1
|
Cha S, Min WK, Seo HS. Arabidopsis COP1 guides stomatal response in guard cells through pH regulation. Commun Biol 2024; 7:150. [PMID: 38316905 PMCID: PMC10844630 DOI: 10.1038/s42003-024-05847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Plants rely on precise regulation of their stomatal pores to effectively carry out photosynthesis while managing water status. The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical light signaling repressor, is known to repress stomatal opening, but the exact cellular mechanisms remain unknown. Here, we show that COP1 regulates stomatal movement by controlling the pH levels in guard cells. cop1-4 mutants have larger stomatal apertures and disrupted pH dynamics within guard cells, characterized by increased vacuolar and cytosolic pH and reduced apoplastic pH, leading to abnormal stomatal responses. The altered pH profiles are attributed to the increased plasma membrane (PM) H+-ATPase activity of cop1-4 mutants. Moreover, cop1-4 mutants resist to growth defect caused by alkali stress posed on roots. Overall, our study highlights the crucial role of COP1 in maintaining pH homeostasis of guard cells by regulating PM H+-ATPase activity, and demonstrates how proton movement affects stomatal movement and plant growth.
Collapse
Affiliation(s)
- Seoyeon Cha
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
3
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
4
|
Dreyer I, Li K, Riedelsberger J, Hedrich R, Konrad KR, Michard E. Transporter networks can serve plant cells as nutrient sensors and mimic transceptor-like behavior. iScience 2022; 25:104078. [PMID: 35378857 PMCID: PMC8976136 DOI: 10.1016/j.isci.2022.104078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Sensing of external mineral nutrient concentrations is essential for plants to colonize environments with a large spectrum of nutrient availability. Here, we analyzed transporter networks in computational cell biology simulations to understand better the initial steps of this sensing process. The networks analyzed were capable of translating the information of changing external nutrient concentrations into cytosolic H+ and Ca2+ signals, two of the most ubiquitous cellular second messengers. The concept emerging from the computational simulations was confirmed in wet-lab experiments. We document in guard cells that alterations in the external KCl concentration were translated into cytosolic H+ and Ca2+ transients as predicted. We show that transporter networks do not only serve their primary task of transport, but can also take on the role of a receptor without requiring conformational changes of a transporter protein. Such transceptor-like phenomena may be quite common in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Kai R. Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
5
|
Dreyer I. Nutrient cycling is an important mechanism for homeostasis in plant cells. PLANT PHYSIOLOGY 2021; 187:2246-2261. [PMID: 34890457 PMCID: PMC8644529 DOI: 10.1093/plphys/kiab217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 05/02/2023]
Abstract
Homeostasis in living cells refers to the steady state of internal, physical, and chemical conditions. It is sustained by self-regulation of the dynamic cellular system. To gain insight into the homeostatic mechanisms that maintain cytosolic nutrient concentrations in plant cells within a homeostatic range, we performed computational cell biology experiments. We mathematically modeled membrane transporter systems and simulated their dynamics. Detailed analyses of 'what-if' scenarios demonstrated that a single transporter type for a nutrient, irrespective of whether it is a channel or a cotransporter, is not sufficient to calibrate a desired cytosolic concentration. A cell cannot flexibly react to different external conditions. Rather, at least two different transporter types for the same nutrient, which are energized differently, are required. The gain of flexibility in adjusting a cytosolic concentration was accompanied by the establishment of energy-consuming cycles at the membrane, suggesting that these putatively "futile" cycles are not as futile as they appear. Accounting for the complex interplay of transporter networks at the cellular level may help design strategies for increasing nutrient use efficiency of crop plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca CL-3460000, Chile
- Author for communication:
| |
Collapse
|
6
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Holzheu P, Krebs M, Larasati C, Schumacher K, Kummer U. An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: Combining mathematical modeling and experimentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1541-1556. [PMID: 33780094 DOI: 10.1111/tpj.15251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.
Collapse
Affiliation(s)
- Pascal Holzheu
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Melanie Krebs
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Catharina Larasati
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Karin Schumacher
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| |
Collapse
|
8
|
Rao MJ, Zuo H, Xu Q. Genomic insights into citrus domestication and its important agronomic traits. PLANT COMMUNICATIONS 2021; 2:100138. [PMID: 33511347 PMCID: PMC7816076 DOI: 10.1016/j.xplc.2020.100138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 05/12/2023]
Abstract
Citrus originated in Southeast Asia, and it has become one of the most important fruit crops worldwide. Citrus has a long and obscure domestication history due to its clonal propagation, long life cycle, wide sexual compatibility, and complex genetic background. As the genomic information of both wild and cultivated citrus becomes available, their domestication history and underlying traits or genes are becoming clear. This review outlines the genomic features of wild and cultivated species. We propose that the reduction of citric acid is a critical trait for citrus domestication. The genetic model representing the change during domestication may be associated with a regulatory complex known as WD-repeat-MYB-bHLH-WRKY (WMBW), which is involved in acidification and anthocyanin accumulation. The reduction in or loss of anthocyanins may be due to a hitchhiking effect of fruit acidity selection, in which mutation occurs in the common regulator of these two pathways in some domesticated types. Moreover, we have summarized the domestication traits and candidate genes for breeding purposes. This review represents a comprehensive summary of the genes controlling key traits of interest, such as acidity, metabolism, and disease resistance. It also sheds light on recent advances in early flowering from transgenic studies and provides a new perspective for fast breeding of citrus. Our review lays a foundation for future research on fruit acidity, flavor, and disease resistance in citrus.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Hao Zuo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Qiang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
9
|
Lupanga U, Röhrich R, Askani J, Hilmer S, Kiefer C, Krebs M, Kanazawa T, Ueda T, Schumacher K. The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. eLife 2020; 9:e60568. [PMID: 33236982 PMCID: PMC7717909 DOI: 10.7554/elife.60568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
The V-ATPase is a versatile proton-pump found in a range of endomembrane compartments yet the mechanisms governing its differential targeting remain to be determined. In Arabidopsis, VHA-a1 targets the V-ATPase to the TGN/EE whereas VHA-a2 and VHA-a3 are localized to the tonoplast. We report here that the VHA-a1 targeting domain serves as both an ER-exit and as a TGN/EE-retention motif and is conserved among seed plants. In contrast, Marchantia encodes a single VHA-isoform that localizes to the TGN/EE and the tonoplast in Arabidopsis. Analysis of CRISPR/Cas9 generated null alleles revealed that VHA-a1 has an essential function for male gametophyte development but acts redundantly with the tonoplast isoforms during vegetative growth. We propose that in the absence of VHA-a1, VHA-a3 is partially re-routed to the TGN/EE. Our findings contribute to understanding the evolutionary origin of V-ATPase targeting and provide a striking example that differential localization does not preclude functional redundancy.
Collapse
Affiliation(s)
- Upendo Lupanga
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Rachel Röhrich
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Jana Askani
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Stefan Hilmer
- Electron Microscopy Core Facility, Heidelberg UniversityHeidelbergGermany
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Melanie Krebs
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic BiologyOkazakiAichiJapan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies)OkazakiAichiJapan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic BiologyOkazakiAichiJapan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies)OkazakiAichiJapan
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
10
|
Yang T, Feng H, Zhang S, Xiao H, Hu Q, Chen G, Xuan W, Moran N, Murphy A, Yu L, Xu G. The Potassium Transporter OsHAK5 Alters Rice Architecture via ATP-Dependent Transmembrane Auxin Fluxes. PLANT COMMUNICATIONS 2020; 1:100052. [PMID: 33367257 PMCID: PMC7747981 DOI: 10.1016/j.xplc.2020.100052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 04/27/2020] [Indexed: 05/24/2023]
Abstract
Plant HAK/KUP/KT family members function as plasma membrane (PM) H+/K+ symporters and may modulate chemiosmotically-driven polar auxin transport (PAT). Here, we show that inactivation of OsHAK5, a rice K+ transporter gene, decreased rootward and shootward PAT, tiller number, and the length of both lateral roots and root hairs, while OsHAK5 overexpression increased PAT, tiller number, and root hair length, irrespective of the K+ supply. Inhibitors of ATP-binding-cassette type-B transporters, NPA and BUM, abolished the OsHAK5-overexpression effect on PAT. The mechanistic basis of these changes included the OsHAK5-mediated decrease of transmembrane potential (depolarization), increase of extracellular pH, and increase of PM-ATPase activity. These findings highlight the dual roles of OsHAK5 in altering cellular chemiosmotic gradients (generated continuously by PM H+-ATPase) and regulating ATP-dependent auxin transport. Both functions may underlie the prominent effect of OsHAK5 on rice architecture, which may be exploited in the future to increase crop yield via genetic manipulations.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Huojun Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingdi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Nava Moran
- The R.H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Angus Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Dynamic measurement of cytosolic pH and [NO 3 -] uncovers the role of the vacuolar transporter AtCLCa in cytosolic pH homeostasis. Proc Natl Acad Sci U S A 2020; 117:15343-15353. [PMID: 32546525 PMCID: PMC7334523 DOI: 10.1073/pnas.2007580117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thaliana Chloride Channel a) is a vacuolar NO3 -/H+ exchanger regulating stomata aperture in A thaliana Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo in Arabidopsis guard cells. We first found that ClopHensor is not only a Cl- but also, an NO3 - sensor. We were then able to quantify the variations of NO3 - and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3 - In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3 - and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.
Collapse
|
12
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
13
|
Jaślan D, Dreyer I, Lu J, O'Malley R, Dindas J, Marten I, Hedrich R. Voltage-dependent gating of SV channel TPC1 confers vacuole excitability. Nat Commun 2019; 10:2659. [PMID: 31201323 PMCID: PMC6572840 DOI: 10.1038/s41467-019-10599-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/16/2019] [Indexed: 01/11/2023] Open
Abstract
In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K+-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca2+ levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca2+, can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K+ transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K+-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca2+- and voltage-induced electrical excitability to the central organelle of plant cells.
Collapse
Affiliation(s)
- Dawid Jaślan
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, 3460000, Chile.
| | - Jinping Lu
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Ronan O'Malley
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.,DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Julian Dindas
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.,Department of Plant and Microbial Biology, University of Zürich, 8008, Zürich, Switzerland
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany. .,Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
14
|
Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, Roose ML, Koes R, Quattrocchio FM. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nat Commun 2019; 10:744. [PMID: 30808865 PMCID: PMC6391481 DOI: 10.1038/s41467-019-08516-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
The sour taste of Citrus fruits is due to the extreme acidification of vacuoles in juice vesicle cells via a mechanism that remained elusive. Genetic analysis in petunia identified two vacuolar P-ATPases, PH1 and PH5, which determine flower color by hyperacidifying petal cell vacuoles. Here we show that Citrus homologs, CitPH1 and CitPH5, are expressed in sour lemon, orange, pummelo and rangpur lime fruits, while their expression is strongly reduced in sweet-tasting “acidless” varieties. Down-regulation of CitPH1 and CitPH5 is associated with mutations that disrupt expression of MYB, HLH and/or WRKY transcription factors homologous to those activating PH1 and PH5 in petunia. These findings address a long-standing enigma in cell biology and provide targets to engineer or select for taste in Citrus and other fruits. The sour taste of citrus fruit results from the extremely low pH of juice vesicle cell vacuoles. Here the authors provide genetic evidence that a vacuolar P-type ATPase, that is known to determine flower color in petunia via vacuolar acidification, is also responsible for extreme acidification in citrus.
Collapse
Affiliation(s)
- Pamela Strazzer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Cornelis E Spelt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Shuangjiang Li
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Mattijs Bliek
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Claire T Federici
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Ronald Koes
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Francesca M Quattrocchio
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Graus D, Konrad KR, Bemm F, Patir Nebioglu MG, Lorey C, Duscha K, Güthoff T, Herrmann J, Ferjani A, Cuin TA, Roelfsema MRG, Schumacher K, Neuhaus HE, Marten I, Hedrich R. High V-PPase activity is beneficial under high salt loads, but detrimental without salinity. THE NEW PHYTOLOGIST 2018; 219:1421-1432. [PMID: 29938800 PMCID: PMC6099232 DOI: 10.1111/nph.15280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 05/03/2023]
Abstract
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
Collapse
Affiliation(s)
- Dorothea Graus
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Felix Bemm
- Institute of BioinformaticsCenter for Computational and Theoretical, BiologyUniversity of WürzburgAm HublandWürzburgD‐97218Germany
| | - Meliha Görkem Patir Nebioglu
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kerstin Duscha
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Tilman Güthoff
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Ali Ferjani
- Department of BiologyTokyo Gakugei UniversityNukui Kitamachi 4‐1‐1Koganei‐shiTokyo184‐8501Japan
| | - Tracey Ann Cuin
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7001Australia
| | - M. Rob G. Roelfsema
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Karin Schumacher
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - H. Ekkehard Neuhaus
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| |
Collapse
|
16
|
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1290-1299. [PMID: 29444312 DOI: 10.1093/pcp/pcy037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
The sessile lifestyle of higher plants is accompanied by their remarkable ability to tolerate unfavorable environmental conditions. This is because, during evolution, plants developed a sophisticated repertoire of molecular and metabolic reactions to cope with changing biotic and abiotic challenges. In particular, the abiotic factors light intensity and ambient temperature are characterized by altering their amplitude within comparably short periods of time and are causative for onset of dynamic plant responses. These rapid responses in plants are also classified as 'acclimation reactions' which differ, due to their reversibility and duration, from non-reversible 'adaptation reactions'. In this review, we demonstrate the remarkable importance of stress-induced changes in carbohydrate homeostasis of plants exposed to high light or low temperatures. These changes represent a co-ordinated process comprising modifications of (i) the concentrations of selected sugars; (ii) starch turnover; (iii) intracellular sugar compartmentation; and (iv) corresponding gene expression patterns. The critical importance of these individual processes has been underlined in the recent past by the analyses of a large number of mutant plants. The outcome of these analyses raised our understanding of acclimation processes in plants per se but might even become instrumental to develop new concepts for directed breeding approaches with the aim to increase abiotic stress tolerance of crop species, which in most cases have high stress sensitivity. The latter direction of plant research is of special importance since abiotic stress stimuli strongly impact on crop productivity and are expected to become even more pronounced because of human activities which alter environmental conditions rapidly.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Frank Ludewig
- Department of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | - Jelena Cvetkovic
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Oliver Trentmann
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Patrick A W Klemens
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| |
Collapse
|
17
|
Hedrich R, Mueller TD, Becker D, Marten I. Structure and Function of TPC1 Vacuole SV Channel Gains Shape. MOLECULAR PLANT 2018; 11:764-775. [PMID: 29614320 DOI: 10.1016/j.molp.2018.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plants and animals in endosomes operate TPC1/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its biological function has remained enigmatic. Recently, the structure of a plant TPC1/SV channel protein was determined. Insights into the 3D topology has now guided site-directed mutation approaches, enabling structure-function analyses of TPC1/SV channels to shed new light on earlier findings. Fou2 plants carrying a hyperactive mutant form of TPC1 develop wounding stress phenotypes. Recent studies with fou2 and mutants that lack functional TPC1 have revealed atypical features in local and long-distance stress signaling, providing new access to the previously mysterious biology of this vacuolar cation channel type in planta.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| |
Collapse
|
18
|
Frei B, Eisenach C, Martinoia E, Hussein S, Chen XZ, Arrivault S, Neuhaus HE. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. J Biol Chem 2018; 293:4180-4190. [PMID: 29367340 DOI: 10.1074/jbc.ra117.000851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
The exact transport characteristics of the vacuolar dicarboxylate transporter tDT from Arabidopsis are elusive. To overcome this limitation, we combined a range of experimental approaches comprising generation/analysis of tDT overexpressors, 13CO2 feeding and quantification of 13C enrichment, functional characterization of tDT in proteoliposomes, and electrophysiological studies on vacuoles. tdt knockout plants showed decreased malate and increased citrate concentrations in leaves during the diurnal light-dark rhythm and after onset of drought, when compared with wildtypes. Interestingly, under the latter two conditions, tDT overexpressors exhibited malate and citrate levels opposite to tdt knockout plants. Highly purified tDT protein transports malate and citrate in a 1:1 antiport mode. The apparent affinity for malate decreased with decreasing pH, whereas citrate affinity increased. This observation indicates that tDT exhibits a preference for dianion substrates, which is supported by electrophysiological analysis on intact vacuoles. tDT also accepts fumarate and succinate as substrates, but not α-ketoglutarate, gluconate, sulfate, or phosphate. Taking tDT as an example, we demonstrated that it is possible to reconstitute a vacuolar metabolite transporter functionally in proteoliposomes. The displayed, so far unknown counterexchange properties of tDT now explain the frequently observed reciprocal concentration changes of malate and citrate in leaves from various plant species. tDT from Arabidopsis is the first member of the well-known and widely present SLC13 group of carrier proteins, exhibiting an antiport mode of transport.
Collapse
Affiliation(s)
- Benedikt Frei
- From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany
| | - Cornelia Eisenach
- the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland
| | - Enrico Martinoia
- the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland
| | - Shaimaa Hussein
- the Faculty of Medicine and Dentistry, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Xing-Zhen Chen
- the Faculty of Medicine and Dentistry, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Stéphanie Arrivault
- the Max Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany,
| |
Collapse
|
19
|
Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. CHEMSUSCHEM 2018; 11:334-355. [PMID: 29165921 DOI: 10.1002/cssc.201701611] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/23/2017] [Indexed: 06/07/2023]
Abstract
To shift the world to a more sustainable future, it is necessary to phase out the use of fossil fuels and focus on the development of low-carbon alternatives. However, this transition has been slow, so there is still a large dependence on fossil-derived power, and therefore, carbon dioxide is released continuously. Owing to the potential for assimilating and utilizing carbon dioxide to generate carbon-neutral products, such as biodiesel, the application of microalgae technology to capture CO2 from flue gases has gained significant attention over the past decade. Microalgae offer a more sustainable source of biomass, which can be converted into energy, over conventional fuel crops because they grow more quickly and do not adversely affect the food supply. This review focuses on the technical feasibility of combined carbon fixation and microalgae cultivation for carbon reuse. A range of different carbon metabolisms and the impact of flue gas compounds on microalgae are appraised. Fixation of flue gas carbon dioxide is dependent on the selected microalgae strain and on flue gas compounds/concentrations. Additionally, current pilot-scale demonstrations of microalgae technology for carbon dioxide capture are assessed and its future prospects are discussed. Practical implementation of this technology at an industrial scale still requires significant research, which necessitates multidisciplinary research and development to demonstrate its viability for carbon dioxide capture from flue gases at the commercial level.
Collapse
Affiliation(s)
| | - Joseph G Yao
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nicholas Florin
- Institute for Sustainable Futures, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Anthe George
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Xiaoxiong Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Leen Labeeuw
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Yuelu Jiang
- Institute of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Ali Abbas
- School of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- Current address: Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Solid Waste Management and Environmental Safety, Ministry of Education, Beijing, 100084, PR China
| |
Collapse
|
20
|
Chan CY, Dominguez D, Parra KJ. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells. J Biol Chem 2016; 291:15820-9. [PMID: 27226568 DOI: 10.1074/jbc.m116.717488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 01/21/2023] Open
Abstract
Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448-19457). This study capitalized on the mechanisms suppressing vacuolar H(+)-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly.
Collapse
Affiliation(s)
- Chun-Yuan Chan
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Dennis Dominguez
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Karlett J Parra
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
21
|
Hedrich R, Sauer N, Neuhaus HE. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:63-70. [PMID: 26000864 DOI: 10.1016/j.pbi.2015.04.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 05/06/2023]
Abstract
The ability of higher plants to store sugars is of crucial importance for plant development, adaption to endogenous or environmental cues and for the economic value of crop species. Sugar storage and accumulation, and its homeostasis in plant cells are managed by the vacuole. Although transport of sugars across the vacuolar membrane has been monitored for about four decades, the molecular entities of the transporters involved have been identified in the last 10 years only. Thus, it is just recently that our pictures of the transporters that channel the sugar load across the tonoplast have gained real shape. Here we describe the molecular nature and regulation of an important group of tonoplast sugar transporter (TST) allowing accumulation of sugars against large concentration gradients. In addition, we report on proton-driven tonoplast sugar exporters and on facilitators, which are also involved in balancing cytosolic and vacuolar sugar levels.
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
22
|
Zhan X, Yi X, Yue L, Fan X, Xu G, Xing B. Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6037-6044. [PMID: 25923043 DOI: 10.1021/acs.est.5b00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary intake of plant-based foods is a major contribution to the total exposure of polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms underlying PAH uptake by roots remain poorly understood. This is the first study, to our knowledge, to reveal cytoplasmic pH change and regulation in response to PAH uptake by wheat roots. An initial drop of cytoplasmic pH, which is concentration-dependent upon exposure to phenanthrene (a model PAH), was followed by a slow recovery, indicating the operation of a powerful cytoplasmic pH regulating system. Intracellular buffers are prevalent and act in the first few minutes of acidification. Phenanthrene activates plasmalemma and tonoplast H(+) pump. Cytolasmic acidification is also accompanied by vacuolar acidification. In addition, phenanthrene decreases the activity of phosphoenolpyruvate carboxylase and malate concentration. Moreover, phenanthrene stimulates nitrate reductase. Therefore, it is concluded that phenanthrene uptake induces cytoplasmic acidification, and cytoplasmic pH recovery is achieved via physicochemical buffering, proton transport outside cytoplasm into apoplast and vacuole, and malate decarboxylation along with nitrate reduction. Our results provide a novel insight into PAH uptake by wheat roots, which is relevant to strategies for reducing PAH accumulation in wheat for food safety and improving phytoremediation of PAH-contaminated soils or water by agronomic practices.
Collapse
Affiliation(s)
- Xinhua Zhan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xiu Yi
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaorong Fan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Guohua Xu
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
23
|
Kollist H, Nuhkat M, Roelfsema MRG. Closing gaps: linking elements that control stomatal movement. THE NEW PHYTOLOGIST 2014; 203:44-62. [PMID: 24800691 DOI: 10.1111/nph.12832] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | | | | |
Collapse
|
24
|
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 2014; 6:32-43. [PMID: 24388746 DOI: 10.1016/j.celrep.2013.12.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/14/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2(+) transporters in bacteria only, that resides in the vacuolar membrane (tonoplast). In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H(+) P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H(+) transport activity on its own but can physically interact with PH5 and boost PH5 H(+) transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.
Collapse
Affiliation(s)
- Marianna Faraco
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Cornelis Spelt
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Mattijs Bliek
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Walter Verweij
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Atsushi Hoshino
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), 444-8585 Okazaki, Japan
| | - Luca Espen
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Bhakti Prinsi
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Rinse Jaarsma
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Eray Tarhan
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Albertus H de Boer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | | | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
25
|
RNAi-directed downregulation of vacuolar H(+) -ATPase subunit a results in enhanced stomatal aperture and density in rice. PLoS One 2013; 8:e69046. [PMID: 23894405 PMCID: PMC3718813 DOI: 10.1371/journal.pone.0069046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L.) vacuolar H(+)-ATPase subunit A (OsVHA-A) gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity) phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+)-ATPase activity and an enhancement of plasma membrane H(+)-ATPase activity, thereby increasing the concentrations of extracellular H(+) and intracellular K(+) and Na(+) under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+)-ATPase 3) and downregulation of CAM1 (calmodulin 1), CAM3 (calmodulin 3) and YDA1 (YODA, a MAPKK gene). Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.
Collapse
|
26
|
Bak G, Lee EJ, Lee Y, Kato M, Segami S, Sze H, Maeshima M, Hwang JU, Lee Y. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. THE PLANT CELL 2013; 25:2202-16. [PMID: 23757398 PMCID: PMC3723621 DOI: 10.1105/tpc.113.110411] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 05/08/2023]
Abstract
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)-induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H(+)-ATPase vha-a2 vha-a3 and vacuolar H(+)-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.
Collapse
Affiliation(s)
- Gwangbae Bak
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun-Jung Lee
- POSTECH-UZH Global Research Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yuree Lee
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Mariko Kato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jae-Ung Hwang
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
27
|
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1451-69. [PMID: 23408829 DOI: 10.1093/jxb/ert035] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fleshy fruit acidity is an important component of fruit organoleptic quality and is mainly due to the presence of malic and citric acids, the main organic acids found in most ripe fruits. The accumulation of these two acids in fruit cells is the result of several interlinked processes that take place in different compartments of the cell and appear to be under the control of many factors. This review combines analyses of transcriptomic, metabolomic, and proteomic data, and fruit process-based simulation models of the accumulation of citric and malic acids, to further our understanding of the physiological mechanisms likely to control the accumulation of these two acids during fruit development. The effects of agro-environmental factors, such as the source:sink ratio, water supply, mineral nutrition, and temperature, on citric and malic acid accumulation in fruit cells have been reported in several agronomic studies. This review sheds light on the interactions between these factors and the metabolism and storage of organic acids in the cell.
Collapse
Affiliation(s)
- A Etienne
- Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD), UMR QUALISUD, Pôle de Recherche Agronomique de Martinique, BP 214, 97 285 Lamentin Cedex 2, France
| | | | | | | | | |
Collapse
|
28
|
Arias CL, Andreo CS, Drincovich MF, Gerrard Wheeler MC. Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:297-307. [PMID: 23242919 DOI: 10.1007/s11103-012-9999-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/06/2012] [Indexed: 05/13/2023]
Abstract
Arabidopsis thaliana is a plant species that accumulates high levels of organic acids and uses them as carbon, energy and reducing power sources. Among the enzymes that metabolize these compounds, one of the most important ones is malic enzyme (ME). A. thaliana contains four malic enzymes (NADP-ME 1-4) to catalyze the reversible oxidative decarboxylation of malate in the presence of NADP. NADP-ME2 is the only one located in the cell cytosol of all Arabidopsis organs providing most of the total NADP-ME activity. In the present work, the regulation of this key enzyme by fumarate was investigated by kinetic assays, structural analysis and a site-directed mutagenesis approach. The final effect of this metabolite on NADP-ME2 forward activity not only depends on fumarate and substrate concentrations but also on the pH of the reaction medium. Fumarate produced an increase in NADP-ME2 activity by binding to an allosteric site. However at higher concentrations, fumarate caused a competitive inhibition, excluding the substrate malate from binding to the active site. The characterization of ME2-R115A mutant, which is not activated by fumarate, confirms this hypothesis. In addition, the reverse reaction (reductive carboxylation of pyruvate) is also modulated by fumarate, but in a different way. The results indicate pH-dependence of the fumarate modulation with opposite behavior on the two activities analyzed. Thereby, the coordinated action of fumarate over the direct and reverse reactions would allow a precise and specific modulation of the metabolic flux through this enzyme, leading to the synthesis or degradation of C(4) compounds under certain conditions. Thus, the physiological context might be exerting an accurate control of ME activity in planta, through changes in metabolite and substrate concentrations and cytosolic pH.
Collapse
Affiliation(s)
- Cintia Lucía Arias
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | | | | | | |
Collapse
|
29
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
30
|
Abstract
ATP-hydrolysis and proton pumping by the V-ATPase (vacuolar proton-translocating ATPase) are subject to redox regulation in mammals, yeast and plants. Oxidative inhibition of the V-ATPase is ascribed to disulfide-bond formation between conserved cysteine residues at the catalytic site of subunit A. Subunits containing amino acid substitutions of one of three conserved cysteine residues of VHA-A were expressed in a vha-A null mutant background in Arabidopsis. In vitro activity measurements revealed a complete absence of oxidative inhibition in the transgenic line expressing VHA-A C256S, confirming that Cys256 is necessary for redox regulation. In contrast, oxidative inhibition was unaffected in plants expressing VHA-A C279S and VHA-A C535S, indicating that disulfide bridges involving these cysteine residues are not essential for oxidative inhibition. In vivo data suggest that oxidative inhibition might not represent a general regulatory mechanism in plants.
Collapse
|