome of such strain. However, there were many differences between the phenotype and genotype of drug resistance. Conclusions Based on the whole genome analysis, the pathogenic V. scophthalmi strain contained many types of genes related to pathogenicity and drug resistance. Moreover, it showed inconsistency between phenotype and genotype on drug resistance. These results suggested that the physiological mechanism seemed to be complex. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02028-7.
Collapse
Affiliation(s)
- Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Yong-Xiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Yin-Geng Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Xiao Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Li-Fang Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Hao Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Mei-Jie Liao
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
39
|
Varadarajan AR, Allan RN, Valentin JDP, Castañeda Ocampo OE, Somerville V, Pietsch F, Buhmann MT, West J, Skipp PJ, van der Mei HC, Ren Q, Schreiber F, Webb JS, Ahrens CH. An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1. NPJ Biofilms Microbiomes 2020; 6:46. [PMID: 33127897 PMCID: PMC7603352 DOI: 10.1038/s41522-020-00154-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.
| | - Raymond N Allan
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH, UK
| | - Jules D P Valentin
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Olga E Castañeda Ocampo
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Vincent Somerville
- Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Franziska Pietsch
- Division of Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Matthias T Buhmann
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Hybrid Biodevices, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul J Skipp
- Centre for Proteomics Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Henny C van der Mei
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Jeremy S Webb
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Christian H Ahrens
- Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.
| |
Collapse
|
40
|
Wood TE, Howard SA, Förster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Rep 2020; 29:187-201.e7. [PMID: 31577948 PMCID: PMC6899460 DOI: 10.1016/j.celrep.2019.08.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/02/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
The type VI secretion system (T6SS) is crucial in interbacterial competition and is a virulence determinant of many Gram-negative bacteria. Several T6SS effectors are covalently fused to secreted T6SS structural components such as the VgrG spike for delivery into target cells. In Pseudomonas aeruginosa, the VgrG2b effector was previously proposed to mediate bacterial internalization into eukaryotic cells. In this work, we find that the VgrG2b C-terminal domain (VgrG2bC-ter) elicits toxicity in the bacterial periplasm, counteracted by a cognate immunity protein. We resolve the structure of VgrG2bC-ter and confirm it is a member of the zinc-metallopeptidase family of enzymes. We show that this effector causes membrane blebbing at midcell, which suggests a distinct type of T6SS-mediated growth inhibition through interference with cell division, mimicking the impact of β-lactam antibiotics. Our study introduces a further effector family to the T6SS arsenal and demonstrates that VgrG2b can target both prokaryotic and eukaryotic cells. The structure of the VgrG2b C-terminal domain presents a metallopeptidase fold VgrG2b exerts antibacterial activity in the periplasmic space Toxicity of VgrG2b is counteracted by a cognate periplasmic immunity protein VgrG2bC-ter-intoxicated prey cells bleb at the midcell and lyse
Collapse
Affiliation(s)
- Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andreas Förster
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Laura M Nolan
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Hamish C L Yau
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Abderrahman Hachani
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Richard D Hayward
- Division of Microbiology and Parasitology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
41
|
Kim N, Kim JJ, Kim I, Mannaa M, Park J, Kim J, Lee H, Lee S, Park D, Sul WJ, Seo Y. Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence. MOLECULAR PLANT PATHOLOGY 2020; 21:1055-1069. [PMID: 32643866 PMCID: PMC7368126 DOI: 10.1111/mpp.12966] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 05/02/2023]
Abstract
In the environment, bacteria show close association, such as interspecies interaction, with other bacteria as well as host organisms. The type VI secretion system (T6SS) in gram-negative bacteria is involved in bacterial competition or virulence. The plant pathogen Burkholderia glumae BGR1, causing bacterial panicle blight in rice, has four T6SS gene clusters. The presence of at least one T6SS gene cluster in an organism indicates its distinct role, like in the bacterial and eukaryotic cell targeting system. In this study, deletion mutants targeting four tssD genes, which encode the main component of T6SS needle formation, were constructed to functionally dissect the four T6SSs in B. glumae BGR1. We found that both T6SS group_4 and group_5, belonging to the eukaryotic targeting system, act independently as bacterial virulence factors toward host plants. In contrast, T6SS group_1 is involved in bacterial competition by exerting antibacterial effects. The ΔtssD1 mutant lost the antibacterial effect of T6SS group_1. The ΔtssD1 mutant showed similar virulence as the wild-type BGR1 in rice because the ΔtssD1 mutant, like the wild-type BGR1, still has key virulence factors such as toxin production towards rice. However, metagenomic analysis showed different bacterial communities in rice infected with the ΔtssD1 mutant compared to wild-type BGR1. In particular, the T6SS group_1 controls endophytic plant-associated bacteria such as Luteibacter and Dyella in rice plants and may have an advantage in competing with endophytic plant-associated bacteria for settlement inside rice plants in the environment. Thus, B. glumae BGR1 causes disease using T6SSs with functionally distinct roles.
Collapse
Affiliation(s)
- Namgyu Kim
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Jin Ju Kim
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongKorea
| | - Inyoung Kim
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Mohamed Mannaa
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Jungwook Park
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Juyun Kim
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Hyun‐Hee Lee
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | | | | | - Woo Jun Sul
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongKorea
| | - Young‐Su Seo
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| |
Collapse
|
42
|
Zhou M, Lan Y, Wang S, Liu Q, Jian Z, Li Y, Chen X, Yan Q, Liu W. Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. J Clin Lab Anal 2020; 34:e23459. [PMID: 32656871 PMCID: PMC7676210 DOI: 10.1002/jcla.23459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The type VI secretion system (T6SS) has been identified as a novel virulence factor. This study aimed to investigate the prevalence of the T6SS genes in Klebsiella pneumoniae‐induced bloodstream infections (BSIs). We also evaluated clinical and molecular characteristics of T6SS‐positive K pneumoniae. Methods A total of 344 non‐repetitive K. pneumoniae bloodstream isolates and relevant clinical data were collected from January 2016 to January 2019. For all isolates, T6SS genes, capsular serotypes, and virulence genes were detected by polymerase chain reaction, and antimicrobial susceptibility was tested by VITEK® 2 Compact. MLST was being conducted for hypervirulent K. pneumoniae (HVKP). Results 69 (20.1%) were identified as T6SS‐positive K. pneumoniae among 344 isolates recovered from patients with BSIs. The rate of K1 capsular serotypes and ten virulence genes in T6SS‐positive strains was higher than T6SS‐negative strains (P = .000). The T6SS‐positive rate was significantly higher than T6SS‐negative rate among HVKP isolates. (P = .000). The T6SS‐positive K. pneumoniae isolates were significantly more susceptible to cefoperazone‐sulbactam, ampicillin‐sulbactam, cefazolin, ceftriaxone, cefotan, aztreonam, ertapenem, amikacin, gentamicin, levofloxacin, and ciprofloxacin (P < 0.05). More strains isolated from the community and liver abscess were T6SS‐positive K. pneumoniae (P < .05). Multivariate regression analysis indicated that community‐acquired BSIs (OR 2.986), the carriage of wcaG (OR 10.579), iucA (OR 2.441), and p‐rmpA (OR 7.438) virulence genes, and biliary diseases (OR 5.361) were independent risk factors for T6SS‐positive K. pneumoniae‐induced BSIs. Conclusion The T6SS‐positive K. pneumoniae was prevalent in individuals with BSIs. T6SS‐positive K. pneumoniae strains seemed to be hypervirulent which revealed the potential pathogenicity of this emerging gene cluster.
Collapse
Affiliation(s)
- Mao Zhou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - You Lan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qingxia Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Wettstadt S, Lai EM, Filloux A. Solving the Puzzle: Connecting a Heterologous Agrobacterium tumefaciens T6SS Effector to a Pseudomonas aeruginosa Spike Complex. Front Cell Infect Microbiol 2020; 10:291. [PMID: 32656098 PMCID: PMC7324665 DOI: 10.3389/fcimb.2020.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic and prokaryotic target cells. Such T6SS spike consists of a needle-shaped trimer of VgrG proteins topped by a conical and sharp PAAR protein that facilitates puncturing of the target membrane. T6SS-delivered effector proteins can be either fused to one of the two spike proteins or interact with either in a highly specific manner. In Agrobacterium tumefaciens the T6SS effector Tde1 is targeted to its cognate VgrG1 protein. Here, we attempted to use a VgrG shuttle to deliver a heterologous T6SS effector by directing Tde1 onto a T6SS spike in Pseudomonas aeruginosa. For this, we designed chimeras between VgrG1 from A. tumefaciens and VgrG1a from P. aeruginosa and showed that modification of the spike protein hampered T6SS functionality in the presence of the Tde1 effector complex. We provide evidence suggesting that Tde1 specifically binds to the VgrG spike in the heterologous environment and propose that there are additional requirements to allow proper effector delivery and translocation. Our work sheds light on complex aspects of the molecular mechanisms of T6SS delivery and highlights some limitations on how effectors can be translocated using this nanomachine.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Welp AL, Bomberger JM. Bacterial Community Interactions During Chronic Respiratory Disease. Front Cell Infect Microbiol 2020; 10:213. [PMID: 32477966 PMCID: PMC7240048 DOI: 10.3389/fcimb.2020.00213] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic respiratory diseases including chronic rhinosinusitis, otitis media, asthma, cystic fibrosis, non-CF bronchiectasis, and chronic obstructive pulmonary disease are a major public health burden. Patients suffering from chronic respiratory disease are prone to persistent, debilitating respiratory infections due to the decreased ability to clear pathogens from the respiratory tract. Such infections often develop into chronic, life-long complications that are difficult to treat with antibiotics due to the formation of recalcitrant biofilms. The microbial communities present in the upper and lower respiratory tracts change as these respiratory diseases progress, often becoming less diverse and dysbiotic, correlating with worsening patient morbidity. Those with chronic respiratory disease are commonly infected with a shared group of respiratory pathogens including Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Moraxella catarrhalis, among others. In order to understand the microbial landscape of the respiratory tract during chronic disease, we review the known inter-species interactions among these organisms and other common respiratory flora. We consider both the balance between cooperative and competitive interactions in relation to microbial community structure. By reviewing the major causes of chronic respiratory disease, we identify common features across disease states and signals that might contribute to community shifts. As microbiome shifts have been associated with respiratory disease progression, worsening morbidity, and increased mortality, these underlying community interactions likely have an impact on respiratory disease state.
Collapse
Affiliation(s)
- Allison L. Welp
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Wettstadt S, Filloux A. Manipulating the type VI secretion system spike to shuttle passenger proteins. PLoS One 2020; 15:e0228941. [PMID: 32101557 PMCID: PMC7043769 DOI: 10.1371/journal.pone.0228941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined "evolved" components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, β-lactamase, a covalent extension of an "evolved" VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Rubio-Gómez JM, Santiago CM, Udaondo Z, Garitaonaindia MT, Krell T, Ramos JL, Daddaoua A. Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Front Microbiol 2020; 11:202. [PMID: 32153524 PMCID: PMC7044273 DOI: 10.3389/fmicb.2020.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous gram-negative opportunistic human pathogen which is not considered part of the human commensal gut microbiota. However, depletion of the intestinal microbiota (Dysbiosis) following antibiotic treatment facilitates the colonization of the intestinal tract by Multidrug-Resistant P. aeruginosa. One possible strategy is based on the use of functional foods with prebiotic activity. The bifidogenic effect of the prebiotic inulin and its hydrolyzed form (fructooligosaccharide: FOS) is well established since they promote the growth of specific beneficial (probiotic) gut bacteria such as bifidobacteria. Previous studies of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 have shown that inulin and to a greater extent FOS reduce growth and biofilm formation, which was found to be due to a decrease in motility and exotoxin secretion. However, the transcriptional basis for these phenotypic alterations remains unclear. To address this question we conducted RNA-sequence analysis. Changes in the transcript level induced by inulin and FOS were similar, but a set of transcript levels were increased in response to inulin and reduced in the presence of FOS. In the presence of inulin or FOS, 260 and 217 transcript levels, respectively, were altered compared to the control to which no polysaccharide was added. Importantly, changes in transcript levels of 57 and 83 genes were found to be specific for either inulin or FOS, respectively, indicating that both compounds trigger different changes. Gene pathway analyses of differentially expressed genes (DEG) revealed a specific FOS-mediated reduction in transcript levels of genes that participate in several canonical pathways involved in metabolism and growth, motility, biofilm formation, β-lactamase resistance, and in the modulation of type III and VI secretion systems; results that have been partially verified by real time quantitative PCR measurements. Moreover, we have identified a genomic island formed by a cluster of 15 genes, encoding uncharacterized proteins, which were repressed in the presence of FOS. The analysis of isogenic mutants has shown that genes of this genomic island encode proteins involved in growth, biofilm formation and motility. These results indicate that FOS selectively modulates bacterial pathogenicity by interfering with different signaling pathways.
Collapse
Affiliation(s)
- José Manuel Rubio-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Molina Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga, Málaga, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mireia Tena Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
47
|
Wood TE, Howard SA, Wettstadt S, Filloux A. PAAR proteins act as the 'sorting hat' of the type VI secretion system. MICROBIOLOGY-SGM 2020; 165:1203-1218. [PMID: 31380737 PMCID: PMC7376260 DOI: 10.1099/mic.0.000842] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria exist in polymicrobial environments and compete to prevail in a niche. The type VI secretion system (T6SS) is a nanomachine employed by Gram-negative bacteria to deliver effector proteins into target cells. Consequently, T6SS-positive bacteria produce a wealth of antibacterial effector proteins to promote their survival among a prokaryotic community. These toxins are loaded onto the VgrG–PAAR spike and Hcp tube of the T6SS apparatus and recent work has started to document the specificity of effectors for certain spike components. Pseudomonas aeruginosa encodes several PAAR proteins, whose roles have been poorly investigated. Here we describe a phospholipase family antibacterial effector immunity pair from Pseudomonas aeruginosa and demonstrate that a specific PAAR protein is necessary for the delivery of the effector and its cognate VgrG. Furthermore, the PAAR protein appears to restrict the delivery of other phospholipase effectors that utilise distinct VgrG proteins. We provide further evidence for competition for PAAR protein recruitment to the T6SS apparatus, which determines the identities of the delivered effectors.
Collapse
Affiliation(s)
- Thomas E Wood
- Present address: Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Present address: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA, USA.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sarah Wettstadt
- Present address: Department of Environmental Protection, Estación Experimental de Zaidín - Consejo Superior de Investigaciones Científicas, Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| |
Collapse
|
48
|
Chen L, Zou Y, Kronfl AA, Wu Y. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. Microbiologyopen 2020; 9:e991. [PMID: 31961499 PMCID: PMC7066461 DOI: 10.1002/mbo3.991] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa encodes three type VI secretion systems (T6SSs), namely H1‐, H2‐, and H3‐T6SS. P. aeruginosa hemolysin‐coregulated protein (Hcp) is the effector protein and the hallmark of T6SS. Although T6SS is ubiquitous and affects ecology and human health, its general mechanism and physiological role are still not fully understood. Therefore, in this study, we investigated the impact of the P. aeruginosa T6SS on biofilm formation and environmental adaptation. To this end, we collected P. aeruginosa clinical isolates, divided them into strong biofilm formation (SBF) and nonbiofilm formation (NBF) groups based on their biofilm‐forming ability, and compared their associated clinical characteristics. The duration of hospitalization was longer in patients infected with SBF than those infected with NBF strains. The expression levels of T6SS‐related genes (hcp1 and hcp3) and a quorum‐sensing gene (lasR) were higher in the SBF group as compared to those in the NBF group. In addition, the expression level of lasR was negatively associated with that of hcp1, but was positively associated with those of hcp2 and hcp3. Moreover, we evaluated the expression of T6SS‐ and biofilm‐associated genes in planktonic and biofilm cells of the P. aeruginosa strain PAO1, and constructed strain PAO1△clpV1 to study the adaptation characteristics of H1‐T6SS. The expression levels of hcp1, hcp2, hcp3, lasR, and other biofilm‐associated genes were significantly higher in PAO1 biofilm cells as compared to those of planktonic cells. However, except for swarming ability as a vital feature for biofilm formation, there were no significant differences in the biofilm‐forming ability and expression of biofilm‐associated genes, adherence ability, growth characteristics, resistance to acid and osmotic pressure, surface structure, and morphology between the PAO1△clpV1 and PAO1 wild‐type strains. Collectively, our results suggest that T6SS might play a role in biofilm formation and that H1‐T6SS does not contribute to environmental adaptation in P. aeruginosa.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaru Zou
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Asmaa Abbas Kronfl
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Tang Y, Sun Y, Zhao L, Xu X, Huang L, Qin Y, Su Y, Yi G, Yan Q. Mechanistic insight into the roles of Pseudomonas plecoglossicida clpV gene in host-pathogen interactions with Larimichthys crocea by dual RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2019; 93:344-353. [PMID: 31352116 DOI: 10.1016/j.fsi.2019.07.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economical important farmed fish in China. "Visceral White Spot Disease" caused by Pseudomonas plecoglossicida is a disease with a high mortality rate in cage-cultured L. crocea in recent years and resulted in heavy economy lossess. The dual RNA-seq results of previous study showed that the expression of clpV gene in P. plecoglossicida was significantly up-regulated during infection. RNAi significantly reduced the expression of clpV in P. plecoglossicida with maximum silencing efficiency of 96.1%. Compared with the wild type strain, infection of clpV-RNAi strain resulted in a delayed onset time and a 25% reduction in mortality of L. crocea, as well as lessening the symptoms of the spleen. The results of dual RNA-seq of L. crocea infected by clpV-RNAi strain of P. plecoglossicida changed considerably, compared with the counterpart infected with the wild strain. The KEGG enrichment analysis showed that Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway and MAPK signaling pathway of L. crocea were most affected by the silence of clpV in P. plecoglossicida. RNAi of clpV resulted in the downregulation of genes in flagella assembly pathway and a weaker immune response of host.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yujia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian, 352000, China
| | - Ganfeng Yi
- Fujian Dabeinong Aquaculture Science & Technology Co. Ltd., Zhangzhou, Fujian, 363502, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
50
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|