1
|
Kawamura J, Yamakuchi M, Ueno K, Hashiguchi T, Okamoto Y. MiR-25-3p regulates pulmonary arteriovenous malformation after Glenn procedure in patients with univentricular heart via the PHLPP2-HIF-1α axis. Sci Rep 2025; 15:4138. [PMID: 39900983 PMCID: PMC11790876 DOI: 10.1038/s41598-025-88840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
The detailed mechanism of pulmonary arteriovenous malformations after Glenn surgery (G-PAVMs) in cyanotic congenital heart disease (CHD) remains unclear. Microarray in situ hybridization was performed to assess the miRNA (miRNA) profiles of serum from pediatric patients (0-6 years of age) with G-PAVMs and after the Fontan procedure without G-PAVMs. In addition, we investigated the tube formation, migration, and proliferation of human lung microvascular endothelial cells (HMVEC-L) transfected with miR-25-3p mimic, miR-25-3p inhibitor, or PHLPP2 small interfering RNA, and examined HIF-1α/VEGF-A signaling after hypoxic stimulation. Serum miRNAs that showed ≥ 2-fold higher levels in patients with G-PAVMs than in other patients were selected. MiR-25-3p was significantly upregulated in the pulmonary artery sera of the post-Glenn group than in the post-Fontan group. We identified PHLPP2 as a direct target of miR-25-3p. PHLPP2 expression was significantly decreased in HMVEC-L transfected with miR-25-3p mimic compared to the control cells. HIF-1α and VEGF-A expression levels were increased in HMVEC-L transfected with miR-25-3p mimic compared to the control cells in a PHLPP2/Akt/mTOR signaling-dependent manner after hypoxic stimulation. MiR-25-3p promoted HMVEC-L angiogenesis, proliferation, and migration under hypoxic conditions. MiR-25-3p in the pulmonary arteries may contribute to G-PAVM development.
Collapse
Affiliation(s)
- Junpei Kawamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan.
| | - Kentaro Ueno
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Carrasco-Mantis A, Reina-Romo E, Sanz-Herrera JA. A multiphysics hybrid continuum - agent-based model of in vitro vascularized organoids. Comput Biol Med 2025; 185:109559. [PMID: 39709871 DOI: 10.1016/j.compbiomed.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Organoids are 3D in vitro models that fulfill a hierarchical function, representing a small version of living tissues and, therefore, a good approximation of cellular mechanisms. However, one of the main disadvantages of these models is the appearance of a necrotic core due to poor vascularization. The aim of this work is the development of a numerical framework that incorporates the mechanical stimulation as a key factor in organoid vascularization. Parameters, such as fluid velocity and nutrient consumption, are analyzed along the organoid evolution. METHODS The mathematical model created for this purpose combines continuum and discrete approaches. In the continuum part, the fluid flow and the diffusion of oxygen and nutrients are modeled using a finite element method approach. Meanwhile, the growth of the organoid, blood vessel evolution, as well as their interaction with the surrounding environment, are modeled using agent-based methods. RESULTS Continuum model outcomes include the distribution of shear stress, pressure and fluid velocity around the organoid surface, in addition to the concentration of oxygen and nutrients in its interior. The agent models account for cell proliferation, differentiation, organoid growth and blood vessel morphology, for the different case studies considered. CONCLUSIONS Two main conclusions are achieved in this work: (i) the results of the study quantitatively predict in vitro data, with an enhanced blood vessel invasion under high fluid flow and (ii) the diffusion and consumption model parameters of the organoid cells determine the thickness of the proliferative, quiescent, hypoxic and necrotic layers.
Collapse
Affiliation(s)
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
| | | |
Collapse
|
3
|
Moon J, Chaudhary S, Rodriguez-Martinez L, Hu Z, D'Amore PA. Endomucin regulates the endothelial cytoskeleton independently of VEGF. Exp Eye Res 2025; 250:110150. [PMID: 39542391 DOI: 10.1016/j.exer.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The endothelial glycocalyx, lining the apical surface of the endothelium, is involved in a host of vascular processes. The glycocalyx is comprised of a network of membrane-bound proteoglycans and glycoproteins along with associated plasma proteins. One such glycoprotein is endomucin (EMCN), which our lab has revealed is a modulator of VEGFR2 function. Intravitreal injection of siEMCN into the eyes of P5 mice impairs vascular development. In vitro silencing of EMCN suppresses VEGF-induced proliferation and migration. Signaling pathways that drive cell migration converge on cytoskeletal remodeling. By coupling co-immunoprecipitation with liquid chromatography/mass spectrometry, we identified interactions between EMCN and proteins associated with actin cytoskeleton organization. The aim of the study was to investigate the influence of EMCN on cytoskeleton dynamics in angiogenesis. EMCN depletion resulted in reduction of F-actin levels, whereas overexpression of EMCN induced increased membrane protrusions in cells that were rich in stress fibers. The reorganization of the actin filaments did not depend on VEGFR2 signaling, suggesting that EMCN connects the cytoskeleton and the glycocalyx.
Collapse
Affiliation(s)
- Jean Moon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Suman Chaudhary
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lorena Rodriguez-Martinez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Han Y, Deng X, Chen H, Chen J, Xu W, Liu L. Succinylation modification-mediated upregulation of Sp1 promotes hepatocellular carcinoma cell proliferation. Discov Oncol 2024; 15:660. [PMID: 39548054 PMCID: PMC11568111 DOI: 10.1007/s12672-024-01533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant tumors globally, characterized by high incidence and mortality rates. Despite ongoing research, the underlying molecular mechanisms of HCC development are not yet fully understood. Utilizing bioinformatic analysis, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot assays, we identified that the expression of specificity protein 1 (Sp1) was significantly elevated in HCC cells compared to normal cells. Knockdown of the Sp1 gene led to a marked reduction in the viability and clonogenic potential of HCC cells. Further investigation revealed that the succinylation level of Sp1 was also increased in HCC cells. The upregulation of Sp1 expression was attributed to its succinylation, mediated by KAT2A, with lysine (K)562 identified as the succinylation site. Additionally, KAT2A and Sp1 were found to influence the upregulation of mTOR phosphorylation. Collectively, these findings suggest that KAT2A-promoted succinylation of Sp1 enhances the proliferative capacity of HCC cells by activating the mTOR pathway, providing a theoretical foundation for potential therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Yehong Han
- General surgery, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xueqin Deng
- General surgery, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Haixia Chen
- General surgery, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Jie Chen
- General surgery, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Wei Xu
- General surgery, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Lanqin Liu
- General Neurology Department, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, 310007, Zhejiang, China.
| |
Collapse
|
5
|
Abudukeyimu Z, Luo J, Liu F, Ma Y, Li J, Wang J, Li X. Early growth response factor 3 may regulate coronary atherosclerosis through the NF-κB signaling pathway and VEGF expression. Am J Med Sci 2024; 368:476-484. [PMID: 38992750 DOI: 10.1016/j.amjms.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
AIM The present study was conducted to measure the expression of early growth response factor 3 (Egr3), inflammatory cytokines (IL-1β, IL-6), vascular endothelial growth factor (VEGF) and NF-κB in patients with coronary artery disease (CAD) to investigate the relationships of these molecules and Egr3 gene expression. METHODS We recruited 132 CAD patients and 63 healthy individuals. The expression levels of Egr3, VEGF, p50 and p65 were measured by reverse transcription quantitative polymerase chain reaction and the levels of Egr3, IL-1β and IL-6 in patients serum and in human coronary artery endothelial cells (HCAECs) were measured by enzyme-linked immunosorbent assay (ELISAs) in CAD patients. HCAECs were treated with ox-LDL to establish an in vitro atherosclerosis model. An oil red O staining assay was used to assess the lipid droplet formation. A colloidal external lumen formed by Matrigel was used to test the migration of HCAECs. The expression of Egr3, VEGF and NF-κB was determined by Western blotting. RESULTS The levels of serum Egr3 and IL-6 in the severe stenosis group were greater than those in the mild stenosis group and controls (p < 0.05). The level of serum IL-1β in the severe stenosis group was greater than that in the control group (p < 0.05). Moreover, Egr3 expression was positively associated with IL-6 levels (r = 0.55, p < 0.001), IL-1β levels (r = 0.21, p = 0.004) and the Gensini score (r = 0.20, p = 0.02). We also found that Egr3 expression was significantly greater in CAD patients than that in controls. And its expression was highest in the mild patients. The expression of VEGF, P50 and P65 was also greater in CAD patients. In the in vitro experiment, we found that the inhibition of Egr3 expression significantly reduced the expression levels of p50, p65, IL-6 and CRP. Moreover, the inhibition of Egr3 expression significantly reduced the lipid droplet formation and decreased capability of lumen formation. CONCLUSIONS In the pathogenesis of atherosclerosis, Egr3 gene expression may induce the expression of inflammatory factors and lipid droplet formation and lumen formation, which could promote the atherosclerosis development.
Collapse
Affiliation(s)
- Zumureti Abudukeyimu
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Junyi Luo
- Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Fang Liu
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Yanling Ma
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Jiao Li
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Juan Wang
- Department of Cardiology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China.
| | - Xia Li
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China.
| |
Collapse
|
6
|
Leroux A, Roque M, Casas E, Leng J, Guibert C, L'Azou B, Oliveira H, Amédée J, Paiva Dos Santos B. The effect of CGRP and SP and the cell signaling dialogue between sensory neurons and endothelial cells. Biol Res 2024; 57:65. [PMID: 39261966 PMCID: PMC11389267 DOI: 10.1186/s40659-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Increasing evidences demonstrate the role of sensory innervation in bone metabolism, remodeling and repair, however neurovascular coupling in bone is rarely studied. Using microfluidic devices as an indirect co-culture model to mimic in vitro the physiological scenario of innervation, our group demonstrated that sensory neurons (SNs) were able to regulate the extracellular matrix remodeling by endothelial cells (ECs), in particular through sensory neuropeptides, i.e. calcitonin gene-related peptide (CGRP) and substance P (SP). Nonetheless, still little is known about the cell signaling pathways and mechanism of action in neurovascular coupling. Here, in order to characterize the communication between SNs and ECs at molecular level, we evaluated the effect of SNs and the neuropeptides CGRP and SP on ECs. We focused on different pathways known to play a role on endothelial functions: calcium signaling, p38 and Erk1/2; the control of signal propagation through Cx43; and endothelial functions through the production of nitric oxide (NO). The effect of SNs was evaluated on ECs Ca2+ influx, the expression of Cx43, endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, p38, ERK1/2 as well as their phosphorylated forms. In addition, the role of CGRP and SP were either analyzed using respective antagonists in the co-culture model, or by adding directly on the ECs monocultures. We show that capsaicin-stimulated SNs induce increased Ca2+ influx in ECs. SNs stimulate the increase of NO production in ECs, probably involving a decrease in the inhibitory eNOS T495 phosphorylation site. The neuropeptide CGRP, produced by SNs, seems to be one of the mediators of this effect in ECs since NO production is decreased in the presence of CGRP antagonist in the co-culture of ECs and SNs, and increased when ECs are stimulated with synthetic CGRP. Taken together, our results suggest that SNs play an important role in the control of the endothelial cell functions through CGRP production and NO signaling pathway.
Collapse
Affiliation(s)
- Alice Leroux
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Micaela Roque
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Elina Casas
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Jacques Leng
- Univ. Bordeaux, CNRS, UMR 5258, Solvay, Pessac, LOF, F-33006, France
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, F-33604, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000, France
| | - Beatrice L'Azou
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Hugo Oliveira
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Joëlle Amédée
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Bruno Paiva Dos Santos
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France.
- Univ. Paris Cité, URP2496-BRIO Pathologies Imagerie et Biothérapies Orofaciales, Montrouge, F-92120, France.
| |
Collapse
|
7
|
Nguyen LNT, Do XH, Pham HB, Duy-Thanh D, Than UTT, Nguyen TH, Nguyen VB, Le DS, Nguyen DT, Kieu KT, Nguyen PT, Vu MD, Tran NT, Nguyen TL, Nghiem LTH, Nguyen TD, Nguyen NTH, Hoang NTM. Different Biocompatibility and Radioprotective Activity of Squid Melanin Nanoparticles on Human Stromal Cells. ACS OMEGA 2024; 9:36926-36938. [PMID: 39246473 PMCID: PMC11375714 DOI: 10.1021/acsomega.3c09351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Squid ink melanin nanoparticles (NPs) have recently been demonstrated to have a number of bioactivities; however, their biocompatibility has been poorly investigated. In this study, we aimed to evaluate the effects of this NP on stromal cells, including human fibroblasts (hFBs), human umbilical vein endothelial cells (hUVECs), and human umbilical cord-derived mesenchymal stem cells (UCMSCs), and on the development of zebrafish embryos under normal X-ray irradiation conditions. The NPs showed high biocompatibility with low cytotoxicity, no cell senescence induction, and no effect on cell migration in hFBs or cell differentiation in UCMSCs. Nonetheless, this compound prevented cell movement in UCMSCs and significantly suppressed tube formation in hUVECs at a dose of 25 μg/mL. The NPs successfully penetrated the hUVECs but not the other two stromal cell types. The expression levels of functional genes involved in angiogenesis, apoptosis, antioxidant activity, and radiation sensitivity were altered in NPs subjected to hUVECs but were not affected in hFBs and UCMSCs. Melanin NPs significantly rescued cell viability and gene expression in irradiated hFBs and UCMSCs but not in hUVECs. In vivo treatments of zebrafish embryos showed that melanin NPs were nontoxic whether alone or under X-ray irradiation. These findings suggested that nanosized squid ink melanin had biocompatibility with selective stromal cells and was safe for early development.
Collapse
Affiliation(s)
- Le-Na Thi Nguyen
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Xuan-Hai Do
- Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Hanh B Pham
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Dinh Duy-Thanh
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Uyen Thi Trang Than
- Vinmec HiTech Center & Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Thu-Huyen Nguyen
- VinMec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Van-Ba Nguyen
- Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Duc-Son Le
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Dinh-Thang Nguyen
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Kien Trung Kieu
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | | | - Manh Duc Vu
- Vietnam Military Medical University, Hanoi 10000, Vietnam
| | - Nghia Trung Tran
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Thanh Lai Nguyen
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Lien T H Nghiem
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | - Toan D Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | | | - Nhung-Thi My Hoang
- VNU University of Science, Vietnam National University, Hanoi 10000, Vietnam
- Center of Applied Sciences, Regenerative Medicine and Advanced Technologies, Vinmec Healthcare System, Hanoi10000, Vietnam
| |
Collapse
|
8
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
9
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
10
|
Li QQ, Guo M, He GH, Xi KH, Zhou MY, Shi RY, Chen GQ. VEGF-induced Nrdp1 deficiency in vascular endothelial cells promotes cancer metastasis by degrading vascular basement membrane. Oncogene 2024; 43:1836-1851. [PMID: 38654108 DOI: 10.1038/s41388-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Meng Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Guang-Huan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kai-Hua Xi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei-Yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Rong-Yi Shi
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
11
|
Lee Q, Chan WC, Qu X, Sun Y, Abdelkarim H, Le J, Saqib U, Sun MY, Kruse K, Banerjee A, Hitchinson B, Geyer M, Huang F, Guaiquil V, Mutso AA, Sanders M, Rosenblatt MI, Maienschein-Cline M, Lawrence MS, Gaponenko V, Malik AB, Komarova YA. End binding-3 inhibitor activates regenerative program in age-related macular degeneration. Cell Rep Med 2023; 4:101223. [PMID: 37794584 PMCID: PMC10591057 DOI: 10.1016/j.xcrm.2023.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Wet age-related macular degeneration (AMD), characterized by leaky neovessels emanating from the choroid, is a main cause of blindness. As current treatments for wet AMD require regular intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, there is a need for the development of less invasive treatments. Here, we designed an allosteric inhibitor of end binding-3 (EB3) protein, termed EBIN, which reduces the effects of environmental stresses on endothelial cells by limiting pathological calcium signaling. Delivery of EBIN via eye drops in mouse and non-human primate (NHP) models of wet AMD prevents both neovascular leakage and choroidal neovascularization. EBIN reverses the epigenetic changes induced by environmental stresses, allowing an activation of a regenerative program within metabolic-active endothelial cells comprising choroidal neovascularization (CNV) lesions. These results suggest the therapeutic potential of EBIN in preventing the degenerative processes underlying wet AMD.
Collapse
Affiliation(s)
- Quinn Lee
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Xinyan Qu
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ying Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Jonathan Le
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Uzma Saqib
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mitchell Y Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Avik Banerjee
- Department of Chemistry, The University of Illinois, Chicago, IL 60612, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Melissa Geyer
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Fei Huang
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Victor Guaiquil
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Amelia A Mutso
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Mark I Rosenblatt
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia A Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S, Asghari SM. A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities. Pharmaceuticals (Basel) 2023; 16:906. [PMID: 37375853 DOI: 10.3390/ph16060906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Mohadeseh Namjoo
- Department of Biology, University Campus II, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Elham Assareh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran P.O. Box 1841, Iran
| | - Sylvain Broussy
- CiTCoM, UMR CNRS 8038, U1268 INSERM, UFR de Pharmacie, Faculté de Santé, Université Paris Cité, 75006 Paris, France
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| |
Collapse
|
13
|
Kafyra M, Kalafati IP, Gavra I, Siest S, Dedoussis GV. Associations of VEGF-A-Related Variants with Adolescent Cardiometabolic and Dietary Parameters. Nutrients 2023; 15:nu15081884. [PMID: 37111103 PMCID: PMC10143198 DOI: 10.3390/nu15081884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Previous research has allowed the identification of variants related to the vascular endothelial growth factor-A (VEGF-A) and their association with anthropometric, lipidemic and glycemic indices. The present study examined potential relations between key VEGF-A-related single-nucleotide polymorphisms (SNPs), cardiometabolic parameters and dietary habits in an adolescent cohort. Cross-sectional analyses were conducted using baseline data from 766 participants of the Greek TEENAGE study. Eleven VEGF-A-related SNPs were examined for associations with cardiometabolic indices through multivariate linear regressions after adjusting for confounding factors. A 9-SNP unweighted genetic risk score (uGRS) for increased VEGF-A levels was constructed to examine associations and the effect of its interactions with previously extracted dietary patterns for the cohort. Two variants (rs4416670, rs7043199) displayed significant associations (p-values < 0.005) with the logarithms of systolic and diastolic blood pressure (logSBP and logDBP). The uGRS was significantly associated with higher values of the logarithm of Body Mass Index (logBMI) and logSBP (p-values < 0.05). Interactions between the uGRS and specific dietary patterns were related to higher logDBP and logGlucose (p-values < 0.01). The present analyses constitute the first-ever attempt to investigate the influence of VEGF-A-related variants on teenage cardiometabolic determinants, unveiling several associations and the modifying effect of diet.
Collapse
Affiliation(s)
- Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece
| | - Ioanna Gavra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Sophie Siest
- Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire (IGE-PCV), Université de Lorraine, 54000 Nancy, France
- Santorini Conferences (SCs) Association-For Research Innovation in Health, 54470 Bernecourt, France
| | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
14
|
Saputra TA, Indra I, Syamsu SA, Sampepajung E, Nelwan BJ, Hamid F, Faruk M. Vascular endothelial growth factor-A expression is significantly correlated with HER2 expression in late-stage breast cancer patients. Breast Dis 2023; 41:433-438. [PMID: 36617773 DOI: 10.3233/bd-229006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Molecular marker analysis has become important in breast cancer diagnosis and treatment and may reveal new mechanisms in breast cancer pathogenesis. Aside from the commonly used hormonal receptors and HER2, VEGF-A has been increasingly shown to be important in breast cancer diagnosis and pathogenesis. OBJECTIVE This study aimed to determine the relationship between VEGF-A expression on ER and PR and HER2 hormonal status in patients with late-stage breast cancer (locally advanced or with distant metastases). METHODS This observational, cross-sectional study examined VEGF-A expression and molecule markers (ER, PR, and HER2) of breast cancer tissue using immunohistochemistry. The Chi-square test was used to determine whether two categorical variables were correlated. Statistical significance was set at p < 0.05. RESULTS VEGF-A showed no significant correlation with demographic characteristics, TNM staging, pathological grading, luminal or non-luminal type, or hormonal receptor markers but showed a significant positive correlation with HER2 receptors (p = 0.036). CONCLUSIONS VEGF-A was positively correlated with HER2 expression in breast tumor tissue but showed no significant correlation with other breast cancer markers, including luminal typing or hormonal receptors. Further study is needed to understand the mechanistic interplay between VEGF and HER2 in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Teddy Agung Saputra
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Indra Indra
- Division of Oncology, Department of Surgery, Faculty of Medicine, Hasanuddin University - Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Salman Ardi Syamsu
- Division of Oncology, Department of Surgery, Faculty of Medicine, Hasanuddin University - Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Elridho Sampepajung
- Division of Oncology, Department of Surgery, Faculty of Medicine, Hasanuddin University - Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Berti Julian Nelwan
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdaus Hamid
- Department of Public Health and Community Medicine Science, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
15
|
The influence of discoidin domain receptor 1 expression on angiogenic factors: VEGF-A and FGF-2 in non-small cell lung cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Daghestani MH, Alqahtani HA, AlBakheet A, Al Deery M, Awartani KA, Daghestani MH, Kaya N, Warsy A, Coskun S, Colak D. Global Transcriptional Profiling of Granulosa Cells from Polycystic Ovary Syndrome Patients: Comparative Analyses of Patients with or without History of Ovarian Hyperstimulation Syndrome Reveals Distinct Biomarkers and Pathways. J Clin Med 2022; 11:jcm11236941. [PMID: 36498516 PMCID: PMC9740016 DOI: 10.3390/jcm11236941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is often a complication of polycystic ovarian syndrome (PCOS), the most frequent disorder of the endocrine system, which affects women in their reproductive years. The etiology of OHSS is multifactorial, though the factors involved are not apparent. In an attempt to unveil the molecular basis of OHSS, we conducted transcriptome analysis of total RNA extracted from granulosa cells from PCOS patients with a history of OHSS (n = 6) and compared them to those with no history of OHSS (n = 18). We identified 59 significantly dysregulated genes (48 down-regulated, 11 up-regulated) in the PCOS with OHSS group compared to the PCOS without OHSS group (p-value < 0.01, fold change >1.5). Functional, pathway and network analyses revealed genes involved in cellular development, inflammatory and immune response, cellular growth and proliferation (including DCN, VIM, LIFR, GRN, IL33, INSR, KLF2, FOXO1, VEGF, RDX, PLCL1, PAPPA, and ZFP36), and significant alterations in the PPAR, IL6, IL10, JAK/STAT and NF-κB signaling pathways. Array findings were validated using quantitative RT-PCR. To the best of our knowledge, this is the largest cohort of Saudi PCOS cases (with or without OHSS) to date that was analyzed using a transcriptomic approach. Our data demonstrate alterations in various gene networks and pathways that may be involved in the pathophysiology of OHSS. Further studies are warranted to confirm the findings.
Collapse
Affiliation(s)
- Maha H. Daghestani
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (M.H.D.); (D.C.)
| | - Huda A. Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - AlBandary AlBakheet
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mashael Al Deery
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khalid A. Awartani
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mazin H. Daghestani
- Department of Obstetrics and Gynecology, Umm-Al-Qura University, Makkah 24382, Saudi Arabia
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Arjumand Warsy
- Central Laboratory, Center for Women Scientific and Medical Studies, King Saud University, Riyadh 11451, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Correspondence: (M.H.D.); (D.C.)
| |
Collapse
|
17
|
Angom RS, Kulkarni T, Wang E, Kumar Dutta S, Bhattacharya S, Das P, Mukhopadhyay D. Vascular Endothelial Growth Factor Receptor-1 Modulates Hypoxia-Mediated Endothelial Senescence and Cellular Membrane Stiffness via YAP-1 Pathways. Front Cell Dev Biol 2022; 10:903047. [PMID: 35846360 PMCID: PMC9283904 DOI: 10.3389/fcell.2022.903047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer’s disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.
Collapse
Affiliation(s)
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Pritam Das
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
- *Correspondence: Debabrata Mukhopadhyay,
| |
Collapse
|
18
|
Kinney KJ, Tang SS, Wu XJ, Tran PM, Bharadwaj NS, Gibson-Corley KN, Forsythe AN, Kulhankova K, Gumperz JE, Salgado-Pabón W. SEC is an antiangiogenic virulence factor that promotes Staphylococcus aureus endocarditis independent of superantigen activity. SCIENCE ADVANCES 2022; 8:eabo1072. [PMID: 35544579 PMCID: PMC9094652 DOI: 10.1126/sciadv.abo1072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The superantigen staphylococcal enterotoxin C (SEC) is critical for Staphylococcus aureus infective endocarditis (SAIE) in rabbits. Superantigenicity, its hallmark function, was proposed to be a major underlying mechanism driving SAIE but was not directly tested. With the use of S. aureus MW2 expressing SEC toxoids, we show that superantigenicity does not sufficiently account for vegetation growth, myocardial inflammation, and acute kidney injury in the rabbit model of native valve SAIE. These results highlight the critical contribution of an alternative function of superantigens to SAIE. In support of this, we provide evidence that SEC exerts antiangiogenic effects by inhibiting branching microvessel formation in an ex vivo rabbit aortic ring model and by inhibiting endothelial cell expression of one of the most potent mediators of angiogenesis, VEGF-A. SEC's ability to interfere with tissue revascularization and remodeling after injury serves as a mechanism to promote SAIE and its life-threatening systemic pathologies.
Collapse
Affiliation(s)
- Kyle J. Kinney
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Sharon S. Tang
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Phuong M. Tran
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikhila S. Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana N. Forsythe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Study of the Association between VEGF Polymorphisms and the Risk of Coronary Artery Disease in Koreans. J Pers Med 2022; 12:jpm12050761. [PMID: 35629182 PMCID: PMC9144104 DOI: 10.3390/jpm12050761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary artery disease (CAD), a leading cause of death worldwide, has a complex etiology comprising both traditional risk factors (type 2 diabetes, dyslipidemia, arterial hypertension, and cigarette smoking) and genetic factors. Vascular endothelial growth factor (VEGF) notably contributes to angiogenesis and endothelial homeostasis. However, little is known about the relationship between CAD and VEGF polymorphisms in Koreans. The aim of this study is to investigate the associations of 2 VEGF promoter region polymorphisms (−1154G>A [rs1570360], −1498T>C [rs833061]) and 4 VEGF 3′-UTR polymorphisms (+936C>T [rs3025039], +1451C>T [rs3025040], +1612G>A [rs10434], and +1725G>A [rs3025053]) with CAD susceptibility in Koreans. We studied 885 subjects: 463 CAD patients and 422 controls. Genotyping was conducted with polymerase chain reaction-restriction fragment length polymorphism analysis and TaqMan allelic discrimination assays, and the genotype frequencies were calculated. We then performed haplotype and genotype combination analyses and measured the associations between VEGF polymorphisms and clinical variables in both the CAD patients and control subjects. We detected statistically significant associations between CAD and certain VEGF allele combinations. In the haplotypes of 5 single-nucleotide polymorphisms, the VEGF allele combination −1154A/+936T was associated with a decreased prevalence of CAD (A-T-T-G-G of VEGF −1154G>A/−1498T>C/+936C>T/+1612G>A/+1725G>A, AOR = 0.077, p = 0.021). In contrast, the VEGF allele combinations −1498T/+1725A and −1498T/+1612A/+1725A were associated with an increased prevalence of CAD (G-T-C-C-A of VEGF −1154G>A/−1498T>C/+936C>T/+1451C>T/+1725G>A, AOR = 1.602, p = 0.047; T-C-C-A-A of VEGF −1498T>C/+936C>T/+1451C>T/+1612G>A/+1725G>A, AOR = 1.582, p = 0.045). Gene−environment combinatorial analysis showed that the combination of the VEGF +1725AA genotype and several clinical factors (e.g., body mass index, hemoglobin A1c, and low-density lipoprotein cholesterol) increased the risk of CAD. Therefore, we suggest that VEGF polymorphisms and clinical factors may impact CAD prevalence.
Collapse
|
20
|
Latifi-Navid H, Soheili ZS, Samiei S, Sadeghi M, Taghizadeh S, Pirmardan ER, Ahmadieh H. Network analysis and the impact of Aflibercept on specific mediators of angiogenesis in HUVEC cells. J Cell Mol Med 2021; 25:8285-8299. [PMID: 34250732 PMCID: PMC8419159 DOI: 10.1111/jcmm.16778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis, inflammation and endothelial cells’ migration and proliferation exert fundamental roles in different diseases. However, more studies are needed to identify key proteins and pathways involved in these processes. Aflibercept has received the approval of the US Food and Drug Administration (FDA) for the treatment of wet AMD and colorectal cancer. Moreover, the effect of Aflibercept on VEGFR2 downstream signalling pathways has not been investigated yet. Here, we integrated text mining data, protein‐protein interaction networks and multi‐experiment microarray data to specify candidate genes that are involved in VEGFA/VEGFR2 signalling pathways. Network analysis of candidate genes determined the importance of the nominated genes via different centrality parameters. Thereupon, several genes—with the highest centrality indexes—were recruited to investigate the impact of Aflibercept on their expression pattern in HUVEC cells. Real‐time PCR was performed, and relative expression of the specific genes revealed that Aflibercept modulated angiogenic process by VEGF/PI3KA/AKT/mTOR axis, invasion by MMP14/MMP9 axis and inflammation‐related angiogenesis by IL‐6‐STAT3 axis. Data showed Aflibercept simultaneously affected these processes and determined the nominated axes that had been affected by the drug. Furthermore, integrating the results of Aflibercept on expression of candidate genes with the current network analysis suggested that resistance against the Aflibercept effect is a plausible process in HUVEC cells.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Ocular Tissue Engineering Research Center, Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Frimpong A, Amponsah J, Agyemang D, Adjokatseh AS, Eyiah-Ampah S, Ennuson NA, Obiri D, Amoah LE, Kusi KA. Elevated Levels of the Endothelial Molecules ICAM-1, VEGF-A, and VEGFR2 in Microscopic Asymptomatic Malaria. Open Forum Infect Dis 2021; 8:ofab302. [PMID: 34277886 PMCID: PMC8279097 DOI: 10.1093/ofid/ofab302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background In malaria, clinical disease has been associated with increased levels of endothelial activation due to the sequestration of infected erythrocytes. However, the levels and impact of endothelial activation and pro-angiogenic molecules such as vascular endothelial growth factor (VEGF)–A and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) in asymptomatic malaria have not been well characterized. Methods Blood samples were obtained from community children for malaria diagnosis using microscopy and polymerase chain reaction. A multiplex immunoassay was used to determine the levels of intracellular adhesion molecule (ICAM)–1, vascular endothelial growth factor (VEGF)–A, and VEGFR2 in the plasma of children with microscopic or submicroscopic asymptomatic parasitemia and compared with levels in uninfected controls. Results Levels of ICAM-1, VEGF-A, and VEGFR2 were significantly increased in children with microscopic asymptomatic parasitemia compared with uninfected controls. Also, levels of VEGF-A were found to be inversely associated with age. Additionally, a receiver operating characteristic analysis revealed that plasma levels of ICAM-1 (area under the curve [AUC], 0.72) showed a moderate potential in discriminating between children with microscopic malaria from uninfected controls when compared with VEGF-A (AUC, 0.67) and VEGFR2 (AUC, 0.69). Conclusions These data imply that endothelial activation and pro-angiogenic growth factors could be one of the early host responders during microscopic asymptomatic malaria and may play a significant role in disease pathogenesis.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jones Amponsah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorothy Agyemang
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences,University of Ghana, Accra, Ghana
| | - Abigail Sena Adjokatseh
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences,University of Ghana, Accra, Ghana
| | - Sophia Eyiah-Ampah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nana Aba Ennuson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorotheah Obiri
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences,University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
22
|
Song T, Chen M, Wang X, Zhu E, Xue Y, Wang J, Sun B, Feng J. Intermittent hypoxia: Friend or foe on endothelial repair in mouse model. Exp Lung Res 2021; 47:211-225. [PMID: 33678107 DOI: 10.1080/01902148.2021.1891355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aim of the study: Obstructive sleep apnea, which is characterized by intermittent hypoxia (IH), is a common respiratory disease. The aim of the present study was to explore the relationship between hypoxia and endothelial progenitor cell (EPC) function, and explain the role of IH in endothelial repair.Materials and methods: Peripheral blood mononuclear cells (PBMCs) were isolated from a mouse model of IH. The number of CD133+ kinase insert domain receptor (KDR)+, CD133+CD34+, CD34+KDR+ and ALDHlowCD34+KDR+ EPCs was determined by flow cytometry. HIF-1α, stromal-derived factor-1 (SDF-1) α and VEGF were measured by ELISA. The proliferative ability of PBMCs was determined. EPC migration was assessed by Transwell assay and surface proteins by western blot analysis. EPCs were co-cultured with mouse brain endothelial cells and their angiogenic ability was analyzed.Results: The number of CD133+KDR+, CD133+CD34+ and CD34+KDR+ EPCs increased with IH ingravescence. The number of ALDHlowCD34+KDR+ EPCs with mild IH stimulation was higher and gradually decreased in the moderate and severe IH groups. The release of HIF-1α, SDF-1α and VEGF in the serum increased with the increase in the degree of IH. In the mild IH treatment, the migration and angiogenesis of EPCs, as well as the expression of vascular endothelial growth factor receptor 2 and cysteine-X-cysteine receptor 4, were higher than those in the control group, but progressively decreased in the groups with moderate and severe IH.Conclusion: Increased levels of IH accelerated the increase in vasoactive factors in peripheral blood, thereby mobilizing a large number of EPCs. Increasing of IH diminished the mobilization, chemotactic and angiogenetic ability of EPCs.
Collapse
Affiliation(s)
- Tao Song
- Intensive Care Unit of Tianjin Medical University General Hospital, Tianjin, China
| | - Mo Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanchao Xue
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Juan Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China.,Neuropharmacology Section, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
23
|
Leroux A, Paiva Dos Santos B, Leng J, Oliveira H, Amédée J. Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Commun Signal 2020; 18:162. [PMID: 33076927 PMCID: PMC7574530 DOI: 10.1186/s12964-020-00656-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. METHODS Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. RESULTS We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. CONCLUSIONS Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process. Video abstract.
Collapse
Affiliation(s)
- Alice Leroux
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France.
| | | | - Jacques Leng
- Univ. Bordeaux, CNRS, Solvay, LOF, UMR 5258, F-33006, Pessac, France
| | - Hugo Oliveira
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France
| | - Joëlle Amédée
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France
| |
Collapse
|
24
|
Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids Surf B Biointerfaces 2020; 194:111176. [DOI: 10.1016/j.colsurfb.2020.111176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
25
|
Ji P, Chen J, Golding A, Nikolov NP, Saluja B, Ren YR, Sahajwalla CG. Immunomodulatory Therapeutic Proteins in COVID-19: Current Clinical Development and Clinical Pharmacology Considerations. J Clin Pharmacol 2020; 60:1275-1293. [PMID: 32779201 PMCID: PMC7436618 DOI: 10.1002/jcph.1729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID‐19) pandemic caused by infection with SARS‐CoV‐2 has led to more than 600 000 deaths worldwide. Patients with severe disease often experience acute respiratory distress characterized by upregulation of multiple cytokines. Immunomodulatory biological therapies are being evaluated in clinical trials for the management of the systemic inflammatory response and pulmonary complications in patients with advanced stages of COVID‐19. In this review, we summarize the clinical pharmacology considerations in the development of immunomodulatory therapeutic proteins for mitigating the heightened inflammatory response identified in COVID‐19.
Collapse
Affiliation(s)
- Ping Ji
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jianmeng Chen
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amit Golding
- Division of Rheumatology and Transplant Medicine, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nikolay P Nikolov
- Division of Rheumatology and Transplant Medicine, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bhawana Saluja
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yunzhao R Ren
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chandrahas G Sahajwalla
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
26
|
Pellicani R, Poletto E, Andreuzzi E, Paulitti A, Doliana R, Bizzotto D, Braghetta P, Colladel R, Tarticchio G, Sabatelli P, Bucciotti F, Bressan G, Iozzo RV, Colombatti A, Bonaldo P, Mongiat M. Multimerin-2 maintains vascular stability and permeability. Matrix Biol 2020; 87:11-25. [DOI: 10.1016/j.matbio.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
27
|
Zhou ZY, Xiao Y, Zhao WR, Zhang J, Shi WT, Ma ZL, Ye Q, Chen XL, Tang N, Tang JY. Pro-angiogenesis effect and transcriptome profile of Shuxinyin formula in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153083. [PMID: 31600690 DOI: 10.1016/j.phymed.2019.153083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Angiogenesis plays a critical role in ischemia disease like coronary heart disease. Shunxinyin formula has been developed for treating coronary heart disease according to the principle of traditional Chinese medicine while its underlying mechanism is not fully elucidated. PURPOSE Here, we hypothesize Shuxinyin formula could promote angiogenesis and microcirculation, and the underlying mechanism is also investigated. METHODS We established the chemical profile of Shuxinyin (SXY) extract utilizing a UHPLC-Q/Exactive analysis system and evaluated its pro-angiogenesis effect in zebrafish model. The underlying mechanisms were investigated by combination of pharmacological experiments with transcriptome analysis in zebrafish. Zebrafish treated with VEGF was served as the positive control in present study. RESULTS We found SXY significantly enhanced the sub-intestinal vessel plexus (SIVs) growth in zebrafish. Co-treatment and post-treatment SXY attenuated VEGF receptor tyrosine kinase inhibitor II (VRI)-induced deficiency of intersegmental vessels (ISVs) in a concentration dependent manner. Post-treatment VEGF, which is a well-known angiogenesis driver, also partially ameliorated VRI-induced ISVs deficiency. In addition, SXY inhibited the down-regulation of VEGF receptors, including kdr, flt1 and kdrl, induced by VRI in zebrafish. The pro-angiogenesis effect of SXY on VRI-induced ISVs deficiency was suppressed by PI3K and JNK inhibitors, and Akt inhibitor abolished the pro-angiogenesis effect of SXY. The transcriptome profile of SXY preventing from VRI-induced vascular growth deficiency revealed that the underlying mechanisms were also co-related to cell junction, apoptosis and autophagy. CONCLUSION We could conclude that SXY presented pro-angiogenesis effect and the action mechanisms were involved in VEGF/PI3K/Akt/MAPK signaling pathways, cell junction, apoptosis and autophagy.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Zi-Lin Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Nuo Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China.
| |
Collapse
|
28
|
Wang Y, Hoeppner LH, Angom RS, Wang E, Dutta S, Doeppler HR, Wang F, Shen T, Scarisbrick IA, Guha S, Storz P, Bhattacharya R, Mukhopadhyay D. Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. J Biol Chem 2019; 294:15759-15767. [PMID: 31492751 PMCID: PMC6816101 DOI: 10.1074/jbc.ra119.010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2β to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2β up-regulation decreases VEGFR-2 expression and that loss of AP2β enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2β knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2β at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2β nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2β nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2β increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Luke H Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Heike R Doeppler
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650221, China
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Sushovan Guha
- University of Arizona College of Medicine, Phoenix, Arizona 85004
| | - Peter Storz
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| |
Collapse
|
29
|
Lechner J, Hombrebueno JR, Pedrini E, Chen M, Xu H. Sustained intraocular vascular endothelial growth factor neutralisation does not affect retinal and choroidal vasculature in Ins2 Akita diabetic mice. Diab Vasc Dis Res 2019; 16:440-449. [PMID: 31023085 DOI: 10.1177/1479164119843092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to understand the influence of sustained intravitreal vascular endothelial growth factor neutralisation on the retinal and choroidal vasculature in diabetic eyes. Ins2Akita diabetic mice received five intravitreal injections of anti-mouse vascular endothelial growth factor antibody or goat immunoglobulin G (0.2 µg/µL/eye) over a 4-month period. Retinal and choroidal vascular changes were analysed by confocal microscopy of tissue flat-mounts. Retinal gene expression of vascular endothelial growth factor family members (vascular endothelial growth factors A, B, C and D), vascular endothelial growth factor receptors (sVEGFR-1 and VEGFR-2) and tight junctions (claudin 1, 2, 5; occludin and zonula occludens-1) were analysed by quantitative reverse transcription polymerase chain reaction. Vascular endothelial growth factor A and claudin 5 were significantly increased in diabetic retinae. Gene expression was unaffected by anti-vascular endothelial growth factor treatment. The number of acellular vessels was increased in diabetic retinae and reduced following anti-vascular endothelial growth factor treatment. Retinal and choroidal vascular density and area were unaffected by sustained vascular endothelial growth factor neutralisation. Our results suggest that five consecutive intravitreal anti-vascular endothelial growth factor injections do not cause significant vascular changes in the retina and choroid in diabetic and non-diabetic mice.
Collapse
Affiliation(s)
- Judith Lechner
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Jose R Hombrebueno
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
30
|
Luo Y, Luo J, Peng H. Associations Between Genetic Polymorphisms in the VEGFA, ACE, and SOD2 Genes and Susceptibility to Diabetic Nephropathy in the Han Chinese. Genet Test Mol Biomarkers 2019; 23:644-651. [PMID: 31524543 DOI: 10.1089/gtmb.2018.0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yuxuan Luo
- Department of Nephrology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| | - Jingfeng Luo
- Biotherapy Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Peng
- Department of Cardiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Yu Z, Zhang Y, Tang Z, Song J, Gao X, Sun T, Liu Y, Yang J, Wang T, Liu J. Intracavernosal Adeno-Associated Virus-Mediated S100A1 Gene Transfer Enhances Erectile Function in Diabetic Rats by Promoting Cavernous Angiogenesis via VEGF-A/VEGFR2 Signaling. J Sex Med 2019; 16:1344-1354. [PMID: 31378707 DOI: 10.1016/j.jsxm.2019.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/26/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Novel therapeutic targets for diabetes-induced erectile dysfunction (DED) are urgently needed. Previous studies have proved that S100A1, a small Ca2+-binding protein, is a pluripotent regulator of cardiovascular pathophysiology. Its absence is associated with endothelial dysfunction, the central event linking cardiovascular changes in diabetes. However, the role of S100A1 in DED remains unknown. AIM To explore the effect and underlying mechanisms of S100A1 in restoring erectile function in type I diabetic rat model. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin and then screened by apomorphine (APO) to confirm erectile dysfunction. Rats that met the criteria of penile erection were marked as APO-positive; otherwise, the result was APO-negative. In experiment 1, S100A1 gene expression alterations in the corpus cavernosum in moderate and established stages of DED were analyzed. In experiment 2, S100A1 and control GFP gene were delivered into the corpus cavernosum in APO-negative rats by adeno-associated virus (AAV) serotype 9. Erectile function was assessed at 4 weeks after gene therapy. MAIN OUTCOME MEASURES Erectile response, histologic and molecular alterations. RESULTS S100A1 protein was localized to the area surrounding the cavernosal sinusoids in the penis, and it was gradually downregulated synchronized with the progression of DED. Compared with an injection of AAV-GFP, a single injection of AAV-S100A1 significantly restored erectile function in diabetic rats. S100A1 overexpression significantly upregulated the expression of endogenous VEGF-A, promoted VEGFR2 internalization, and subsequently triggered the protein kinase B-endothelial nitric oxide synthase pathway in diabetic erectile tissues. Marked increases in nitric oxide and endothelial content were noted in AAV-S100A1-treated diabetic rats. CLINICAL IMPLICATIONS Local S100A1 overexpression may be an alternative therapy for DED and should be further investigated by future clinical studies. STRENGTH & LIMITATIONS This is the first study demonstrating the angiogenic role of S100A1 in DED, but does not preclude the contribution of the effects of S100A1 in other tissues such as the neuronal tissue on the functional effects observed in erectile responses. CONCLUSION The decreased expression of S100A1 during hyperglycemia might be important in the development of erectile dysfunction. S100A1 may play a potential role in restoring erectile function in rats with DED through modulating cavernous angiogenesis. Yu Z, Zhang Y, Tang Z, et al. Intracavernosal Adeno-Associated Virus-Mediated S100A1 Gene Transfer Enhances Erectile Function in Diabetic Rats by Promoting Cavernous Angiogenesis via VEGF-A/VEGFR2 Signaling. J Sex Med 2019;16:1344-1354.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xintao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Abstract
Metastasis of cells from primary site to distant organs involves a series of sequential steps, and molecules responsible for all these events are understandably considered as potential targets for metastasis management. Tea polyphenols, the secondary metabolites of the tea leaf Camellia sinensis, are increasingly being studied for their antimetastatic properties. In this article, effects of green tea polyphenols (GTP) and black tea polyphenols (BTP) on the molecules and events involved in metastasis are discussed in detail. As tea is a very popular beverage, tea polyphenols are expected to be potential chemopreventive agents that can be taken with normal diet and can be nontoxic due to their natural origin. However, individual variations in metabolic pathways, bioavailability, dose, and toxicity are some important factors that can modify the effectiveness of tea polyphenols within the human system.
Collapse
Affiliation(s)
- Niladri Bag
- Department of Horticulture, Sikkim University, Gangtok, India
| | - Arundhati Bag
- Department of Medical Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India
| |
Collapse
|
33
|
Altered VEGF Splicing Isoform Balance in Tumor Endothelium Involves Activation of Splicing Factors Srpk1 and Srsf1 by the Wilms' Tumor Suppressor Wt1. Cells 2019; 8:cells8010041. [PMID: 30641926 PMCID: PMC6356959 DOI: 10.3390/cells8010041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is one hallmark of cancer. Vascular endothelial growth factor (VEGF) is a known inducer of angiogenesis. Many patients benefit from antiangiogenic therapies, which however have limitations. Although VEGF is overexpressed in most tumors, different VEGF isoforms with distinct angiogenic properties are produced through alternative splicing. In podocytes, the Wilms' tumor suppressor 1 (WT1) suppresses the Serine/arginine-rich protein-specific splicing factor kinase (SRPK1), and indirectly Serine/arginine-rich splicing factor 1 (Srsf1) activity, and alters VEGF splicing. We analyzed VEGF isoforms, Wt1, Srpk1, and Srsf1 in normal and tumor endothelium. Wt1, Srpk1, Srsf1, and the angiogenic VEGF164a isoform were highly expressed in tumor endothelium compared to normal lung endothelium. Nuclear expression of Srsf1 was detectable in the endothelium of various tumor types, but not in healthy tissues. Inducible conditional vessel-specific knockout of Wt1 reduced Wt1, Srpk1, and Srsf1 expression in endothelial cells and induced a shift towards the antiangiogenic VEGF120 isoform. Wt1(-KTS) directly binds and activates both the promoters of Srpk1 and Srsf1 in endothelial cells. In conclusion, Wt1 activates Srpk1 and Srsf1 and induces expression of angiogenic VEGF isoforms in tumor endothelium.
Collapse
|
34
|
Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes. PLoS One 2017; 12:e0187304. [PMID: 29095861 PMCID: PMC5667868 DOI: 10.1371/journal.pone.0187304] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Purpose To identify the protein profiles in vitreous associated with retinal fibrosis, angiogenesis, and neurite formation in epiretinal fibrovascular membranes (FVMs) in patients with proliferative diabetic retinopathy (PDR). Methods Vitreous samples of 5 non-diabetic control patients with vitreous debris and 7 patients with PDR membranes were screened for 507 preselected proteins using the semi-quantitative RayBio® L-series 507 antibody array. From this array, 60 proteins were selected for a custom quantitative antibody array (Raybiotech, Human Quantibody® array), analyzing 7 control patients, 8 PDR patients with FVMs, and 5 PDR patients without FVMs. Additionally, mRNA levels of proteins of interest were measured in 10 PDR membranes and 11 idiopathic membranes and in retinal tissues and cells to identify possible sources of protein production. Results Of the 507 proteins screened, 21 were found to be significantly elevated in PDR patients, including neurogenic and angiogenic factors such as neuregulin 1 (NRG1), nerve growth factor receptor (NGFR), placental growth factor (PlGF) and platelet derived growth factor (PDGF). Angiopoietin-2 (Ang2) concentrations were strongly correlated to the degree of fibrosis and the presence of FVMs in patients with PDR. Protein correlation analysis showed PDGF to be extensively co-regulated with other proteins, including thrombospondin-1 and Ang2. mRNA levels of glial-derived and brain/derived neurotrophic factor (GDNF and BDNF) were elevated in PDR membranes. These results were validated in a second study of 52 vitreous samples of 32 PDR patients and 20 control patients. Conclusions This exploratory study reveals protein networks that potentially contribute to neurite outgrowth, angiogenesis and fibrosis in the formation of fibrovascular membranes in PDR. We identified a possible role of Ang2 in fibrosis and the formation of FVMs, and of the neurotrophic factors NRG1, PDGF and GDNF in neurite growth that occurs in all FVMs in PDR.
Collapse
|
35
|
Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation. Biosci Rep 2017; 37:BSR20170002. [PMID: 28536311 PMCID: PMC5479018 DOI: 10.1042/bsr20170002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF165) displayed a high capability to alter their phenotype and function into ELCs in vitro. Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro. We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation.
Collapse
|
36
|
Poimenidi E, Theodoropoulou C, Koutsioumpa M, Skondra L, Droggiti E, van den Broek M, Koolwijk P, Papadimitriou E. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner. Vascul Pharmacol 2016; 80:11-9. [DOI: 10.1016/j.vph.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/05/2016] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
|
37
|
Lee HT, Xue J, Chou PC, Zhou A, Yang P, Conrad CA, Aldape KD, Priebe W, Patterson C, Sawaya R, Xie K, Huang S. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget 2016; 6:10016-29. [PMID: 25881542 PMCID: PMC4496337 DOI: 10.18632/oncotarget.3540] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 01/19/2023] Open
Abstract
Brain metastasis is a major cause of morbidity and mortality in patients with breast cancer. Our previous studies indicated that Stat3 plays an important role in brain metastasis. Here, we present evidence that Stat3 functions at the level of the microenvironment of brain metastases. Stat3 controlled constitutive and inducible VEGFR2 expression in tumor-associated brain endothelial cells. Furthermore, inhibition of Stat3 by WP1066 decreased the incidence of brain metastases and increased survival in a preclinical model of breast cancer brain metastasis. WP1066 inhibited Stat3 activation in tumor-associated endothelial cells, reducing their infiltration and angiogenesis. WP1066 also inhibited breast cancer cell invasion. Our results indicate that WP1066 can inhibit tumor angiogenesis and brain metastasis mediated by Stat3 in endothelial and tumor cells.
Collapse
Affiliation(s)
- Hsueh-Te Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping-Chieh Chou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phillip Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles A Conrad
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth D Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cam Patterson
- Division of Cardiology and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keping Xie
- Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
38
|
MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep 2015; 5:13316. [PMID: 26294080 PMCID: PMC4543985 DOI: 10.1038/srep13316] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
Abstract
Previous studies have suggested that microRNA-107 (miR-107) regulates cell migration in tumor and promotes Hypoxia Inducible Factor 1α (HIF1α) regulated angiogenesis under hypoxia. We found that miR-107 was strongly expressed in ischemic boundary zone (IBZ) after permanent middle cerebral artery occlusion (pMCAO) in rats and inhibition of miR-107 could reduce capillary density in the IBZ after stroke. Such finding led us to hypothesize that miR-107 might regulate post-stroke angiogenesis and therefore serve as a therapeutic target. We also found that antagomir-107, a synthetic miR-107 inhibitor, decreased the number of capillaries in IBZ and increased overall infarct volume after pMCAO in rats. We demonstrated that miR-107 could directly down-regulate Dicer-1, a gene that encodes an enzyme essential for processing microRNA (miRNA) precursors. This resulted in translational desupression of VEGF (vascular endothelial growth factor) mRNA, thereby increasing expression of endothelial cell-derived VEGF (VEGF165/VEGF164), leading to angiogenesis after stroke. This process might be a protective mechanism for ischemia-induced cerebral injury and miR-107 might be used as a novel tool in stroke treatment.
Collapse
|
39
|
Ricca AM, Morshedi RG, Wirostko BM. High Intraocular Pressure Following Anti-Vascular Endothelial Growth Factor Therapy: Proposed Pathophysiology due to Altered Nitric Oxide Metabolism. J Ocul Pharmacol Ther 2015; 31:2-10. [DOI: 10.1089/jop.2014.0062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aaron M. Ricca
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - R. Grant Morshedi
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
40
|
Preeclamptic plasma induces transcription modifications involving the AP-1 transcriptional regulator JDP2 in endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1993-2006. [PMID: 24120378 DOI: 10.1016/j.ajpath.2013.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/01/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. In preeclampsia, the placenta releases factors into the maternal circulation that cause a systemic endothelial dysfunction. Herein, we investigated the effects of plasma from women with preeclamptic and normal pregnancies on the transcriptome of an immortalized human umbilical vein endothelial cell line. The cells were exposed for 24 hours to preeclamptic or normal pregnancy plasma and their transcriptome was analyzed using Agilent microarrays. A total of 116 genes were found differentially expressed: 71 were up-regulated and 45 were down-regulated. In silico analysis revealed significant consistency and identified four functional categories of genes: mitosis and cell cycle progression, anti-apoptotic, fatty acid biosynthesis, and endoplasmic reticulum stress effectors. Moreover, several genes involved in vasoregulation and endothelial homeostasis showed modified expression, including EDN1, APLN, NOX4, and CBS. Promoter analysis detected, among the up-regulated genes, a significant overrepresentation of genes containing activation protein-1 regulatory sites. This correlated with down-regulation of JDP2, a gene encoding a repressor of activation protein-1. The role of JDP2 in the regulation of a subset of genes in the human umbilical vein endothelial cells was confirmed by siRNA inhibition. We characterized transcriptional changes induced by preeclamptic plasma on human umbilical vein endothelial cells, and identified, for the first time to our knowledge, JDP2 as a regulator of a subset of genes modified by preeclamptic plasma.
Collapse
|
41
|
Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks. J Theor Biol 2013; 333:174-209. [DOI: 10.1016/j.jtbi.2013.04.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
|
42
|
dela Paz NG, Melchior B, Frangos JA. Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity. Biochem Biophys Res Commun 2013; 434:641-6. [PMID: 23583373 DOI: 10.1016/j.bbrc.2013.03.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022]
Abstract
Although several potential mechanosensors/mechanotransducers have been proposed, the precise mechanisms by which ECs sense and respond to mechanical forces and translate them into biochemical signals remains unclear. Here, we report that two major ligand-dependent tyrosine autophosphorylation sites of VEGFR2, Y1175 and Y1214, are rapidly activated by shear stress in human coronary artery endothelial cells (HCAECs). Neutralizing antibody against VEGFR2 not only abrogates flow-induced phosphorylation of these tyrosine residues, but also has a marked inhibitory effect on downstream eNOS activation. In situ proximity ligation assay revealed that VEGF and VEGFR2 are closely associated in HCAECs, and more importantly, this association is increased with flow. Finally, we show that flow-induced VEGFR2 activation is attenuated in the presence of the broad spectrum matrix metalloproteinase (MMP) inhibitor, GM6001. Taken together, our results suggest that a ligand-dependent mechanism involving the activity of MMPs plays a key role in the early, shear stress-induced activation of VEGFR2.
Collapse
Affiliation(s)
- Nathaniel G dela Paz
- La Jolla Bioengineering Institute, 3535 General Atomics Court, Suite 210, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
43
|
Bhattacharya D, Singh MK, Chaudhuri S, Acharya S, Basu AK, Chaudhuri S. T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol 2013; 113:13-25. [PMID: 23471571 DOI: 10.1007/s11060-013-1095-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023]
Abstract
The crucial role of angiogenesis in malignant glioma progression makes it a potential target of therapeutic intervention in glioma. Previous studies from our lab showed that sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) has potent anti-neoplastic and immune stimulatory effects in rodent glioma model. In the present study we investigated the anti-angiogenic potential of T11TS and deciphered the underlying molecular mechanism of its anti-angiogenic action in malignant glioma. Vascular endothelial growth factor (VEGF) signaling is crucial for initiating tumor angiogenic responses. The present preclinical study was designed to evaluate the effect of T11TS therapy on VEGF and VEGFR-2 expression in glioma associated brain endothelial cells and to determine the effects of in vivo T11TS administration on expression of PTEN and downstream pro-survival PI3K/Akt/eNOS pathway proteins in glioma associated brain endothelial cells. T11TS therapy in rodent glioma model significantly downregulated expression of VEGF along with its receptor VEGFR-2 and inhibited the expression of pro-survival PI3K/Akt/eNOS proteins in glioma associated brain endothelial cells. Furthermore, T11TS therapy in glioma induced rats significantly upregulated brain endothelial cell PTEN expression, inhibited eNOS phosphorylation and production of nitric oxide in glioma associated brain endothelial cells. Taken together our findings suggest that T11TS can be introduced as an effective angiogenesis inhibitor in human glioma as T11TS targets multiple levels of angiogenic signaling cascade impeding glioma neovascularisation.
Collapse
Affiliation(s)
- Debanjan Bhattacharya
- Immunology Research Laboratory, Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata 700073, India
| | | | | | | | | | | |
Collapse
|
44
|
Kim M, Kim S, Lim JH, Lee C, Choi HC, Woo CH. Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation. J Biol Chem 2012; 287:40722-31. [PMID: 23043106 DOI: 10.1074/jbc.m112.381509] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Laminar flow protects from atherosclerosis in endothelium. RESULTS Laminar flow induces Nrf2 activation dependent on ERK5 activation, leading to up-regulation of downstream genes of Nrf2. CONCLUSION ERK5 requires Nrf2 activation to exert cytoprotective effect on HUVEC. ERK5 inhibitor BIX02189 regulates Nrf2 activation in vivo. SIGNIFICANCE Identifying ERK5 as a molecular target for regulating flow-mediating Nrf2-dependent gene expression may have significant therapeutic potential for treating atherosclerosis. Atherosclerosis is often observed in areas where disturbed flow is formed, whereas atheroprotective region is found in areas where steady laminar flow is developed. It has been reported that some genes activated by blood flow play important roles in vascular function and pathogenesis of atherosclerosis. Extracellular signal-regulated kinase 5 (ERK5) has been reported to regulate endothelial integrity and protect from vascular dysfunction and disease under laminar flow. Krüppel-like factor 2 (KLF2) and NF-E2-related factor 2 (Nrf2) are major transcriptional factors that contribute to anti-atherogenic responses under laminar flow. Implication of ERK5 in laminar flow-mediated regulation of KLF2-dependent gene has been established, whereas the role of ERK5 in laminar flow-mediated activation of Nrf2 pathway has not been addressed yet. In this study, we found that the blockage of ERK5 either by genetic depletion with siRNA or by biochemical inactivation with a specific chemical compound inhibited laminar flow-induced up-regulation of Nrf2-dependent gene expressions, whereas activation of ERK5 increased transcriptional activity and nuclear translocation of Nrf2, which suggests that ERK5 mediates laminar flow-induced up-regulation of Nrf2-dependent gene expression. Further functional studies showed that ERK5 provides protection against oxidative stress-induced cytotoxicity dependent on Nrf2. Molecular interaction between ERK5 and Nrf2 was further induced by laminar flow. Finally, flow-dependent nuclear localization of Nrf2 was inhibited by BIX02189, a specific inhibitor of MEK5, in aorta of mice in vivo. Collectively, these data demonstrate that laminar flow-induced activation of ERK5-Nrf2 signal pathway plays a critical role for anti-inflammatory and anti-apoptotic mechanism in endothelial cells.
Collapse
Affiliation(s)
- Miso Kim
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu 705-717, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Zhang JB, Sun HC, Jia WD, Zhuang PY, Qian YB, Zhu XD, Kong LQ, Wang L, Wu WZ, Tang ZY. Up-regulation of platelet-derived growth factor-A is responsible for the failure of re-initiated interferon alpha treatment in hepatocellular carcinoma. BMC Cancer 2012; 12:439. [PMID: 23025904 PMCID: PMC3517454 DOI: 10.1186/1471-2407-12-439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/26/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Postoperative interferon-α(IFN-α) treatment delays hepatocellular carcinoma(HCC) recurrence and prolongs patient survival, and may thus be an effective form of adjuvant therapy. However, clinical observations found that HCC recurs in some patients within 8 months of IFN-α treatment being discontinued. We investigated whether HCC regrowth appears after IFN-α is discontinued, whether re-initiated IFN-α is effective, and the underlying mechanisms of IFN-α treatment. METHODS The human HCC nude mouse model LCI-D20 was used to study the effects of IFN-α treatment, discontinued IFN-α treatment, and re-initiated IFN-α treatment on tumor growth. Tumor weight, microvessel density(MVD), serum vascular endothelial growth factor (VEGF), and tumor cell apoptosis were analyzed. Angiogenesis-related factors were studied using cDNA microarray in different tumor samples and confirmed using reverse transcription-polymerase chain reaction(RT-PCR) and Western blotting assays. Finally, imatinib was added with re-initiated IFN-α treatment to improve efficacy. RESULTS IFN-α (1.5 × 107 U/kg/day for 20 days) suppressed HCC growth by 60.3% and decreased MVD by 52.2% compared with the control. However, tumor regrowth occurred after IFN-α was discontinued, and re-initiated IFN-α treatment was not effective for inhibiting tumor growth or reducing MVD compared with a saline-treated group. cDNA microarray showed VEGF was down-regulated while platelet-derived growth factor-A (PDGF-A) was up-regulated when IFN-α treatment was re-initiated. These findings were further confirmed with RT-PCR and Western blotting assay. The combination of imatinib with re-initiated IFN-α reduced HCC weight by 30.7% and decreased MVD by 31.1% compared with IFN-α treatment only (P=0.003 and 0.015, respectively). CONCLUSION Tumor regrowth occurred after IFN-α treatment was discontinued. Re-initiated IFN-α treatment was not effective and was associated with up-regulation of PDGF-A, while the VEGF remained suppressed. The combination of a PDGF-receptor inhibitor with IFN-α improved the effect of the re-initiated treatment.
Collapse
Affiliation(s)
- Ju-Bo Zhang
- Liver Cancer Insitute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cao Y, E G, Wang E, Pal K, Dutta SK, Bar-Sagi D, Mukhopadhyay D. VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Res 2012; 72:3912-8. [PMID: 22693250 DOI: 10.1158/0008-5472.can-11-4058] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
VEGF/vascular permeability factor (VEGF/VPF or VEGF-A) is a pivotal driver of cancer angiogenesis that is a central therapeutic target in the treatment of malignancy. However, little work has been devoted to investigating functions of VEGF that are independent of its proangiogenic activity. Here, we report that VEGF produced by tumor cells acts in an autocrine manner to promote cell growth through interaction with the VEGF receptor neuropilin-1 (NRP-1). Reducing VEGF expression by tumor cells induced a differentiated phenotype in vitro and inhibited tumor forming capacity in vivo, independent of effects on angiogenesis. Autocrine activation of tumor cell growth was dependent on signaling through NRP-1, and Ras was determined to be a critical effector signaling molecule downstream of NRP-1. Our findings define a novel function for VEGF in dedifferentiation of tumor cells expanding its role in cancer beyond its known proangiogenic function.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|