1
|
Lei X, Hofmann CS, Rodriguez AL, Niswender CM. Differential Activity of Orthosteric Agonists and Allosteric Modulators at Metabotropic Glutamate Receptor 7. Mol Pharmacol 2023; 104:17-27. [PMID: 37105671 PMCID: PMC10289241 DOI: 10.1124/molpharm.123.000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a G protein coupled receptor that has demonstrated promise as a therapeutic target across a number of neurologic and psychiatric diseases. Compounds that modulate the activity of mGlu7, such as positive and negative allosteric modulators, may represent new therapeutic strategies to modulate receptor activity. The endogenous neurotransmitter associated with the mGlu receptor family, glutamate, exhibits low efficacy and potency in activating mGlu7, and surrogate agonists, such as the compound L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4), are often used for receptor activation and compound profiling. To understand the implications of the use of such agonists in the development of positive allosteric modulators (PAMs), we performed a systematic evaluation of receptor activation using a system in which mutations can be made in either protomer of the mGlu7 dimer; we employed mutations that prevent interaction with the orthosteric site as well as the G-protein coupling site of the receptor. We then measured increases in calcium levels downstream of a promiscuous G protein to assess the effects of mutations in one of the two protomers in the presence of two different agonists and three positive allosteric modulators. Our results reveal that distinct PAMs, for example N-[3-Chloro-4-[(5-chloro-2-pyridinyl)oxy]phenyl]-2-pyridinecarboxamide (VU0422288) and 3-(2,3-Difluoro-4-methoxyphenyl)-2,5-dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (VU6005649), do exhibit different maximal levels of potentiation with L-AP4 versus glutamate, but there appear to be common stable receptor conformations that are shared among all of the compounds examined here. SIGNIFICANCE STATEMENT: This manuscript describes the systematic evaluation of the mGlu7 agonists glutamate and L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) in the presence and absence of three distinct potentiators examining possible mechanistic differences. These findings demonstrate that mGlu7 potentiators display subtle variances in response to glutamate versus L-AP4.
Collapse
Affiliation(s)
- Xia Lei
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Christopher S Hofmann
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Alice L Rodriguez
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
2
|
Reed CW, Rodriguez AL, Kalbfleisch JJ, Seto M, Jenkins MT, Blobaum AL, Chang S, Lindsley CW, Niswender CM. Development and profiling of mGlu 7 NAMs with a range of saturable inhibition of agonist responses in vitro. Bioorg Med Chem Lett 2022; 74:128923. [PMID: 35944850 PMCID: PMC10015594 DOI: 10.1016/j.bmcl.2022.128923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
We describe here a series of metabotropic glutamate receptor 7 (mGlu7) negative allosteric modulators (NAMs) with a saturable range of activity in inhibiting responses to an orthosteric agonist in two distinct in vitro pharmacological assays. The range of inhibition among compounds in this scaffold provides highly structurally related ligands with differential degrees of receptor blockade that can be used to understand inhibitory efficacy profiles in native tissue or in vivo.
Collapse
Affiliation(s)
- Carson W Reed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Alice L Rodriguez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Jacob J Kalbfleisch
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Mabel Seto
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Matthew T Jenkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Sichen Chang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
3
|
Palazzo E, Boccella S, Marabese I, Pierretti G, Guida F, Maione S. The Cold Case of Metabotropic Glutamate Receptor 6: Unjust Detention in the Retina? Curr Neuropharmacol 2020; 18:120-125. [PMID: 31573889 PMCID: PMC7324884 DOI: 10.2174/1570159x17666191001141849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 09/29/2019] [Indexed: 02/03/2023] Open
Abstract
It is a common opinion that metabotropic glutamate receptor subtype 6 (mGluR6) is expressed exclusively in the retina, and in particular in the dendrites of ON-bipolar cells. Glutamate released in darkness from photoreceptors activates mGluR6, which is negatively associated with a membrane non-selective cation channel, the transient receptor potential melanoma-related 1, TRPM1, resulting in cell hyperpolarization. The evidence that mGluR6 is expressed not only in the retina but also in other tissues and cell populations has accumulated over time. The expression of mGluR6 has been identified in microglia, bone marrow stromal and prostate cancer cells, B lymphocytes, melanocytes and keratinocytes and non-neural tissues such as testis, kidney, cornea, conjunctiva, and eyelid. The receptor also appears to be expressed in brain areas, such as the hypothalamus, cortex, hippocampus, nucleus of tractus solitarius, superior colliculus, axons of the corpus callosum and accessory olfactory bulb. The pharmacological activation of mGluR6 in the hippocampus produced an anxiolytic-like effect and in the periaqueductal gray analgesic potential. This review aims to collect all the evidence on the expression and functioning of mGluR6 outside the retina that has been accumulated over the years for a broader view of the potential of the receptor whose retinal confinement appears understimated.
Collapse
Affiliation(s)
- E Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - S Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - I Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - G Pierretti
- Department of Plastic Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | - F Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| | - S Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Habrian CH, Levitz J, Vyklicky V, Fu Z, Hoagland A, McCort-Tranchepain I, Acher F, Isacoff EY. Conformational pathway provides unique sensitivity to a synaptic mGluR. Nat Commun 2019; 10:5572. [PMID: 31804469 PMCID: PMC6895203 DOI: 10.1038/s41467-019-13407-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors that operate at synapses. Macroscopic and single molecule FRET to monitor structural rearrangements in the ligand binding domain (LBD) of the mGluR7/7 homodimer revealed it to have an apparent affinity ~4000-fold lower than other mGluRs and a maximal activation of only ~10%, seemingly too low for activation at synapses. However, mGluR7 heterodimerizes, and we find it to associate with mGluR2 in the hippocampus. Strikingly, the mGluR2/7 heterodimer has high affinity and efficacy. mGluR2/7 shows cooperativity in which an unliganded subunit greatly enhances activation by agonist bound to its heteromeric partner, and a unique conformational pathway to activation, in which mGluR2/7 partially activates in the Apo state, even when its LBDs are held open by antagonist. High sensitivity and an unusually broad dynamic range should enable mGluR2/7 to respond to both glutamate transients from nearby release and spillover from distant synapses.
Collapse
Affiliation(s)
- Chris H Habrian
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Joshua Levitz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10024, USA
| | - Vojtech Vyklicky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Zhu Fu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | | | - Ehud Y Isacoff
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biology & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Moreno-Rius J. Opioid addiction and the cerebellum. Neurosci Biobehav Rev 2019; 107:238-251. [DOI: 10.1016/j.neubiorev.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023]
|
6
|
Zhang Z, Zheng X, Luan Y, Liu Y, Li X, Liu C, Lu H, Chen X, Liu Y. Activity of Metabotropic Glutamate Receptor 4 Suppresses Proliferation and Promotes Apoptosis With Inhibition of Gli-1 in Human Glioblastoma Cells. Front Neurosci 2018; 12:320. [PMID: 29867331 PMCID: PMC5962807 DOI: 10.3389/fnins.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/24/2018] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal glioma variant in the adult brain and among the deadliest of human cancers. Increasing evidence has shown that metabotropic glutamate receptor subtype 4 (mGluR4) expression may play roles in regulating the growth of neural stem cells as well as several cancer cell lines. Here, we investigated the effects of mGluR4 on the growth and apoptosis of the LN229 GBM cell line. Involvement of Gli-1, one of the key transcription factors in the sonic Hedgehog (SHH) signaling pathway, was further explored. In this study, mGluR4 was activated using selective agonist VU0155041; and gene-targeted siRNAs were used to generate loss of function of mGluR4 and Gli-1 in LN229 cells. The results demonstrated that LN229 cells expressed mGluR4 and the agonist VU0155041 decreased cell viability in a dose- and time-dependent manner. Activation of mGluR4 inhibited cyclin D1 expression, activated pro-caspase-8/9/3, and disrupted the balance of Bcl-2/Bax expression, which indicated cell cycle arrest and apoptosis of LN229 cells, respectively. Furthermore, Gli-1 expression was reduced by mGluR4 activation in LN229 cells, and downregulation of Gli-1 expression by gene-targeted siRNA resulted in both inhibition of cell proliferation and promotion of apoptosis. Moreover, VU0155041 treatment substantially blocked SHH-induced cyclin D1 expression and cell proliferation, while increasing TUNEL-positive cells and the activation of apoptosis-related proteins. We concluded that activation of mGluR4 expressed in LN229 cells could inhibit GBM cell growth by decreasing cell proliferation and promoting apoptosis. Further suppression of intracellular Gli-1 expression might be involved in the action of mGluR4 on cancer cells. Our study suggested a novel role of mGluR4, which might serve as a potential drug target for control of GBM cell growth.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingxing Li
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chongxiao Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Neurosurgery, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
7
|
Chéron JB, Golebiowski J, Antonczak S, Fiorucci S. The anatomy of mammalian sweet taste receptors. Proteins 2017; 85:332-341. [PMID: 27936499 DOI: 10.1002/prot.25228] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/09/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023]
Abstract
All sweet-tasting compounds are detected by a single G-protein coupled receptor (GPCR), the heterodimer T1R2-T1R3, for which no experimental structure is available. The sweet taste receptor is a class C GPCR, and the recently published crystallographic structures of metabotropic glutamate receptor (mGluR) 1 and 5 provide a significant step forward for understanding structure-function relationships within this family. In this article, we recapitulate more than 600 single point site-directed mutations and available structural data to obtain a critical alignment of the sweet taste receptor sequences with respect to other class C GPCRs. Using this alignment, a homology 3D-model of the human sweet taste receptor is built and analyzed to dissect out the role of key residues involved in ligand binding and those responsible for receptor activation. Proteins 2017; 85:332-341. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jean-Baptiste Chéron
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Jérôme Golebiowski
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
- Department of Brain and Cognitive Science, DGIST (Daegu Gyeongbuk Institute of Science & Technology), Daegu, Korea
| | - Serge Antonczak
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Sébastien Fiorucci
- Université Côte d'azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| |
Collapse
|
8
|
Lakkaraju SK, Xue F, Faden AI, MacKerell AD. Estimation of ligand efficacies of metabotropic glutamate receptors from conformational forces obtained from molecular dynamics simulations. J Chem Inf Model 2013; 53:1337-49. [PMID: 23688150 DOI: 10.1021/ci400160x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group 1 metabotropic glutamate receptors (mGluR) are G-protein coupled receptors with a large bilobate extracellular ligand binding region (LBR) that resembles a Venus fly trap. Closing of this LBR in the presence of a ligand is associated with the activation of the receptor. From conformational sampling of the LBR-ligand complexes using all-atom molecular dynamics (MD) simulations, we characterized the conformational minima related to the hinge like motion associated with the LBR closing/opening in the presence of known agonists and antagonists. By applying a harmonic restraint on the LBR, we also determined the conformational forces generated by the different ligands. The change in the location of the minima and the conformational forces were used to quantify the efficacies of the ligands. This analysis shows that efficacies can be estimated from the forces of a single conformation of the receptor, indicating the potential of MD simulations as an efficient and useful technique to quantify efficacies, thereby facilitating the rational design of mGluR agonists and antagonists.
Collapse
Affiliation(s)
- Sirish Kaushik Lakkaraju
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn St, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
9
|
Fazio F, Lionetto L, Molinaro G, Bertrand HO, Acher F, Ngomba RT, Notartomaso S, Curini M, Rosati O, Scarselli P, Di Marco R, Battaglia G, Bruno V, Simmaco M, Pin JP, Nicoletti F, Goudet C. Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol Pharmacol 2012; 81:643-56. [PMID: 22311707 DOI: 10.1124/mol.111.074765] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway that meets the structural requirements to interact with glutamate receptors. We found that cinnabarinic acid acts as a partial agonist of type 4 metabotropic glutamate (mGlu4) receptors, with no activity at other mGlu receptor subtypes. We also tested the activity of cinnabarinic acid on native mGlu4 receptors by examining 1) the inhibition of cAMP formation in cultured cerebellar granule cells; 2) protection against excitotoxic neuronal death in mixed cultures of cortical cells; and 3) protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice after local infusion into the external globus pallidus. In all these models, cinnabarinic acid behaved similarly to conventional mGlu4 receptor agonists, and, at least in cultured neurons, the action of low concentrations of cinnabarinic acid was largely attenuated by genetic deletion of mGlu4 receptors. However, high concentrations of cinnabarinic acid were still active in the absence of mGlu4 receptors, suggesting that the compound may have off-target effects. Mutagenesis and molecular modeling experiments showed that cinnabarinic acid acts as an orthosteric agonist interacting with residues of the glutamate binding pocket of mGlu4. Accordingly, cinnabarinic acid did not activate truncated mGlu4 receptors lacking the N-terminal Venus-flytrap domain, as opposed to the mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). Finally, we could detect endogenous cinnabarinic acid in brain tissue and peripheral organs by high-performance liquid chromatography-tandem mass spectrometry analysis. Levels increased substantially during inflammation induced by lipopolysaccharide. We conclude that cinnabarinic acid is a novel endogenous orthosteric agonist of mGlu4 receptors endowed with neuroprotective activity.
Collapse
Affiliation(s)
- F Fazio
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Goudet C, Vilar B, Courtiol T, Deltheil T, Bessiron T, Brabet I, Oueslati N, Rigault D, Bertrand H, McLean H, Daniel H, Amalric M, Acher F, Pin J. A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB J 2012; 26:1682-1693. [DOI: 10.1096/fj.11-195941] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Cyril Goudet
- Institut de Génomique FonctionnelleCentre National Recherche Scientifique (CNRS) UMR5203Université de MontpellierMontpellierFrance
- Institut National de la Santé et de la Recherche MédicaleU661MontpellierFrance
| | - Bruno Vilar
- Institut de Génomique FonctionnelleCentre National Recherche Scientifique (CNRS) UMR5203Université de MontpellierMontpellierFrance
- Institut National de la Santé et de la Recherche MédicaleU661MontpellierFrance
| | - Tiphanie Courtiol
- Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesCNRS UMR8601Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Thierry Deltheil
- Laboratoire de Neurobiologie de la CognitionCNRS UMR6155Aix‐Marseille UniversitéMarseilleFrance
| | - Thomas Bessiron
- Laboratoire de Pharmacologie et Biochimie de la SynapseCNRS UMR8619Institut de Biochimie et de Biophysique Moleculaire et CellulaireUniversité Paris‐Sud 11OrsayFrance
| | - Isabelle Brabet
- Institut de Génomique FonctionnelleCentre National Recherche Scientifique (CNRS) UMR5203Université de MontpellierMontpellierFrance
- Institut National de la Santé et de la Recherche MédicaleU661MontpellierFrance
| | - Nadia Oueslati
- Institut de Génomique FonctionnelleCentre National Recherche Scientifique (CNRS) UMR5203Université de MontpellierMontpellierFrance
- Institut National de la Santé et de la Recherche MédicaleU661MontpellierFrance
| | - Delphine Rigault
- Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesCNRS UMR8601Université Paris DescartesSorbonne Paris CitéParisFrance
| | | | - Heather McLean
- Laboratoire de Pharmacologie et Biochimie de la SynapseCNRS UMR8619Institut de Biochimie et de Biophysique Moleculaire et CellulaireUniversité Paris‐Sud 11OrsayFrance
| | - Hervé Daniel
- Laboratoire de Pharmacologie et Biochimie de la SynapseCNRS UMR8619Institut de Biochimie et de Biophysique Moleculaire et CellulaireUniversité Paris‐Sud 11OrsayFrance
| | - Marianne Amalric
- Laboratoire de Neurobiologie de la CognitionCNRS UMR6155Aix‐Marseille UniversitéMarseilleFrance
| | - Francine Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesCNRS UMR8601Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Jean‐Philippe Pin
- Institut de Génomique FonctionnelleCentre National Recherche Scientifique (CNRS) UMR5203Université de MontpellierMontpellierFrance
- Institut National de la Santé et de la Recherche MédicaleU661MontpellierFrance
| |
Collapse
|
11
|
Beqollari D, Betzenhauser MJ, Kammermeier PJ. Altered G-protein coupling in an mGluR6 point mutant associated with congenital stationary night blindness. Mol Pharmacol 2009; 76:992-7. [PMID: 19666700 DOI: 10.1124/mol.109.058628] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The highly specialized metabotropic glutamate receptor type 6 (mGluR6) is postsynaptically localized and expressed only in the dendrites of ON bipolar cells. Upon activation of mGluR6 by glutamate released from photoreceptors, a nonselective cation channel is inhibited, causing these cells to hyperpolarize. Mutations in this gene have been implicated in the development of congenital stationary night blindness type 1 (CSNB1). We investigated five known mGluR6 point mutants that lead to CSNB1 to determine the molecular mechanism of each phenotype. In agreement with other studies, four mutants demonstrated trafficking impairment. However, mGluR6 E775K (E781K in humans) suggested no trafficking or signaling deficiencies measured by our initial assays. Most importantly, our results indicate a switch in G-protein coupling, in which E775K loses G(o) coupling but retains coupling to G(i), which may explain the phenotype.
Collapse
Affiliation(s)
- Donald Beqollari
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | |
Collapse
|
12
|
Eschle B, Eddy M, Delay E. Antagonism of metabotropic glutamate receptor 4 receptors by (RS)-α-cyclopropyl-4-phosphonophenylglycine alters the taste of amino acids in rats. Neuroscience 2009; 163:1292-301. [DOI: 10.1016/j.neuroscience.2009.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022]
|
13
|
|
14
|
Wellendorph P, Bräuner-Osborne H. Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Br J Pharmacol 2009; 156:869-84. [PMID: 19298394 DOI: 10.1111/j.1476-5381.2008.00078.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Family C of human G-protein-coupled receptors (GPCRs) is constituted by eight metabotropic glutamate receptors, two gamma-aminobutyric acid type B (GABA(B1-2)) subunits forming the heterodimeric GABA(B) receptor, the calcium-sensing receptor, three taste1 receptors (T1R1-3), a promiscuous L-alpha;-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABA(B1-2) and T1R2-3 receptor, all receptors are either activated or positively modulated by amino acids. In this review, we outline mutational, biophysical and structural studies which have elucidated the interaction of the amino acids with the Venus flytrap domains, molecular mechanisms of receptor selectivity and the initial steps in receptor activation.
Collapse
Affiliation(s)
- P Wellendorph
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
15
|
Anctil M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:268-289. [PMID: 20403752 DOI: 10.1016/j.cbd.2009.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 12/30/2022]
Abstract
The sequencing of the starlet sea anemone (Nematostella vectensis) genome provides opportunities to investigate the function and evolution of genes associated with chemical neurotransmission and hormonal signaling. This is of particular interest because sea anemones are anthozoans, the phylogenetically basal cnidarians least changed from the common ancestors of cnidarians and bilaterian animals, and because cnidarians are considered the most basal metazoans possessing a nervous system. This analysis of the genome has yielded 20 orthologues of enzymes and nicotinic receptors associated with cholinergic function, an even larger number of genes encoding enzymes, receptors and transporters for glutamatergic (28) and GABAergic (34) transmission, and two orthologues of purinergic receptors. Numerous genes encoding enzymes (14), receptors (60) and transporters (5) for aminergic transmission were identified, along with four adenosine-like receptors and one nitric oxide synthase. Diverse neuropeptide and hormone families are also represented, mostly with genes encoding prepropeptides and receptors related to varying closeness to RFamide (17) and tachykinin (14), but also galanin (8), gonadotropin-releasing hormones and vasopressin/oxytocin (5), melanocortins (11), insulin-like peptides (5), glycoprotein hormones (7), and uniquely cnidarian peptide families (44). Surprisingly, no muscarinic acetylcholine receptors were identified and a large number of melatonin-related, but not serotonin, orthologues were found. Phylogenetic tree construction and inspection of multiple sequence alignments reveal how evolutionarily and functionally distant chemical transmitter-related proteins are from those of higher metazoans.
Collapse
Affiliation(s)
- Michel Anctil
- Département de sciences biologiques and Centre de recherches en sciences neurologiques, Université de Montréal, Case postale 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
16
|
Zeitz C, Forster U, Neidhardt J, Feil S, Kälin S, Leifert D, Flor PJ, Berger W. Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat 2007; 28:771-80. [PMID: 17405131 DOI: 10.1002/humu.20499] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in the GRM6 gene, which encodes the metabotropic glutamate receptor 6 (mGluR6), lead to autosomal recessive congenital stationary night blindness (CSNB), which is characterized by loss of night vision due to a defect in signal transmission from photoreceptor to the adjacent ON-bipolar cells in the retina. So far, the sequence variations that have been described in six different families include nonsense, frameshift, and missense mutations. Here we investigated the impact of missense mutations in the ligand-binding domain, a conserved cysteine-rich domain, and the intracellular domain on the localization of the protein. We visualized and discriminated between surface and intracellular protein. Here we demonstrate that the wild-type (wt) protein localizes to the cell surface, and to endoplasmic reticulum (ER) and Golgi compartments. This also holds true for a mGluR6 variant containing a polymorphic, nondisease-associated amino acid exchange in the ligand-binding domain. In contrast, all disease-associated missense mutations lead to retention of the protein in the ER, while dimerization seems not to be affected. This is the first report that shows that CSNB-associated mutations in three different domains of mGluR6 abolish proper protein trafficking. We propose that the ligand-binding and the poorly characterized cysteine-rich domains, in addition to the intracellular domains, have a pivotal role in correct trafficking of metabotropic glutamate receptors to the cell surface.
Collapse
Affiliation(s)
- Christina Zeitz
- Institute of Medical Genetics, Division of Medical Molecular Genetics and Gene Diagnostics, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Frauli M, Hubert N, Schann S, Triballeau N, Bertrand HO, Acher F, Neuville P, Pin JP, Prézeau L. Amino-pyrrolidine tricarboxylic acids give new insight into group III metabotropic glutamate receptor activation mechanism. Mol Pharmacol 2007; 71:704-12. [PMID: 17167031 DOI: 10.1124/mol.106.030254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Like most class C G-protein-coupled receptors, metabotropic glutamate (mGlu) receptors possess a large extracellular domain where orthosteric ligands bind. Crystal structures revealed that this domain, called Venus FlyTrap (VFT), adopts a closed or open conformation upon agonist or antagonist binding, respectively. We have described amino-pyrrolidine tricarboxylic acids (APTCs), including (2S,4S)-4-amino-1-[(E)-3-carboxyacryloyl]pyrrolidine-2,4-dicarboxylic acid (FP0429), as new selective group III mGlu agonists. Whereas FP0429 is an almost full mGlu4 agonist, it is a weak and partial agonist of the closely related mGlu8 subtype. To get more insight into the activation mechanism of mGlu receptors, we aimed to elucidate why FP0429 behaves differently at these two highly homologous receptors by focusing on two residues within the binding site that differ between mGlu4 and mGlu8. Site-directed mutagenesis of Ser157 and Gly158 of mGlu4 into their mGlu8 homologs (Ala) turned FP0429 into a weak partial agonist. Conversely, introduction of Ser and Gly residues into mGlu8 increased FP0429 efficacy. Docking of FP0429 in mGlu4 VFT 3D model helped us characterize the role of each residue. Indeed, mGlu4 Ser157 seems to have an important role in FP0429 binding, whereas Gly158 may allow a deeper positioning of this agonist in the cavity of lobe I, thereby ensuring optimal interactions with lobe II residues in the fully closed state of the VFT. In contrast, the presence of a methyl group in mGlu8 (Ala instead of Gly) weakens the interactions with the lobe II residues. This probably results in a less stable or a partially closed form of the mGlu8 VFT, leading to partial receptor activation.
Collapse
|
18
|
Muto T, Tsuchiya D, Morikawa K, Jingami H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2007; 104:3759-64. [PMID: 17360426 PMCID: PMC1820657 DOI: 10.1073/pnas.0611577104] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabotropic glutamate receptors play major roles in the activation of excitatory synapses in the central nerve system. We determined the crystal structure of the entire extracellular region of the group II receptor and that of the ligand-binding region of the group III receptor. A comparison among groups I, II, and III provides the structural basis that could account for the discrimination of group-specific agonists. Furthermore, the structure of group II includes the cysteine-rich domain, which is tightly linked to the ligand-binding domain by a disulfide bridge, suggesting a potential role in transmitting a ligand-induced conformational change into the downstream transmembrane region. The structure also reveals the lateral interaction between the two cysteine-rich domains, which could stimulate clustering of the dimeric receptors on the cell surface. We propose a general activation mechanism of the dimeric receptor coupled with both ligand-binding and interprotomer rearrangements.
Collapse
Affiliation(s)
- Takanori Muto
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Daisuke Tsuchiya
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Kosuke Morikawa
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- To whom correspondence may be sent at the present address:
Institute for Protein Research, Osaka University, Open Laboratories of Advanced Bioscience and Biotechnology, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan. E-mail:
| | - Hisato Jingami
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- To whom correspondence may be sent at the present address:
Office of Graduate Courses for Integrated Research Training, Kyoto University Faculty of Medicine, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan. E-mail:
| |
Collapse
|
19
|
Tian L, Kammermeier PJ. G protein coupling profile of mGluR6 and expression of Gα proteins in retinal ON bipolar cells. Vis Neurosci 2007; 23:909-16. [PMID: 17266783 DOI: 10.1017/s0952523806230268] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/10/2006] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate receptor 6 (mGluR6) is a group III, pertussis toxin (PTX)-sensitive G protein coupled mGluR that plays a specialized role in the retina. Retinal ON bipolar cells, which receive direct glutamatergic input from photoreceptor cells, express mGluR6 as their primary postsynaptic glutamate receptor. Activation of mGluR6 in these cells initiates an intracellular signaling cascade ultimately leading to inhibition of a cation channel and cell hyperpolarization. The primary mediator of this pathwayin vivois Gαo, but the potential roles of other G proteins from the Gαi/ofamily in the regulation of this or other signaling pathways in ON bipolar cells are unclear. To determine which specific G proteins from the Gαi/ofamily are able to couple to mGluR6, a Gα reconstitution system was employed using PTX-insensitive Gα mutants expressed with mGluR6 in PTX-treated sympathetic neurons from the rat superior cervical ganglion (SCG). The efficiency of coupling to mGluR6 was Goa> Gob, Gi1> Gi2, Gi3, whereas no coupling was observed with Gαz, nor with the retinal Gα proteins, rod (GNAT2) or cone (GNAT1) transducin (GαTr-R, GαTr-C). Finally, the expression of Gα proteins determined to couple with mGluR6 was examined in rat ON bipolar cells using single cell RT-PCR. Co-expression of mGluR6 message was used to distinguish ON from OFF bipolar cells. Expression of Gαowas detected in every ON bipolar cell examined. Message for Gαi1, which coupled moderately to mGluR6, was not detected in ON bipolar cells, nor was Gαi3, which coupled to mGluR6 in only a few cells but on average did not exhibit statistically significant coupling. Finally, though Gαi2was detectable in ON bipolar cells, its coupling to mGluR6 in the SCG system was not significant. Together, these data indicate that signaling through mGluR6 in mammalian ON bipolar cells is highly focused, apparently acting through a single Gα protein subtype.
Collapse
Affiliation(s)
- Liantian Tian
- Department of Biomedical Sciences, Kent State University, Rootstown, Ohio, USA
| | | |
Collapse
|
20
|
Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H. Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 2006; 98:543-54. [PMID: 16805845 DOI: 10.1111/j.1471-4159.2006.03894.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Grueneberg ganglion (GG) is a cluster of neurones present in the vestibule of the anterior nasal cavity. Although its function is still elusive, recent studies have shown that cells of the GG transcribe the gene encoding the olfactory marker protein (OMP) and project their axons to glomeruli of the olfactory bulb, suggesting that they may have a chemosensory function. Chemosensory responsiveness of olfactory neurones in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) is based on the expression of either odorant receptors or vomeronasal putative pheromone receptors. To scrutinize its presumptive olfactory nature, the GG was assessed for receptor expression by extensive RT-PCR analyses, leading to the identification of a distinct vomeronasal receptor which was expressed in the majority of OMP-positive GG neurones. Along with this receptor, these cells expressed the G proteins Go and Gi, both of which are also present in sensory neurones of the vomeronasal organ. Odorant receptors were expressed by very few cells during prenatal and perinatal stages; a similar number of cells expressed adenylyl cyclase type III and G(olf/s), characteristic signalling elements of the main olfactory system. The findings of the study support the notion that the GG is in fact a subunit of the complex olfactory system, comprising cells with either a VNO-like or a MOE-like phenotype. Moreover, expression of a vomeronasal receptor indicates that the GG might serve to detect pheromones.
Collapse
Affiliation(s)
- Jörg Fleischer
- University of Hohenheim, Institute of Physiology, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
21
|
Wang M, Hampson DR. An evaluation of automated in silico ligand docking of amino acid ligands to Family C G-protein coupled receptors. Bioorg Med Chem 2006; 14:2032-9. [PMID: 16297630 DOI: 10.1016/j.bmc.2005.10.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 11/24/2022]
Abstract
Family C G-protein coupled receptors (GPCRs) consist of the metabotropic glutamate receptors (mGluRs), the calcium-sensing receptor (CaSR), the T1R taste receptors, the GABA(B) receptor, the V2R pheromone receptors, and several chemosensory receptors. A common feature of Family C receptors is the presence of an amino acid binding pocket. The objective of this study was to evaluate the ability of the automatic docking program FlexX to predict the favored amino acid ligand at several Family C GPCRs. The docking process was optimized using the crystal structure of mGluR1 and the 20 amino acids were docked into homology models of the CaSR, the 5.24 chemosensory receptor, and the GPRC6A amino acid receptor. Under optimized docking conditions, glutamate was docked in the binding pocket of mGluR1 with a root mean square deviation of 1.56 angstroms from the co-crystallized glutamate structure and was ranked as the best ligand with a significantly better FlexX score compared to all other amino acids. Ligand docking to a homology model of the 5.24 receptor gave generally correct predictions of the favored amino acids, while the results obtained with models of GPRC6A and the CaSR showed that some of the favored amino acids at these receptors were correctly predicted, while a few other top scoring amino acids appeared to be false positives. We conclude that with certain caveats, FlexX can be successfully used to predict preferred ligands at Family C GPCRs.
Collapse
Affiliation(s)
- Minghua Wang
- Department of Pharmaceutical Sciences, University of Toronto, 19 Russell St., Toronto, Ont., Canada M5S 2S2
| | | |
Collapse
|
22
|
Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JDB, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y. Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 2006; 25:10520-36. [PMID: 16280590 PMCID: PMC6725819 DOI: 10.1523/jneurosci.2547-05.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic metabotropic glutamate receptors (mGluRs) show a highly selective expression and subcellular location in nerve terminals modulating neurotransmitter release. We have demonstrated that alternatively spliced variants of mGluR8, mGluR8a and mGluR8b, have an overlapping distribution in the hippocampus, and besides perforant path terminals, they are expressed in the presynaptic active zone of boutons making synapses selectively with several types of GABAergic interneurons, primarily in the stratum oriens. Boutons labeled for mGluR8 formed either type I or type II synapses, and the latter were GABAergic. Some mGluR8-positive boutons also expressed mGluR7 or vasoactive intestinal polypeptide. Interneurons strongly immunopositive for the muscarinic M2 or the mGlu1 receptors were the primary targets of mGluR8-containing terminals in the stratum oriens, but only neurochemically distinct subsets were innervated by mGluR8-enriched terminals. The majority of M2-positive neurons were mGluR8 innervated, but a minority, which expresses somatostatin, was not. Rare neurons coexpressing calretinin and M2 were consistently targeted by mGluR8-positive boutons. In vivo recording and labeling of an mGluR8-decorated and strongly M2-positive interneuron revealed a trilaminar cell with complex spike bursts during theta oscillations and strong discharge during sharp wave/ripple events. The trilaminar cell had a large projection from the CA1 area to the subiculum and a preferential innervation of interneurons in the CA1 area in addition to pyramidal cell somata and dendrites. The postsynaptic interneuron type-specific expression of the high-efficacy presynaptic mGluR8 in both putative glutamatergic and in identified GABAergic terminals predicts a role in adjusting the activity of interneurons depending on the level of network activity.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Oxford University, Oxford OX1 3TH, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luu P, Acher F, Bertrand HO, Fan J, Ngai J. Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 2005; 24:10128-37. [PMID: 15537883 PMCID: PMC6730175 DOI: 10.1523/jneurosci.3117-04.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The identification of the chemical structure of an odorant by the vertebrate olfactory system is thought to occur through the combinatorial activity from multiple receptors, each tuned to recognize different chemical features. What are the molecular determinants underlying the selectivity of individual odorant receptors for their cognate ligands? To address this question, we performed molecular modeling and site-directed mutagenesis on the ligand-binding region of two orthologous amino acid odorant receptors belonging to the "C family" of G-protein-coupled receptors in goldfish and zebrafish. We identified the critical ligand-receptor interactions that afford ligand binding as well as selectivity for different amino acids. Moreover, predictions regarding binding pocket structure allowed us to alter, in a predictable manner, the receptor preferences for different ligands. These results reveal how this class of odorant receptor has evolved to accommodate ligands of varying chemical structure and further illuminate the molecular principles underlying ligand recognition and selectivity in this family of chemosensory receptors.
Collapse
Affiliation(s)
- Percy Luu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | |
Collapse
|
24
|
Kew JNC, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005; 179:4-29. [PMID: 15731895 DOI: 10.1007/s00213-005-2200-z] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 01/26/2005] [Indexed: 12/12/2022]
Abstract
RATIONALE L: -Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS) and mediates its actions via activation of both ionotropic and metabotropic receptor families. The development of selective ligands, including competitive agonists and antagonists and positive and negative allosteric modulators, has enabled investigation of the functional roles of glutamate receptor family members. OBJECTIVE In this review we describe the subunit structure and composition of the ionotropic and metabotropic glutamate receptors and discuss their pharmacology, particularly with respect to selective tools useful for investigation of their function in the CNS. RESULTS A large number of ligands are now available that are selective either for glutamate receptor subfamilies or for particular receptor subtypes. Such ligands have enabled considerable advances in the elucidation of the physiological and pathophysiological roles of receptor family members. Furthermore, efficacy in animal models of neurological and psychiatric disorders has supported the progression of several glutamatergic ligands into clinical studies. These include ionotropic glutamate receptor antagonists, which have entered clinical trials for disorders including epilepsy and ischaemic stroke, alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor positive allosteric modulators which are under evaluation as cognitive enhancers, and metabotropic glutamate receptor 2 (mGluR2) agonists which are undergoing clinical evaluation as anxiolytics. Furthermore, preclinical studies have illustrated therapeutic potential for ligands selective for other receptor subtypes in various disorders. These include mGluR1 antagonists in pain, mGluR5 antagonists in anxiety, pain and drug abuse and mGluR5 positive allosteric modulators in schizophrenia. CONCLUSIONS Selective pharmacological tools have enabled the study of glutamate receptors. However, pharmacological coverage of the family is incomplete and considerable scope remains for the development of novel ligands, particularly those with in vivo utility, and for the their use together with existing tools for the further investigation of the roles of receptor family members in CNS function and as potentially novel therapeutics.
Collapse
Affiliation(s)
- James N C Kew
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex CM19 5AW, UK.
| | | |
Collapse
|
25
|
Clausen RP, Hansen KB, Calí P, Nielsen B, Greenwood JR, Begtrup M, Egebjerg J, Bräuner-Osborne H. The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid. Eur J Pharmacol 2005; 499:35-44. [PMID: 15363949 DOI: 10.1016/j.ejphar.2004.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 07/01/2004] [Accepted: 07/06/2004] [Indexed: 11/19/2022]
Abstract
We have determined the pharmacological activity of N-hydroxypyrazole analogues (3a and 4a) of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA), as well as substituted derivatives of these two compounds. The pharmacological profile of 3a is closer to that of thioibotenic acid rather than ibotenic acid, while 4a is a selective N-methyl-D-aspartic acid (NMDA) receptor agonist. Ring substitution of 3a and 4a leads to NMDA receptor antagonists. Whereas efficacy of 3a derivatives at mglu2 receptor decreases from agonism via partial agonism to antagonism with increasing substituent size, substitution abolishes affinity for mglu1 and mglu4 receptors. Ligand- and receptor-based modelling approaches assist in explaining these pharmacological trends among the metabotropic receptors and suggest a mechanism of partial agonism at mglu2 receptor similar to that proposed for the GluR2 glutamate receptor.
Collapse
Affiliation(s)
- Rasmus P Clausen
- Department of Medicinal Chemistry, Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Johnson RL, Rao KSSP. 2,3-Ethylene- and 2,3-trimethylene-bridged analogues of the group III metabotropic glutamate receptor ligand 2-amino-4-phosphonobutanoic acid. Bioorg Med Chem Lett 2005; 15:57-60. [PMID: 15582410 DOI: 10.1016/j.bmcl.2004.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
The racemic trans- and cis-isomers of 1-amino-2-phosphonomethyl-cyclobutanecarboxylic acid (5 and 6) and 1-amino-2-phosphonomethyl-cyclopentanecarboxylic acid (7 and 8) were synthesized as extensions of the mGluR4 agonists trans- and cis-1-amino-2-phosphonomethyl-cyclopropanecarboxylic acid (3 and 4). Although the methylene bridge in 3 and 4 allows for retention of affinity toward the mGluR4 receptor, increasing the bridging unit to the ethylene group as in 5 and 6 or to the trimethylene group as in 7 and 8 introduces sufficient steric hindrance to eliminate affinity for the mGluR4 receptor.
Collapse
Affiliation(s)
- Rodney L Johnson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
27
|
Kew JNC. Positive and negative allosteric modulation of metabotropic glutamate receptors: emerging therapeutic potential. Pharmacol Ther 2004; 104:233-44. [PMID: 15556676 DOI: 10.1016/j.pharmthera.2004.08.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) modulate neuronal activity in the central and peripheral nervous systems, and since their discovery have attracted considerable attention as putative therapeutic targets for a range of neurological and psychiatric disorders. A number of competitive agonists and antagonists acting at the N-terminal glutamate binding site have been identified, the majority of which are conformationally constrained or substituted amino acid analogues. These ligands have greatly facilitated investigation of the physiological and pathological roles of the receptor family. However, their utility and therapeutic potential has been restricted by relatively poor bioavailability and central nervous system (CNS) penetration, as well as limited chemical tractability and, generally, a lack of selectivity for individual mGluRs. Recently, a number of non-competitive mGluR ligands have been identified which bind within the receptor transmembrane heptahelical domain. These include both positive and negative allosteric modulators. Positive allosteric modulators do not exhibit intrinsic agonism but facilitate agonist-mediated receptor activity. Negative allosteric modulators include both non-competitive antagonists and inverse agonists. Allosteric modulation offers the potential for improved selectivity, particularly for individual receptors within the mGluR family, and enhanced chemical tractability relative to competitive agonists/antagonists. In addition, positive allosteric modulation provides a distinct, and perhaps superior, profile to receptor agonism, offering the potential for facilitation of physiologically appropriate receptor activation with reduced liability for receptor desensitisation and/or tolerance. Thus, the emerging field of positive and negative allosteric modulation of the mGluR family offers considerable promise for the development of novel therapeutics.
Collapse
Affiliation(s)
- James N C Kew
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.
| |
Collapse
|
28
|
Rosemond E, Wang M, Yao Y, Storjohann L, Stormann T, Johnson EC, Hampson DR. Molecular basis for the differential agonist affinities of group III metabotropic glutamate receptors. Mol Pharmacol 2004; 66:834-42. [PMID: 15231870 DOI: 10.1124/mol.104.002956] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonist stimulation of group III metabotropic glutamate receptors (mGluRs) induces an inhibition of neurotransmitter release from neurons. The group III mGluRs are pharmacologically defined by activation with the glutamate analog L-amino-4-phosphonobutyric acid (L-AP4). The affinities of these receptors for L-AP4 and glutamate vary over approximately a 1500-fold concentration range. The goal of this study was to elucidate the molecular basis for this dispersion of agonist affinities for the group III receptors mGluR4, mGluR6, and mGluR7. [3H]L-AP4 binding was present in human embryonic kidney cells transfected with the high-affinity mGluR4 receptor but not in cells transfected with mGluR6 or the low-affinity mGluR7 receptor. Analysis of mGluR4/mGluR6 receptor chimeras revealed that replacement of the first 35 amino acids of mGluR6 with the first 50 amino acids of mGluR4 was sufficient to impart [3H]L-AP4 binding to mGluR6. Homology models of mGluR4 and mGluR7 were used to predict amino acids that may affect ligand affinity. Mutations were made in mGluR7 to convert selected residues into the equivalent amino acids present in the high-affinity mGluR4 receptor. The mGluR7 N74K mutation caused a 12-fold increase in affinity in a functional assay, whereas the N74K mutation in combination with mutations in residues 258 to 262, which lie outside the binding pocket, caused a 112-fold increase in affinity compared with unmutated mGluR7. Our results demonstrate that the binding site residues at position lysine 74 in mGluR4, glutamine 58 in mGluR6, and asparagine 74 in mGluR7 are key determinants of agonist affinity and that additional residues situated outside of the binding pocket, including those present in the extreme amino terminus, also contribute to agonist affinity and the pharmacological profiles of the group III mGluRs.
Collapse
Affiliation(s)
- Erica Rosemond
- Department of Pharmaceutical Sciences, University of Toronto, 19 Russell Street, Ontario, Canada M5S 2S2
| | | | | | | | | | | | | |
Collapse
|
29
|
Hermit MB, Greenwood JR, Bräuner-Osborne H. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues. J Biol Chem 2004; 279:34811-7. [PMID: 15184361 DOI: 10.1074/jbc.m404109200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations that mimicked mGluR1 residues. Based on ligand docking to homology models, the non-conserved residues, Lys-74, Glu-287, Ser-313, and Lys-317, were chosen for the mutational studies and all of the mutations proved capable of partially or completely restoring the affinities of the ligands. In particular, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R and K74Y/E287G. Advanced analysis of ligand conformation and docking procedures were used for the interpretation of these results. The study shows that mGluR subtype selectivity results from a complex interplay of residues shaping the binding pocket, rather than being attributable to a single specific ligand-receptor interaction.
Collapse
Affiliation(s)
- Mette B Hermit
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
Funada M, Yasuo S, Yoshimura T, Ebihara S, Sasagawa H, Kitagawa Y, Kadowaki T. Characterization of the two distinct subtypes of metabotropic glutamate receptors from honeybee, Apis mellifera. Neurosci Lett 2004; 359:190-4. [PMID: 15050695 DOI: 10.1016/j.neulet.2004.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/26/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
L-Glutamate is a major neurotransmitter at the excitatory synapses in the vertebrate brain. It is also the excitatory neurotransmitter at neuromuscular junctions in insects, however its functions in their brains remain to be established. We identified and characterized two different subtypes (AmGluRA and AmGluRB) of metabotropic glutamate receptors (mGluRs) from an eusocial insect, honeybee. Both AmGluRA and AmGluRB form homodimers independently on disulfide bonds, and bind [3H]glutamate with K(D) values of 156.7 and 80.7 nM, respectively. AmGluRB is specifically expressed in the brain, while AmGluRA is expressed in the brain and other body parts, suggesting that AmGluRA is also present at the neuromuscular junctions. Both mGluRs are expressed in the mushroom bodies and the brain regions of honeybees, where motor neurons are clustered. Their expression in the brain apparently overlaps, suggesting that they may interact with each other to modulate the glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Masahiro Funada
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kuang D, Yao Y, Wang M, Pattabiraman N, Kotra LP, Hampson DR. Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J Biol Chem 2003; 278:42551-9. [PMID: 12912984 DOI: 10.1074/jbc.m307120200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5.24 odorant receptor is an amino acid sensing receptor that is expressed in the olfactory epithelium of fish. The 5.24 receptor is a G-protein-coupled receptor that shares amino acid sequence identity to mammalian pheromone receptors, the calcium-sensing receptor, the T1R taste receptors, and the metabotropic glutamate receptors (mGluRs). It is most potently activated by the basic amino acids L-lysine and L-arginine. In this study we generated a homology model of the ligand binding domain of the 5.24 receptor based on the crystal structure of mGluR1 and examined the proposed lysine binding pocket using site-directed mutagenesis. Mutants of truncated glycosylated versions of the receptor containing only the extracellular domain were analyzed in a radioligand binding assay, whereas the analogous full-length membrane-bound mutants were studied using a fluorescence-based functional assay. In silico analysis predicted that aspartate 388 interacts with the terminal amino group on the side chain of the docked lysine molecule. This prediction was supported by experimental observations demonstrating that mutation of this residue caused a 26-fold reduction in the affinity for L-lysine but virtually no change in the affinity for the polar amino acid L-glutamine. In addition, mutations in four highly conserved residues (threonine 175, tyrosine 223, and aspartates 195 and 309) predicted to establish interactions with the alpha amino group of the bound lysine ligand greatly reduced or eliminated binding and receptor activation. These results define the essential features of amino acid selectivity within the 5.24 receptor binding pocket and highlight an evolutionarily conserved motif required for ligand recognition in amino acid activated receptors in the G-protein-coupled receptor superfamily.
Collapse
Affiliation(s)
- Donghui Kuang
- Department of Pharmaceutical Sciences and Institute for Drug Research, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Yao Y, Pattabiraman N, Michne WF, Huang XP, Hampson DR. Molecular modeling and mutagenesis of the ligand-binding pocket of the mGlu3 subtype of metabotropic glutamate receptor. J Neurochem 2003; 86:947-57. [PMID: 12887692 DOI: 10.1046/j.1471-4159.2003.01906.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A homology model of the extracellular domain of the mGlu3 subtype of metabotropic glutamate (mGlu) receptor was generated and tested using site-directed mutagenesis, a radioligand-binding assay using the Group II selective agonist (2S,2'R,3'R)-2-(2',3'-[3H]dicarboxycyclopropyl) glycine ([3H]DCG-IV), and in a fluorescence-based functional assay in live transiently transfected human embryonic kidney cells. Ten of the 12 mGlu3 mutants (R64A, R68A, Y150A, S151A, T174A, D194A, Y222A, R277A, D301A and K389) showed either no binding or a 90% or greater loss of specific [3H]DCG-IV binding. Several analogous mutations in mGlu2 supported the results obtained with mGlu3. These results demonstrate that the binding of [3H]DCG-IV to mGlu3 is exceptionally sensitive to mutagenesis-induced perturbations. In silico docking of DCG-IV into the agonist binding pocket of mGlu3 facilitated the interpretation the mutagenesis results. Tyrosines 150 and 222, and arginine 277 show close contacts with the third carboxylic acid group in DCG-IV, which is not present in glutamate or (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I). Mutation of these three amino acids to alanine resulted in a near complete loss of receptor activation by DCG-IV and retention of near wild-type affinity for L-CCG-I. It is proposed that hydrogen bonding between this carboxylate and tyrosines 150 and 222 and arginine 277 provide a partial explanation for the high affinity and Group II selectivity of DCG-IV. These findings define the essential features of the ligand-binding pocket of mGlu3 and, together with other recent studies on mGlu receptors, provide new opportunities for structure-based drug design.
Collapse
Affiliation(s)
- Yi Yao
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Abstract
In the twelve years since the molecular elucidation of the metabotropic glutamate receptor subtype 1, a class III family of G-protein-coupled receptors has emerged; members of this family include the calcium-sensing receptor, the GABA(B) receptor, some odorant receptors and some taste receptors. Atomic structures of the ligand-binding core of the original metabotropic glutamate receptor 1 obtained using X-ray crystallography provide a foundation for determining the initial receptor activation of this important family of G-protein-coupled receptors.
Collapse
Affiliation(s)
- Hisato Jingami
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Suita-City, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
34
|
Macchiarulo A, Costantino G, Sbaglia R, Aiello S, Meniconi M, Pellicciari R. The role of electrostatic interaction in the molecular recognition of selective agonists to metabotropic glutamate receptors. Proteins 2003; 50:609-19. [PMID: 12577267 DOI: 10.1002/prot.10301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The influence of electrostatic interactions in determining selectivity for individual subtypes of metabotropic glutamate receptors (mGluRs) is evaluated for a small set of agonists by using the program Delphi and the information thus obtained is compared with docking experiments carried out with AutoDock. The evaluation of the electrostatic component of the free energy of binding for L-Glu, L-AP4, or S-PPG to mGluR1, mGluR2, and mGluR4 subtypes allowed for the detection of subtle differences in the electronic properties of the three subtypes, differences that can account for the observed agonist selectivity.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Sato T, Shimada Y, Nagasawa N, Nakanishi S, Jingami H. Amino acid mutagenesis of the ligand binding site and the dimer interface of the metabotropic glutamate receptor 1. Identification of crucial residues for setting the activated state. J Biol Chem 2003; 278:4314-21. [PMID: 12444084 DOI: 10.1074/jbc.m210278200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we determined the crystal structures of the dimeric ligand binding region of the metabotropic glutamate receptor subtype 1. Each protomer binds l-glutamate within the crevice between the LB1 and LB2 domains. We proposed that the two different conformations of the dimer interface between the two LB1 domains define the activated and resting states of the receptor protein. In this study, the residues in the ligand-binding site and the dimer interface were mutated, and the effects were analyzed in the full-length and truncated soluble receptor forms. The variations in the ligand binding activities of the purified truncated receptors are comparable with those of the full-length form. The mutated full-length receptors were also analyzed by inositol phosphate production and Ca(2+) response. The magnitude of the ligand binding capacities and the amplitude of the intracellular signaling were almost correlated. Alanine substitutions of four residues, Thr(188), Asp(208), Tyr(236), and Asp(318), which interact with the alpha-amino group of glutamate in the crystal, abolished their responses both to glutamate and quisqualate. The mutations of the Tyr(74), Arg(78), and Gly(293) residues, which interact with the gamma-carboxyl group of glutamate, lost their responsiveness to glutamate but not to quisqualate. Furthermore, a mutant receptor containing alanine instead of isoleucine at position 120 located within an alpha helix constituting the dimer interface showed no intracellular response to ligand stimulation. The results demonstrate the crucial role of the dimer interface in receptor activation.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita-City, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
36
|
Bessis AS, Rondard P, Gaven F, Brabet I, Triballeau N, Prezeau L, Acher F, Pin JP. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc Natl Acad Sci U S A 2002; 99:11097-102. [PMID: 12151600 PMCID: PMC123216 DOI: 10.1073/pnas.162138699] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Indexed: 11/18/2022] Open
Abstract
Ca2+, pheromones, sweet taste compounds, and the main neurotransmitters glutamate and gamma-aminobutyric acid activate G protein-coupled receptors (GPCRs) that constitute the GPCR family 3. These receptors are dimers, and each subunit has a large extracellular domain called a Venus flytrap module (VFTM), where agonists bind. This module is connected to a heptahelical domain that activates G proteins. Recently, the structure of the dimer of mGlu1 VFTMs revealed two important conformational changes resulting from glutamate binding. First, agonists can stabilize a closed state of at least one VFTM in the dimer. Second, the relative orientation of the two VFTMs in the dimer is different in the presence of glutamate, such that their C-terminal ends (which are connected to the G protein-activating heptahelical domain) become closer by more than 20 A. This latter change in orientation has been proposed to play a key role in receptor activation. To elucidate the respective role of VFTM closure and the change in orientation of the VFTMs in family 3 GPCR activation, we analyzed the mechanism of action of the mGlu8 receptor antagonists ACPT-II and MAP4. Molecular modeling studies suggest that these two compounds prevent the closure of the mGlu8 VFTM because of ionic and steric hindrance, respectively. We show here that the replacement of the residues responsible for these hindrances (Asp-309 and Tyr-227, respectively) by Ala allows ACPT-II or MAP4 to fully activate the receptors. These data are consistent with the requirement of the VFTM closure for family 3 GPCR activation.
Collapse
Affiliation(s)
- Anne-Sophie Bessis
- Départment de Chimie et Biochimie Pharmacologiques et Toxicologiques, Unité Mixte de Recherche 8601-Centre National de la Recherche Scientifique, Université René Descartes-Paris V, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | |
Collapse
|