1
|
Gadre A, Dyson T, Jedrych J, Anhalt G, Byrd AS, Aguh C. Proteomic Profiling of Central Centrifugal Cicatricial Alopecia Reveals Role of Humoral Immune Response Pathway and Metabolic Dysregulation. JID INNOVATIONS 2024; 4:100263. [PMID: 38585195 PMCID: PMC10995914 DOI: 10.1016/j.xjidi.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024] Open
Abstract
Proteomic profiling on other primary cicatricial alopecias, such as frontal fibrosing alopecia and lichen planopilaris, have suggested a T helper 1-mediated inflammatory pathway, but in central centrifugal cicatricial alopecia (CCCA), the protein expression patterns are unknown. In this study, we sought to characterize protein expression patterns in CCCA to identify biomarkers of disease activity that will identify potential therapeutic avenues for treatment. Scalp protein quantification was performed to understand protein expression patterns in affected versus unaffected scalps in CCCA. A total of 5444 proteins were identified, of which 148 proteins were found to be differentially expressed in CCCA-affected scalp, with upregulation of adaptive immune pathways (IGHG3, P = .034; IGHG4, P = .01; IGG1, P = .026) and markers of fibrosis (ITGA1, P = .016; SFRP2, P = .045; TPM2, P = .029; SLMAP, P = .016) and downregulation of metabolic proteins (ALOX15B, P = .003; FADS2, P = .006; ELOVL5, P = .007; FA2H, P = .017; FAR2, P = .011; SC5D, P < .001). Our analysis revealed, to our knowledge, previously unknown humoral immune canonical pathways, notably IgG, implicated in CCCA and additionally confirmed aberrant lipid metabolism pathways implicated in diabetes mellitus, suggesting unique mechanisms of disease in patients with CCCA.
Collapse
Affiliation(s)
- Aditi Gadre
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- School of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Taylor Dyson
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jaroslaw Jedrych
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Grant Anhalt
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angel S. Byrd
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Crystal Aguh
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2024. [PMID: 38693715 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
4
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Wu C, Li J, Xu X, Xu Q, Qin C, Liu G, Wei C, Zhang G, Tian K, Fu X. Effect of the FA2H Gene on cashmere fineness of Jiangnan cashmere goats based on transcriptome sequencing. BMC Genomics 2022; 23:527. [PMID: 35864447 PMCID: PMC9306159 DOI: 10.1186/s12864-022-08763-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cashmere goats are a heterogeneous hairy mammal. The fineness of cashmere can affect its economic value. Therefore, in this study, we used transcriptome sequencing techniques to analyze the gene expression profiles of the skin tissues of cashmere goats with different cashmere fineness. The selected candidate genes were functionally verified with the secondary hair follicle hair papillary cells of cashmere goats. Results We identified 479 DEGs, of which 238 mRNAs were up-regulated in the fine velvet group and 241 mRNA were down-regulated. Based on functional annotation and protein interaction network analysis, we found some genes that may affect the fineness of cashmere, including SOX18, SOX4, WNT5A, IGFBP4, KAP8, KRT36, and FA2H. Using qRT-PCR, Western blot, CCK-8 cell viability detection, EDU cell proliferation detection, and flow cytometry, we found that overexpression of the FA2H gene could promote the proliferation of secondary hair follicle DPCs in cashmere goats. At the same time, we proved that FA2H could regulate the expression levels of the FGF5 and BMP2 genes in DPCs. Conclusion The results of this study provide a useful reference for the genetics and breeding of Jiangnan cashmere goats and goat genome annotation, and provide an experimental basis for improving cashmere quality of the cashmere goat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08763-7.
Collapse
Affiliation(s)
- Cuiling Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Jianying Li
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, 830000, China
| | - Xinming Xu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Xu
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, 830000, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Guoping Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
6
|
Morimoto A, Fukuda K, Ito Y, Tahara U, Sasaki T, Shiohama A, Kawasaki H, Kawakami E, Naganuma T, Arita M, Sasaki H, Koseki H, Matsui T, Amagai M. Microbiota-Independent Spontaneous Dermatitis Associated With Increased Sebaceous Lipid Production in Tmem79-Deficient Mice. J Invest Dermatol 2022; 142:2864-2872.e6. [PMID: 35752300 DOI: 10.1016/j.jid.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
TMEM79 is a predisposing gene for atopic dermatitis (AD). Tmem79-deficient mice develop spontaneous dermatitis in a biphasic pattern. The 1st-phase dermatitis is unique, as it occurs independent of microbiota status, whereas the 2nd-phase dermatitis is microbiota-dependent. In this study, we sought to identify key factors mediating the development of 1st-phase dermatitis. Structural analysis showed that sebaceous gland hyperplasia started from 1st-phase dermatitis. Longitudinal RNA-sequencing analysis revealed significant activation of fatty acid lipid-metabolism pathways in 1st-phase dermatitis, whereas Th17-based immune response genes were highly expressed in 2nd-phase dermatitis. Quantitative reverse transcription-polymerase chain reaction analysis revealed that genes involved in fatty acid elongation and sebocyte differentiation were upregulated in 1st-phase dermatitis. The results of thin-layer chromatography supported these findings with an increased abundance of wax esters, cholesterol esters, and fatty alcohols in hair lipids. Further gas chromatography-tandem mass spectrometry analysis showed an increase in total fatty acid production, including that of elongated C20-24 saturated and C18-24 mono-unsaturated fatty acids. Collectively, these results suggest that aberrant production of sebaceous long-chain fatty acids is associated with microbiota-independent dermatitis. Further investigation of Tmem79-deficient mice may clarify the role of certain fatty acids in dermatitis.
Collapse
Affiliation(s)
- Ari Morimoto
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Umi Tahara
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Aiko Shiohama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Yokohama, Japan; Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuro Naganuma
- Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroyuki Sasaki
- Department of Occupational Therapy, School of Rehabilitation, Tokyo Professional University of Health Sciences, Tokyo, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takeshi Matsui
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
7
|
Luo X, Li J, Xiao C, Sun L, Xiang W, Chen N, Lei C, Lei H, Long Y, Long T, Suolang Q, Yi K. Whole-Genome Resequencing of Xiangxi Cattle Identifies Genomic Diversity and Selection Signatures. Front Genet 2022; 13:816379. [PMID: 35711927 PMCID: PMC9196905 DOI: 10.3389/fgene.2022.816379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the genetic diversity in Xiangxi cattle may facilitate our efforts toward further breeding programs. Here we compared 23 Xiangxi cattle with 78 published genomes of 6 worldwide representative breeds to characterize the genomic variations of Xiangxi cattle. Based on clustering models in population structure analysis, we displayed that Xiangxi cattle had a mutual genome ancestor with Chinese indicine, Indian indicine, and East Asian taurine. Population genetic diversity was analyzed by four methods (nucleotide diversity, inbreeding coefficient, linkage disequilibrium decay and runs of homozygosity), and we found that Xiangxi cattle had higher genomic diversity and weaker artificial selection than commercial breed cattle. Using four testing methods (θπ, CLR, FST, and XP-EHH), we explored positive selection regions harboring genes in Xiangxi cattle, which were related to reproduction, growth, meat quality, heat tolerance, and immune response. Our findings revealed the extent of sequence variation in Xiangxi cattle at the genome-wide level. All of our fruitful results can bring about a valuable genomic resource for genetic studies and breed protection in the future.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China
| | - Chentong Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,School of Life Science, University of Bristol, Bristol, United Kingdom
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hong Lei
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China
| | - Yun Long
- Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China.,Hunan De Nong Animal Husbandry Group Co. Ltd., Huayuan, China
| | - Ting Long
- Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China.,Hunan De Nong Animal Husbandry Group Co. Ltd., Huayuan, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China
| |
Collapse
|
8
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
9
|
Nakashima K, Hirahara Y, Koike T, Tanaka S, Gamo K, Oe S, Hayashi S, Seki-Omura R, Nakano Y, Ohe C, Yoshida T, Kataoka Y, Tsuda M, Yamashita T, Honke K, Kitada M. Sulfatide with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy fatty acids in renal intercalated cells. J Lipid Res 2022; 63:100210. [PMID: 35439525 PMCID: PMC9157219 DOI: 10.1016/j.jlr.2022.100210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022] Open
Abstract
Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research; Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Hyogo, Japan
| | | | - Tatsuyuki Yamashita
- Department of Biochemistry, Kochi University Medical School, Nangoku, Kochi, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Nangoku, Kochi, Japan
| | | |
Collapse
|
10
|
Jacinto JGP, Häfliger IM, Veiga IMB, Letko A, Gentile A, Drögemüller C. A frameshift insertion in FA2H causes a recessively inherited form of ichthyosis congenita in Chianina cattle. Mol Genet Genomics 2021; 296:1313-1322. [PMID: 34599683 PMCID: PMC8550120 DOI: 10.1007/s00438-021-01824-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023]
Abstract
The aim of this study was to characterize the phenotype and to identify the genetic etiology of a syndromic form of ichthyosis congenita (IC) observed in Italian Chianina cattle and to estimate the prevalence of the deleterious allele in the population. Sporadic occurrence of different forms of ichthyosis including IC have been previously reported in cattle. However, so far, no causative genetic variant has been found for bovine IC. Nine affected cattle presenting congenital xerosis, hyperkeratosis and scaling of the skin as well as urolithiasis and cystitis associated with retarded growth were examined. Skin histopathology revealed a severe, diffuse orthokeratotic hyperkeratosis with mild to moderate epidermal hyperplasia. The pedigree records indicated a monogenic recessive trait. Homozygosity mapping and whole-genome sequencing allowed the identification of a homozygous frameshift 1 bp insertion in the FA2H gene (c.9dupC; p.Ala4ArgfsTer142) located in a 1.92 Mb shared identical-by-descent region on chromosome 18 present in all cases, while the parents were heterozygous as expected for obligate carriers. These findings enable the selection against this sub-lethal allele showing an estimated frequency of ~ 7.5% in Chianina top sires. A sporadic incidence of mild clinical signs in the skin of heterozygous carriers was observed. So far, pathogenic variants affecting the encoded fatty acid 2-hydroxylase catalyzing the synthesis of 2-hydroxysphingolipids have been associated with myelin disorders. In conclusion, this study represents the first report of an FA2H-related autosomal recessive inherited skin disorder in a mammalian species and adds FA2H to the list of candidate genes for ichthyosis in humans and animals. Furthermore, this study provides a DNA-based diagnostic test that enables selection against the identified pathogenic variant in the Chianina cattle population. However, functional studies are needed to better understand the expression of FA2H in IC-affected Chianina cattle.
Collapse
Affiliation(s)
- Joana G. P. Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Inês M. B. Veiga
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
11
|
Konger RL, Derr-Yellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. Int J Mol Sci 2021; 22:ijms22168634. [PMID: 34445339 PMCID: PMC8395473 DOI: 10.3390/ijms22168634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.
Collapse
Affiliation(s)
- Raymond L. Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-317-274-4154
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Terrence Katona
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
| | - Xiaoling Xuei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
| | - Ed Ronald Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew J. Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of Dermatology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Wang J, Sui J, Mao C, Li X, Chen X, Liang C, Wang X, Wang SH, Jia C. Identification of Key Pathways and Genes Related to the Development of Hair Follicle Cycle in Cashmere Goats. Genes (Basel) 2021; 12:genes12020180. [PMID: 33513983 PMCID: PMC7911279 DOI: 10.3390/genes12020180] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development of hair follicle, we performed a weighted gene coexpression network analysis (WGCNA) to mine key genes and establish an interaction network by utilizing the NCBI public dataset. Ten coexpression modules, including 7689 protein-coding genes, were constructed by WGCNA, six of which are considered to be significantly related to the development of the hair follicle cycle. A functional enrichment analysis for each model showed that they are closely related to ECM- receptor interaction, focal adhesion, PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. Combined with the analysis of differential expressed genes, 12 hub genes from coexpression modules were selected as candidate markers, i.e., COL1A1, C1QTNF6, COL1A2, AQP3, KRTAP3-1, KRTAP11-1, FA2H, NDUFS5, DERL2, MRPL14, ANTKMT and XAB2, which might be applied to improve cashmere production.
Collapse
|
13
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
14
|
Kawana M, Miyamoto M, Ohno Y, Kihara A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J Lipid Res 2020; 61:884-895. [PMID: 32265320 PMCID: PMC7269764 DOI: 10.1194/jlr.ra120000671] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC/MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from human and mouse SC. Phytosphingosine- and 6-hydroxy sphingosine-type ceramides, which both contain an additional hydroxyl group, were abundant in the human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, phytosph-ingosine- and 6-hydroxy sphingosine-type ceramides were present at ∼1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ∼90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy or ω-hydroxy FA were abundant in mice. The hydroxylated β-carbon in β-hydroxy ceramides was in the (R) configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased β-hydroxy ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the ER, is a substrate for β-hydroxy ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Momoko Kawana
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Martins Cardoso R, Absalah S, Van Eck M, Bouwstra JA. Barrier lipid composition and response to plasma lipids: A direct comparison of mouse dorsal back and ear skin. Exp Dermatol 2020; 29:548-555. [PMID: 32350936 PMCID: PMC7383511 DOI: 10.1111/exd.14106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
The skin of the ear and the back are frequently selected sites in skin research using mouse models. However, distinct responses to treatment have been described between these two sites in several studies. Despite the crucial role of the stratum corneum (SC) in the skin barrier function of both dorsal back and ear skin, it remains unclear whether differences in lipid composition might underlie altered responses. Here, we compared the skin morphology and the barrier lipid composition of the ear with the back skin of wild-type mice. The ear contained more corneocyte layers in the SC and its barrier lipid composition was enriched with sphingosine ceramide subclasses, especially the short ones with a total chain length of 33-34 carbons. The free fatty acid (FFA) profile in the ear skin shifted towards shorter chains, significantly reducing the mean chain length to 23.3 vs 24.7 carbons in the back skin. In line, FFA species in the ear displayed a twofold increase in unsaturation index (P < .001). Gene expression in the ear skin revealed low expression of genes involved in lipid synthesis and uptake, indicating a reduced metabolic activity. Finally, the effects of hypercholesterolaemia on SC FFA composition was compared in ear and back skin of apolipoprotein E knockout (APOE-/- ) mice. Interestingly, the FFA profile in APOE-/- ear skin was minimally affected, while the FFA composition in the back skin was markedly changed in response to hypercholesterolaemia. In conclusion, ear and back skin have distinct barrier lipids and respond differently to elevated plasma cholesterol.
Collapse
Affiliation(s)
- Renata Martins Cardoso
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Samira Absalah
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Miranda Van Eck
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Joke A. Bouwstra
- Division BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
16
|
Gong B, Wang X, Li B, Li Y, Lu R, Zhang K, Li B, Ma Y, Li Y. miR-205-5p inhibits thymic epithelial cell proliferation via FA2H-TFAP2A feedback regulation in age-associated thymus involution. Mol Immunol 2020; 122:173-185. [PMID: 32371259 DOI: 10.1016/j.molimm.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/02/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
Thymic epithelial cells (TECs) are essential regulators of T cell development and selection. microRNAs (miRNAs) play critical roles in regulating TECs proliferation during thymus involution. miR-205-5p is highly expressed in TECs and increases with age. However, the function and potential mechanism of miR-205-5p in TECs are not clear. miRNA expression was profiled using TECs from male and female mice at 1 and 3 months old. A total of 325 differentially expressed miRNAs (DEMs) were detected at different ages in two sexes. 24 of the DEMs had the same trend between males and females. Among them, miR-205-5p had the highest fold change. Our results showed that the expression of miR-205-5p was dramatically increased in TECs from 1 to 9 months old mice. miR-205-5p mimic inhibited TECs proliferation. Moreover, we confirmed that Fa2h was the direct target gene of miR-205-5p and FA2H was significantly decreased in TECs with increased expression of miR-205-5p. Silencing of Fa2h inhibited TECs proliferation. Furthermore, we found that the expression of Tfap2a could be promoted by FA2H and that TFAP2A could interact with miR-205-5p in TECs. Overall, miR-205-5p is an important regulator of TECs proliferation and regulates age-associated thymus involution via the miR-205-5p-FA2H-TFAP2A feedback regulatory circuit. miR-205-5p might act as a potential biomarker in TECs for age-related thymus involution.
Collapse
Affiliation(s)
- Bishuang Gong
- College of Veterinary Medicine, South China Agricultural University, China
| | - Xintong Wang
- College of Veterinary Medicine, South China Agricultural University, China
| | - Boning Li
- the Department of Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, China
| | - Rui Lu
- College of Veterinary Medicine, South China Agricultural University, China
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, China
| | - Bingxin Li
- College of Veterinary Medicine, South China Agricultural University, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, China.
| |
Collapse
|
17
|
Rattay TW, Lindig T, Baets J, Smets K, Deconinck T, Söhn AS, Hörtnagel K, Eckstein KN, Wiethoff S, Reichbauer J, Döbler-Neumann M, Krägeloh-Mann I, Auer-Grumbach M, Plecko B, Münchau A, Wilken B, Janauschek M, Giese AK, De Bleecker JL, Ortibus E, Debyser M, Lopez de Munain A, Pujol A, Bassi MT, D'Angelo MG, De Jonghe P, Züchner S, Bauer P, Schöls L, Schüle R. FAHN/SPG35: a narrow phenotypic spectrum across disease classifications. Brain 2020; 142:1561-1572. [PMID: 31135052 DOI: 10.1093/brain/awz102] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/15/2019] [Accepted: 02/16/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.
Collapse
Affiliation(s)
- Tim W Rattay
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Katrien Smets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Tine Deconinck
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Anne S Söhn
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany
| | | | - Kathrin N Eckstein
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | - Sarah Wiethoff
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jennifer Reichbauer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Marion Döbler-Neumann
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | | | - Michaela Auer-Grumbach
- Department of Orthopaedics and Trauma-Surgery, Medical University Vienna, Vienna, Austria
| | - Barbara Plecko
- Division of Child Neurology, University Childrens Hospital Zurich, Zurich, Switzerland
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Germany
| | - Bernd Wilken
- Department of Neuropediatrics, Klinikum Kassel, Germany
| | - Marc Janauschek
- Department for Social Pediatrics, Kinderhospital Osnabrück, Germany
| | - Anne-Katrin Giese
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Martine Debyser
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Adolfo Lopez de Munain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain.,Neuroscience Area, Institute Biodonostia, and Department of Neurosciences, University of Basque Country EHU-UPV, San Sebastián, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona, 08908, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Institute Carlos III, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Maria Grazia D'Angelo
- Scientific Institute IRCCS E. Medea, Neuromuscular Unit, 23842 Bosisio Parini , Lecco, Italy
| | - Peter De Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, FL33136 Miami, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, FL33136 Miami, USA
| | - Peter Bauer
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
18
|
Yao Y, Yang X, Sun L, Sun S, Huang X, Zhou D, Li T, Zhang W, Abumrad NA, Zhu X, He S, Su X. Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. EBioMedicine 2019; 41:256-267. [PMID: 30738828 PMCID: PMC6441949 DOI: 10.1016/j.ebiom.2019.01.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023] Open
Abstract
Background Most gastric cancers are diagnosed at an advanced or metastatic stage with poor prognosis and survival rate. Fatty acid 2-hydroxylase (FA2H) with high expression in stomach generates chiral (R)-2-hydroxy FAs ((R)-2-OHFAs) and regulates glucose utilization which is important for cell proliferation and invasiveness. We hypothesized that FA2H impacts gastric tumor growth and could represent a novel target to improve gastric cancer therapy. Methods FA2H level in 117 human gastric tumors and its association with tumor growth, metastasis and overall survival were examined. Its roles and potential mechanisms in regulating tumor growth were studied by genetic and pharmacological manipulation of gastric cancer cells in vitro and in vivo. Findings FA2H level was lower in gastric tumor tissues as compared to surrounding tissues and associated with clinicopathologic status of patients, which were confirmed by analyses of multiple published datasets. FA2H depletion decreased tumor chemosensitivity, partially due to inhibition of AMPK and activation of the mTOR/S6K1/Gli1 pathway. Conversely, FA2H overexpression or treatment with (R)-2-OHFAs had the opposite effects. In line with these in vitro observations, FA2H knockdown promoted tumor growth with increased level of tumor Gli1 in vivo. Moreover, (R)-2-OHFA treatment significantly decreased Gli1 level in gastric tumors and enhanced tumor chemosensitivity to cisplatin, while alleviating the chemotherapy-induced weight loss in mice. Interpretation Our results demonstrate that FA2H plays an important role in regulating Hh signaling and gastric tumor growth and suggest that (R)-2-OHFAs could be effective as nontoxic wide-spectrum drugs to promote chemosensitivity. Fund Grants of NSF, NIH, and PAPD.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoqin Yang
- Department of Genetics and Bioinformatics, Soochow University Medical College, Suzhou 215123, China
| | - Liang Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shishuo Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Diyuan Zhou
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tingting Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Wei Zhang
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
19
|
Fibroproliferative genes are preferentially expressed in central centrifugal cicatricial alopecia. J Am Acad Dermatol 2018; 79:904-912.e1. [PMID: 29913259 DOI: 10.1016/j.jaad.2018.05.1257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Central centrifugal cicatricial alopecia (CCCA) is a primary cicatricial alopecia that most commonly affects women of African descent. Like CCCA, fibroproliferative disorders (FPDs) such as keloids, atherosclerosis, and fibroids are characterized by low-grade inflammation and irritation, resulting in end-stage fibrosis. OBJECTIVE We sought to determine whether fibroproliferative genes were up-regulated in patients with CCCA. METHODS A total of 5 patients with biopsy-proven CCCA were recruited for this study. Two scalp biopsy specimens were obtained from each patient; 1 from CCCA-affected vertex scalp and 1 from the unaffected occipital scalp. Microarray analysis was performed to determine the differential gene expression patterns. RESULTS There was an upregulation of genes implicated in FPDs in patients with CCCA. Specifically, we noted increased expression of platelet derived growth factor gene (PDGF), collagen I gene (COL I), collagen III gene (COL III), matrix metallopeptidase 1 gene (MMP1), matrix metallopeptidase 2 gene (MMP2), matrix metallopeptidase 7 gene (MMP7), and matrix metallopeptidase 9 gene (MMP9) in affected scalp compared with in unaffected scalp. Significant overlap in the canonic pathways was noted between patients with CCCA and patients with both atherosclerosis and hepatic fibrosis (P < .001). LIMITATIONS Small sample size and the use of whole skin tissue for analysis. CONCLUSION We have identified the upregulation of critical genes implicated in FPDs in the gene expression profile of patients with CCCA. These findings may help identify future therapeutic targets for this otherwise difficult-to-treat condition.
Collapse
|
20
|
Identification of progesterone receptor membrane component-1 as an interaction partner and possible regulator of fatty acid 2-hydroxylase. Biochem J 2018; 475:853-871. [PMID: 29438993 DOI: 10.1042/bcj20170963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
The fatty acid 2-hydroxylase (FA2H) is essential for synthesis of 2-hydroxylated fatty acids in myelinating and other cells, and deficiency of this enzyme causes a complicated form of hereditary spastic paraplegia also known as fatty acid hydroxylase-associated neurodegeneration. Despite its important role in sphingolipid metabolism, regulation of FA2H and its interaction with other proteins involved in the same or other metabolic pathways is poorly understood. To identify potential interaction partners of the enzyme, quantitative mass spectrometry using stable isotope labeling of cells was combined with formaldehyde cross-linking and proximity biotinylation, respectively. Besides other enzymes involved in sphingolipid synthesis and intermembrane transfer of ceramide, and putative redox partners of FA2H, progesterone receptor membrane component-1 (PGRMC1) and PGRMC2 were identified as putative interaction partners. These two related heme-binding proteins are known to regulate several cytochrome P450 enzymes. Bimolecular fluorescence complementation experiments confirmed the interaction of FA2H with PGRMC1. Moreover, the PGRMC1 inhibitor AG-205 significantly reduced synthesis of hydroxylated ceramide and glucosylceramide in FA2H-expressing cells. This suggests that PGRMC1 may regulate FA2H activity, possibly through its heme chaperone activity.
Collapse
|
21
|
Shih BB, Nirmal AJ, Headon DJ, Akbar AN, Mabbott NA, Freeman TC. Derivation of marker gene signatures from human skin and their use in the interpretation of the transcriptional changes associated with dermatological disorders. J Pathol 2017; 241:600-613. [PMID: 28008606 PMCID: PMC5363360 DOI: 10.1002/path.4864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
Abstract
Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand the nature of these disorders. However, data interpretation represents a significant challenge due to a lack of good maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally alter during disease. Here we have sought to derive expression signatures that define the various cell types and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identified, one RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based analyses to identify clusters of robustly co-expressed genes. The biological significance of these clusters was then assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison between analyses, 20 gene signatures were defined. These included expression signatures for hair follicles, glands (sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age; we more accurately define these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also highlighted the over-/under-representation of various cell types in skin diseases, reflecting an influx in immune cells in inflammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the value of this new resource in defining the functional profile of skin cell types and appendages, and in improving the interpretation of disease data. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Barbara B Shih
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Arne N Akbar
- Division of Infection and ImmunityUniversity College London90 Gower StreetLondonWC1E 6BTUK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| |
Collapse
|
22
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
23
|
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63:50-69. [PMID: 27107674 DOI: 10.1016/j.plipres.2016.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
24
|
Bichsel KJ, Hammiller B, Trempus CS, Li Y, Hansen LA. The epidermal growth factor receptor decreases Stathmin 1 and triggers catagen entry in the mouse. Exp Dermatol 2016; 25:275-81. [PMID: 26661905 DOI: 10.1111/exd.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
Abstract
The epidermal growth factor receptor (EGFR) is necessary for normal involution of hair follicles after the growth phase of anagen, although the mechanisms through which it acts are not well understood. In this report, we used transcriptional profiling of microdissected hair follicles from mice with skin-targeted deletion of Egfr to investigate how EGFR activation triggers catagen. Immunofluorescence for phospho-EGFR in mouse skin revealed increased activation of EGFR in follicular keratinocytes at catagen onset. Consistent with other models of EGFR deficiency, mice with skin-targeted deletion of Egfr (Krt14-Cre(+) /Egfr(fl/fl) ) exhibited a delayed and asynchronous catagen entry. Transcriptional profiling at the time of normal catagen onset at post-natal day (P) 17 revealed increased expression of the mitotic regulator Rcc2 in hair follicles lacking EGFR. Rcc2 protein was strongly immunopositive in the nuclei of control follicular keratinocytes at P16 then rapidly decreased until it was undetectable between P18 and 21. In contrast, Rcc2 expression continued in Egfr mutant follicles throughout this period. Proliferation, measured by bromodeoxyuridine incorporation, was also significantly increased in Egfr mutant follicular keratinocytes compared to controls at P18-21. Similarly, Rcc2-regulated mitotic regulator Stathmin 1 was strikingly reduced in control but not Egfr mutant follicles between P17 and P19. Deletion of Stmn1, in turn, accelerated catagen entry associated with premature cessation of proliferation in the hair follicles. These data reveal EGFR suppression of mitotic regulators including Rcc2 and Stathmin 1 as a mechanism for catagen induction in mouse skin.
Collapse
Affiliation(s)
- Kyle J Bichsel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Brianna Hammiller
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Carol S Trempus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Yanhua Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Laura A Hansen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
25
|
Willet KA, Hama H. Mouse Models of FA2H Deficiency. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem J 2014; 461:147-58. [PMID: 24738593 DOI: 10.1042/bj20131242] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Five ceramide synthases (CerS2-CerS6) are expressed in mouse skin. Although CerS3 has been shown to fulfill an essential function during skin development, neither CerS6- nor CerS2-deficient mice show an obvious skin phenotype. In order to study the role of CerS4, we generated CerS4-deficient mice (Cers4-/-) and CerS4-specific antibodies. With these biological tools we analysed the tissue distribution and determined the cell-type specific expression of CerS4 in suprabasal epidermal layers of footpads as well as in sebaceous glands of the dorsal skin. Loss of CerS4 protein leads to an altered lipid composition of the sebum, which is more solidified and therefore might cause progressive hair loss due to physical blocking of the hair canal. We also noticed a strong decrease in C20 1,2-alkane diols consistent with the decrease of wax diesters in the sebum of Cers4-/- mice. Cers4-/- mice at 12 months old display additional epidermal tissue destruction due to dilated and obstructed pilary canals. Mass spectrometric analyses additionally show a strong decrease in C20-containing sphingolipids.
Collapse
|
27
|
Cidea control of lipid storage and secretion in mouse and human sebaceous glands. Mol Cell Biol 2014; 34:1827-38. [PMID: 24636991 DOI: 10.1128/mcb.01723-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sebaceous glands are skin appendages that secrete sebum onto hair follicles to lubricate the hair and maintain skin homeostasis. In this study, we demonstrated that Cidea is expressed at high levels in lipid-laden mature sebocytes and that Cidea deficiency led to dry hair and hair loss in aged mice. In addition, Cidea-deficient mice had markedly reduced levels of skin surface lipids, including triacylglycerides (TAGs) and wax diesters (WDEs), and these mice were defective in water repulsion and thermoregulation. Furthermore, we observed that Cidea-deficient sebocytes accumulated a large number of smaller-sized lipid droplets (LDs), whereas overexpression of Cidea in human SZ95 sebocytes resulted in increased lipid storage and the accumulation of large LDs. Importantly, Cidea was highly expressed in human sebaceous glands, and its expression levels were positively correlated with human sebum secretion. Our data revealed that Cidea is a crucial regulator of sebaceous gland lipid storage and sebum lipid secretion in mammals and humans.
Collapse
|
28
|
Pannkuk EL, McGuire LP, Gilmore DF, Savary BJ, Risch TS. Glycerophospholipid analysis of Eastern red bat (Lasiurus borealis) hair by electrospray ionization tandem mass spectrometry. J Chem Ecol 2014; 40:227-35. [PMID: 24532214 PMCID: PMC4167415 DOI: 10.1007/s10886-014-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, P.O. Box 847, State University, Jonesboro, AR, 72467, USA,
| | | | | | | | | |
Collapse
|
29
|
Schneider MR, Yarden Y. Structure and function of epigen, the last EGFR ligand. Semin Cell Dev Biol 2013; 28:57-61. [PMID: 24374012 DOI: 10.1016/j.semcdb.2013.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/29/2023]
Abstract
Epigen is the latest addition to the mammalian family of EGFR ligands. Epigen was initially identified as a novel expressed sequence tag with homology to the EGF family by high throughput sequencing of a mouse keratinocyte complementary DNA library, and received its name for its ability to act as an epithelial mitogen. In vitro studies attributed to epigen several unique features, such as persistent and potent biological actions involving low affinity receptor binding, as well as sub-maximal receptor activation and inactivation. Similarly to the other EGFR ligands, the expression of epigen is up-regulated by hormones and in certain cancer types. While the biological functions of epigen remain to be uncovered, it appears to play a role in epidermal structures, such as the mammary gland and the sebaceous gland. The latter organ, in particular, was greatly enlarged in transgenic mice overexpressing epigen. Interestingly, mice lacking epigen develop and grow normally, probably due to functional compensation by other EGFR ligands. Future studies are likely to reveal the biological roles of the unique receptor binding properties of epigen, as well as its potential harnessing during disease.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Dawson TJ, Webster KN, Maloney SK. The fur of mammals in exposed environments; do crypsis and thermal needs necessarily conflict? The polar bear and marsupial koala compared. J Comp Physiol B 2013; 184:273-84. [DOI: 10.1007/s00360-013-0794-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/22/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
31
|
Ceramide synthesis in the epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:422-34. [PMID: 23988654 DOI: 10.1016/j.bbalip.2013.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
The epidermis and in particular its outermost layer the stratum corneum provides terrestrial vertebrates with a pivotal defensive barrier against water loss, xenobiotics and harmful pathogens. A vital demand for this epidermal permeability barrier is the lipid-enriched lamellar matrix that embeds the enucleated corneocytes. Ceramides are the major components of these highly ordered intercellular lamellar structures, in which linoleic acid- and protein-esterified ceramides are crucial for structuring and maintaining skin barrier integrity. In this review, we describe the fascinating diversity of epidermal ceramides including 1-O-acylceramides. We focus on epidermal ceramide biosynthesis emphasizing its metabolic and topological requirements and discuss enzymes that may be involved in α- and ω-hydroxylation. Finally, we turn to epidermal ceramide regulation, highlighting transcription factors and liposensors recently described to play crucial roles in modulating skin lipid metabolism and epidermal barrier homeostasis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier.
Collapse
|
32
|
Dahlhoff M, Emrich D, Wolf E, Schneider MR. Increased activation of the epidermal growth factor receptor in transgenic mice overexpressing epigen causes peripheral neuropathy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2068-76. [PMID: 23899604 DOI: 10.1016/j.bbadis.2013.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/17/2013] [Accepted: 07/22/2013] [Indexed: 01/03/2023]
Abstract
In the mammalian nervous system, axons are commonly surrounded by myelin, a lipid-rich sheath that is essential for precise and rapid conduction of nerve impulses. In the peripheral nervous system (PNS), myelin sheaths are formed by Schwann cells which wrap around individual axons. While the tyrosine kinase receptors ERBB2 and ERBB3 are established mediators of peripheral myelination, less is known about the functions of the related epidermal growth factor receptor (EGFR) in the regulation of PNS myelination. Here, we report a peripheral neurodegenerative disease caused by increased EGFR activation. Specifically, we characterize a symmetric and distally pronounced, late-onset muscular atrophy in transgenic mice overexpressing the EGFR ligand epigen. Histological examination revealed a demyelinating neuropathy and axon degeneration, and molecular analysis of signaling pathways showed reduced protein kinase B (PKB, AKT) activation in the nerves of Epigen-tg mice, indicating that the muscular phenotype is secondary to PNS demyelination and axon degeneration. Crossing of Epigen-tg mice into an EGFR-deficient background revealed the pathology to be completely EGFR-dependent. This mouse line provides a new model for studying molecular events associated with early stages of peripheral neuropathies, an essential prerequisite for the development of successful therapeutic interventions.
Collapse
Affiliation(s)
- Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
33
|
Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis. Exp Cell Res 2012; 319:529-35. [PMID: 23142483 DOI: 10.1016/j.yexcr.2012.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis.
Collapse
|
34
|
Nagano M, Uchimiya H, Kawai-Yamada M. Plant sphingolipid fatty acid 2-hydroxylases have unique characters unlike their animal and fungus counterparts. PLANT SIGNALING & BEHAVIOR 2012; 7:1388-1392. [PMID: 22918503 PMCID: PMC3548854 DOI: 10.4161/psb.21825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
2-Hydroxy fatty acids mainly contained in sphingolipids are synthesized by a sphingolipid fatty acid 2-hydroxylase (FAH). Recently, two FAH homologs in Arabidopsis thaliana (AtFAH1 and AtFAH2), without any cytochrome b₅(Cb5)-like domains, which are essential for the function of Saccharomyces cerevisiae and mammalian FAH, were identified and both AtFAHs were shown to be activated by the interaction with Cb5. In this study, we compared FAHs of various plants, animals and fungi. Interestingly, only plants had two FAH homologs and none of plant FAHs had any Cb5-like domains. In addition, we showed from the interaction and expression analyses that AtFAHs interacted with multiple Cb5s probably in various tissues. Thus, plant FAHs may have evolved unlike animal and fungus FAHs.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Biological Science; Nara Institute of Science and Technology; Takayama, Ikoma, Japan
| | - Hirofumi Uchimiya
- Institute for Environmental Science and Technology; Saitama University; Sakura-ku, Saitama, Japan
| | - Maki Kawai-Yamada
- Institute for Environmental Science and Technology; Saitama University; Sakura-ku, Saitama, Japan
- Graduate School of Science and Engineering; Saitama University; Sakura-ku, Saitama, Japan
| |
Collapse
|
35
|
Nagano M, Takahara K, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. PLANT PHYSIOLOGY 2012; 159:1138-48. [PMID: 22635113 PMCID: PMC3387700 DOI: 10.1104/pp.112.199547] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/17/2012] [Indexed: 05/18/2023]
Abstract
2-Hydroxy fatty acids (2-HFAs) are predominantly present in sphingolipids and have important physicochemical and physiological functions in eukaryotic cells. Recent studies from our group demonstrated that sphingolipid fatty acid 2-hydroxylase (FAH) is required for the function of Arabidopsis (Arabidopsis thaliana) Bax inhibitor-1 (AtBI-1), which is an endoplasmic reticulum membrane-localized cell death suppressor. However, little is known about the function of two Arabidopsis FAH homologs (AtFAH1 and AtFAH2), and it remains unclear whether 2-HFAs participate in cell death regulation. In this study, we found that both AtFAH1 and AtFAH2 had FAH activity, and the interaction with Arabidopsis cytochrome b₅ was needed for the sufficient activity. 2-HFA analysis of AtFAH1 knockdown lines and atfah2 mutant showed that AtFAH1 mainly 2-hydroxylated very-long-chain fatty acid (VLCFA), whereas AtFAH2 selectively 2-hydroxylated palmitic acid in Arabidopsis. In addition, 2-HFAs were related to resistance to oxidative stress, and AtFAH1 or 2-hydroxy VLCFA showed particularly strong responses to oxidative stress. Furthermore, AtFAH1 interacted with AtBI-1 via cytochrome b₅ more preferentially than AtFAH2. Our results suggest that AtFAH1 and AtFAH2 are functionally different FAHs, and that AtFAH1 or 2-hydroxy VLCFA is a key factor in AtBI-1-mediated cell death suppression.
Collapse
|
36
|
Guo L, Zhang X, Zhou D, Okunade AL, Su X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J Lipid Res 2012; 53:1327-35. [PMID: 22517924 DOI: 10.1194/jlr.m025742] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
FA 2-hydroxylase (FA2H) is an NAD(P)H-dependent enzyme that initiates FA α oxidation and is also responsible for the biosynthesis of 2-hydroxy FA (2-OH FA)-containing sphingolipids in mammalian cells. The 2-OH FA is chiral due to the asymmetric carbon bearing the hydroxyl group. Our current study performed stereochemistry investigation and showed that FA2H is stereospecific for the production of (R)-enantiomers. FA2H knockdown in adipocytes increases diffusional mobility of raft-associated lipids, leading to reduced GLUT4 protein level, glucose uptake, and lipogenesis. The effects caused by FA2H knockdown were reversed by treatment with exogenous (R)-2-hydroxy palmitic acid, but not with the (S)-enantiomer. Further analysis of sphingolipids demonstrated that the (R)-enantiomer is enriched in hexosylceramide whereas the (S)-enantiomer is preferentially incorporated into ceramide, suggesting that the observed differential effects are in part due to synthesis of sphingolipids containing different 2-OH FA enantiomers. These results may help clarify the mechanisms underlying the recently identified diseases associated with FA2H mutations in humans and may lead to potential pharmaceutical and dietary treatments. This study also provides critical information to help study functions of 2-OH FA enantiomers in FA α oxidation and possibly other sphingolipid-independent pathways.
Collapse
Affiliation(s)
- Lin Guo
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|