1
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Oxfeldt M, Pedersen AB, Hørmann D, Lind JH, Larsen EB, Aagaard P, Hansen M. Influence of Second-Generation Oral Contraceptives on Muscle Recovery after Repeated Resistance Exercise in Trained Females. Med Sci Sports Exerc 2024; 56:499-510. [PMID: 38356164 DOI: 10.1249/mss.0000000000003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
PURPOSE Oral contraceptives (OCs) are commonly used by female athletes, but their effects on skeletal muscle are still poorly understood. We investigated if physically trained females using second-generation OCs differed from nonusers of OCs in the recovery of muscle function and muscle damage markers after repeated resistance exercise sessions. METHODS We recruited 20 trained second-generation OC users and 20 trained nonusers to perform three strenuous resistance exercise sessions. Before, and 3, 24, and 48 h after exercise, blood samples were collected, and participants were evaluated for muscle soreness, maximal isometric and isokinetic muscle strength, vertical jump height, Wingate power performance, leg press strength, and intermittent recovery capacity (yo-yo test). All participants were provided with an energy-macronutrient-balanced diet during the experimental period. RESULTS After resistance exercise, maximal isometric and isokinetic muscle strength, rate of force development, vertical jump height, and Wingate peak and average power were reduced, whereas markers of muscle damage were increased in both groups (P < 0.05). OC users experienced a greater reduction in isokinetic strength 3, 24, and 48 h after exercise compared with nonusers of OCs (interaction: P < 0.05). No other interactions were observed. CONCLUSIONS We demonstrate that measures of muscle strength recovery after three strenuous resistance exercise sessions are comparable between trained females using second-generation OCs and nonusers of OCs. However, group differences were observed for isolated dynamic (isokinetic) muscle strength, suggesting a marginal benefit of not using OCs when accelerated recovery is needed.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | - Anton B Pedersen
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | - Daniel Hørmann
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | - Jesper H Lind
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | - Emil B Larsen
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, DENMARK
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| |
Collapse
|
3
|
Davignon LM, Brouillard A, Juster RP, Marin MF. The role of sex hormones, oral contraceptive use, and its parameters on visuospatial abilities, verbal fluency, and verbal memory. Horm Behav 2024; 157:105454. [PMID: 37981465 DOI: 10.1016/j.yhbeh.2023.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Sex hormones can cross the blood-brain barrier and access brain regions underlying higher-order cognition. Containing synthetic sex hormones, oral contraceptives (OC) have been found to modulate visuospatial and verbal abilities, though inconsistencies have been found in the literature. Among possible explanations, certain OC use parameters (progestin androgenicity, synthetic hormone levels, duration of use) have not received consistent consideration. Thus, the objectives were to (1) examine group differences between men, combined OC users, and naturally cycling women (NC women; not using OC) in visuospatial abilities, verbal fluency, and verbal memory and (2) investigate the contribution of endogenous and exogenous sex hormones on these effects. We also aimed to (3) identify OC use parameters relevant to cognitive outcomes. In total, 70 combined OC users, 53 early follicular (EF) women, 43 pre-ovulatory (PO) women, and 47 men underwent cognitive tests. Performance was compared based on hormonal milieus (OC, EF, PO, men) and OC users' contraceptive androgenicity (anti, low, high). Correlations between performance, hormone levels and OC use duration were also conducted. OC use dampened the sex difference that typically favors men in 3D visuospatial abilities, whereas its duration of use positively predicted verbal fluency. Androgenicity and hormone levels did not predict performance in any task. These results highlight the importance of considering OC use duration. Results also did not support a role for androgenicity in cognition. Importantly, combined OC use (including prolonged use) does not impair visuospatial, verbal, and memory functions in a healthy young sample.
Collapse
Affiliation(s)
- Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Robert-Paul Juster
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada
| | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada.
| |
Collapse
|
4
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
5
|
Islam RM, Bell RJ, Berk M, Handelsman DJ, McNeil JJ, Wolfe R, Woods RL, Davis SR. Associations between low sex hormone concentrations and depression in older women: An observational study. Maturitas 2023; 176:107822. [PMID: 37591034 DOI: 10.1016/j.maturitas.2023.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE We investigated whether low sex hormone concentrations are associated with depression in older women. STUDY DESIGN This was a cross-sectional study of Australian women, aged at least 70 years, not taking medications modulating sex hormone levels. Associations between hormones, measured by liquid chromatography-tandem mass spectrometry, and depression were examined by logistic regression adjusted for potential confounders. MAIN OUTCOME MEASURES The primary outcome was a Center for Epidemiologic Studies Depression score >10, designated as 'depression', with an expanded definition that included anti-depressant use as a secondary outcome. RESULTS For the 5535 participants in the analysis, median age 74.0 years (interquartile range 71.7-77.7), depression prevalence was 5.8 % (95 % CI 5.2-6.4 %). In the adjusted models, a statistically significantly greater likelihood of depression was seen for women with testosterone and oestrone blood concentrations in quartile 1 compared with quartiles 2-4 (odds ratio 1.33, 95 % CI 1.04 to 1.70, p = 0.022; and 1.37, 95 % CI 1.06 to 1.78, p = 0.017, respectively). For the expanded definition, the odds ratios for the lowest testosterone and oestrone quartile compared with other quartiles were 1.47 (95 % CI 1.24 to 1.75, p < 0.001) and 1.31 (95 % CI 1.09 to 1.58, p < 0.001), respectively. A significant association for low DHEA was seen only for the expanded definition of depression (1.36, 95 % CI 1.13 to 1.64, p = 0.001). Receiver operating characteristic curves showed that the contribution of each sex hormone to the likelihood of depression was small. CONCLUSIONS Amongst older women not taking medications that influence sex hormone concentrations, low testosterone and oestrone levels are associated with a greater likelihood of depression, but the effects are small. TRIAL REGISTRATION International Standard Randomized Controlled Trial Number Register (ISRCTN83772183) and clinicaltrials.gov (NCT01038583).
Collapse
Affiliation(s)
- Rakibul M Islam
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - Robin J Bell
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation Strategy Research Centre, Deakin University School of Medicine, Geelong, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, New South Wales 2139, Australia.
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; Department of Endocrinology and Diabetes, Alfred Health, Melbourne 3004, Australia.
| |
Collapse
|
6
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
7
|
Ribeiro YM, Moreira DP, Weber AA, Miranda TGR, Bazzoli N, Rizzo E. Chronic estrone exposure affects spermatogenesis and sperm quality in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104058. [PMID: 36596390 DOI: 10.1016/j.etap.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Estrone (E1) is a common environmental contaminant found in rivers and streams due to the farming of animals, such as swine and cattle. Our study evaluated the effects of chronic E1 exposure at environmentally relevant concentrations on spermatogenesis and the semen quality of zebrafish (Danio rerio). We exposed the fish to E1 at concentrations of 20, 200, and 2000 ng/L diluted in 0.001% ethanol (v/v) for 49 days. There were two control groups: one was exposed to water only and the other to ethanol at the same concentration used in the E1 groups. Following exposure, we analyzed the proportion of testicular cell types and other components (%), rate of cell proliferation and death, and sex steroid concentrations. Furthermore, we analyzed the expression of insulin-like growth factor 1 (IGF1), IGF2, IGF1 receptor (IGF1R), and inducible nitric oxide synthase and assessed the semen quality. E1 exposure increased spermatogonia, spermatids, Sertoli cells, Leydig cells, and the proportion of inflammatory infiltrate but decreased the spermatozoa amount. These changes were reflected by reductions in the gonadosomatic index and levels of 11-ketotestosterone in the testes. On the other hand, E1 exposure increased testicular estradiol, IGF1R expression, and nitric oxide production. After an evaluation using a computer-assisted sperm analysis (CASA) system, we observed reduced progressive motility, curvilinear velocity, and beat cross frequency of 20 and 2000 ng/L E1 groups. Our findings support that E1 causes deleterious effects on the testicular function and semen quality of D. rerio even at environmental concentrations. Thus, E1 concentrations should be monitored in surface waters for the purposes of fish conservation.
Collapse
Affiliation(s)
- Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nilo Bazzoli
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Lacasse JM, Boulos V, Fisher C, Hamilton S, Heron M, Mac Cionnaith CE, Peronace V, Tito N, Brake WG. Combined effects of the contraceptive hormones, ethinyl estradiol and levonorgestrel, on the use of place and response memory in gonadally-intact female rats. Psychoneuroendocrinology 2023; 147:105974. [PMID: 36403510 DOI: 10.1016/j.psyneuen.2022.105974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
During maze navigation rats can rely on hippocampus-mediated place memory or striatum-mediated response memory. Ovarian hormones bias whether females use place or response memory to reach a reward. Here, we investigated the impact of the contraceptive hormones, ethinyl estradiol (EE) and levonorgestrel (LNG), on memory bias. A total of 63 gonadally-intact female rats were treated with either 10 μg/kg of EE alone, 20 μg/kg of LNG alone, both 10 μg/kg of EE and 20 μg/kg of LNG together, or a sesame oil injection with 5% ethanol as a vehicle control. Rats in the control condition were tested during the diestrus phase of the estrous cycle in order to control for the low circulating levels of gonadotropin and ovarian hormones that occur with oral contraceptive administration. Rats treated with LNG alone had a bias towards the use of place memory compared to diestrus phase control rats. This bias was not observed if LNG was administered in combination with EE. Rats treated with EE or EE+LNG did not have a statistically significant difference in memory bias compared to rats in the control group. These data show that synthetic hormones contained in oral contraceptives administered to females influence which cognitive strategy is predominantly used during navigation.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Vanessa Boulos
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Caleigh Fisher
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Sarran Hamilton
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Megan Heron
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Conall E Mac Cionnaith
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Vanessa Peronace
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Noémie Tito
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
9
|
Patil S, Patil N, Bhat R, Hardikar-Bhat P, Jadhav D, Dervankar O, Joglekar C, Shinde R, Desai S, Chavan D, Pise M, Nandoskar A. Diurnal variation in salivary progesterone in fertile Indian women. Heliyon 2022; 9:e12719. [PMID: 36685383 PMCID: PMC9849994 DOI: 10.1016/j.heliyon.2022.e12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 12/21/2022] [Indexed: 01/02/2023] Open
Abstract
Research question Is there a diurnal variation in salivary progesterone levels during menstrual cycle among Indian women? Design A longitudinal study was carried out to measure progesterone in saliva among small cross-sectional sample (n = 31) of fertile Indian women of reproductive age comprising young adults (18-25 years, n = 11), adults (26-38 years, n = 9) and middle aged (39-45 years, n = 11). Saliva samples were collected twice daily (morning and evening) across the entire menstrual cycle of 31 women. Results Mean ages at enrolment and menarche were 30.6 years and 13.6 years respectively. Fifty-five percent of the women were married. The menstrual cycle range was 20-40 days. After controlling for age and menstrual cycle length, statistically significant diurnal variation in progesterone levels was observed across menstrual cycles with high levels in the morning. Conclusions This is the first report on salivary progesterone in subjects with Indian ethnicity and could have clinical implications for designing point of care kits for menstrual cycle management, fertility and reproduction.
Collapse
Affiliation(s)
- Suvarna Patil
- Department of Medicine, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India,Corresponding author. BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, 415606, India.
| | - Netaji Patil
- Department of Radiology, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Rohit Bhat
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Pallavi Hardikar-Bhat
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Dnyaneshwar Jadhav
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Omkar Dervankar
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Charudatta Joglekar
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Rohini Shinde
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Shraddha Desai
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Dhanashree Chavan
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Megha Pise
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| | - Ajit Nandoskar
- Regional Centre for Adolescent Health and Nutrition, BKL Walawalkar Hospital and Rural Medical College, Sawarde, Taluka-Chiplun, District-Ratnagiri, Maharashtra, India
| |
Collapse
|
10
|
Dinh T, Emery Thompson M, Gangestad SW. Ovarian hormones in relation to naturally cycling women's conception risk: Empirical evidence and implications for behavioral endocrinology. Horm Behav 2022; 146:105276. [PMID: 36356458 DOI: 10.1016/j.yhbeh.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
A substantial body of literature has examined how women's psychology and behavior vary as a function of conception risk across the ovarian cycle. These effects are widely believed to be outcomes of hormonal regulation, in particular effects of estrogens (E) and progesterone (P). Increasingly, researchers have sought to test predictions about how psychological processes or behavior vary as a function of conception risk by examining associations with estrogen (e.g., estradiol) and progesterone levels. Yet issues regarding how best to assess these associations arise. Should hormone levels be log-transformed? Do hormone ratios best capture their joint effects? How important are hormone interactions? How should outliers be treated? Across two large datasets, we examined hormonal predictors of conception risk, estimated from day of a luteinizing hormone (LH) surge. Log-transformed E and P levels predicted conception risk better than raw E and P levels did. The raw E/P ratio was a relatively poor predictor, whereas the log-transformed ratio (ln[E/P]) was a relatively good predictor. E × P interactions were detected but weak. Outliers were frequent, especially in distributions of raw hormone levels. Hormone measures predicted two psychological outcomes in these datasets-sexual desire and preferences for strength and muscularity-in parallel to how strongly they predicted conception risk. These results give rise to several recommendations regarding treatment of hormone measures and their use in analyses.
Collapse
Affiliation(s)
- Tran Dinh
- Department of Psychology, University of New Mexico, Albuquerque, NM 87111, United States of America.
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87111, United States of America.
| | - Steven W Gangestad
- Department of Psychology, University of New Mexico, Albuquerque, NM 87111, United States of America.
| |
Collapse
|
11
|
Heller C, Kimmig ACS, Kubicki MR, Derntl B, Kikinis Z. Imaging the human brain on oral contraceptives: A review of structural imaging methods and implications for future research goals. Front Neuroendocrinol 2022; 67:101031. [PMID: 35998859 DOI: 10.1016/j.yfrne.2022.101031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022]
Abstract
Worldwide over 150 million women use oral contraceptives (OCs), which are the most prescribed form of contraception in both the United States and in European countries. Sex hormones, such as estradiol and progesterone, are important endogenous hormones known for shaping the brain across the life span. Synthetic hormones, which are present in OCs, interfere with the natural hormonal balance by reducing the endogenous hormone levels. Little is known how this affects the brain, especially during the most vulnerable times of brain maturation. Here, we review studies that investigate differences in brain gray and white matter in women using OCs in comparison to naturally cycling women. We focus on two neuroimaging methods used to quantify structural gray and white matter changes, namely structural MRI and diffusion MRI. Finally, we discuss the potential of these imaging techniques to advance knowledge about the effects of OCs on the brain and wellbeing in women.
Collapse
Affiliation(s)
- Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; Department of Clinical Psychology, Friedrich Schiller University Jena, Germany.
| | - Ann-Christin S Kimmig
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Marek R Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; Lead Graduate School, University of Tübingen, Tübingen, Germany
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
13
|
Dinh T, Emery Thompson M, Gangestad SW. Hormonal influences on women's extra-pair sexual interests: The moderating impact of partner attractiveness. EVOL HUM BEHAV 2022. [DOI: 10.1016/j.evolhumbehav.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Abdou H, Morrison JJ, Edwards J, Patel N, Lang E, Richmond MJ, Elansary N, Gopalakrishnan M, Berman J, Hubbard WJ, Scalea TM, Chaudry IH. An estrogen (17α-ethinyl estradiol-3-sulfate) reduces mortality in a swine model of multiple injuries and hemorrhagic shock. J Trauma Acute Care Surg 2022; 92:57-64. [PMID: 34670961 DOI: 10.1097/ta.0000000000003434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although 17α-ethinyl estradiol-3-sulfate (EES) reduces mortality in animal models of controlled hemorrhage, its role in a clinically relevant injury model is unknown. We assessed the impact of EES in a swine model of multiple injuries and hemorrhage. METHODS The study was performed under Good Laboratory Practice, with 30 male uncastrated swine (25-50 kg) subjected to tibial fracture, pulmonary contusion, and 30% controlled hemorrhage for an hour. Animals were randomized to one of five EES doses: 0 (control), 0.3, 1, 3, and 5 mg/kg, administered postinjury. Subjects received no resuscitation and were observed for 6 hours or until death. Survival data were analyzed using Cox-proportional hazard regression. Left ventricular pressure-volume loops were used to derive preload recruitable stroke work as a measure of cardiac inotropy. Immediate postinjury preload recruitable stroke work values were compared with values at 1 hour post-drug administration. RESULTS Six-hour survival for the 0, 0.3, 1, 3, and 5 mg/kg groups was 0%, 50%, 33.3%, 16.7%, and 0%, respectively. Following Cox regression, the hazard (95% confidence interval) of death was significantly reduced in the 0.3 (0.22 [0.05-0.93]) and 1 (0.24 [0.06-0.89]) mg/kg groups but not the 3 (0.49 [0.15-1.64]) and 5 (0.46 [0.14-1.47]) mg/kg groups. Mean survival time was significantly extended in the 1 mg/kg group (246 minutes) versus the 0 mg/kg group (96 minutes) (p = 0.04, t test). At 1 hour post-drug administration, inotropy was significantly higher than postinjury values in the 0.3 and 1 mg/kg groups (p = 0.003 and p < 0.001, respectively). Inotropy was unchanged in the 3 and 5 mg/kg groups but significantly depressed in the control (p = 0.022). CONCLUSION Administration of EES even in the absence of fluid resuscitation reduces mortality and improves cardiac inotropy in a clinically relevant swine model of multiple injuries and hemorrhage. These findings support the need for a clinical trial in human trauma patients.
Collapse
Affiliation(s)
- Hossam Abdou
- From the R Adams Cowley Shock Trauma Center (H.A., J.J.M., J.E., N.P., E.L., M.J.R., N.E., T.M.S.), University of Maryland Medical System; Center for Translational Medicine (M.G.), University of Maryland School of Pharmacy, Baltimore; Fast Track Drugs and Biologics (J.B.), North Bethesda, Maryland; and Department of Surgery (W.J.H.), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run. We examine six reactions between deoxyadenosine and deoxyguanosine as nucleosides and estrone-3,4-quinone, equilin-3,4-quinone, and equilenin-3,4-quinone as mutagens. We performed DFT calculations to determine the reaction mechanisms and establish a structure–reactivity relationship between the degree of unsaturation of ring “B” and the expected rate of DNA depurination. As quinones might be present in the cytosol in various protonated forms, we introduce the concept of “effective barriers” to account for the different reactivity and different concentrations of quinone derivatives. According to our results, both equine estrogens have the potential to facilitate depurination as the activation barrier of one of the elementary steps (the initial Michael addition in the case of equilenin and the rearomatization step in the case of equilin) significantly decreases compared to that of estrone. We conclude that the appearance of exogenous equine estrogen quinones due to HRT might increase the risk of depurination-induced breast cancer development compared to the exposure to endogenous estrone metabolites. Still, further studies are required to identify the rate-limiting step of depurination under intracellular conditions to reveal whether the decrease in the barriers affects the overall rate of carcinogenesis.
Collapse
|
16
|
Lugar CW, Clarke CA, Morphy R, Rudyk H, Sapmaz S, Stites RE, Vaught GM, Furness K, Broughton HB, Durst GL, Clawson DK, Stout SL, Guo SY, Durbin JD, Stayrook KR, Edmondson DD, Kikly K, New NE, Bina HA, Chambers MG, Shetler P, Chang WY, Chang VCY, Barr R, Gough WH, Steele JP, Getman B, Patel N, Mathes BM, Richardson TI. Defining Target Engagement Required for Efficacy In Vivo at the Retinoic Acid Receptor-Related Orphan Receptor C2 (RORγt). J Med Chem 2021; 64:5470-5484. [PMID: 33852312 DOI: 10.1021/acs.jmedchem.0c01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Th17 pathway has been implicated in autoimmune diseases. The retinoic acid receptor-related orphan receptor C2 (RORγt) is a master regulator of Th17 cells and controls the expression of IL-17A. RORγt is expressed primarily in IL-17A-producing lymphoid cells. Here we describe a virtual screen of the ligand-binding pocket and subsequent screen in a binding assay that identified the 1-benzyl-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-2'-carboxamide scaffold as a starting point for optimization of binding affinity and functional activity guided by structure-based design. Compound 12 demonstrated activity in a mouse PK/PD model and efficacy in an inflammatory arthritis mouse model that were used to define the level and duration of target engagement required for efficacy in vivo. Further optimization to improve ADME and physicochemical properties with guidance from simulations and modeling provided compound 22, which is projected to achieve the level and duration of target engagement required for efficacy in the clinic.
Collapse
Affiliation(s)
- Charles W Lugar
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Christian A Clarke
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Richard Morphy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Selma Sapmaz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Ryan E Stites
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Grant M Vaught
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kelly Furness
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Howard B Broughton
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Greg L Durst
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David K Clawson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Stephanie L Stout
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Sherry Y Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jim D Durbin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Keith R Stayrook
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Denise D Edmondson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kristy Kikly
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Nicole E New
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Holly A Bina
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Mark G Chambers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Pamela Shetler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - William Y Chang
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Veavi Ching-Yun Chang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Rob Barr
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Wendy H Gough
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jimmy P Steele
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Brian Getman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Nita Patel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Brian M Mathes
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Timothy I Richardson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
17
|
Rehbein E, Hornung J, Sundström Poromaa I, Derntl B. Shaping of the Female Human Brain by Sex Hormones: A Review. Neuroendocrinology 2021; 111:183-206. [PMID: 32155633 DOI: 10.1159/000507083] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
Abstract
Traditionally sex hormones have been associated with reproductive and developmental processes only. Since the 1950s we know that hormones can have organizational effects on the developing brain and initiate hormonal transition periods such as puberty. However, recent evidence shows that sex hormones additionally structure the brain during important hormonal transition periods across a woman's life including short-term fluctuations during the menstrual cycle. However, a comprehensive review focusing on structural changes during all hormonal transition phases of women is still missing. Therefore, in this review structural changes across hormonal transition periods (i.e., puberty, menstrual cycle, oral contraceptive intake, pregnancy and menopause) were investigated in a structured way and correlations with sex hormones evaluated. Results show an overall reduction in grey matter and region-specific decreases in prefrontal, parietal and middle temporal areas during puberty. Across the menstrual cycle grey matter plasticity in the hippocampus, the amygdala as well as temporal and parietal regions were most consistently reported. Studies reporting on pre- and post-pregnancy measurements revealed volume reductions in midline structures as well as prefrontal and temporal cortices. During perimenopause, the decline in sex hormones was paralleled with a reduction in hippocampal and parietal cortex volume. Brain volume changes were significantly correlated with estradiol, testosterone and progesterone levels in some studies, but directionality remains inconclusive between studies. These results indicate that sex hormones play an important role in shaping women's brain structure during different transition periods and are not restricted to specific developmental periods.
Collapse
Affiliation(s)
- Elisa Rehbein
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, University of Tübingen, Tübingen, Germany,
| | - Jonas Hornung
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, University of Tübingen, Tübingen, Germany
| | | | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Lead Graduate School, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Huang W, Ai W, Lin W, Fang F, Wang X, Huang H, Dahlgren RA, Wang H. Identification of receptors for eight endocrine disrupting chemicals and their underlying mechanisms using zebrafish as a model organism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111068. [PMID: 32745784 DOI: 10.1016/j.ecoenv.2020.111068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Herein, eight common endocrine disrupting chemicals (EDCs) were exposed to zebrafish (Danio rerio) to investigate the relationship between different EDCs and their activated estrogen receptors. Under acute exposure, we identified five major malformation types whose incidence and deformity modes differed among EDCs. Luciferase analysis divided the EDC receptors into four categories: (i) triclosan (TCS), 17ß-estradiol (E2) and estriol (E3) mainly activated GPER expression; (ii) bisphenol A (BPA), p-(tert-octyl) phenol (POP), 17α-ethynylestradiol (EE2), E2 and E3 activated ERβ expression; (iii) E2 and E3 acted on both GPER and ERβ; and (iv) estrone (E1) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF) had little effect on the two receptors. In vivo immunofluorescence experiments on 96-hpf larvae provided evidence that TCS and POP acted on GPER and ERβ, respectively, while E2 acted on the two receptors simultaneously. Luciferase activities in the promoter regions of gper (-986 to -488) and erβ (-1998 to -1496) were higher than those in other regions, identifying these key regions as targets for transcription activity. TCS promoted GPER expression by acting on the JUND transcription factor, while POP promoted ERβ expression by activating the Foxl1 transcription factor. In contrast, E2 mainly regulated transcription of GPER and ERβ by Arid3a. These findings provide compelling evidence that different EDCs possess varying estrogen receptors, leading to differential regulatory pathways and abnormality symptoms. These results offer an experimental strategy and fundamental information to assess the molecular mechanisms of EDC-induced estrogen effects.
Collapse
Affiliation(s)
- Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Mbachu OC, Howell C, Simmler C, Garcia GRM, Skowron KJ, Dong H, Ellis SG, Hitzman RT, Hajirahimkhan A, Chen SN, Nikolic D, Moore TW, Vollmer G, Pauli GF, Bolton JL, Dietz BM. SAR Study on Estrogen Receptor α/β Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10651-10663. [PMID: 32945668 PMCID: PMC8294944 DOI: 10.1021/acs.jafc.0c03526] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many botanicals used for women's health contain estrogenic (iso)flavonoids. The literature suggests that estrogen receptor beta (ERβ) activity can counterbalance estrogen receptor alpha (ERα)-mediated proliferation, thus providing a better safety profile. A structure-activity relationship study of (iso)flavonoids was conducted to identify ERβ-preferential structures, overall estrogenic activity, and ER subtype estrogenic activity of botanicals containing these (iso)flavonoids. Results showed that flavonoids with prenylation on C8 position increased estrogenic activity. C8-prenylated flavonoids with C2-C3 unsaturation resulted in increased ERβ potency and selectivity [e.g., 8-prenylapigenin (8-PA), EC50 (ERβ): 0.0035 ± 0.00040 μM], whereas 4'-methoxy or C3 hydroxy groups reduced activity [e.g., icaritin, EC50 (ERβ): 1.7 ± 0.70 μM]. However, nonprenylated and C2-C3 unsaturated isoflavonoids showed increased ERβ estrogenic activity [e.g., genistein, EC50 (ERβ): 0.0022 ± 0.0004 μM]. Licorice (Glycyrrhiza inflata, [EC50 (ERα): 1.1 ± 0.20; (ERβ): 0.60 ± 0.20 μg/mL], containing 8-PA, and red clover [EC50 (ERα): 1.8 ± 0.20; (ERβ): 0.45 ± 0.10 μg/mL], with genistein, showed ERβ-preferential activity as opposed to hops [EC50 (ERα): 0.030 ± 0.010; (ERβ): 0.50 ± 0.050 μg/mL] and Epimedium sagittatum [EC50 (ERα): 3.2 ± 0.20; (ERβ): 2.5 ± 0.090 μg/mL], containing 8-prenylnaringenin and icaritin, respectively. Botanicals with ERβ-preferential flavonoids could plausibly contribute to ERβ-protective benefits in menopausal women.
Collapse
Affiliation(s)
- Obinna C. Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Caitlin Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Gonzalo R. Malca Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Kornelia J. Skowron
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Sarah G. Ellis
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Ryan T. Hitzman
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Terry W. Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612-7231, United States
| | - Günter Vollmer
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Molecular Cell Physiology and Endocrinology, Faculty of Biology, Dresden University of Technology, 01217 Dresden, Germany
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| |
Collapse
|
20
|
Li Y, Coons LA, Houtman R, Carlson KE, Martin TA, Mayne CG, Melchers D, Jefferson TB, Ramsey JT, Katzenellenbogen JA, Korach KS. A mutant form of ERα associated with estrogen insensitivity affects the coupling between ligand binding and coactivator recruitment. Sci Signal 2020; 13:eaaw4653. [PMID: 32963012 PMCID: PMC7597377 DOI: 10.1126/scisignal.aaw4653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A homozygous missense mutation in the gene encoding the estrogen receptor α (ERα) was previously identified in a female patient with estrogen insensitivity syndrome. We investigated the molecular features underlying the impaired transcriptional response of this mutant (ERα-Q375H) and four other missense mutations at this position designed to query alternative mechanisms. The identity of residue 375 greatly affected the sensitivity of the receptor to agonists without changing the ligand binding affinity. Instead, the mutations caused changes in the affinity of coactivator binding and alterations in the balance of coactivator and corepressor recruitment. Comparisons among the transcriptional regulatory responses of these six ERα genotypes to a set of ER agonists showed that both steric and electrostatic factors contributed to the functional deficits in gene regulatory activity of the mutant ERα proteins. ERα-coregulator peptide binding in vitro and RIME (rapid immunoprecipitation mass spectrometry of endogenous) analysis in cells showed that the degree of functional impairment paralleled changes in receptor-coregulator binding interactions. These findings uncover coupling between ligand binding and coregulator recruitment that affects the potency rather than the efficacy of the receptor response without substantially altering ligand binding affinity. This highlights a molecular mechanism for estrogen insensitivity syndrome involving mutations that perturb a bidirectional allosteric coupling between ligand binding and coregulator binding that determines receptor transcriptional output.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA.
| | - Laurel A Coons
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - René Houtman
- Precision Medicine Lab, Kloosterstraat 9, 5349 AB, Oss, Netherlands
| | - Kathryn E Carlson
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Teresa A Martin
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher G Mayne
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Diana Melchers
- Precision Medicine Lab, Kloosterstraat 9, 5349 AB, Oss, Netherlands
| | - Tanner B Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - J Tyler Ramsey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - John A Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA.
| |
Collapse
|
21
|
Davis SR, Martinez-Garcia A, Robinson PJ, Handelsman DJ, Desai R, Wolfe R, Bell RJ. Estrone Is a Strong Predictor of Circulating Estradiol in Women Age 70 Years and Older. J Clin Endocrinol Metab 2020; 105:5866468. [PMID: 32614391 PMCID: PMC7394338 DOI: 10.1210/clinem/dgaa429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
IMPORTANCE After menopause, estradiol (E2) is predominately an intracrine hormone circulating in very low serum concentrations. OBJECTIVE The objective of this work is to examine determinants of E2 concentrations in women beyond age 70 years. DESIGN AND SETTING A cross-sectional, community-based study was conducted. PARTICIPANTS A total of 5325 women participated, with a mean age of 75.1 years (± 4.2 years) and not using any sex steroid, antiandrogen/estrogen, glucocorticoid, or antiglycemic therapy. MAIN OUTCOME MEASURES Sex steroids were measured by liquid chromatography-tandem mass spectrometry. Values below the limit of detection (LOD; E2 11 pmol/L [3 pg/mL] were assigned a value of LOD/√2 to estimate total E2. RESULTS E2 and estrone (E1) were below the LOD in 66.1% and 0.9% of women, respectively. The median (interdecile ranges) for E1 and detectable E2 were 181.2 pmol/L (range, 88.7-347.6 pmol/L) and 22.0 pmol/L (range, 11.0-58.7 pmol/L). Women with undetectable E2 vs detectable E2 were older (median age 74.1 years vs 73.8, P = .02), leaner (median body mass index [BMI] 26.8 kg/m2 vs 28.5, P < .001), and had lower E1, testosterone and DHEA concentrations (P < .001). A linear regression model, including age, BMI, E1, and testosterone, explained 20.9% of the variation in total E2, but explained only an additional 1.2% of variation over E1 alone. E1 and testosterone made significant contributions (r2 = 0.162, P < .001) in a model for the subset of women with detectable E2. CONCLUSIONS Our findings support E1 as a principal circulating estrogen and demonstrate a robust association between E1 and E2 concentrations in postmenopausal women. Taken together with prior evidence for associations between E1 and health outcomes, E1 should be included in studies examining associations between estrogen levels and health outcomes in postmenopausal women.
Collapse
Affiliation(s)
- Susan R Davis
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Correspondence and Reprint Requests: Susan Davis, MD, PhD, Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne 3004, Victoria, Australia. E-mail:
| | - Alejandra Martinez-Garcia
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Endocrinology, Division of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Penelope J Robinson
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, New South Wales, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, New South Wales, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robin J Bell
- Women’s Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
22
|
Hamidovic A, Karapetyan K, Serdarevic F, Choi SH, Eisenlohr-Moul T, Pinna G. Higher Circulating Cortisol in the Follicular vs. Luteal Phase of the Menstrual Cycle: A Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:311. [PMID: 32582024 PMCID: PMC7280552 DOI: 10.3389/fendo.2020.00311] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Although results of animal research show that interactions between stress and sex hormones are implicated in the development of affective disorders in women, translation of these findings to patients has been scarce. As a basic step toward advancing this field of research, we analyzed findings of studies which reported circulating cortisol levels in healthy women in the follicular vs. luteal phase of the menstrual cycle. We deemed this analysis critical not only to advance our understanding of basic physiology, but also as an important contrast to the findings of future studies evaluating stress and sex hormones in women with affective disorders. We hypothesized that cortisol levels would be lower in the follicular phase based on the proposition that changes in levels of potent GABAergic neurosteroids, including allopregnanolone, during the menstrual cycle dynamically change in the opposite direction relative to cortisol levels. Implementing strict inclusion criteria, we compiled results of high-quality studies involving 778 study participants to derive a standardized mean difference between circulating cortisol levels in the follicular vs. luteal phase of the menstrual cycle. In line with our hypothesis, our meta-analysis found that women in the follicular phase had higher cortisol levels than women in the luteal phase, with an overall Hedges' g of 0.13 (p < 0.01) for the random effects model. No significant between-study difference was detected, with the level of heterogeneity in the small range. Furthermore, there was no evidence of publication bias. As cortisol regulation is a delicate process, we review some of the basic mechanisms by which progesterone, its potent metabolites, and estradiol regulate cortisol output and circulation to contribute to the net effect of higher cortisol in the follicular phase.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Ajna Hamidovic
| | - Kristina Karapetyan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Fadila Serdarevic
- Department of Epidemiology, Erasmus Medical Centre Rotterdam, Rotterdam, Netherlands
| | - So Hee Choi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tory Eisenlohr-Moul
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Sanches BDA, Carvalho HF, Maldarine JS, Biancardi MF, Santos FCA, Vilamaior PSL, Taboga SR. Differences between male and female prostates in terms of physiology, sensitivity to chemicals and pathogenesis-A review in a rodent model. Cell Biol Int 2020; 44:27-35. [PMID: 31393043 DOI: 10.1002/cbin.11214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/04/2019] [Indexed: 01/24/2023]
Abstract
The prostate is a gland that is not exclusively present in males, being also found in females of several mammalian species, including humans. There is evidence that the prostate in both sexes is affected by the same pathologies such as prostatitis, benign alterations and even cancer. In view of the difficulties of manipulating the prostate gland, the Mongolian gerbil (Meriones unguiculatus), a rodent species with high incidence of functional prostates in females, is widely used in studies of the female prostate. However, despite knowing much about the similarities between the female and male prostate, little emphasis has been placed on the differences between them. This review investigates the intersex differences in prostate development, physiology and pathogenesis. The female prostate develops earlier than in males and studies indicate that it is more sensitive to oestrogens than the male prostate, as well as being more sensitive to exposure to xenoestrogens, such as Bisphenol A and methylparaben, with a higher susceptibility to benign lesions in the adult and senile prostate than in males. In addition, the female prostate is impacted by pregnancy and the oestrous cycle, and is also dependent on progesterone. The peculiarities of the female prostate raise concerns about the risk of it undergoing neglected changes as a result of environmental chemicals, since safe dosages are established exclusively for the male prostate.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, State University of Campinas-UNICAMP, Bertrand Russel Av., Campinas, São Paulo, Brazil.,Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas-UNICAMP, Bertrand Russel Av., Campinas, São Paulo, Brazil.,Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, State University of Campinas-UNICAMP, Bertrand Russel Av., Campinas, São Paulo, Brazil.,Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Manoel F Biancardi
- Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil.,Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás, 74001970, Brazil
| | - Fernanda C A Santos
- Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil.,Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás, 74001970, Brazil
| | - Patricia S L Vilamaior
- Department of Structural and Functional Biology, State University of Campinas-UNICAMP, Bertrand Russel Av., Campinas, São Paulo, Brazil.,Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, State University of Campinas-UNICAMP, Bertrand Russel Av., Campinas, São Paulo, Brazil.,Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista-UNESP, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Zhu Q, Liu L, Zhou X, Ma M. In silico study of molecular mechanisms of action: Estrogenic disruptors among phthalate esters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113193. [PMID: 31521998 DOI: 10.1016/j.envpol.2019.113193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/29/2019] [Accepted: 09/06/2019] [Indexed: 05/22/2023]
Abstract
Phthalate esters (PAEs), as widely used plasticizers, have been concerned for their possible disruption of estrogen functions via binding to and activating the transcription of estrogen receptors (ERs). Nevertheless, the computational interpretation of the mechanism of ERs activities modulated by PAEs at the molecular level is still insufficient, which hinders the reliable screening of the ERs-active PAEs with high speed and high throughput. To bridge the gap, the in silico simulations considering the effects of coactivators were accomplished to explore the molecular mechanism of action for the purpose of predicting the estrogenic potencies of PAEs. The transcriptional activation functions of human ERα (hERα) modulated by PAEs is predicted via the simulations including binding interaction of PAEs and hERα, conformational changes of PAEs-hERα complexes and recruitment of coactivators. Molecular insight into the diverse estrogen mechanism of action among PAEs with regard to hERα agonists and selective estrogen receptor modulators (SERMs) is provided. Agonist-modulated conformational change of hERα leads to the optimal exposure of its Activation Function 2 (AF-2) surface which, in turn, facilitates the recruitment of coactivators, therefore promoting the transcriptional activation functions of hERα. Conversely, binding interaction of hERα with SERMs among PAEs leads to the conformational change with blocked AF-2 surface, thus preventing the recruitment of coactivators and consequently inhibiting the AF-2 activity. The two-hybrid recombinant yeast is experimentally used for verification. The established in silico evaluation methodology exhibits great promise to speed up the prediction of chemicals which work as hERα agonist or SERMs.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Psychological cycle shifts redux, once again: response to Stern et al., Roney, Jones et al., and Higham. EVOL HUM BEHAV 2019. [DOI: 10.1016/j.evolhumbehav.2019.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br J Pharmacol 2019; 176:4119-4135. [PMID: 30658014 PMCID: PMC6877792 DOI: 10.1111/bph.14584] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
In this review, we describe the sex differences in prevalence, onset, symptom profiles, and disease outcome that are evident in schizophrenia, bipolar disorder, and post-traumatic stress disorder. Women with schizophrenia tend to exhibit less disease impairment than men. By contrast, women with post-traumatic stress disorder are more affected than men. The most likely candidates to explain these sex differences are gonadal hormones. This review details the clinical evidence that oestradiol and progesterone are dysregulated in these psychiatric disorders. Notably, existing data on oestradiol, and to a lesser extent, progesterone, suggest that low levels of these hormones may increase the risk of disease development and worsen symptom severity. We argue that future studies require a more inclusive, considered analysis of gonadal steroid hormones and the intricacies of the interactions between them, with methodological rigour applied, to enhance our understanding of the roles of steroid hormones in psychiatric disorders. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Luke J. Ney
- School of Medicine (Psychology)University of TasmaniaSandy BayTasmaniaAustralia
| | - Natasha Seymour
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and DesignSwinburne UniversityMelbourneVictoriaAustralia
| | - Kim L. Felmingham
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
27
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Furman C, Hao MH, Prajapati S, Reynolds D, Rimkunas V, Zheng GZ, Zhu P, Korpal M. Estrogen Receptor Covalent Antagonists: The Best Is Yet to Come. Cancer Res 2019; 79:1740-1745. [PMID: 30952631 DOI: 10.1158/0008-5472.can-18-3634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
Abstract
The development of tamoxifen and subsequent estrogen receptor alpha (ERα) antagonists represents a tremendous therapeutic breakthrough in the treatment of breast cancer. Despite the ability of ERα antagonists to increase survival rates, resistance to these therapies is an all-too-common occurrence. The majority of resistant tumors, including those with hotspot mutations in the ligand-binding domain of ERα, remain dependent on ERα signaling, indicating that either a more potent or novel class of antagonist could have clinical benefit. With this thought in mind, we developed a novel ERα antagonist that exhibits enhanced potency due to its ability to covalently target a unique cysteine in ER. This review describes the design of this antagonist, H3B-5942, and discusses opportunities for future improvements, which could reduce the risk of escape mutations to this therapeutic modality.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo Z Zheng
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | - Ping Zhu
- H3 Biomedicine, Inc., Cambridge, Massachusetts.
| | | |
Collapse
|
29
|
Pande P, Fleck SC, Twaddle NC, Churchwell MI, Doerge DR, Teeguarden JG. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women II: Total estrogenicity calculations accounting for competitive protein and receptor binding and potency. Food Chem Toxicol 2018; 125:341-353. [PMID: 30553876 DOI: 10.1016/j.fct.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Evaluating the biological significance of human-relevant exposures to environmental estrogens involves assessing the individual and total estrogenicity of endogenous and exogenous estrogens found in serum, for example from biomonitoring studies. We developed a method for this assessment by integrating approaches for (i) measuring total hormone concentrations by mass spectrometry (Fleck et al., 2018), (ii) calculating hormone bioavailable concentrations in serum and, (iii) solving multiple equilibria between estrogenic ligands and receptors, and (iv) quantitatively describing key elements of estrogen potency. The approach was applied to endogenous (E1, E2, E3, E4), environmental (BPA), and dietary Genistein (GEN), Daidzein (DDZ) estrogens measured in the serum of thirty pregnant women. Fractional receptor occupancy (FRO) based estrogenicity was dominated by E1, E2 and E3 (ER-α, 94.4-99.2% (median: 97.3%), ER-β, 82.7-97.7% (median: 92.8%), as was the total response (TR), which included ligand specific differences in recruitment of co-activator proteins (RCA). The median FRO for BPA was at least five orders of magnitude lower than E1, E2 and E3, and three orders of magnitude lower than the fetal derived E4 and GEN and DDZ. BPA contributed less than 1/1000th of the normal daily variability in total serum estrogenicity in this cohort of pregnant women.
Collapse
Affiliation(s)
- Paritosh Pande
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Stefanie C Fleck
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Justin G Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 93771, USA.
| |
Collapse
|
30
|
Fanning SW, Jeselsohn R, Dharmarajan V, Mayne CG, Karimi M, Buchwalter G, Houtman R, Toy W, Fowler CE, Han R, Lainé M, Carlson KE, Martin TA, Nowak J, Nwachukwu JC, Hosfield DJ, Chandarlapaty S, Tajkhorshid E, Nettles KW, Griffin PR, Shen Y, Katzenellenbogen JA, Brown M, Greene GL. The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. eLife 2018; 7:37161. [PMID: 30489256 PMCID: PMC6335054 DOI: 10.7554/elife.37161] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Acquired resistance to endocrine therapy remains a significant clinical burden for breast cancer patients. Somatic mutations in the ESR1 (estrogen receptor alpha (ERα)) gene ligand-binding domain (LBD) represent a recognized mechanism of acquired resistance. Antiestrogens with improved efficacy versus tamoxifen might overcome the resistant phenotype in ER +breast cancers. Bazedoxifene (BZA) is a potent antiestrogen that is clinically approved for use in hormone replacement therapies. We found that BZA possesses improved inhibitory potency against the Y537S and D538G ERα mutants compared to tamoxifen and has additional inhibitory activity in combination with the CDK4/6 inhibitor palbociclib. In addition, comprehensive biophysical and structural biology studies show BZA’s selective estrogen receptor degrading (SERD) properties that override the stabilizing effects of the Y537S and D538G ERα mutations.
Collapse
Affiliation(s)
- Sean W Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | | | - Christopher G Mayne
- Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, Texas, United States
| | - Gilles Buchwalter
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, United States
| | - René Houtman
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Colin E Fowler
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Ross Han
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Muriel Lainé
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Teresa A Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jason Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Jerome C Nwachukwu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - David J Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Kendall W Nettles
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, Texas, United States
| | | | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| |
Collapse
|
31
|
Stewart MK, Mattiske DM, Pask AJ. In utero exposure to both high- and low-dose diethylstilbestrol disrupts mouse genital tubercle development†. Biol Reprod 2018; 99:1184-1193. [DOI: 10.1093/biolre/ioy142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/19/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S. Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 2018; 18:377-388. [PMID: 29662238 PMCID: PMC6252060 DOI: 10.1038/s41568-018-0001-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oestrogen receptor-α (ERα), a key driver of breast cancer, normally requires oestrogen for activation. Mutations that constitutively activate ERα without the need for hormone binding are frequently found in endocrine-therapy-resistant breast cancer metastases and are associated with poor patient outcomes. The location of these mutations in the ER ligand-binding domain and their impact on receptor conformation suggest that they subvert distinct mechanisms that normally maintain the low basal state of wild-type ERα in the absence of hormone. Such mutations provide opportunities to probe fundamental issues underlying ligand-mediated control of ERα activity. Instructive contrasts between these ERα mutations and those that arise in the androgen receptor (AR) during anti-androgen treatment of prostate cancer highlight differences in how activation functions in ERs and AR control receptor activity, how hormonal pressures (deprivation versus antagonism) drive the selection of phenotypically different mutants, how altered protein conformations can reduce antagonist potency and how altered ligand-receptor contacts can invert the response that a receptor has to an agonist ligand versus an antagonist ligand. A deeper understanding of how ligand regulation of receptor conformation is linked to receptor function offers a conceptual framework for developing new anti-oestrogens that might be more effective in preventing and treating breast cancer.
Collapse
Affiliation(s)
| | - Christopher G Mayne
- Beckman Institute for Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Fleck SC, Twaddle NC, Churchwell MI, Doerge DR, Pande P, Teeguarden JG. Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women I: Serum levels, variability and the basis for urinary biomonitoring of serum estrogenicity. Food Chem Toxicol 2018; 115:511-522. [DOI: 10.1016/j.fct.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/15/2022]
|
34
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
35
|
Menapoz Osteoporozunda Östrojenin Kritik Rolü. JOURNAL OF CONTEMPORARY MEDICINE 2017. [DOI: 10.16899/gopctd.315052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Zhao Y, Laws MJ, Guillen VS, Ziegler Y, Min J, Sharma A, Kim SH, Chu D, Park BH, Oesterreich S, Mao C, Shapiro DJ, Nettles KW, Katzenellenbogen JA, Katzenellenbogen BS. Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors. Cancer Res 2017; 77:5602-5613. [PMID: 28904064 DOI: 10.1158/0008-5472.can-17-1265] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/20/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Many estrogen receptor α (ERα)-positive breast cancers develop resistance to endocrine therapy via mutation of ERs whose constitutive activation is associated with shorter patient survival. Because there is now a clinical need for new antiestrogens (AE) against these mutant ERs, we describe here our development and characterization of three chemically novel AEs that effectively suppress proliferation of breast cancer cells and tumors. Our AEs are effective against wild-type and Y537S and D538G ERs, the two most commonly occurring constitutively active ERs. The three new AEs suppressed proliferation and estrogen target gene expression in WT and mutant ER-containing cells and were more effective in D538G than in Y537S cells and tumors. Compared with WT ER, mutants exhibited approximately 10- to 20-fold lower binding affinity for AE and a reduced ability to be blocked in coactivator interaction, likely contributing to their relative resistance to inhibition by AE. Comparisons between mutant ER-containing MCF7 and T47D cells revealed that AE responses were compound, cell-type, and ERα-mutant dependent. These new ligands have favorable pharmacokinetic properties and effectively suppressed growth of WT and mutant ER-expressing tumor xenografts in NOD/SCID-γ mice after oral or subcutaneous administration; D538G tumors were more potently inhibited by AE than Y537S tumors. These studies highlight the differential responsiveness of the mutant ERs to different AEs and make clear the value of having a toolkit of AEs for treatment of endocrine therapy-resistant tumors driven by different constitutively active ERs. Cancer Res; 77(20); 5602-13. ©2017 AACR.
Collapse
Affiliation(s)
- Yuechao Zhao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mary J Laws
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Valeria Sanabria Guillen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jian Min
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Abhishek Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David Chu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ben Ho Park
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Womens Cancer Research Center, Magee Womens Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kendall W Nettles
- Department of Cancer Biology, Scripps Research Institute, Jupiter, Florida
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
37
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
38
|
Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds. Arch Toxicol 2017; 91:3897-3912. [DOI: 10.1007/s00204-017-2011-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/08/2017] [Indexed: 01/31/2023]
|
39
|
Tressler CM, Zondlo NJ. Perfluoro-tert-butyl Homoserine Is a Helix-Promoting, Highly Fluorinated, NMR-Sensitive Aliphatic Amino Acid: Detection of the Estrogen Receptor·Coactivator Protein-Protein Interaction by 19F NMR. Biochemistry 2017; 56:1062-1074. [PMID: 28165218 PMCID: PMC5894335 DOI: 10.1021/acs.biochem.6b01020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Highly fluorinated amino acids can stabilize proteins and complexes with proteins, via enhanced hydrophobicity, and provide novel methods for identification of specific molecular events in complex solutions, via selective detection by 19F NMR and the absence of native 19F signals in biological contexts. However, the potential applications of 19F NMR in probing biological processes are limited both by the strong propensities of most highly fluorinated amino acids for the extended conformation and by the relatively modest sensitivity of NMR spectroscopy, which typically constrains measurements to mid-micromolar concentrations. Herein, we demonstrate that perfluoro-tert-butyl homoserine exhibits a propensity for compact conformations, including α-helix and polyproline helix (PPII), that is similar to that of methionine. Perfluoro-tert-butyl homoserine has nine equivalent fluorines that do not couple to any other nuclei, resulting in a sharp singlet that can be sensitively detected rapidly at low micromolar concentrations. Perfluoro-tert-butyl homoserine was incorporated at sites of leucine residues within the α-helical LXXLL short linear motif of estrogen receptor (ER) coactivator peptides. A peptide containing perfluoro-tert-butyl homoserine at position i + 3 of the ER coactivator LXXLL motif exhibited a Kd of 2.2 μM for the estradiol-bound estrogen receptor, similar to that of the native ligand. 19F NMR spectroscopy demonstrated the sensitive detection (5 μM concentration, 128 scans) of binding of the peptide to the ER and of inhibition of protein-protein interaction by the native ligand or by the ER antagonist tamoxifen. These results suggest diverse potential applications of perfluoro-tert-butyl homoserine in probing protein function and protein-protein interfaces in complex solutions.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
40
|
Toy W, Weir H, Razavi P, Lawson M, Goeppert AU, Mazzola AM, Smith A, Wilson J, Morrow C, Wong WL, De Stanchina E, Carlson KE, Martin TS, Uddin S, Li Z, Fanning S, Katzenellenbogen JA, Greene G, Baselga J, Chandarlapaty S. Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists. Cancer Discov 2016; 7:277-287. [PMID: 27986707 DOI: 10.1158/2159-8290.cd-15-1523] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 01/30/2023]
Abstract
Recent studies have identified somatic ESR1 mutations in patients with metastatic breast cancer and found some of them to promote estrogen-independent activation of the receptor. The degree to which all recurrent mutants can drive estrogen-independent activities and reduced sensitivity to ER antagonists like fulvestrant is not established. In this report, we characterize the spectrum of ESR1 mutations from more than 900 patients. ESR1 mutations were detected in 10%, with D538G being the most frequent (36%), followed by Y537S (14%). Several novel, activating mutations were also detected (e.g., L469V, V422del, and Y537D). Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo Correspondingly, tumors driven by Y537S, but not D5358G, E380Q, or S463P, were less effectively inhibited by fulvestrant than more potent and bioavailable antagonists, including AZD9496. These data point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants.Significance: A diversity of activating ESR1 mutations exist, only some of which confer resistance to existing ER antagonists that might be overcome by next-generation inhibitors such as AZD9496. Cancer Discov; 7(3); 277-87. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 235.
Collapse
Affiliation(s)
- Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hazel Weir
- AstraZeneca, iMED Oncology, Cambridge, UK
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Anne U Goeppert
- AstraZeneca, Discovery Sciences, IMED Biotech Unit, Cambridge, UK
| | | | | | | | | | - Wai Lin Wong
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa De Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Teresa S Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sharmeen Uddin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhiqiang Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | | | - Geoffrey Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - José Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
41
|
Granchi C, Lapillo M, Spena CR, Rizzolio F, Tuccinardi T, Martin TA, Carlson KE, Katzenellenbogen JA, Minutolo F. Cyclic Ketoximes as Estrogen Receptor β Selective Agonists. ChemMedChem 2016; 11:1752-61. [PMID: 27135651 DOI: 10.1002/cmdc.201600140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 11/08/2022]
Abstract
The development of estrogen receptor β (ERβ)-selective agonists represents a therapeutic strategy against several kinds of cancers, but the high homology between the two receptor subtypes, ERα and ERβ, makes the achievement of this goal very challenging. In the past, we developed salicylaldoxime- and salicylketoxime-based molecules that proved to bind well to ERβ. In this paper, further structural evolution of the salicylketoximes is presented: two of the newly synthesized five-membered cyclic ketoximes bind with nanomolar affinities to ERβ, and they show selectivity for this subtype over ERα. Their agonist character was confirmed by cell-free coactivator recruitment assays, in which we demonstrated the ability of these compounds to form an active complex with ERβ capable of recruiting coactivator proteins; this indicated their efficacy as agonists. Finally, their potency and selectivity for ERβ binding were rationalized by molecular-modeling studies.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Margherita Lapillo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | | | - Flavio Rizzolio
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, CRO National Cancer Institute and Center for Molecular Biomedicine, IRCCS, 33081, Aviano, Pordenone, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Teresa A Martin
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL, 61801, USA
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy
| |
Collapse
|
42
|
Madak-Erdogan Z, Kim SH, Gong P, Zhao YC, Zhang H, Chambliss KL, Carlson KE, Mayne CG, Shaul PW, Korach KS, Katzenellenbogen JA, Katzenellenbogen BS. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci Signal 2016; 9:ra53. [PMID: 27221711 PMCID: PMC4896643 DOI: 10.1126/scisignal.aad8170] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is great medical need for estrogens with favorable pharmacological profiles that support desirable activities for menopausal women, such as metabolic and vascular protection, but that lack stimulatory activities on the breast and uterus. We report the development of structurally novel estrogens that preferentially activate a subset of estrogen receptor (ER) signaling pathways and result in favorable target tissue-selective activity. Through a process of structural alteration of estrogenic ligands that was designed to preserve their essential chemical and physical features but greatly reduced their binding affinity for ERs, we obtained "pathway preferential estrogens" (PaPEs), which interacted with ERs to activate the extranuclear-initiated signaling pathway preferentially over the nuclear-initiated pathway. PaPEs elicited a pattern of gene regulation and cellular and biological processes that did not stimulate reproductive and mammary tissues or breast cancer cells. However, in ovariectomized mice, PaPEs triggered beneficial responses both in metabolic tissues (adipose tissue and liver) that reduced body weight gain and fat accumulation and in the vasculature that accelerated repair of endothelial damage. This process of designed ligand structure alteration represents a novel approach to develop ligands that shift the balance in ER-mediated extranuclear and nuclear pathways to obtain tissue-selective, non-nuclear PaPEs, which may be beneficial for postmenopausal hormone replacement. The approach may also have broad applicability for other members of the nuclear hormone receptor superfamily.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiru C Zhao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hui Zhang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ, Toy W, Green B, Panchamukhi S, Katzenellenbogen BS, Tajkhorshid E, Griffin PR, Shen Y, Chandarlapaty S, Katzenellenbogen JA, Greene GL. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 2016; 5:12792. [PMID: 26836308 PMCID: PMC4821807 DOI: 10.7554/elife.12792] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022] Open
Abstract
Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and D538G, have been linked to acquired resistance to endocrine therapies. Cell-based studies demonstrated that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen-resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered antagonist state that resists inhibition. Around one in every eight women will be diagnosed with breast cancer in their lifetime. Hormone-based therapies – also referred to antiestrogen drugs – target a protein called estrogen receptor alpha and are effective treatments for the majority of these cancers. Unfortunately, about half of patients will develop recurrent breast cancers even though the cancer continues to produce the target of the drugs. The estrogen receptor alpha drives breast cancer in a number of ways, many of which require the receptor to be activated by binding to the hormone estrogen. When estrogen binds it causes the receptor to change shape to expose a surface where other proteins called coactivators can bind. Once a coactivator is bound, the estrogen receptor is active and signals the cancer cell to grow, divide, invade local tissues, and spread to new sites in the body. Antiestrogen drugs competitively block the binding of estrogen to the receptor and cause the receptor to take on a different shape that inhibits the binding of the coactivator. However, recent studies identified mutations at specific sites in the gene that encodes estrogen receptor alpha in a large subset of patients with breast cancers that have spread. These mutations make the receptor resistant to antiestrogen drugs, and two mutations (called Y537S and D538G) account for approximately 70% of cases. However, it was not clear how these mutations altered the activity of estrogen receptor alpha at the molecular level. Fanning, Mayne, Dharmarajan et al. now show these two most common mutations allow estrogen receptor alpha to bind to the coactivator in the absence of hormone. This unfortunately also reduces the effectiveness of one of the mostly widely administered antiestrogen therapies – a drug called tamoxifen. However, Fanning, Mayne, Dharmarajan et al. also show that the newer and more potent antiestrogens that are currently under examination in clinical trials should be highly effective at treating the cancers with the mutated versions of estrogen receptor alpha. Applying the knowledge gained from these new findings toward the development of new antiestrogens could help reverse the impact of these common mutations. If successful, these new drugs will provide life-saving treatments for many breast cancer patients.
Collapse
Affiliation(s)
- Sean W Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | | | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Teresa A Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Scott J Novick
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bradley Green
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Srinivas Panchamukhi
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, United States
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, United States
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | | | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| |
Collapse
|
44
|
Xiong R, Patel HK, Gutgesell LM, Zhao J, Delgado-Rivera L, Pham TND, Zhao H, Carlson K, Martin T, Katzenellenbogen JA, Moore TW, Tonetti DA, Thatcher GRJ. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer. J Med Chem 2015; 59:219-237. [PMID: 26681208 DOI: 10.1021/acs.jmedchem.5b01276] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Hitisha K Patel
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Loruhama Delgado-Rivera
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Thao N D Pham
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Huiping Zhao
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Kathryn Carlson
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Teresa Martin
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Terry W Moore
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| |
Collapse
|
45
|
Abot A, Fontaine C, Buscato M, Solinhac R, Flouriot G, Fabre A, Drougard A, Rajan S, Laine M, Milon A, Muller I, Henrion D, Adlanmerini M, Valéra MC, Gompel A, Gerard C, Péqueux C, Mestdagt M, Raymond-Letron I, Knauf C, Ferriere F, Valet P, Gourdy P, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2015; 6:1328-46. [PMID: 25214462 PMCID: PMC4287935 DOI: 10.15252/emmm.201404112] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Mélissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Romain Solinhac
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Gilles Flouriot
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Aurélie Fabre
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Drougard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Shyamala Rajan
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Muriel Laine
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alain Milon
- CNRS and Université de Toulouse, IPBS, Toulouse, France
| | | | - Daniel Henrion
- INSERM U1083, CNRS UMR 6214, Université d'Angers, Angers, France
| | - Marine Adlanmerini
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Marie-Cécile Valéra
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Gompel
- APHP, Unité de Gynécologie Endocrinienne, Université Paris Descartes, Paris, France
| | - Céline Gerard
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Christel Péqueux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Mélanie Mestdagt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | | | - Claude Knauf
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - François Ferriere
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Philippe Valet
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Geoffrey L Greene
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
46
|
An exposure:activity profiling method for interpreting high-throughput screening data for estrogenic activity—Proof of concept. Regul Toxicol Pharmacol 2015; 71:398-408. [DOI: 10.1016/j.yrtph.2015.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
47
|
Moore TW, Gunther JR, Katzenellenbogen JA. Estrogen receptor alpha/co-activator interaction assay: TR-FRET. Methods Mol Biol 2015; 1278:545-53. [PMID: 25859975 DOI: 10.1007/978-1-4939-2425-7_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Time-resolved fluorescence resonance energy transfer, TR-FRET, is a time-gated fluorescence intensity measurement which defines the relative proximity of two biomolecules (e.g., proteins, peptides, or DNA) based on the extent of non-radiative energy transfer between two fluorophores with overlapping emission/excitation spectra. In these assays, an excited lanthanide ion acts as a "donor" that transfers energy to an "acceptor" fluorophore through dipole-dipole interactions. A FRET signal is reported as the ratio of acceptor to donor emission following donor excitation. When a donor-conjugated protein interacts with an acceptor-conjugated protein, the donor and acceptor fluorophores are brought in close proximity allowing energy transfer from the donor to the acceptor resulting in a FRET signal. Because the lanthanide donors have a long emission half-life, the energy transfer measurement can be time-gated, which dramatically reduces assay interference (due to background autofluorescence and direct acceptor excitation) and thereby increases data quality. Here, we describe a TR-FRET assay that monitors the interaction of the estrogen receptor (ER) α ligand binding domain (labeled with a terbium chelate via a streptavidin-biotin interaction) with a sequence of coactivator protein SRC3 (labeled directly with fluorescein) and the disruption of this interaction with a peptide and a small molecule inhibitor.
Collapse
Affiliation(s)
- Terry W Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
48
|
Yiu KW, Lee CK, Kwok KC, Cheung NH. Measuring the kinetics of the binding of xenoestrogens and estrogen receptor alpha by fluorescence polarization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11591-11599. [PMID: 25180905 DOI: 10.1021/es503801c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mechanism of endocrine disruption by environmental xenoestrogens is unclear. Bisphenol-A (BPA) is an example. Its concentration in human serum is low, and its binding with estrogen receptor (ER) is weak. Yet its effect on prostate and mammary gland development was observed. We investigated whether this effect could be explained in terms of binding kinetics. We used the method of fluorescence polarization anisotropy to measure the kinetic rate constants of the binding of ERα with 19 xenoestrogens. Relative binding affinities (RBA) were also deduced from the kinetics. We drew three observations. First, our RBAs were consistent with published values, thus establishing the validity of our results. Second, our method allowed the determination of low RBAs (∼ 10(-4)) of lipophilic ligands, such as dibutyl phthalate. They could not be measured by steady-state IC50 assays because of their low solubility. Third, we found that BPA had a surprisingly high kon > 10(4) M(-1) s(-1). While its RBA was 1500 times lower than that of 17β estradiol (E2), its kon was >1/90 that of E2. As a result, a 10 min surge of BPA from pM to nM could drive the fraction of BPA-activated ERα to a potent 0.1%. This might help to explain the observable estrogenic impacts of BPA.
Collapse
Affiliation(s)
- Kwok-Wing Yiu
- Department of Physics, Hong Kong Baptist University , Kowloon Tong, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Kattoula SR, Baker ME. Structural and evolutionary analysis of the co-activator binding domain in vertebrate progesterone receptors. J Steroid Biochem Mol Biol 2014; 141:7-15. [PMID: 24388949 DOI: 10.1016/j.jsbmb.2013.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022]
Abstract
Biochemical studies show that binding of co-activators to the progesterone receptor [PR] is an important mechanism for regulating of PR-mediated gene transcription. Unfortunately, unlike other steroid receptors, the PR has not been crystalized with a co-activator. Fortunately, the PR has strong structural similarity to the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR], which have been crystalized with co-activators. This similarity allowed us to construct 3D models of the PR with steroid co-activator 1-Box 4 [SRC1-4] and transcriptional intermediary factor 2-Box 3 [TIF2-3], which were extracted from the crystal structures of human MR and GR, respectively. Comparisons of 3D models of human PR with SRC1-4 and TIF2-3 and human MR with SRC1-4 and GR with TIF2-3 identified some unique interactions between the PR and SRC1-4 and TIF2-3. An evolutionary analysis of the sequence of the co-activator binding groove in human PR found strong conservation in terrestrial vertebrates. However, there are some differences between human PR and the PRs in lamprey, shark and fishes. These differences among the PRs and between the PR, MR and GR may have contributed to the evolution of specificity for progestins, mineralocorticoids and glucocorticoids in vertebrates.
Collapse
Affiliation(s)
- Stephanie R Kattoula
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States
| | - Michael E Baker
- Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States.
| |
Collapse
|
50
|
Churchwell MI, Camacho L, Vanlandingham MM, Twaddle NC, Sepehr E, Delclos KB, Fisher JW, Doerge DR. Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an estrogenic mode of action in Sprague Dawley rats. Toxicol Sci 2014; 139:4-20. [PMID: 24496641 DOI: 10.1093/toxsci/kfu021] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) was administered by gavage (2.5-300,000 μg/kg body weight (bw)/day) to pregnant Sprague Dawley dams, newborn pups, and continuing into adulthood. Aglycone (i.e., unconjugated and active) and conjugated (i.e., inactive) BPA were evaluated by liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS) in serum to better interpret toxicological endpoints measured in the study. Ethinyl estradiol (EE2, 0.5 and 5 μg/kg bw/day) and the endogenous hormones, 17β-estradiol (E2) and testosterone, were similarly evaluated. Mean BPA aglycone levels in vehicle and naïve control rat serum (0.02-0.5 ng/ml) indicated sample processing artifact, consistent with literature reports of a propensity for postexposure blood contamination by BPA. Direct measurements of BPA-glucuronide in vehicle and naïve control serum (2-10nM) indicated unintentional exposure and metabolism at levels similar to those produced by 2.5 μg/kg bw/day BPA (7-10nM), despite careful attention to potential BPA inputs (diet, drinking water, vehicle, cages, bedding, and dust) and rigorous dosing solution certification and delivery. The source of this exposure could not be identified, but interpretation of the toxicological effects, observed only at the highest BPA doses, was not compromised. Internal exposures to BPA and EE2 aglycones were highest in young rats. When maximal serum concentrations from the two highest BPA doses and both EE2 doses were compared with concurrent levels of endogenous E2, the ERα binding equivalents were similar to or above those of endogenous E2 in male and female rats of all ages tested. Such evaluations of estrogenic internal dosimetry and comprehensive evaluation of contamination impact should aid in extrapolating risks from human BPA exposures.
Collapse
Affiliation(s)
- Mona I Churchwell
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Biochemical Toxicology, 3900 NCTR Road, Jefferson, Arkansas 72079
| | | | | | | | | | | | | | | |
Collapse
|