1
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Feng Z, Meng F, Huo F, Zhu Y, Qin Y, Gui Y, Zhang H, Lin P, He Q, Li Y, Geng J, Wu J. Inhibition of ferroptosis rescues M2 macrophages and alleviates arthritis by suppressing the HMGB1/TLR4/STAT3 axis in M1 macrophages. Redox Biol 2024; 75:103255. [PMID: 39029270 PMCID: PMC11304870 DOI: 10.1016/j.redox.2024.103255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024] Open
Abstract
Ferroptosis is a type of programmed cell death driven by iron-dependent lipid peroxidation. The TNF-mediated biosynthesis of glutathione has been shown to protect synovial fibroblasts from ferroptosis in the hyperplastic synovium. Ferroptosis induction provides a novel therapeutic approach for rheumatoid arthritis (RA) by reducing the population of synovial fibroblasts. The beginning and maintenance of synovitis in RA are significantly influenced by macrophages, as they generate cytokines that promote inflammation and contribute to the destruction of cartilage and bone. However, the vulnerability of macrophages to ferroptosis in RA remains unclear. In this study, we found that M2 macrophages are more vulnerable to ferroptosis than M1 macrophages in the environment of the arthritis synovium with a high level of iron, leading to an imbalance in the M1/M2 ratio. During ferroptosis, HMGB1 released by M2 macrophages interacts with TLR4 on M1 macrophages, which in turn triggers the activation of STAT3 signaling in M1 macrophages and contributes to the inflammatory response. Knockdown of TLR4 decreased the level of cytokines induced by HMGB1 in M1 macrophages. The ferroptosis inhibitor liproxstatin-1 (Lip-1) started at the presymptomatic stage in collagen-induced arthritis (CIA) model mice, and GPX4 overexpression in M2 macrophages at the onset of collagen antibody-induced arthritis (CAIA) protected M2 macrophages from ferroptotic cell death and significantly prevented the development of joint inflammation and destruction. Thus, our study demonstrated that M2 macrophages are vulnerable to ferroptosis in the microenvironment of the hyperplastic synovium and revealed that the HMGB1/TLR4/STAT3 axis is critical for the ability of ferroptotic M2 macrophages to contribute to the exacerbation of synovial inflammation in RA. Our findings provide novel insight into the progression and treatment of RA.
Collapse
Affiliation(s)
- Zhuan Feng
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Feiyang Meng
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Fei Huo
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Yumeng Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Yifei Qin
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Yu Gui
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Hai Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Peng Lin
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Qian He
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China
| | - Yong Li
- National-Local Joint Engineering Research Center of Biodiagnostic & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Jiejie Geng
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China.
| | - Jiao Wu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, China.
| |
Collapse
|
3
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Li X, Men X, Ji L, Chen X, He S, Zhang P, Chen S. NLRP3-mediated periodontal ligament cell pyroptosis promotes root resorption. J Clin Periodontol 2024; 51:474-486. [PMID: 38164052 DOI: 10.1111/jcpe.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
AIM To investigate the mechanisms by which periodontal ligament cells (PDLCs) convert biomechanical stimulation into inflammatory microenvironment inducing root resorption (RR). MATERIALS AND METHODS RNA sequencing was employed to explore mechanisms in force-inflammatory signal transduction. Then resorption volume, odontoclastic activity, PDLC pyroptotic ratio and NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis pathway activation were analysed under force and pyroptosis inhibition. Further osteoclast formation, macrophage number and transwell polarization demonstrated the effects of PDLC pyroptosis on osteoclastogenesis and M1 polarization. RESULTS RNA sequencing revealed that NLRP3-mediated PDLC pyroptosis induced by Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB)/NLRP3 pathway may be involved in mechano-inflammatory signal transduction. PDLC pyroptosis under force and the expression of NLRP3-mediated pyroptosis pathway in force-enhanced PDLCs were significantly increased, both in vivo and in vitro. MCC950 administration was sufficient to reduce PDLC pyroptosis and alleviate RR, odontoclast formation and M1 polarization in vivo. Further in vitro exploration showed that MCC950 treatment reduced PDLC force-promoted pyroptosis and blocked NLRP3-mediated pyroptosis pathway. Moreover, by treating THP-1 with force-pretreated PDLCs or supernatants, NLRP3-mediated PDLC pyroptotic released products induced osteoclast formation and M1 polarization. CONCLUSIONS NLRP3-mediated PDLC pyroptosis promotes RR. PDLCs transmit excessive force into inflammation signals through TLR4/NFκB/NLRP3 pathway, inducing PDLC pyroptosis, which directly promotes odontoclast formation and subsequent RR or promotes M1 polarization to indirectly trigger odontoclastogenesis and RR.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinrui Men
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Xiong W, Zhang X, Zhou JD, Tan MX, Liu Y, Yan Y, Lei HJ, Peng JR, Liu W, Tan P. Astragaloside IV (ASIV) Mediates Endothelial Progenitor Cell (EPC) Exosomal LINC01963 to Inhibit Pyroptosis and Oxidative Stress in High Glucose-impaired Endothelial Cells. Curr Mol Med 2024; 24:252-263. [PMID: 36631922 DOI: 10.2174/1566524023666230111163718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Hyperglycemia is widespread in the world's population, increasing the risk of many diseases. This study aimed to explore the regulatory effect and mechanism of astragaloside IV (ASIV)-mediated endothelial progenitor cells (EPCs) exosomal LINC01963 in endothelial cells (HUVECs) impaired by high glucose. METHODS Morphologies of exosomes were observed by light microscope and electron microscope. Immunofluorescence was used to identify EPCs and detect the expressions of caspase-1. LINC01963 was detected by quantitative reverse transcription PCR. NLRP3, ASC, and caspase-3 were detected by Western Blot. Nanoparticle tracking analysis was carried out to analyze the exosome diameter. High-throughput sequencing was applied to screen target lncRNAs. The proliferation of endothelial cells was measured by cell counting kit-8 assay. The apoptosis level of HUVECs was detected by flow cytometry and TdT-mediated dUTP Nick-End labeling. The levels of IL- 1β, IL-18, ROS, SOD, MDA, and LDH were measured by enzyme-linked immunosorbent assay. RESULTS ASIV could promote the secretion of the EPC exosome. LINC01963 was obtained by high-throughput sequencing. It was observed that high glucose could inhibit the proliferation, reduce the level of SOD, the expression of NLRP3, ASC, and caspase- 1, increase the levels of IL-1β, IL-18, ROS, MDA, and LDH, and promote apoptosis of HUVECs. Whereas LINC01963 could inhibit the apoptosis of HUVECs, the increase the expression of NLRP3, ASC, and caspase-1, and decrease the levels of IL-1β, IL-18, ROS, MDA, and LDH. CONCLUSION EPCs exosomal LINC01963 play an inhibitory role in high glucoseinduced pyroptosis and oxidative stress of HUVECs. This study provides new ideas and directions for treating hyperglycemia and researching exosomal lncRNAs.
Collapse
Affiliation(s)
- Wu Xiong
- 1Department of Burns and Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Zhang
- Hunan Brain Hospital, Changsha, China, Hunan, China
- Clinical Medical School of the Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei-Xin Tan
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu Liu
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Mongolia
| | - Yu Yan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua-Juan Lei
- Department of Anesthesiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia-Rui Peng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pei Tan
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Wang R, Luo H, Yang D, Yu B, Guo J, Shao L, Okamura H, Qiu L. Osteoblast Jmjd3 regulates osteoclastogenesis via EphB4 and RANKL signalling. Oral Dis 2023; 29:1613-1621. [PMID: 35181970 DOI: 10.1111/odi.14160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Osteoblasts suppress osteoclastogenesis during the reversal phase of bone remodelling and the mechanism needs to be further investigated. Here, we investigated the role of histone demethylase Jumonji domain-containing 3 (Jmjd3) in osteoblasts on regulating osteoclastogenesis. METHODS Jmjd3 expression was silenced in osteoblasts. Osteoblasts and osteoclasts were co-cultured in direct or indirect contact ways, and osteoclastogenesis was determined by tartrate-resistant acid phosphatase (TRAP) staining and Western blotting. Additionally, Ephrin receptor B4 (EphB4) and receptor activator of nuclear factor-kappa Β ligand (RANKL) expression were quantified in osteoblasts via real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. Subsequently, EphB4 was overexpressed in osteoblasts and RANKL expression and osteoclastogenesis was quantified. RESULTS Osteoclastogenesis and marker protein expression levels was promoted when osteoclasts were co-cultured with Jmjd3-silenced osteoblasts. Silencing of Jmjd3 expression in osteoblasts decreased EphB4 expression, owing to suppression of demethylation of H3K27me3 on the promoter region of EphB4. Whereas RANKL expression was upregulated in Jmjd3-silenced osteoblasts. Overexpression of EphB4 in osteoblasts inhibited osteoclastogenesis and RANKL expression. CONCLUSION Jmjd3 in osteoblasts is a crucial regulator of osteoblast-to-osteoclast communication through EphB4-EphrinB2, RANKL-RANK and EphB4-RANKL signalling axes, suggesting the pivotal role of Jmjd3 in bone remodelling process in bone destruction disease such as chronic apical periodontitis.
Collapse
Affiliation(s)
- Rui Wang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huikun Luo
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Di Yang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jiajie Guo
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lina Shao
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Lihong Qiu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Ranatunga S, Kulkarni B, Kinra S, Ebeling PR, Zengin A. Sex-specific associations between markers of arterial stiffness and bone mineral density in Indian men and women. Bone 2023; 169:116686. [PMID: 36720333 DOI: 10.1016/j.bone.2023.116686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Osteoporosis and cardiovascular disease (CVD) share common risk factors, yet both are usually underdiagnosed in the absence of major complications. We investigated associations between arterial stiffness, cardiac workload, carotid intima media thickness (CIMT) and areal bone mineral density (aBMD) in Indian adults. METHODS Men and women aged >45 years from the Andhra Pradesh Children and Parents Study (APCAPS) were included for cross-sectional analysis (521 women and 696 men). Dual energy x-ray absorptiometry (DXA) measured aBMD at the whole body, total hip and lumbar spine. Supine blood pressure and heart rate were measured and used to calculate rate pressure product and pulse pressure; augmentation index, pulse wave velocity and CIMT were measured. Sex-interactions were tested (denoted as p-int); adjustments were made for confounders. Data were expressed as SD differences with 95 % confidence intervals. RESULTS There were significant negative associations between pulse pressure and aBMD at all sites in women only. In unadjusted analyses, for every 1SD increase in pulse pressure, women had greater negative differences in aBMD at the whole body (-0.13 vs 0.007), total hip (-0.20 vs -0.05) and lumbar spine (-0.12 vs 0.05) compared with men. After adjustments, sex differences remained. Similar negative associations were seen between pulse wave velocity and augmentation index with aBMD in women only. There were no sex differences between CIMT and rate pressure product with aBMD. CONCLUSIONS Markers of arterial stiffness are associated with poorer bone health in Indian women, but not in men. There is a need to identify the shared risk factors and markers of arterial stiffness and poor bone health to detect those who require co-management of these diseases to prevent cardiovascular events and fractures.
Collapse
Affiliation(s)
- Shasheni Ranatunga
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, VIC, Australia
| | - Bharati Kulkarni
- Clinical Division, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, India
| | - Sanjay Kinra
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, VIC, Australia
| | - Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, VIC, Australia.
| |
Collapse
|
8
|
Calotropis procera latex protein reduces inflammation and bone loss in ligature-induced period ontitis in male rats. Arch Oral Biol 2023; 147:105613. [PMID: 36739838 DOI: 10.1016/j.archoralbio.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Calotropis procera latex protein (CpLP) is a popular anti-inflammatory and therefore we aimed to study its effects on inflammatory bone loss. DESIGN Male Wistar rats were subjected to a ligature of molars. Groups of rats received intraperitoneally CpLP (0.3 mg/kg, 1 mg/kg, or 3 mg/kg) or saline (0.9% NaCl) one hour before ligature and then daily up to 11 days, compared to naïve. Gingiva was evaluated by myeloperoxidase activity and interleukin-1 beta (IL-1β) expression by ELISA. Bone resorption was evaluated in the region between the cement-enamel junction and the alveolar bone crest. The histology considered alveolar bone resorption and cementum integrity, leukocyte infiltration, and attachment level, followed by immunohistochemistry bone markers between 1st and 2nd molars. Systemically, the weight of the body and organs, and a leukogram were performed. RESULTS The periodontitis significantly increased myeloperoxidase activity and the IL-1β level. The increased bone resorption was histologically corroborated by periodontal destruction, leukocyte influx, and attachment loss, as well as the increasing receptor activator of the nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio, and Tartrate-resistant acid phosphatase (TRAP)+ cells when compared to naïve. CpLP significantly reduced myeloperoxidase activity, level of IL-1β, alveolar bone resorption, periodontal destruction, leukocyte influx, and attachment loss. The CpLp also reduced the RANKL/OPG ratio and TRAP+ cells, when compared with the saline group, and did not affect the systemic parameters. CONCLUSIONS CpLP exhibited a periodontal protective effect by reducing inflammation and restricting osteoclastic alveolar bone resorption in this rat model.
Collapse
|
9
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
10
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Ren YZ, Ding SS, Jiang YP, Wen H, Li T. Application of exosome-derived noncoding RNAs in bone regeneration: Opportunities and challenges. World J Stem Cells 2022; 14:473-489. [PMID: 36157529 PMCID: PMC9350624 DOI: 10.4252/wjsc.v14.i7.473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
With advances in the fields of regenerative medicine, cell-free therapy has received increased attention. Exosomes have a variety of endogenous properties that provide stability for molecular transport across biological barriers to cells, as a form of cell-to-cell communication that regulates function and phenotype. In addition, exosomes are an important component of paracrine signaling in stem-cell-based therapy and can be used as a stand-alone therapy or as a drug delivery system. The remarkable potential of exosomes has paved the pathway for cell-free treatment in bone regeneration. Exosomes are enriched in distinct noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs. Different ncRNAs have multiple functions. Altered expression of ncRNA in exosomes is associated with the regenerative potential and development of various diseases, such as femoral head osteonecrosis, myocardial infarction, and cancer. Although there is increasing evidence that exosome-derived ncRNAs (exo-ncRNAs) have the potential for bone regeneration, the detailed mechanisms are not fully understood. Here, we review the biogenesis of exo-ncRNA and the effects of ncRNAs on angiogenesis and osteoblast- and osteoclast-related pathways in different diseases. However, there are still many unsolved problems and challenges in the clinical application of ncRNA; for instance, production, storage, targeted delivery and therapeutic potency assessment. Advancements in exo-ncRNA methods and design will promote the development of therapeutics, revolutionizing the present landscape.
Collapse
Affiliation(s)
- Yuan-Zhong Ren
- Department of Emergency Trauma Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Shan-Shan Ding
- Department of Geriatrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Ya-Ping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hui Wen
- Department of Emergency Trauma Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
12
|
Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol 2022; 13:824117. [PMID: 35386705 PMCID: PMC8977491 DOI: 10.3389/fimmu.2022.824117] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
A substantial amount patients with cancer will develop bone metastases, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis. Despite advancements in systemic therapies for advanced cancer, survival remains poor for those with bone metastases. The interaction between bone cells and the immune system contributes to a better understanding of the role that the immune system plays in the bone metastasis of cancer. The immune and bone systems share various molecules, including transcription factors, signaling molecules, and membrane receptors, which can stimulate the differentiation and activation of bone-resorbing osteoclasts. The process of cancer metastasis to bone, which deregulates bone turnover and results in bone loss and skeletal-related events (SREs), is also controlled by primary cancer-related factors that modulate the intratumoral microenvironment as well as cellular immune process. The nuclear factor kappa B ligand (RANKL) and the receptor activator of nuclear factor kappa B (RANK) are key regulators of osteoclast development, bone metabolism, lymph node development, and T-cell/dendritic cell communication. RANKL is an osteoclastogenic cytokine that links the bone and the immune system. In this review, we highlight the role of RANKL and RANK in the immune microenvironment and bone metastases and review data on the role of the regulatory mechanism of immunity in bone metastases, which could be verified through clinical efficacy of RANKL inhibitors for cancer patients with bone metastases. With the discovery of the specific role of RANK signaling in osteoclastogenesis, the humanized monoclonal antibody against RANKL, such as denosumab, was available to prevent bone loss, SREs, and bone metastases, providing a unique opportunity to target RANKL/RANK as a future strategy to prevent bone metastases.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pengru Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Yu J, Xia Y, Wang G, Xiong Z, Zhang H, Lai PFH, Song X, Ai L. Anti-osteoporotic potential of Lactobacillus plantarum AR237 and AR495 in ovariectomized mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Ohnishi T, Ogawa Y, Suda K, Komatsu M, Harmon SM, Asukai M, Takahata M, Iwasaki N, Minami A. Molecular Targeted Therapy for the Bone Loss Secondary to Pyogenic Spondylodiscitis Using Medications for Osteoporosis: A Literature Review. Int J Mol Sci 2021; 22:ijms22094453. [PMID: 33923233 PMCID: PMC8123121 DOI: 10.3390/ijms22094453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pyogenic spondylodiscitis can cause severe osteolytic and destructive lesions in the spine. Elderly or immunocompromised individuals are particularly susceptible to infectious diseases; specifically, infections in the spine can impair the ability of the spine to support the trunk, causing patients to be bedridden, which can also severely affect the physical condition of patients. Although treatments for osteoporosis have been well studied, treatments for bone loss secondary to infection remain to be elucidated because they have pathological manifestations that are similar to but distinct from those of osteoporosis. Recently, we encountered a patient with severely osteolytic pyogenic spondylodiscitis who was treated with romosozumab and exhibited enhanced bone formation. Romosozumab stimulated canonical Wnt/β-catenin signaling, causing robust bone formation and the inhibition of bone resorption, which exceeded the bone loss secondary to infection. Bone loss due to infections involves the suppression of osteoblastogenesis by osteoblast apoptosis, which is induced by the nuclear factor-κB and mitogen-activated protein kinase pathways, and osteoclastogenesis with the receptor activator of the nuclear factor-κB ligand-receptor combination and subsequent activation of the nuclear factor of activated T cells cytoplasmic 1 and c-Fos. In this study, we review and discuss the molecular mechanisms of bone loss secondary to infection and analyze the efficacy of the medications for osteoporosis, focusing on romosozumab, teriparatide, denosumab, and bisphosphonates, in treating this pathological condition.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
- Correspondence: ; Tel.: +11-81-126-63-2151
| | - Yuki Ogawa
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Kota Suda
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Miki Komatsu
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Satoko Matsumoto Harmon
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Mitsuru Asukai
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
| | - Akio Minami
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| |
Collapse
|
16
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
17
|
Sarker H, Hardy E, Haimour A, Karim MA, Scholl-Bürgi S, Martignetti JA, Botto LD, Fernandez-Patron C. Comparative Serum Analyses Identify Cytokines and Hormones Commonly Dysregulated as Well as Implicated in Promoting Osteolysis in MMP-2-Deficient Mice and Children. Front Physiol 2020; 11:568718. [PMID: 33101055 PMCID: PMC7546215 DOI: 10.3389/fphys.2020.568718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Deficiency of matrix metalloproteinase 2 (MMP-2) causes a complex syndrome characterized by multicentric osteolysis, nodulosis, and arthropathy (MONA) as well as cardiac valve defects, dwarfism and hirsutism. MMP-2 deficient (Mmp2 -/-) mice are a model for this rare multisystem pediatric syndrome but their phenotype remains incompletely characterized. Here, we extend the phenotypic characterization of MMP-2 deficiency by comparing the levels of cytokines and chemokines, soluble cytokine receptors, angiogenesis factors, bone development factors, apolipoproteins and hormones in mice and humans. Initial screening was performed on an 8-year-old male presenting a previously unreported deletion mutation c1294delC (Arg432fs) in the MMP2 gene and diagnosed with MONA. Of eighty-one serum biomolecules analyzed, eleven were upregulated (>4-fold), two were downregulated (>4-fold) and sixty-eight remained unchanged, compared to unaffected controls. Specifically, Eotaxin, GM-CSF, M-CSF, GRO-α, MDC, IL-1β, IL-7, IL-12p40, MIP-1α, MIP-1β, and MIG were upregulated and epidermal growth factor (EGF) and ACTH were downregulated in this patient. Subsequent analysis of five additional MMP-2 deficient patients confirmed the upregulation in Eotaxin, IL-7, IL-12p40, and MIP-1α, and the downregulation in EGF. To establish whether these alterations are bona fide phenotypic traits of MMP-2 deficiency, we further studied Mmp2 -/- mice. Among 32 cytokines measured in plasma of Mmp2 -/- mice, the cytokines Eotaxin, IL-1β, MIP-1α, and MIG were commonly upregulated in mice as well as patients with MMP-2 deficiency. Moreover, bioactive cortisol (a factor that exacerbates osteoporosis) was also elevated in MMP-2 deficient mice and patients. Among the factors we have identified to be dysregulated in MMP-2 deficiency many are osteoclastogenic and could potentially contribute to bone disorder in MONA. These new molecular phenotypic traits merit being targeted in future research aimed at understanding the pathological mechanisms elicited by MMP-2 deficiency in children.
Collapse
Affiliation(s)
- Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ayman Haimour
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mahmoud A. Karim
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - John A. Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States
| | - Lorenzo D. Botto
- Department of Pediatrics, Division of Medical Genetics and Pediatrics, The University of Utah, Salt Lake City, UT, United States
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Xiao J, Wang C, Yao JC, Alippe Y, Yang T, Kress D, Sun K, Kostecki KL, Monahan JB, Veis DJ, Abu-Amer Y, Link DC, Mbalaviele G. Radiation causes tissue damage by dysregulating inflammasome-gasdermin D signaling in both host and transplanted cells. PLoS Biol 2020; 18:e3000807. [PMID: 32760056 PMCID: PMC7446913 DOI: 10.1371/journal.pbio.3000807] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is a commonly used conditioning regimen for bone marrow transplantation (BMT). Cytotoxicity limits the use of this life-saving therapy, but the underlying mechanisms remain poorly defined. Here, we use the syngeneic mouse BMT model to test the hypothesis that lethal radiation damages tissues, thereby unleashing signals that indiscriminately activate the inflammasome pathways in host and transplanted cells. We find that a clinically relevant high dose of radiation causes severe damage to bones and the spleen through mechanisms involving the NLRP3 and AIM2 inflammasomes but not the NLRC4 inflammasome. Downstream, we demonstrate that gasdermin D (GSDMD), the common effector of the inflammasomes, is also activated by radiation. Remarkably, protection against the injury induced by deadly ionizing radiation occurs only when NLRP3, AIM2, or GSDMD is lost simultaneously in both the donor and host cell compartments. Thus, this study reveals a continuum of the actions of lethal radiation relayed by the inflammasome-GSDMD axis, initially affecting recipient cells and ultimately harming transplanted cells as they grow in the severely injured and toxic environment. This study also suggests that therapeutic targeting of inflammasome-GSDMD signaling has the potential to prevent the collateral effects of intense radiation regimens.
Collapse
Affiliation(s)
- Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Juo-Chin Yao
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dustin Kress
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Joseph B. Monahan
- Aclaris Therapeutics, Inc., St. Louis, Missouri, United Sates of America
| | - Deborah J. Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
- Shriners Hospital for Children, St. Louis, Missouri, United Sates of America
| | - Daniel C. Link
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri, United Sates of America
| |
Collapse
|
19
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
20
|
CUEDC2 controls osteoblast differentiation and bone formation via SOCS3-STAT3 pathway. Cell Death Dis 2020; 11:344. [PMID: 32393737 PMCID: PMC7214468 DOI: 10.1038/s41419-020-2562-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The CUE domain-containing 2 (CUEDC2) protein plays critical roles in many biological processes, such as the cell cycle, inflammation, and tumorigenesis. However, whether CUEDC2 is involved in osteoblast differentiation and plays a role in bone regeneration remains unknown. This study investigated the role of CUEDC2 in osteogenesis and its underlying molecular mechanisms. We found that CUEDC2 is expressed in bone tissues. The expression of CUEDC2 decreased during bone development and BMP2-induced osteoblast differentiation. The overexpression of CUEDC2 suppressed the osteogenic differentiation of precursor cells, while the knockdown of CUEDC2 showed the opposite effect. In vivo studies showed that the overexpression of CUEDC2 decreased bone parameters (bone volume, bone area, and bone mineral density) during ectopic bone formation, whereas its knockdown increased bone volume and the reconstruction percentage of critical-size calvarial defects. We found that CUEDC2 affects STAT3 activation by regulating SOCS3 protein stability. Treatment with a chemical inhibitor of STAT3 abolished the promoting effect of CUEDC2 silencing on osteoblast differentiation. Together, we suggest that CUEDC2 functions as a key regulator of osteoblast differentiation and bone formation by targeting the SOCS3–STAT3 pathway. CUEDC2 manipulation could serve as a therapeutic strategy for controlling bone disease and regeneration.
Collapse
|
21
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
22
|
Méndez-Frausto G, Medina-Rosales MN, Uresti-Rivera EE, Baranda-Cándido L, Zapata-Zúñiga M, Bastián Y, González Amaro R, Enciso-Moreno JA, García-Hernández MH. Expression and activity of AIM2-inflammasome in rheumatoid arthritis patients. Immunobiology 2019; 225:151880. [PMID: 31836304 DOI: 10.1016/j.imbio.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION AIM2 inflammasome activation leads to the release of IL-β, which plays an important role in rheumatoid arthritis pathogenesis. In this work, we evaluated AIM2 expression and activity in RA patients and healthy controls. METHODS AIM2 and RANKL expression were evaluated by flow cytometry. Inflammasome activity was determined in monocyte cultures stimulated with synthetic DNA by measuring IL-1β levels in supernatants using an ELISA assay. The caspase-1 expression in monocytes was measured by western blot, the POP3 expression was analysed by qPCR, and serum levels of IFN-γ were evaluated using ELISA assay. RESULTS We observed a diminution of CD14+AIM2+ cells in RA patients, associated with disease activity and evolution. Likewise, the levels of IL-1β were increased in monocyte cultures un-stimulated and stimulated with LPS from RA patients with DAS28 ≥ 4. The Caspase-1 activity and RANKL + monocytes in RA patients were slightly increased. Finally, augmented POP3 expression and diminished IFN-γ serum levels were detected in RA patients. CONCLUSION Our results showed that the monocytes from RA patients were prone to release IL-1β in the absence of the AIM2 inflammasome signal. The down-regulation of AIM2 to a systemic level in RA patients might be a consequence of augmented POP3 expression and might imply the survival of pro-inflammatory cells contributing to the inflammation process.
Collapse
Affiliation(s)
- Gwendolyne Méndez-Frausto
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico
| | - Marina Nayeli Medina-Rosales
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico
| | - Edith Elena Uresti-Rivera
- Centro de Investigación en Ciencias de la Salud y Biomedicina. CICSaB Universidad Autónoma de San Luis Potosí, UASLP, C.P. 78000, Mexico
| | - Lourdes Baranda-Cándido
- Centro de Investigación en Ciencias de la Salud y Biomedicina. CICSaB Universidad Autónoma de San Luis Potosí, UASLP, C.P. 78000, Mexico; Unidad Regional de Reumatología y Osteoporosis Hospital Central Dr. Ignacio Morones Prieto. San Luis Potosí, SLP, C.P. 78290, Mexico
| | - Martín Zapata-Zúñiga
- Facultad de Medicina y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Hospital Rural No. 51 IMSS Bienestar, Villanueva, Zacatecas, C.P. 99559, Mexico
| | - Yadira Bastián
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico; Cátedras CONACYT- Unidad de Investigación Biomédica de Zacatecas-IMSS, Zacatecas, C.P. 98000, Mexico
| | - Roberto González Amaro
- Centro de Investigación en Ciencias de la Salud y Biomedicina. CICSaB Universidad Autónoma de San Luis Potosí, UASLP, C.P. 78000, Mexico
| | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica. Delegación Zacatecas. Instituto Mexicano del Seguro Social, IMSS, C.P. 98000, Mexico
| | | |
Collapse
|
23
|
Li Y, Shi Z, Jules J, Chen S, Kesterson RA, Zhao D, Zhang P, Feng X. Specific RANK Cytoplasmic Motifs Drive Osteoclastogenesis. J Bone Miner Res 2019; 34:1938-1951. [PMID: 31173390 PMCID: PMC6813862 DOI: 10.1002/jbmr.3810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/05/2023]
Abstract
Upon receptor activator of NF-κB ligand (RANKL) binding, RANK promotes osteoclast formation through the recruitment of tumor necrosis factor (TNF) receptor-associated factors (TRAFs). In vitro assays identified two RANK intracellular motifs that bind TRAFs: PVQEET560-565 (Motif 2) and PVQEQG604-609 (Motif 3), which potently mediate osteoclast formation in vitro. To validate the in vitro findings, we have generated knock-in (KI) mice harboring inactivating mutations in RANK Motifs 2 and 3. Homozygous KI (RANKKI/KI ) mice are born at the predicted Mendelian frequency and normal in tooth eruption. However, RANKKI/KI mice exhibit significantly more trabecular bone mass than age- and sex-matched heterozygous KI (RANK+/KI ) and wild-type (RANK+/+ ) counterparts. Bone marrow macrophages (BMMs) from RANKKI/KI mice do not form osteoclasts when they are stimulated with macrophage colony-stimulating factor (M-CSF) and RANKL in vitro. RANKL is able to activate the NF-κB, ERK, p38, and JNK pathways in RANKKI/KI BMMs, but it cannot stimulate c-Fos or NFATc1 in the RANKKI/KI cells. Previously, we showed that RANK signaling plays an important role in Porphyromonas gingivalis (Pg)-mediated osteoclast formation by committing BMMs into the osteoclast lineage. Here, we show that RANKL-primed RANKKI/KI BMMs are unable to differentiate into osteoclasts in response to Pg stimulation, indicating that the two RANK motifs are required for Pg-induced osteoclastogenesis. Mechanistically, RANK Motifs 2 and 3 facilitate Pg-induced osteoclastogenesis by stimulating c-Fos and NFATc1 expression during the RANKL pretreatment phase as well as rendering c-Fos and NFATc1 genes responsive to subsequent Pg stimulation. Cell-penetrating peptides (CPPs) conjugated with RANK segments containing Motif 2 or 3 block RANKL- and Pg-mediated osteoclastogenesis. The CPP conjugates abrogate RANKL-stimulated c-Fos and NFATc1 expression but do not affect RANKL-induced activation of NF-κB, ERK, p38, JNK, or Akt signaling pathway. Taken together, our current findings demonstrate that RANK Motifs 2 and 3 play pivotal roles in osteoclast formation in vivo and mediate Pg-induced osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhenqi Shi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shenyuan Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Chongqing Key Laboratory of Oral Diseases and Biological Science, Stomatological Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongfeng Zhao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xu Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Zhao D, Shu B, Wang C, Zhao Y, Cheng W, Sha N, Li C, Wang Q, Lu S, Wang Y. Oleanolic acid exerts inhibitory effects on the late stage of osteoclastogenesis and prevents bone loss in osteoprotegerin knockout mice. J Cell Biochem 2019; 121:152-164. [PMID: 31318102 DOI: 10.1002/jcb.28994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Postmenopausal women undergo rapid bone loss, which caused by the accelerated osteoclastic bone resorption. Receptor activator of nuclear factor kappa-B ligand (RANKL) plays critical and essential roles on varied stages of osteoclastogenesis. Oleanolic acid (OA), a naturally derived small compound, has been found suppress osteoclastogenesis in early stage of bone marrow macrophages (BMMs). However, whether OA also regulates the late stage of osteoclastogenesis remains unclear. Here, the regulatory effect of OA on the late stage of osteoclastogenesis was investigated in vitro using RANKL-pretreated BMMs and in vivo using osteoprotegerin (OPG) knockout mice. Our in vitro studies demonstrate that OA inhibits the late stage of osteoclastogenesis from RANKL-pretreated BMMs. For in vivo animal investigation, OA attenuates the bone loss phenotypes in OPG-knockout mice by decreasing the densities of osteoclast, which are in consistent with the finding with in vitro osteoclastogenesis. Mechanistic investigations found that OA largely inhibit the activity of c-Fos and Nuclear factor of activated T-cells c1 (NFATc1) with RANKL-pretreated BMMs and OPG-knockout mice. Furthermore, OA suppresses the activities of osteoclast genes, such as Tartrate resistant acid phosphatase (TRAP), CathepsinK (Ctsk), and Matrix metalloproteinase 9 (MMP9). Taken together these findings, they have not only defined an inhibitory effect of OA in the late stage of osteoclastogenesis but have also gained new molecular mechanisms underlying the process of osteoclast formation.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Bing Shu
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chenglong Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Central Laboratory of Research, Longhua Hospital, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Weidong Cheng
- Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan, China
| | - Nannan Sha
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chenguang Li
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qiang Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Sheng Lu
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
25
|
Ilesanmi-Oyelere BL, Schollum L, Kuhn-Sherlock B, McConnell M, Mros S, Coad J, Roy NC, Kruger MC. Inflammatory markers and bone health in postmenopausal women: a cross-sectional overview. IMMUNITY & AGEING 2019; 16:15. [PMID: 31333751 PMCID: PMC6621960 DOI: 10.1186/s12979-019-0155-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Background Cytokines, chemokines, C-reactive proteins (CRP) and ferritin are known inflammatory markers. However, cytokines such as interleukin (IL-1β), (IL-6) and tumour necrosis factor (TNF-α) have been reported to interfere with both the bone resorption and bone formation processes. Similarly, immune cell cytokines are known to contribute to inflammation of the adipose tissue especially with obesity. IL-10 but not IL-33 has been linked to lower ferritin levels and anemia. In this study, we hypothesized that specific cytokine levels in the plasma of women with low bone mineral density (BMD) would be higher than those in the plasma of healthy women due to the actions of elevated levels of pro-inflammatory cytokines in inducing osteoclast formation and differentiation during senescence. Results Levels of cytokines (IFNα2, IFN-γ, IL-12p70, IL-33) and monocyte chemoattractant protein-1 (MCP-1) were significantly higher in the plasma of the osteoporotic group compared to the osteopenic and/or healthy groups. Meanwhile CRP levels were significantly lower in women with osteoporosis (P = 0.040) than the osteopenic and healthy groups. Hip BMD values were significantly lower in women with high/detectable values of IL-1β (P = 0.020) and IL-6 (P = 0.030) compared to women where these were not detected. Similarly, women with high/detectable values of IL-1β had significantly lower spine BMD than those where IL-1β was not detected (P = 0.030). Participants’ CRP levels were significantly positively correlated with BMI, fat mass and fat percentage (P < 0.001). In addition, ferritin levels of women with high/detectable values of anti-osteoclastogenic IL-10 (P = 0.012) and IL-33 (P = 0.017) were significantly lower than those where these were not detected. There was no statistically significant association between TNF-α and BMD of the hip and lumbar spine. Conclusions High levels of cytokines (IFNα2, IFN-γ, IL-12p70, IL-33) and MCP-1 in apparently healthy postmenopausal women are associated with bone health issues. In addition, an increase in levels of IL-10 and IL-33 may be associated with low ferritin levels in this age group. Trial registration ANZCTR, ACTRN12617000802303. Registered May 31st, 2017, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373020
Collapse
Affiliation(s)
- Bolaji Lilian Ilesanmi-Oyelere
- 1Department of Nutritional Science, School of Food and Advanced Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand.,2Riddet Institute, Palmerston North, 4442 New Zealand.,3Food Nutrition & Health Team, AgResearch Grasslands, Palmerston North, 4442 New Zealand
| | - Linda Schollum
- Fonterra Research and Development Centre, Palmerston North, 4472 New Zealand
| | | | - Michelle McConnell
- 6Department of Microbiology and Immunology, University of Otago, Dunedin, 9054 New Zealand
| | - Sonya Mros
- 6Department of Microbiology and Immunology, University of Otago, Dunedin, 9054 New Zealand
| | - Jane Coad
- 1Department of Nutritional Science, School of Food and Advanced Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Nicole C Roy
- 2Riddet Institute, Palmerston North, 4442 New Zealand.,3Food Nutrition & Health Team, AgResearch Grasslands, Palmerston North, 4442 New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Marlena Cathorina Kruger
- 1Department of Nutritional Science, School of Food and Advanced Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand.,2Riddet Institute, Palmerston North, 4442 New Zealand.,8School of Health Sciences, College of Health, Massey University, Palmerston North, 4442 New Zealand
| |
Collapse
|
26
|
Fleischmann RM, Bliddal H, Blanco FJ, Schnitzer TJ, Peterfy C, Chen S, Wang L, Feng S, Conaghan PG, Berenbaum F, Pelletier J, Martel‐Pelletier J, Vaeterlein O, Kaeley GS, Liu W, Kosloski MP, Levy G, Zhang L, Medema JK, Levesque MC. A Phase
II
Trial of Lutikizumab, an Anti–Interleukin‐1α/β Dual Variable Domain Immunoglobulin, in Knee Osteoarthritis Patients With Synovitis. Arthritis Rheumatol 2019; 71:1056-1069. [DOI: 10.1002/art.40840] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Henning Bliddal
- Bispebjerg‐Frederiksberg Hospital and University of Copenhagen Copenhagen Denmark
| | | | | | | | - Su Chen
- AbbVie Inc. North Chicago Illinois
| | - Li Wang
- AbbVie Inc. North Chicago Illinois
| | | | | | - Francis Berenbaum
- Sorbonne UniversitéINSERM, and AP‐HP Hospital Saint‐Antoine Paris France
| | | | | | | | | | - Wei Liu
- AbbVie Inc. North Chicago Illinois
| | | | | | | | | | | |
Collapse
|
27
|
Cui Y, Fu S, Sun D, Xing J, Hou T, Wu X. EPC-derived exosomes promote osteoclastogenesis through LncRNA-MALAT1. J Cell Mol Med 2019; 23:3843-3854. [PMID: 31025509 PMCID: PMC6533478 DOI: 10.1111/jcmm.14228] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/17/2022] Open
Abstract
Bone repair involves bone resorption through osteoclastogenesis and the stimulation of neovascularization and osteogenesis by endothelial progenitor cells (EPCs). However, the role of EPCs in osteoclastogenesis is unclear. In this study, we assess the effects of EPC-derived exosomes on the migration and osteoclastic differentiation of primary mouse bone marrow-derived macrophages (BMMs) in vitro using immunofluorescence, western blotting, RT-PCR and Transwell assays. We also evaluated the effects of EPC-derived exosomes on the homing and osteoclastic differentiation of transplanted BMMs in a mouse bone fracture model in vivo. We found that EPCs cultured with BMMs secreted exosomes into the medium and, compared with EPCs, exosomes had a higher expression level of LncRNA-MALAT1. We confirmed that LncRNA-MALAT1 directly binds to miR-124 to negatively control miR-124 activity. Moreover, overexpression of miR-124 could reverse the migration and osteoclastic differentiation of BMMs induced by EPC-derived exosomes. A dual-luciferase reporter assay indicated that the integrin ITGB1 is the target of miR-124. Mice treated with EPC-derived exosome-BMM co-transplantations exhibited increased neovascularization at the fracture site and enhanced fracture healing compared with those treated with BMMs alone. Overall, our results suggest that EPC-derived exosomes can promote bone repair by enhancing recruitment and differentiation of osteoclast precursors through LncRNA-MALAT1.
Collapse
Affiliation(s)
- Yigong Cui
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Shenglong Fu
- Department of Orthopaedics, Jinan Fifth People's Hospital, Shandong, P.R. China
| | - Dong Sun
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Junchao Xing
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Tianyong Hou
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xuehui Wu
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
28
|
Yang J, Tang R, Yi J, Chen Y, Li X, Yu T, Fei J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J 2019; 33:7261-7273. [PMID: 30857415 PMCID: PMC6554198 DOI: 10.1096/fj.201802172r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal homeostasis is closely effectuated by the regulation of bone formation and bone resorption. Osteoclasts are multinuclear giant cells responsible for bone resorption. Overactivated osteoclasts and excessive bone resorption result in various lytic bone diseases, such as osteoporosis, osteoarthritis, periprosthetic infection, and inflammatory aseptic loosening of orthopedic implants. In consideration of the severe side effects caused by the currently available drugs, exploitation of novel drugs has gradually attracted attention. Because of its anti-inflammatory, antioxidant, and antitumor capacities, diallyl disulfide (DADS), a major oil-soluble organosulfur ingredient compound derived from garlic, has been widely researched. However, the effects of DADS on osteoclasts and lytic bone diseases are still unknown. In this study, we investigated the effects of DADS on receptor activator of NF-κB ligand (RANKL)- and LPS-mediated osteoclastogenesis, LPS-stimulated proinflammatory cytokines related to osteoclasts, and LPS-induced inflammatory osteolysis. The results showed that DADS significantly inhibited RANKL-mediated osteoclast formation, fusion, and bone resorption in a dose-dependent manner via inhibiting the NF-κB and signal transducer and activator of transcription 3 signaling and restraining the interaction of NF-κB p65 with nuclear factor of activated T cells cytoplasmic 1. Furthermore, DADS also markedly suppressed LPS-induced osteoclastogenesis and reduced the production of proinflammatory cytokines with LPS stimulation to indirectly mediate osteoclast formation. Consistent with the in vitro results, DADS prevented the LPS-induced severe bone loss by blocking the osteoclastogenesis. All of the results indicate that DADS may be a potential and exploitable drug used for preventing and impeding osteolytic lesions.-Yang, J., Tang, R., Yi, J., Chen, Y., Li, X., Yu, T., Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Jing Yang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ruohui Tang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jin Yi
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Xianghe Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guizhou Medical University, Guiyang, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Jun Fei
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
29
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
30
|
Kloppenburg M, Peterfy C, Haugen IK, Kroon F, Chen S, Wang L, Liu W, Levy G, Fleischmann RM, Berenbaum F, van der Heijde D, Bansal P, Wittoek R, Feng S, Fang Y, Saltarelli M, Medema JK, Levesque MC. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1α and anti-interleukin-1β dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann Rheum Dis 2018; 78:413-420. [PMID: 30552176 PMCID: PMC6390132 DOI: 10.1136/annrheumdis-2018-213336] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess the efficacy, safety, pharmacokinetics and pharmacodynamics of the anti-interleukin (IL)-1α/β dual variable domain immunoglobulin lutikizumab (ABT-981) in erosive hand osteoarthritis (HOA). METHODS Patients with ≥1 erosive and ≥3 tender and/or swollen hand joints were randomised to placebo or lutikizumab 200 mg subcutaneously every 2 weeks for 24 weeks. The primary endpoint was change in Australian/Canadian Osteoarthritis Hand Index (AUSCAN) pain subdomain score from baseline to 16 weeks. At baseline and week 26, subjects had bilateral hand radiographs and MRI of the hand with the greatest number of baseline tender and/or swollen joints. Continuous endpoints were assessed using analysis of covariance models, with treatment and country as main factors and baseline measurements as covariates. RESULTS Of 132 randomised subjects, 1 received no study drug and 110 completed the study (placebo, 61/67 (91%); lutikizumab, 49/64 (77%)). AUSCAN pain was not different among subjects treated with lutikizumab versus placebo at week 16 (least squares mean difference, 1.5 (95% CI -1.9 to 5.0)). Other clinical and imaging endpoints were not different between lutikizumab and placebo. Lutikizumab significantly decreased serum high-sensitivity C reactive protein levels, IL-1α and IL-1β levels, and blood neutrophils. Lutikizumab pharmacokinetics were consistent with phase I studies and not affected by antidrug antibodies. Injection site reactions and neutropaenia were more common in the lutikizumab group; discontinuations because of adverse events occurred more frequently with lutikizumab (4/64) versus placebo (1/67). CONCLUSION Despite adequate blockade of IL-1, lutikizumab did not improve pain or imaging outcomes in erosive HOA compared with placebo.
Collapse
Affiliation(s)
- Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ida K Haugen
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - Féline Kroon
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Su Chen
- Data and Statistical Sciences, AbbVie, North Chicago, Illinois, USA
| | - Li Wang
- Development Design Center, AbbVie, North Chicago, Illinois, USA
| | - Wei Liu
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, Illinois, USA
| | - Gwen Levy
- Pharmacovigilance and Patient Safety, AbbVie, North Chicago, Illinois, USA
| | - Roy M Fleischmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Metroplex Clinical Research Center, Dallas, Texas, USA
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne Universités and Inserm, DHU i2B, APHP, Hospital Saint-Antoine, Paris, France
| | | | - Prashant Bansal
- Scientific and Medical Services, PAREXEL, Waltham, Massachusetts, USA
| | - Ruth Wittoek
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Sheng Feng
- Exploratory Statistics, Data Science and Statistics, AbbVie, North Chicago, Illinois, USA
| | - Yuni Fang
- Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie, North Chicago, Illinois, USA
| | - Mary Saltarelli
- Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie, North Chicago, Illinois, USA
| | - Jeroen K Medema
- Immunology Development, AbbVie, North Chicago, Illinois, USA
| | - Marc C Levesque
- Immunology Development, AbbVie, North Chicago, Illinois, USA
| |
Collapse
|
31
|
Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 2018; 14:2029-2049. [PMID: 30464484 PMCID: PMC6225907 DOI: 10.2147/tcrm.s138000] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a bone disorder with remarkable changes in bone biologic material and consequent bone structural distraction, affecting millions of people around the world from different ethnic groups. Bone fragility is the worse outcome of the disease, which needs long term therapy and medical management, especially in the elderly. Many involved genes including environmental factors have been introduced as the disease risk factors so far, of which genes should be considered as effective early diagnosis biomarkers, especially for the individuals from high-risk families. In this review, a number of important criteria involved in osteoporosis are addressed and discussed.
Collapse
Affiliation(s)
- Farkhondeh Pouresmaeili
- Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Behnam Kamalidehghan
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
- Medical Genetics Center, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran,
| | - Maryam Kamarehei
- Department of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran,
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
32
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
33
|
Lee WS, Lee EG, Sung MS, Choi YJ, Yoo WH. Atorvastatin inhibits osteoclast differentiation by suppressing NF-κB and MAPK signaling during IL-1β-induced osteoclastogenesis. Korean J Intern Med 2018; 33:397-406. [PMID: 28352062 PMCID: PMC5840582 DOI: 10.3904/kjim.2015.244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 03/11/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS To define the effect of statins on interleukin 1β (IL-1β)-induced osteoclastogenesis and elucidate the underlying mechanisms. METHODS Bone marrow cells were obtained from 5-week-old male ICR (Institute for Cancer Research) mice, and they were cultured to differentiate them into osteoclasts with macrophage colony-stimulating factor and the receptor activator of nuclear factor (NF)-κB ligand in the presence or absence of IL-1β or atorvastatin. The formation of osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and resorption pit assay with dentine slice. The molecular mechanisms of the effects of atorvastatin on osteoclastogenesis were investigated using reverse transcription polymerase chain reaction and immunoblotting for osteoclast specific molecules. RESULTS Atorvastatin significantly reduced the number of TRAP-positive multinucleated cells as well as the bone resorption area. Atorvastatin also downregulated the expression of the NF of activated T-cell c1 messenger RNA and inhibited the expression of osteoclast-specific genes. A possible underlying mechanism may be that atorvastatin suppresses the degradation of the inhibitors of NF-κB and blocks the activation of the c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; thus, implicating the NF-κB and mitogen-activated protein kinases pathway in this process. CONCLUSIONS Atorvastatin is a strong inhibitor of inflammation-induced osteoclastogenesis in inflammatory joint diseases.
Collapse
Affiliation(s)
| | | | | | | | - Wan-Hee Yoo
- Correspondence to Wan-Hee Yoo, M.D. Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea Tel: +82-63-250-1672 Fax: +82-63-254-1609 E-mail:
| |
Collapse
|
34
|
Wang Q, Zhao Y, Sha N, Zhang Y, Li C, Zhang H, Tang D, Lu S, Shi Q, Wang Y, Shu B, Zhao D. The systemic bone protective effects of Gushukang granules in ovariectomized mice by inhibiting osteoclastogenesis and stimulating osteoblastogenesis. J Pharmacol Sci 2018; 136:155-164. [DOI: 10.1016/j.jphs.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/04/2023] Open
|
35
|
Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw 2018; 18:e8. [PMID: 29503739 PMCID: PMC5833125 DOI: 10.4110/in.2018.18.e8] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022] Open
Abstract
Cytokines play a pivotal role in maintaining bone homeostasis. Osteoclasts (OCs), the sole bone resorbing cells, are regulated by numerous cytokines. Macrophage colony-stimulating factor and receptor activator of NF-κB ligand play a central role in OC differentiation, which is also termed osteoclastogenesis. Osteoclastogenic cytokines, including tumor necrosis factor-α, IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, IL-17, IL-23, and IL-34, promote OC differentiation, whereas anti-osteoclastogenic cytokines, including interferon (IFN)-α, IFN-β, IFN-γ, IL-3, IL-4, IL-10, IL-12, IL-27, and IL-33, downregulate OC differentiation. Therefore, dynamic regulation of osteoclastogenic and anti-osteoclastogenic cytokines is important in maintaining the balance between bone-resorbing OCs and bone-forming osteoblasts (OBs), which eventually affects bone integrity. This review outlines the osteoclastogenic and anti-osteoclastogenic properties of cytokines with regard to osteoimmunology, and summarizes our current understanding of the roles these cytokines play in osteoclastogenesis.
Collapse
Affiliation(s)
| | - Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyunjong Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
36
|
Jules J, Li YP, Chen W. C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis. Bone 2018; 107:104-114. [PMID: 29032174 PMCID: PMC6240464 DOI: 10.1016/j.bone.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
The transcription factors C/EBPα and PU.1 are upregulated by RANKL through activation of its receptor RANK during osteoclastogenesis and are critical for osteoclast differentiation. Herein we investigated the mechanisms underlying how C/EBPα and PU.1 regulate osteoclast differentiation in response to RANK signaling. We showed that C/EBPα or PU.1 overexpression could initiate osteoclastogenesis and upregulate the expressions of the osteoclast genes encoding the nuclear factor of activated T-cells, C1, cathepsin K, and tartrate-resistant acid phosphatase independently of RANKL. However, while PU.1 upregulated C/EBPα, C/EBPα could not upregulate PU.1. RANK has a unique cytoplasmic domain, 535IVVY538 motif, which is crucial for osteoclast differentiation. We demonstrated that mutational inactivation of RANK IVVY motif blocked osteoclast differentiation and significantly attenuated C/EBPα, but not PU.1, expression, indicating that RANK-IVVY-induced signaling is dispensable to PU.1 upregulation during osteoclastogenesis. However, C/EBPα or PU.1 overexpression failed to promote osteoclastogenesis in cells expressing mutated RANK IVVY motif. We noted that RANK-IVVY-motif inactivation significantly repressed osteoclast genes as compared with a vector control, suggesting that IVVY motif might also negatively regulate osteoclast inhibitors during osteoclastogenesis. Consistently, IVVY-motif inactivation triggered upregulation of RBP-J, a potent osteoclast inhibitor, during osteoclastogenesis. Notably, C/EBPα or PU.1 overexpression in cells expressing mutated RANK IVVY motif failed to control the deregulated RBP-J expression, resulting in repression of osteoclast genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or PU.1 overexpression. In conclusion, we revealed that while PU.1 and C/EBPα are critical for osteoclastogenesis, they respond differently to RANKL-induced activation of RANK IVVY motif.
Collapse
Affiliation(s)
- Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States.
| | - Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States.
| |
Collapse
|
37
|
Jules J, Chen W, Feng X, Li YP. C/EBPα transcription factor is regulated by the RANK cytoplasmic 535IVVY 538 motif and stimulates osteoclastogenesis more strongly than c-Fos. J Biol Chem 2018; 293:1480-1492. [PMID: 29122885 PMCID: PMC5787821 DOI: 10.1074/jbc.m116.736009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2017] [Indexed: 01/18/2023] Open
Abstract
Binding of receptor activator of NF-κB ligand (RANKL) to its receptor RANK on osteoclast (OC) precursors up-regulates c-Fos and CCAAT/enhancer-binding protein-α (C/EBPα), two critical OC transcription factors. However, the effects of c-Fos and C/EBPα on osteoclastogenesis have not been compared. Herein, we demonstrate that overexpression of c-Fos or C/EBPα in OC precursors up-regulates OC genes and initiates osteoclastogenesis independently of RANKL. However, although C/EBPα up-regulated c-Fos, c-Fos failed to up-regulate C/EBPα in OC precursors. Consistently, C/EBPα overexpression more strongly promoted OC differentiation than did c-Fos overexpression. RANK has a cytoplasmic 535IVVY538 (IVVY) motif that is essential for osteoclastogenesis, and we found that mutation of the IVVY motif blocked OC differentiation by partly inhibiting expression of C/EBPα but not expression of c-Fos. We therefore hypothesized that C/EBPα overexpression might rescue osteoclastogenesis in cells expressing the mutated IVVY motif. However, overexpression of C/EBPα or c-Fos failed to stimulate osteoclastogenesis in the mutant cells. Notably, the IVVY motif mutation abrogated OC gene expression compared with a vector control, suggesting that the IVVY motif might counteract OC inhibitors during osteoclastogenesis. Consistently, the IVVY motif mutant triggered up-regulation of recombinant recognition sequence-binding protein at the Jκ site (RBP-J) protein, a potent OC inhibitor. Mechanistically, C/EBPα or c-Fos overexpression in the mutant cells failed to control the up-regulated RBP-J expression, leading to suppression of OC genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or c-Fos overexpression with C/EBPα exhibiting a stronger osteoclastogenic effect. Collectively, our findings indicate that C/EBPα is a stronger inducer of OC differentiation than c-Fos, partly via C/EBPα regulation by the RANK 535IVVY538 motif.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
38
|
Nasi S, Ea HK, So A, Busso N. Revisiting the Role of Interleukin-1 Pathway in Osteoarthritis: Interleukin-1α and -1β, and NLRP3 Inflammasome Are Not Involved in the Pathological Features of the Murine Menisectomy Model of Osteoarthritis. Front Pharmacol 2017; 8:282. [PMID: 28659793 PMCID: PMC5468399 DOI: 10.3389/fphar.2017.00282] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/04/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Innate immune response components such as toll-like receptors (TLRs) and NLRP3-inflammasome act in concert to increase IL-1α/β secretion by synovial macrophages. Previous results suggest that IL-1α/β could be an important mediator involved in the pathogenesis of osteoarthritis (OA). Objectives: The aim of our study was to evaluate the role of NLRP3, IL-1β, and IL-1α in the menisectomy (MNX) model of murine OA. Methods: Murine chondrocytes (CHs) and bone marrow-derived machrophages (BMDM) were stimulated with hydroxyapatite (HA) crystals, a form of calcium-containing crystal found in human OA, and IL-1β and IL-6 secretion assayed by ELISA.Conversely, the ability of IL-1β and IL-6 to induce CHs calcification was assessed in vitro by Alizarin red staining. Knees from 8 to 10 weeks old C57Bl/6J wild-type (WT) (n = 7), NLRP3-/- (n = 9), IL-1α-/- (n = 5), and IL-1β-/- (n = 5) mice were menisectomized, using the sham-operated contralateral knee as control. 8 weeks later, knee cartilage degradation and synovial inflammation were evaluated by histology. In addition, apoptotic chondrocytes, metalloproteases activity, and collagen-type 2 expression were evaluated in all mice. Joint calcification and subchondral bone parameters were quantified by CT-scan in WT and IL-1β-/- menisectomized knees. Results:In vitro, HA crystals induced significant increased IL-6 secretion by CHs, while IL-1β remained undetectable.Conversely, both IL-6 and IL-1β were able to increase chondrocytes mineralization. In vivo, operated knees exhibited OA features compared to sham-operated knees as evidenced by increased cartilage degradation and synovial inflammation. In menisectomized KO mice, severity and extent of cartilage lesions were similar (IL-1α-/- mice) or exacerbated (IL-1β-/- and NLRP3-/- mice) compared to that of menisectomized WT mice. Metalloproteases activity, collagen-type 2 expression, chondrocytes apoptosis, and synovial inflammation were similar between KO and WT mice menisectomized knees. Moreover, the extent of joint calcification in osteoarthritic knees was comparable between IL-1β-/- and WT mice. Conclusions: MNX knees recapitulated features of OA, i.e, cartilage destruction, synovial inflammation, cell death, and joint calcification. Deficiency of IL-1α did not impact on the severity of these features, whereas deficiency of IL-1β or of NLRP3 led to increased cartilage erosion. Our results suggest that IL-1α and IL-1β are not key mediators in this murine OA model and may explain the inefficiency of IL-1 targeted therapies in OA.
Collapse
Affiliation(s)
- Sonia Nasi
- Département de l'appareil Locomoteur, Service of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of LausanneLausanne, Switzerland
| | - Hang-Korng Ea
- Institut National de la Santé et de la Recherche Médicale, UMR-1132, Hospital LariboisièreParis, France.,Departement de Rhumatologie, Université Paris Diderot (UFR de Médecine)Paris, France
| | - Alexander So
- Département de l'appareil Locomoteur, Service of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of LausanneLausanne, Switzerland
| | - Nathalie Busso
- Département de l'appareil Locomoteur, Service of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of LausanneLausanne, Switzerland
| |
Collapse
|
39
|
Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways. Sci Rep 2017; 7:41411. [PMID: 28128332 PMCID: PMC5269740 DOI: 10.1038/srep41411] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 11/09/2022] Open
Abstract
Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.
Collapse
|
40
|
Iglesias-Linares A, Hartsfield JK. Cellular and Molecular Pathways Leading to External Root Resorption. J Dent Res 2016; 96:145-152. [PMID: 27811065 DOI: 10.1177/0022034516677539] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component-specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels.
Collapse
Affiliation(s)
- A Iglesias-Linares
- 1 Department of Orthodontics, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - J K Hartsfield
- 2 Oral Health Science, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
41
|
Yu J, Yun H, Shin B, Kim Y, Park ES, Choi S, Yu J, Amarasekara DS, Kim S, Inoue JI, Walsh MC, Choi Y, Takami M, Rho J. Interaction of Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) and Vav3 in the Receptor Activator of Nuclear Factor κB (RANK) Signaling Complex Enhances Osteoclastogenesis. J Biol Chem 2016; 291:20643-60. [PMID: 27507811 DOI: 10.1074/jbc.m116.728303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
The signaling pathway downstream of stimulation of receptor activator of nuclear factor κB (RANK) by RANK ligand is crucial for osteoclastogenesis. RANK recruits TNF receptor-associated factor 6 (TRAF6) to TRAF6-binding sites (T6BSs) in the RANK cytoplasmic tail (RANKcyto) to trigger downstream osteoclastogenic signaling cascades. RANKcyto harbors an additional highly conserved domain (HCR) that also activates crucial signaling during RANK-mediated osteoclastogenesis. However, the functional cross-talk between T6BSs and the HCR in the RANK signaling complex remains unclear. To characterize the cross-talk between T6BSs and the HCR, we screened TRAF6-interacting proteins using a proteomics approach. We identified Vav3 as a novel TRAF6 binding partner and evaluated the functional importance of the TRAF6-Vav3 interaction in the RANK signaling complex. We demonstrated that the coiled-coil domain of TRAF6 interacts directly with the Dbl homology domain of Vav3 to form the RANK signaling complex independent of the TRAF6 ubiquitination pathway. TRAF6 is recruited to the RANKcyto mutant, which lacks T6BSs, via the Vav3 interaction; conversely, Vav3 is recruited to the RANKcyto mutant, which lacks the IVVY motif, via the TRAF6 interaction. Finally, we determined that the TRAF6-Vav3 interaction resulting from cross-talk between T6BSs and the IVVY motif in RANKcyto enhances downstream NF-κB, MAPK, and NFATc1 activation by further strengthening TRAF6 signaling, thereby inducing RANK-mediated osteoclastogenesis. Thus, Vav3 is a novel TRAF6 interaction partner that functions in the activation of cooperative signaling between T6BSs and the IVVY motif in the RANK signaling complex.
Collapse
Affiliation(s)
- Jiyeon Yu
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Hyeongseok Yun
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Bongjin Shin
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Yongjin Kim
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Eui-Soon Park
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Seunga Choi
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jungeun Yu
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | | | - Sumi Kim
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jun-Ichiro Inoue
- the Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Matthew C Walsh
- the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Yongwon Choi
- the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Masamichi Takami
- the Department of Biochemistry, School of Dentistry, Showa University, Shinagawaku, 142-8555, Japan
| | - Jaerang Rho
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea,
| |
Collapse
|
42
|
Ashley JW, Ahn J, Hankenson KD. Notch signaling promotes osteoclast maturation and resorptive activity. J Cell Biochem 2016; 116:2598-609. [PMID: 25914241 DOI: 10.1002/jcb.25205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/13/2023]
Abstract
The role of Notch signaling in osteoclast differentiation is controversial with conflicting experimental evidence indicating both stimulatory and inhibitory roles. Differences in experimental protocols and in vivo versus in vitro models may explain the discrepancies between studies. In this study, we investigated cell autonomous roles of Notch signaling in osteoclast differentiation and function by altering Notch signaling during osteoclast differentiation using stimulation with immobilized ligands Jagged1 or Delta-like1 or by suppression with γ-secretase inhibitor DAPT or transcriptional inhibitor SAHM1. Stimulation of Notch signaling in committed osteoclast precursors resulted in larger osteoclasts with a greater number of nuclei and resorptive activity whereas suppression resulted in smaller osteoclasts with fewer nuclei and suppressed resorptive activity. Conversely, stimulation of Notch signaling in osteoclast precursors prior to induction of osteoclastogenesis resulted in fewer osteoclasts. Our data support a mechanism of context-specific Notch signaling effects wherein Notch stimulation inhibits commitment to osteoclast differentiation, but enhances the maturation and function of committed precursors.
Collapse
Affiliation(s)
- Jason W Ashley
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kurt D Hankenson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan.,Department of Physiology, Colleges of Natural Sciences and Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
43
|
Novack DV, Mbalaviele G. Osteoclasts-Key Players in Skeletal Health and Disease. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0011-2015. [PMID: 27337470 PMCID: PMC4920143 DOI: 10.1128/microbiolspec.mchd-0011-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
The differentiation of osteoclasts (OCs) from early myeloid progenitors is a tightly regulated process that is modulated by a variety of mediators present in the bone microenvironment. Once generated, the function of mature OCs depends on cytoskeletal features controlled by an αvβ3-containing complex at the bone-apposed membrane and the secretion of protons and acid-protease cathepsin K. OCs also have important interactions with other cells in the bone microenvironment, including osteoblasts and immune cells. Dysregulation of OC differentiation and/or function can cause bone pathology. In fact, many components of OC differentiation and activation have been targeted therapeutically with great success. However, questions remain about the identity and plasticity of OC precursors and the interplay between essential networks that control OC fate. In this review, we summarize the key principles of OC biology and highlight recently uncovered mechanisms regulating OC development and function in homeostatic and disease states.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gabriel Mbalaviele
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
| |
Collapse
|
44
|
Jules J, Chen W, Feng X, Li YP. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 2016; 291:16390-403. [PMID: 27129246 DOI: 10.1074/jbc.m115.674598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBPα) can appoint mouse bone marrow (MBM) cells to the osteoclast (OC) lineage for osteoclastogenesis. However, whether C/EBPα is also involved in OC differentiation and activity is unknown. Here we demonstrated that C/EBPα overexpression in MBM cells can promote OC differentiation and strongly induce the expression of the OC genes encoding the nuclear factor of activated T-cells, c1 (NFATc1), cathepsin K (Cstk), and tartrate-resistant acid phosphatase 5 (TRAP) with receptor activator of NF-κB ligand-evoked OC lineage priming. Furthermore, while investigating the specific stage of OC differentiation that is regulated by C/EBPα, our gene overexpression studies revealed that, although C/EBPα plays a stronger role in the early stage of OC differentiation, it is also involved in the later stage. Accordingly, C/EBPα knockdown drastically inhibits osteoclastogenesis and markedly abrogates the expression of NFATc1, Cstk, and TRAP during OC differentiation. Consistently, C/EBPα silencing revealed that, although lack of C/EBPα affects all stages of OC differentiation, it has more impact on the early stage. Importantly, we showed that ectopic expression of rat C/EBPα restores osteoclastogenesis in C/EBPα-depleted MBM cells. Furthermore, our subsequent functional assays showed that C/EBPα exhibits a dispensable role on actin ring formation by mature OCs but is critically involved in bone resorption by stimulating extracellular acidification and regulating cell survival. We revealed that C/EBPα is important for receptor activator of NF-κB ligand-induced Akt activation, which is crucial for OC survival. Collectively, these results indicate that C/EBPα functions throughout osteoclastogenesis as well as in OC function. This study provides additional understanding of the roles of C/EBPα in OC biology.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
45
|
Åberg CH, Kelk P, Johansson A. Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence 2016; 6:188-95. [PMID: 25494963 PMCID: PMC4601274 DOI: 10.4161/21505594.2014.982428] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an infection-induced inflammatory disease that causes loss of the tooth supporting tissues. Much focus has been put on comparison of the microbial biofilm in the healthy periodontium with the diseased one. The information arising from such studies is limited due to difficulties to compare the microbial composition in these two completely different ecological niches. A few longitudinal studies have contributed with information that makes it possible to predict which individuals who might have an increased risk of developing aggressive forms of periodontitis, and the predictors are either microbial or/and host-derived factors. The most conspicuous condition that is associated with disease risk is the presence of Aggregatibacter actinomycetemcomitans at the individual level. This Gram-negative bacterium has a great genetic variation with a number of virulence factors. In this review we focus in particular on the leukotoxin that, based on resent knowledge, might be one of the most important virulence factors of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- a Division of Molecular Periodontology; Department of Odontology; Faculty of Medicine; Umeå University ; Umeå , Sweden
| | | | | |
Collapse
|
46
|
Guimarães MV, Melo IM, Adriano Araújo VM, Tenazoa Wong DV, Roriz Fonteles CS, Moreira Leal LKA, Ribeiro RA, Lima V. Dry Extract of Matricaria recutita L. (Chamomile) Prevents Ligature-Induced Alveolar Bone Resorption in Rats via Inhibition of Tumor Necrosis Factor-α and Interleukin-1β. J Periodontol 2016; 87:706-15. [PMID: 26777767 DOI: 10.1902/jop.2016.150411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Matricaria recutita L. (chamomile) has demonstrated anti-inflammatory activity. Accordingly, the ability of the Matricaria recutita extract (MRE) to inhibit proinflammatory cytokines and its influence on alveolar bone resorption (ABR) in rats. METHODS Wistar rats were subjected to ABR by ligature with nylon thread in the second upper-left molar, with contralateral hemiarcade as control. Rats received polysorbate TW80 (vehicle) or MRE (10, 30, and 90 mg/kg) 1 hour before ligature and daily until day 11. The periodontium was analyzed by macroscopy, histometry, histopathology, and immunohistochemistry for the receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase (TRAP). The gingival tissue was used to quantify the myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels by enzyme-linked immunosorbent assay. Blood samples were collected to evaluate bone-specific alkaline phosphatase (BALP), leukogram, and dosages of aspartate and alanine transaminases, urea, and creatinine. Aspects of liver, kidneys, spleen, and body mass variations were also evaluated. RESULTS The 11 days of ligature induced bone resorption, low levels of BALP, leukocyte infiltration; increase of MPO, TNF-α, and IL-1β; immunostaining increase for RANKL and TRAP; reduction of OPG and leukocytosis, which were significantly prevented by MRE, except for the low levels of BALP and the leukocytosis. Additionally, MRE did not alter organs or body weights of rats. CONCLUSION MRE prevented the inflammation and ABR by reducing TNF-α and IL-1β, preventing the osteoclast activation via the RANKL-OPG axis, without interfering with bone anabolism.
Collapse
Affiliation(s)
- Mariana Vasconcelos Guimarães
- Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Dentistry Course, Unileão University Center, Juazeiro do Norte, Ceará, Brazil
| | - Iracema Matos Melo
- Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Vilma Lima
- Department of Physiology and Pharmacology, Federal University of Ceará
| |
Collapse
|
47
|
Seong S, Kim JH, Kim N. Pro-inflammatory Cytokines Modulating Osteoclast Differentiation and Function. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.3.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
48
|
Chen Z, Su L, Xu Q, Katz J, Michalek SM, Fan M, Feng X, Zhang P. IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1). J Biol Chem 2015; 290:30163-74. [PMID: 26483549 DOI: 10.1074/jbc.m115.663518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLR) and the receptor for interleukin-1 (IL-1R) signaling play an important role in bacteria-mediated bone loss diseases including periodontitis, rheumatoid arthritis, and osteomyelitis. Recent studies have shown that TLR ligands inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation from un-committed osteoclast precursors, whereas IL-1 potentiates RANKL-induced osteoclast formation. However, IL-1R and TLR belong to the same IL-1R/TLR superfamily, and activate similar intracellular signaling pathways. Here, we investigate the molecular mechanisms underlying the distinct effects of IL-1 and Porphyromonas gingivalis lipopolysaccharide (LPS-PG) on RANKL-induced osteoclast formation. Our results show that LPS-PG and IL-1 differentially regulate RANKL-induced activation of osteoclast genes encoding Car2, Ctsk, MMP9, and TRAP, as well as expression of NFATc1, a master transcription factor of osteoclastogenesis. Regulation of osteoclast genes and NFATc1 by LPS-PG and IL-1 is dependent on MyD88, an important signaling adaptor for both TLR and IL-1R family members. Furthermore, LPS-PG and IL-1 differentially regulate RANKL-costimulatory receptor OSCAR (osteoclast-associated receptor) expression and Ca(2+) oscillations induced by RANKL. Moreover, LPS-PG completely abrogates RANKL-induced gene expression of B lymphocyte-induced maturation protein-1 (Blimp1), a global transcriptional repressor of anti-osteoclastogenic genes encoding Bcl6, IRF8, and MafB. However, IL-1 enhances RANKL-induced blimp1 gene expression but suppresses the gene expression of bcl6, irf8, and mafb. Our study reveals the involvement of multiple signaling molecules in the differential regulation of RANKL-induced osteoclastogenesis by TLR2 and IL-1 signaling. Understanding the signaling cross-talk among TLR, IL-1R, and RANK is critical for identifying therapeutic strategies to control bacteria-mediated bone loss.
Collapse
Affiliation(s)
- Zhihong Chen
- From the Departments of Pediatric Dentistry, the Department of Prosthodontics, School and Hospital of Stomatology, Zhejiang University, Hangzhou, Zhejiang 310006, China, and
| | - Lingkai Su
- From the Departments of Pediatric Dentistry
| | - Qingan Xu
- From the Departments of Pediatric Dentistry, the The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jenny Katz
- From the Departments of Pediatric Dentistry
| | | | - Mingwen Fan
- the The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xu Feng
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Ping Zhang
- From the Departments of Pediatric Dentistry,
| |
Collapse
|
49
|
Jules J, Wang S, Shi Z, Liu J, Wei S, Feng X. The IVVY Motif and Tumor Necrosis Factor Receptor-associated Factor (TRAF) Sites in the Cytoplasmic Domain of the Receptor Activator of Nuclear Factor κB (RANK) Cooperate to Induce Osteoclastogenesis. J Biol Chem 2015; 290:23738-50. [PMID: 26276390 DOI: 10.1074/jbc.m115.667535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 01/05/2023] Open
Abstract
Receptor activator of NF-κB (RANK) activation by RANK ligand (RANKL) mediates osteoclastogenesis by recruiting TNF receptor-associated factors (TRAFs) via three cytoplasmic motifs (motif 1, PFQEP(369-373); motif 2, PVQEET(559-564); and motif 3, PVQEQG(604-609)) to activate the NF-κB and MAPK signaling pathways. RANK also has a TRAF-independent motif (IVVY(535-538)), which is dispensable for the activation of TRAF-induced signaling pathways but essential for osteoclast lineage commitment by inducing the expression of nuclear factor of activated T-cells c1 (NFATc1) to regulate osteoclast gene expression. Notably, TNF/IL-1-mediated osteoclastogenesis requires RANK ligand assistance, and the IVVY motif is also critical for TNF/IL-1-mediated osteoclastogenesis by rendering osteoclast genes responsive to these two cytokines. Here we show that the two types of RANK cytoplasmic motifs have to be on the same RANK molecule to mediate osteoclastogenesis, suggesting a functional cooperation between them. Subsequent osteoclastogenesis assays with TNF or IL-1 revealed that, although all three TRAF motifs play roles in TNF/IL-1-mediated osteoclastogenesis, motifs 2 and 3 are more potent than motif 1. Accordingly, inactivation of motifs 2 and 3 blocksTNF/IL-1-mediated osteoclastogenesis. Mechanistically, double mutation of motifs 2 and 3, similar to inactivation of the IVVY motif, abrogates the expression of nuclear factor of activated T-cells c1 and osteoclast genes in assays reflecting RANK-initiated and TNF/IL-1-mediated osteoclastogenesis. In contrast, double inactivation of motifs 2 and 3 did not affect the ability of RANK to activate the NF-κB and MAPK signaling pathways. Collectively, these results indicate that the RANK IVVY motif cooperates with the TRAF-binding motifs to promote osteoclastogenesis, which provides novel insights into the molecular mechanism of RANK signaling in osteoclastogenesis.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Shunqing Wang
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and the Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Zhenqi Shi
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Jianzhong Liu
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Shi Wei
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Xu Feng
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| |
Collapse
|
50
|
Liu H, Cai H, Ren Z, Zhong J, Li J. Clozapine Regulates Cytokines, T-cell Subsets and Immunoglobulins Serum Levels in MK-801-Evoked Schizophrenia Rat. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.596.603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|