1
|
Morán‐Lalangui M, Coutinho A, Prieto M, Fedorov A, Pérez‐Gil J, Loura LMS, García‐Álvarez B. Exploring protein-protein interactions and oligomerization state of pulmonary surfactant protein C (SP-C) through FRET and fluorescence self-quenching. Protein Sci 2024; 33:e4835. [PMID: 37984447 PMCID: PMC10731621 DOI: 10.1002/pro.4835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Pulmonary surfactant (PS) is a lipid-protein complex that forms films reducing surface tension at the alveolar air-liquid interface. Surfactant protein C (SP-C) plays a key role in rearranging the lipids at the PS surface layers during breathing. The N-terminal segment of SP-C, a lipopeptide of 35 amino acids, contains two palmitoylated cysteines, which affect the stability and structure of the molecule. The C-terminal region comprises a transmembrane α-helix that contains a ALLMG motif, supposedly analogous to a well-studied dimerization motif in glycophorin A. Previous studies have demonstrated the potential interaction between SP-C molecules using approaches such as Bimolecular Complementation assays or computational simulations. In this work, the oligomerization state of SP-C in membrane systems has been studied using fluorescence spectroscopy techniques. We have performed self-quenching and FRET assays to analyze dimerization of native palmitoylated SP-C and a non-palmitoylated recombinant version of SP-C (rSP-C) using fluorescently labeled versions of either protein reconstituted in different lipid systems mimicking pulmonary surfactant environments. Our results reveal that doubly palmitoylated native SP-C remains primarily monomeric. In contrast, non-palmitoylated recombinant SP-C exhibits dimerization, potentiated at high concentrations, especially in membranes with lipid phase separation. Therefore, palmitoylation could play a crucial role in stabilizing the monomeric α-helical conformation of SP-C. Depalmitoylation, high protein densities as a consequence of membrane compartmentalization, and other factors may all lead to the formation of protein dimers and higher-order oligomers, which could have functional implications under certain pathological conditions and contribute to membrane transformations associated with surfactant metabolism and alveolar homeostasis.
Collapse
Affiliation(s)
- Mishelle Morán‐Lalangui
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
| | - Ana Coutinho
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
- Department of Chemistry and BiochemistryFaculty of Sciences, University of LisbonLisbonPortugal
| | - Manuel Prieto
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
| | - Alexander Fedorov
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
| | - Jesús Pérez‐Gil
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
| | - Luís M. S. Loura
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences (CQC‐IMS)University of CoimbraCoimbraPortugal
- CNC Centre for Neuroscience and Cell Biology, University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Begoña García‐Álvarez
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
- Department of Biochemistry and Molecular BiologyFaculty of Chemistry, Complutense UniversityMadridSpain
| |
Collapse
|
2
|
Schiefermeier-Mach N, Heinrich L, Lechner L, Perkhofer S. Regulation of Surfactant Protein Gene Expression by Aspergillus fumigatus in NCl-H441 Cells. Microorganisms 2023; 11:microorganisms11041011. [PMID: 37110432 PMCID: PMC10143823 DOI: 10.3390/microorganisms11041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes serious lung diseases in immunocompromised patients. The lung surfactant produced by alveolar type II and Clara cells in the lungs is an important line of defense against A. fumigatus. The surfactant consists of phospholipids and surfactant proteins (SP-A, SP-B, SP-C and SP-D). The binding to SP-A and SP-D proteins leads to the agglutination and neutralization of lung pathogens as well as the modulation of immune responses. SP-B and SP-C proteins are essential for surfactant metabolism and can modulate the local immune response; however, the molecular mechanisms remain unclear. We investigated changes in the SP gene expression in human lung NCI-H441 cells infected with conidia or treated with culture filtrates obtained from A. fumigatus. To further identify fungal cell wall components that may affect the expression of SP genes, we examined the effect of different A. fumigatus mutant strains, including dihydroxynaphthalene (DHN)-melanin-deficient ΔpksP, galactomannan (GM)-deficient Δugm1 and galactosaminogalactan (GAG)-deficient Δgt4bc strains. Our results show that the tested strains alter the mRNA expression of SP, with the most prominent and consistent downregulation of the lung-specific SP-C. Our findings also suggest that secondary metabolites rather than the membrane composition of conidia/hyphae inhibit SP-C mRNA expression in NCI-H441 cells.
Collapse
Affiliation(s)
- Natalia Schiefermeier-Mach
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Lea Heinrich
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Lukas Lechner
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Susanne Perkhofer
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Ghanty S, Mandi M, Ganguly A, Das K, Dutta A, Nanda S, Biswas G, Rajak P. Lung surfactant proteins as potential targets of prallethrin: An in silico approach. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022; 14:89-100. [PMCID: PMC8788395 DOI: 10.1007/s13530-021-00119-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/19/2023]
Abstract
Object Prallethrin is a pyrethroid-based insecticide, commonly used as a liquid vaporizer in household, schools, and offices to repel mosquitoes. Due to worldwide application, human beings are exposed to this compound via inhalation. Inhalation of prallethrin can expose lung surfactant proteins (SPs) to this compound. SPs such as SP-A and SP-D have anti-microbial activities, whereas SP-B and SP-C prevent alveolar collapse during exhalation by reducing surface pressure in alveolar walls. The present study aimed to investigate the binding affinities of prallethrin for the pulmonary SPs and the possible interactions involved in it. Methods In this study, molecular docking was performed using prallethrin as ligand and lung SPs as target molecules. The three-dimensional structure of prallethrin (PubChem CID: 9839306) was retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/ ), whereas the same for SPs were retrieved from RCSB Protein Data Bank (https://www.rcsb.org/ ). AutoDock 4.2 employing Lamarckian genetic algorithm was used to calculate binding affinities between the target protein and the ligand. Polar and nonpolar interactions between the amino acids of SPs and Prallethrin were studied utilizing Chimera X and Discovery Studio Visualizer. Results Results demonstrated that, prallethrin can bind with the four SPs using several interactions such as hydrogen bonds, alkyl bonds, Pi–Pi interaction, Van der Waals interaction and other. Prallethrin interacted with two binding pockets of SP-A and SP-C, whereas the prallethrin interacted with three binding pockets of SP-B and SP-D, respectively. Conclusion Findings of the study indicated that prallethrin can bind with the pulmonary SPs employing hydrogen and hydrophobic interactions. Such interactions could impair critical functions of SPs in lungs. This might increase susceptibility of lungs towards a range of respiratory illness, pathogenic infections, as well as malignancy. Graphical abstract
Collapse
Affiliation(s)
- Siddhartha Ghanty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
| | - Moutushi Mandi
- Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal India
| | - Kanchana Das
- Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Government College, Darjeeling, West Bengal India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
| | - Gopal Biswas
- Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
| |
Collapse
|
5
|
In silico study reveals binding potential of rotenone at multiple sites of pulmonary surfactant proteins: A matter of concern. Curr Res Toxicol 2021; 2:411-423. [PMID: 34917955 PMCID: PMC8666459 DOI: 10.1016/j.crtox.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Inhalation of rotenone exposes lung surfactant proteins (SP) to this pesticide. SP-A and SP-D provides protection from microbial infection. SP-B and SP-C maintain structure and respiratory function of lungs. Rotenone has potential to bind SPs at multiple sites. Such binding can subvert functions of SPs & may invite respiratory ailments.
Rotenone is a broad-spectrum pesticide employed in various agricultural practices all over the world. Human beings are exposed to this chemical through oral, nasal, and dermal routes. Inhalation of rotenone exposes bio-molecular components of lungs to this chemical. Biophysical activity of lungs is precisely regulated by pulmonary surfactant to facilitate gaseous exchange. Surfactant proteins (SPs) are the fundamental components of pulmonary surfactant. SPs like SP-A and SP-D have antimicrobial activities providing a crucial first line of defense against infections in lungs whereas SP-B and SP-C are mainly involved in respiratory cycle and reduction of surface tension at air–water interface. In this study, molecular docking analysis using AutoDock Vina has been conducted to investigate binding potential of rotenone with the four SPs. Results indicate that, rotenone can bind with carbohydrate recognition domain (CRD) of SP-A, N-, and C- terminal peptide of SP-B, SP-C, and CRD of SP-D at multiples sites via several interaction mediators such as H bonds, C–H bonds, alkyl bonds, pi-pi stacked, Van der Waals interaction, and other. Such interactions of rotenone with SPs can disrupt biophysical and anti-microbial functions of SPs in lungs that may invite respiratory ailments and pathogenic infections.
Collapse
Key Words
- ALA, Alanine
- ARG, Arginine
- ASN, Asparagine
- ASP, Aspartic acid
- CYS, Cysteine
- Carbohydrate recognition domain
- GLN, Glutamine
- GLU, Glutamic acid
- GLY, Glycine
- HIS, Histidine
- ILE, Isoleucine
- LEU, Leucine
- LYS, Lysine
- Lungs
- MET, Methionine
- Molecular docking
- PHE, Phenylalanine
- PRO, Proline
- Rotenone
- SER, Serine
- Surfactant protein
- THR, Threonine
- TRP, Tryptophan
- TYR, Tyrosine
- VAL, Valine
Collapse
|
6
|
Szafran BN, Borazjani A, Seay CN, Carr RL, Lehner R, Kaplan BLF, Ross MK. Effects of Chlorpyrifos on Serine Hydrolase Activities, Lipid Mediators, and Immune Responses in Lungs of Neonatal and Adult Mice. Chem Res Toxicol 2021; 34:1556-1571. [PMID: 33900070 DOI: 10.1021/acs.chemrestox.0c00488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphate (OP) pesticide that causes acute toxicity by inhibiting acetylcholinesterase (AChE) in the nervous system. However, endocannabinoid (eCB) metabolizing enzymes in brain of neonatal rats are more sensitive than AChE to inhibition by CPF, leading to increased levels of eCBs. Because eCBs are immunomodulatory molecules, we investigated the association between eCB metabolism, lipid mediators, and immune function in adult and neonatal mice exposed to CPF. We focused on lung effects because epidemiologic studies have linked pesticide exposures to respiratory diseases. CPF was hypothesized to disrupt lung eCB metabolism and alter lung immune responses to lipopolysaccharide (LPS), and these effects would be more pronounced in neonatal mice due to an immature immune system. We first assessed the biochemical effects of CPF in adult mice (≥8 weeks old) and neonatal mice after administering CPF (2.5 mg/kg, oral) or vehicle for 7 days. Tissues were harvested 4 h after the last CPF treatment and lung microsomes from both age groups demonstrated CPF-dependent inhibition of carboxylesterases (Ces), a family of xenobiotic and lipid metabolizing enzymes, whereas AChE activity was inhibited in adult lungs only. Activity-based protein profiling (ABPP)-mass spectrometry of lung microsomes identified 31 and 32 individual serine hydrolases in neonatal lung and adult lung, respectively. Of these, Ces1c/Ces1d/Ces1b isoforms were partially inactivated by CPF in neonatal lung, whereas Ces1c/Ces1b and Ces1c/BChE were partially inactivated in adult female and male lungs, respectively, suggesting age- and sex-related differences in their sensitivity to CPF. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) activities in lung were unaffected by CPF. When LPS (1.25 mg/kg, i.p.) was administered following the 7-day CPF dosing period, little to no differences in lung immune responses (cytokines and immunophenotyping) were noted between the CPF and vehicle groups. However, a CPF-dependent increase in the amounts of dendritic cells and certain lipid mediators in female lung following LPS challenge was observed. Experiments in neonatal and adult Ces1d-/- mice yielded similar results as wild type mice (WT) following CPF treatment, except that CPF augmented LPS-induced Tnfa mRNA in adult Ces1d-/- mouse lungs. This effect was associated with decreased expression of Ces1c mRNA in Ces1d-/- mice versus WT mice in the setting of LPS exposure. We conclude that CPF exposure inactivates several Ces isoforms in mouse lung and, during an inflammatory response, increases certain lipid mediators in a female-dependent manner. However, it did not cause widespread altered lung immune effects in response to an LPS challenge.
Collapse
Affiliation(s)
- Brittany N Szafran
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Caitlin N Seay
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Russell L Carr
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Richard Lehner
- Departments of Cell Biology and Pediatrics, Group on Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Barbara L F Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
7
|
Barriga A, Morán-Lalangui M, Castillo-Sánchez JC, Mingarro I, Pérez-Gil J, García-Álvarez B. Role of pulmonary surfactant protein Sp-C dimerization on membrane fragmentation: An emergent mechanism involved in lung defense and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183572. [PMID: 33548215 DOI: 10.1016/j.bbamem.2021.183572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 01/22/2023]
Abstract
Surfactant protein C (SP-C) is a protein present in the pulmonary surfactant system that is involved in the biophysical properties of this lipoprotein complex, but it also has a role in lung defense and homeostasis. In this article, we propose that the link between both functions could rely on the ability of SP-C to induce fragmentation of phospholipid membranes and generate small vesicles that serve as support to present different ligands to cells in the lungs. Our results using bimolecular fluorescence complementation and tunable resistive pulse sensing setups suggest that SP-C oligomerization could be the triggering event that causes membrane budding and nanovesiculation. As shown by fluorescence microscopy and flow cytometry, these vesicles are differentially assimilated by alveolar macrophages and alveolar type II cells, indicating distinct roles of these alveoli-resident cells in the processing of the SP-C- induced vesicles and their cargo. These results depict a more accurate picture of the mechanisms of this protein, which could be relevant for the comprehension of pulmonary pathologies and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Alejandro Barriga
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Michelle Morán-Lalangui
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - José Carlos Castillo-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Begoña García-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain.
| |
Collapse
|
8
|
The Effect of Modified Porcine Surfactant Alone or in Combination with Polymyxin B on Lung Homeostasis in LPS-Challenged and Mechanically Ventilated Adult Rats. Molecules 2020; 25:molecules25194356. [PMID: 32977392 PMCID: PMC7582504 DOI: 10.3390/molecules25194356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023] Open
Abstract
The study aimed to prove the hypothesis that exogenous surfactant and an antibiotic polymyxin B (PxB) can more effectively reduce lipopolysaccharide (LPS)-induced acute lung injury (ALI) than surfactant treatment alone, and to evaluate the effect of this treatment on the gene expression of surfactant proteins (SPs). Anesthetized rats were intratracheally instilled with different doses of LPS to induce ALI. Animals with LPS 500 μg/kg have been treated with exogenous surfactant (poractant alfa, Curosurf®, 50 mg PL/kg b.w.) or surfactant with PxB 1% w.w. (PSUR + PxB) and mechanically ventilated for 5 hrs. LPS at 500 μg/kg increased lung edema, oxidative stress, and the levels of proinflammatory mediators in lung tissue and bronchoalveolar lavage fluid (BALF). PSUR reduced lung edema and oxidative stress in the lungs and IL-6 in BALF. This effect was further potentiated by PxB added to PSUR. Exogenous surfactant enhanced the gene expression of SP-A, SP-B, and SP-C, however, gene expression for all SPs was reduced after treatment with PSUR + PxB. In mechanically ventilated rats with LPS-induced ALI, the positive effect of exogenous surfactant on inflammation and oxidative stress was potentiated with PxB. Due to the tendency for reduced SPs gene expression after surfactant/PxB treatment topical use of PxB should be considered with caution.
Collapse
|
9
|
Loney RW, Panzuela S, Chen J, Yang Z, Fritz JR, Dell Z, Corradi V, Kumar K, Tieleman DP, Hall SB, Tristram-Nagle SA. Location of the Hydrophobic Surfactant Proteins, SP-B and SP-C, in Fluid-Phase Bilayers. J Phys Chem B 2020; 124:6763-6774. [PMID: 32600036 DOI: 10.1021/acs.jpcb.0c03665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, promote rapid adsorption by the surfactant lipids to the surface of the liquid that lines the alveolar air sacks of the lungs. To gain insights into the mechanisms of their function, we used X-ray diffuse scattering (XDS) and molecular dynamics (MD) simulations to determine the location of SP-B and SP-C within phospholipid bilayers. Initial samples contained the surfactant lipids from extracted calf surfactant with increasing doses of the proteins. XDS located protein density near the phospholipid headgroup and in the hydrocarbon core, presumed to be SP-B and SP-C, respectively. Measurements on dioleoylphosphatidylcholine (DOPC) with the proteins produced similar results. MD simulations of the proteins with DOPC provided molecular detail and allowed direct comparison of the experimental and simulated results. Simulations used conformations of SP-B based on other members of the saposin-like family, which form either open or closed V-shaped structures. For SP-C, the amino acid sequence suggests a partial α-helix. Simulations fit best with measurements of XDS for closed SP-B, which occurred at the membrane surface, and SP-C oriented along the hydrophobic interior. Our results provide the most definitive evidence yet concerning the location and orientation of the hydrophobic surfactant proteins.
Collapse
Affiliation(s)
- Ryan W Loney
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sergio Panzuela
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Theoretical Physics and Condensed Matter, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Jespar Chen
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zimo Yang
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan R Fritz
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zachary Dell
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kamlesh Kumar
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Stephanie A Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
11
|
Basauri A, González-Fernández C, Fallanza M, Bringas E, Fernandez-Lopez R, Giner L, Moncalián G, de la Cruz F, Ortiz I. Biochemical interactions between LPS and LPS-binding molecules. Crit Rev Biotechnol 2020; 40:292-305. [DOI: 10.1080/07388551.2019.1709797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arantza Basauri
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | | | - Marcos Fallanza
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - Eugenio Bringas
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - Raúl Fernandez-Lopez
- Instituto de Biomedicina y Biotecnologia (IBBTEC), CSIC, Universidad de Cantabria, Santander, Spain
| | - Laura Giner
- Instituto de Biomedicina y Biotecnologia (IBBTEC), CSIC, Universidad de Cantabria, Santander, Spain
| | - Gabriel Moncalián
- Instituto de Biomedicina y Biotecnologia (IBBTEC), CSIC, Universidad de Cantabria, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnologia (IBBTEC), CSIC, Universidad de Cantabria, Santander, Spain
| | - Inmaculada Ortiz
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
12
|
Abstract
People worldwide are living longer, and it is estimated that by 2050, the proportion of the world's population over 60 years of age will nearly double. Natural lung aging is associated with molecular and physiological changes that cause alterations in lung function, diminished pulmonary remodeling and regenerative capacity, and increased susceptibility to acute and chronic lung diseases. As the aging population rapidly grows, it is essential to examine how alterations in cellular function and cell-to-cell interactions of pulmonary resident cells and systemic immune cells contribute to a higher risk of increased susceptibility to infection and development of chronic diseases, such as chronic obstructive pulmonary disease and interstitial pulmonary fibrosis. This review provides an overview of physiological, structural, and cellular changes in the aging lung and immune system that facilitate the development and progression of disease.
Collapse
Affiliation(s)
- Soo Jung Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Heather W Stout-Delgado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
13
|
Nova Z, Skovierova H, Calkovska A. Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20040831. [PMID: 30769918 PMCID: PMC6412348 DOI: 10.3390/ijms20040831] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
The main function of the lungs is oxygen transport from the atmosphere into the blood circulation, while it is necessary to keep the pulmonary tissue relatively free of pathogens. This is a difficult task because the respiratory system is constantly exposed to harmful substances entering the lungs by inhalation or via the blood stream. Individual types of lung cells are equipped with the mechanisms that maintain pulmonary homeostasis. Because of the clinical significance of acute respiratory distress syndrome (ARDS) the article refers to the physiological role of alveolar epithelial cells type I and II, endothelial cells, alveolar macrophages, and fibroblasts. However, all these cells can be damaged by lipopolysaccharide (LPS) which can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local and systemic inflammation and toxicity. We also highlight a negative effect of LPS on lung cells related to alveolar-capillary barrier and their response to LPS exposure. Additionally, we describe the molecular mechanism of LPS signal transduction pathway in lung cells.
Collapse
Affiliation(s)
- Zuzana Nova
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Henrieta Skovierova
- Biomedical Center Martin, Division of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Andrea Calkovska
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| |
Collapse
|
14
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Dutta K, Nag K, Booth V, Smyth E, Dueck H, Fritzen-Garcia M, Ghosh C, Panda AK. Paradoxical Bactericidal Effects of Hydrophobic Lung Surfactant Proteins and Their Peptide Mimics Using Liposome Molecular Trojan. J Oleo Sci 2018; 67:1043-1057. [PMID: 30012899 DOI: 10.5650/jos.ess18026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant, besides alveolar stability, also provides defence against pathogens by surfactant proteins (SP), SP-A and SP-D. The hydrophobic proteins SP-B and SP-C enhance surface activity. An unusual and paradoxical effect of bovine LS and synthetic model LS with SP-B/-C was bactericidal to Staphylococcus aureus and Escherichia coli. Bacterial proliferation were investigated with bovine lung surfactant extract (BLES), dipalmitoylphosphatdylcholine, palmitooleylglycerol, in combination with SP-B/-C using standard microbiological colony forming unit (CFU) counts and structural imaging. BLES and other surfactant-SP-B/-C mixtures inhibit bacterial growth in the concentration range of 0 -7.5 mg/mL, at > 10 mg/mL paradoxical growth of both the bacterial species suggest antibiotic resistance. The lipid only LS have no effect on bacterial proliferation. Smaller peptide mimics of SP-B or SP-B1-25, were less efficient than SP-Cff. Ultra structural studies of the bacterial CFU using electron and atomic force microscopy suggest some membrane damage of S. aereus at inhibitory concentration of BLES, and some structural alteration of E. coli at dividing zones, suggesting utilization and incorporation of surfactant lipid species by both bacteria. The results depicted from in vitro studies are also in agreement with protein-protein interactions obtained from PatchDock, FireDock and ClasPro algorithm. The MD-simulation decipher a small range fluctuation of gyration radius of the LS proteins and their peptide mimics. The studies have alarming implications in the use of high dosages (100 mg/mL/kg body weight) of exogenous surfactant for treatment of respiratory distress syndrome, genetic knock-out abnormalities associated with these proteins, and the novel roles played by SP-B/C as bactericidal agents.
Collapse
Affiliation(s)
- Kunal Dutta
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University.,Department of Chemistry and Chemical Technology, Vidyasagar University
| | - Kaushik Nag
- Department of Biochemistry, Memorial University of Newfoundland
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland
| | - Erin Smyth
- Department of Biochemistry, Memorial University of Newfoundland
| | - Helen Dueck
- Department of Biochemistry, Memorial University of Newfoundland
| | | | - Chandradipa Ghosh
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University
| | - Amiya Kumar Panda
- Department of Chemistry and Chemical Technology, Vidyasagar University
| |
Collapse
|
17
|
Kolomaznik M, Liskayova G, Kanjakova N, Hubcik L, Uhrikova D, Calkovska A. The Perturbation of Pulmonary Surfactant by Bacterial Lipopolysaccharide and Its Reversal by Polymyxin B: Function and Structure. Int J Mol Sci 2018; 19:E1964. [PMID: 29976869 PMCID: PMC6073772 DOI: 10.3390/ijms19071964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 01/04/2023] Open
Abstract
After inhalation, lipopolysaccharide (LPS) molecules interfere with a pulmonary surfactant, a unique mixture of phospholipids (PLs) and specific proteins that decreases surface tension at the air⁻liquid interphase. We evaluated the behaviour of a clinically used modified porcine pulmonary surfactant (PSUR) in the presence of LPS in a dynamic system mimicking the respiratory cycle. Polymyxin B (PxB), a cyclic amphipathic antibiotic, is able to bind to LPS and to PSUR membranes. We investigated the effect of PxB on the surface properties of the PSUR/LPS system. Particular attention was paid to mechanisms underlying the structural changes in surface-reducing features. The function and structure of the porcine surfactant mixed with LPS and PxB were tested with a pulsating bubble surfactometer, optical microscopy, and small- and wide-angle X-ray scattering (SAXS/WAXS). Only 1% LPS (w/w to surfactant PLs) prevented the PSUR from reaching the necessary low surface tension during area compression. LPS bound to the lipid bilayer of PSUR and disturbed its lamellar structure by swelling. The structural changes were attributed to the surface charge unbalance of the lipid bilayers due to LPS insertion. PxB acts as an inhibitor of structural disarrangement induced by LPS and restores original lamellar packing, as detected by polarised light microscopy and SAXS.
Collapse
Affiliation(s)
- Maros Kolomaznik
- Martin Biomedical Center and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Gilda Liskayova
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
| | - Nina Kanjakova
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
| | - Lukas Hubcik
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
| | - Daniela Uhrikova
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
| | - Andrea Calkovska
- Martin Biomedical Center and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| |
Collapse
|
18
|
KOLOMAZNIK M, NOVA Z, CALKOVSKA A. Pulmonary Surfactant and Bacterial Lipopolysaccharide: The Interaction and its Functional Consequences. Physiol Res 2017; 66:S147-S157. [DOI: 10.33549/physiolres.933672] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The respiratory system is constantly exposed to pathogens which enter the lungs by inhalation or via blood stream. Lipopolysaccharide (LPS), also named endotoxin, can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local inflammation and systemic toxicity. LPS affects alveolar type II (ATII) cells and pulmonary surfactant and although surfactant molecule has the effective protective mechanisms, excessive amount of LPS interacts with surfactant film and leads to its inactivation. From immunological point of view, surfactant specific proteins (SPs) SP-A and SP-D are best characterized, however, there is increasing evidence on the involvement of SP-B and SP-C and certain phospholipids in immune reactions. In animal models, the instillation of LPS to the respiratory system induces acute lung injury (ALI). It is of clinical importance that endotoxin-induced lung injury can be favorably influenced by intratracheal instillation of exogenous surfactant. The beneficial effect of this treatment was confirmed for both natural porcine and synthetic surfactants. It is believed that the surfactant preparations have anti-inflammatory properties through regulating cytokine production by inflammatory cells. The mechanism by which LPS interferes with ATII cells and surfactant layer, and its consequences are discussed below.
Collapse
Affiliation(s)
| | | | - A. CALKOVSKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
19
|
Chaby R, Garcia-Verdugo I, Espinassous Q, Augusto LA. Interactions between LPS and lung surfactant proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After penetration into the lower airways, bacterial lipopolysaccharide (LPS) interacts with alveolar cells in a fluid environment consisting of pulmonary surfactant, a lipid—protein complex which prevents alveolar collapsing and participates in lung defense. The two hydrophilic surfactant components SP-A and SP-D are proteins with collagen-like and lectin domains (collectins) able to interact with carbohydrate-containing ligands present on microbial membranes, and with defined regions of LPS. This explains their capacity to damage the bacterial envelope and induce an antimicrobial effect. In addition, they modulate LPS-induced production of pro-inflammatory mediators in leukocytes by interaction with LPS or with leukocyte receptors. A third surfactant component, SP-C, is a small, highly hydrophobic lipopeptide which interacts with lipid A and reduces LPS-induced effects in macrophages and splenocyte cultures. The interaction of the different SPs with CD14 might explain their ability to modulate some LPS responses. Although the alveolar fluid contains other antiLPS and antimicrobial agents, SPs are the most abundant proteins which might contribute to protect the lung epithelium and reduce the incidence of LPS-induced lung injury. The presence of the surfactant collectins SP-A and SP-D in non-pulmonary tissues, such as the female genital tract, extends their field of action to other mucosal surfaces.
Collapse
Affiliation(s)
- Richard Chaby
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France, -psud.fr
| | - Ignacio Garcia-Verdugo
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France
| | - Quentin Espinassous
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France
| | - Luis A. Augusto
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France
| |
Collapse
|
20
|
Satoh M, Iwahori T, Sugawara N, Yamazaki M. Liver argininosuccinate synthase binds to bacterial lipopolysaccharides and lipid A and inactivates their biological activities. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120010301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The liver is known to clear and detoxify circulating lipopolysaccharide (LPS). To characterize the molecules involved in this process in the liver, we attempted to purify mouse liver protein(s) that can interact with lipid A, a biologically active portion of LPS. By partially purifying the inactivating activity against a synthetic lipid A analog, we observed the enrichment of a 45-kDa protein in the active fractions. The internal amino acid sequences of the protein were identical with those of argininosuccinate synthase (EC 6.3.4.5). To examine whether argininosuccinate synthase can interact with lipid A, we purified the enzyme from mouse liver and found the co-elevation of the specific enzyme activity and specific lipid A-inactivating activity, indicating that argininosuccinate synthase is the major lipid A-interacting protein in liver. Argininosuccinate synthase also inhibited the biological activities (macrophage activation and Limulus test) of natural lipid A and rough-type LPS but not smooth-type LPS. The enzyme activity was inhibited by lipid A and rough-type LPS and also by smooth-type LPS. Native gel electrophoresis of a mixture of argininosuccinate synthase and LPS and immunoprecipitation of a mixture of argininosuccinate synthase and [3H]-LPS with anti-argininosuccinate synthase antiserum showed that argininosuccinate synthase stably bound lipid A and LPS. These findings, together, indicate that argininosuccinate synthase can effectively bind LPS in the liver.
Collapse
Affiliation(s)
- Motonobu Satoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan,-u.ac.jp
| | - Tsuguya Iwahori
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan
| | - Naoki Sugawara
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan
| | - Masatoshi Yamazaki
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan
| |
Collapse
|
21
|
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015; 16:27-35. [PMID: 25521682 PMCID: PMC4318521 DOI: 10.1038/ni.3045] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology, Division of Perinatal Biology and Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE, Kitzmiller JA, Page K, Xu Y, Bao EL, Korfhagen TR. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol 2013; 49:845-54. [PMID: 23795648 DOI: 10.1165/rcmb.2012-0374oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation.
Collapse
|
23
|
Bersani I, Kunzmann S, Speer CP. Immunomodulatory properties of surfactant preparations. Expert Rev Anti Infect Ther 2013; 11:99-110. [PMID: 23428105 DOI: 10.1586/eri.12.156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surfactant replacement significantly decreased acute pulmonary morbidity and mortality among preterm neonates with respiratory distress syndrome. Besides improving lung function and oxygenation, surfactant is also a key modulator of pulmonary innate and acquired immunity regulating lung inflammatory processes. In this review, we describe the immunomodulatory features of surfactant preparations. Various surfactant preparations decrease the proinflammatory cytokine and chemokine release, the oxidative burst activity, and the nitric oxide production in lung inflammatory cells such as alveolar neutrophils, monocytes and macrophages; they also affect lymphocyte proliferative response and immunoglobulin production, as well as natural killer and lymphokine-activated killer cell activity. In addition, surfactant preparations are involved in airway remodeling, as they decrease lung fibroblast proliferation capacity and the release of mediators involved in remodeling. Moreover, they increase cell transepithelial resistance and VEGF synthesis in lung epithelial cells. A number of different signaling pathways and molecules are involved in these processes. Because the inhibition of local immune response may decrease lung injury, surfactant therapeutic efficacy may be related not only to its biophysical characteristics but, at least in part, to its anti-inflammatory features and its effects on remodeling processes. However, further studies are required to identify which surfactant preparation ensures the highest anti-inflammatory activity, thereby potentially decreasing the inflammatory process underlying respiratory distress syndrome. In perspective, detailed characterization of these anti-inflammatory effects could help to improve the next generation of surfactant preparations.
Collapse
Affiliation(s)
- Iliana Bersani
- University Children's Hospital, University of Würzburg, Germany
| | | | | |
Collapse
|
24
|
Lukovic D, Cruz A, Gonzalez-Horta A, Almlen A, Curstedt T, Mingarro I, Pérez-Gil J. Interfacial behavior of recombinant forms of human pulmonary surfactant protein SP-C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7811-7825. [PMID: 22530695 DOI: 10.1021/la301134v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The behavior at air-liquid interfaces of two recombinant versions of human surfactant protein SP-C has been characterized in comparison with that of native palmitoylated SP-C purified from porcine lungs. Both native and recombinant proteins promoted interfacial adsorption of dipalmitoylphosphatidylcholine bilayers to a limited extent, but catalyzed very rapid formation of films from different lipid mixtures containing both zwitterionic and anionic phospholipids. Once at the interface, the recombinant variants exhibited compression-driven structural transitions, consistent with changes in the orientation of the deacylated N-terminal segment, which were not observed in the native protein. Compression isotherms of lipid/protein films suggest that the recombinant SP-C forms promote expulsion at high pressures of a higher number of lipid molecules per mole of protein than does native SP-C. A more dynamic conformation of the N-terminal segment in recombinant SP-C forms is likely also responsible for facilitating compression-driven condensation of domains in anionic phospholipid films as observed by epifluorescence microscopy. Finally, both native palmitoylated SP-C and the phenylalanine-containing recombinant versions facilitate similarly the repetitive compression-expansion dynamics of lipid/protein films, which were able to reach maximal surface pressures with practically no hysteresis along multiple quasi-static or dynamic cycles.
Collapse
Affiliation(s)
- Dunja Lukovic
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Dietary plasma proteins attenuate the innate immunity response in a mouse model of acute lung injury. Br J Nutr 2011; 107:867-75. [PMID: 21906407 DOI: 10.1017/s0007114511003655] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We examined whether oral plasma protein supplements affect the innate immune response in a model of acute lung inflammation. Mice were fed diets supplemented with 8 % spray-dried plasma (SDP) or 2 % plasma Ig concentrate (IC) from day 19 (weaning) until day 34. The mice were challenged with intranasal lipopolysaccharide (LPS) at day 33 (and killed 24 h later for cytokine and leucocyte analyses) or at day 34 (and killed 6 h later for cytokine determinations). In bronchoalveolar lavage fluid (BALF), LPS increased the number of leucocytes by twenty-sevenfold, an effect that was partly prevented by both SDP and IC, and by twentyfold the percentage of activated monocytes, which was partly prevented by SDP. In the lung tissue, LPS increased the infiltrated leucocytes, and this effect was prevented in part by SDP. In unchallenged mice, both SDP and IC diets reduced the percentage of resident neutrophils and monocytes (P < 0·05). In the blood, both SDP and IC completely prevented LPS-dependent monocyte activation (CD14⁺; P < 0·05). LPS dramatically increased the concentration of cytokines (TNF-α, IL-1α, IL-6, granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor) and chemokines (CXCL1, CCL2, CCL3 and CCL4) in BALF. The acute response of cytokine production was reduced by 20-80 % by both SDP and IC. For chemokines, plasma supplements had no effect on LPS-induced CXCL1 expression but significantly reduced CCL2, CCL3 and CCL4 production (P < 0·05). The results support the view that dietary plasma proteins can be used to attenuate endotoxin-associated lung inflammation.
Collapse
|
26
|
Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie 2010; 92:1608-17. [DOI: 10.1016/j.biochi.2010.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/14/2010] [Indexed: 12/27/2022]
|
27
|
Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2009; 25:13-26. [PMID: 20054141 DOI: 10.1159/000272047] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPalpha, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense.
Collapse
Affiliation(s)
- Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
28
|
Garcia-Verdugo I, Garcia de Paco E, Espinassous Q, Gonzalez-Horta A, Synguelakis M, Kanellopoulos J, Rivas L, Chaby R, Perez-Gil J. Synthetic peptides representing the N-terminal segment of surfactant protein C modulate LPS-stimulated TNF-alpha production by macrophages. Innate Immun 2009; 15:53-62. [PMID: 19201825 DOI: 10.1177/1753425908100500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Surfactant protein C (SP-C) consists of a hydrophobic alpha-helix inserted in pulmonary surfactant membranes, and a more polar N-terminal palmitoylated segment exposed to the aqueous phase. Previously, we showed that SP-C inserted in lipid vesicles interacts with bacterial lipopolysaccharide (LPS) and reduces LPS-elicited responses. As the N-terminal segment of SP-C was the most likely region responsible for these effects, a set of synthetic analogs of this stretch (SPC((1-13)) ) were studied. Binding studies showed that SPC((1-13)) binds LPS to the same extent as porcine SP-C under lipid-free conditions. In the absence of serum, both, palmitoylated and non-palmitoylated analogs enhanced the binding of tritiated LPS to macrophages as well as the LPS-induced production of TNF-alpha by these cells. These effects were reversed in the presence of serum; the analogs reduced the production of TNF-alpha in LPS-stimulated macrophages, probably by interfering with the formation of LPS/CD14/LBP complexes as suggested by analysis of the fluorescence emitted by a FITC derivative of Re-LPS. Our data indicate that water-soluble analogs of the N-terminal segment of SP-C can reduce LPS effects in the presence of serum, and thus might help in the design of new derivatives to fight endotoxic shock and pro-inflammatory events.
Collapse
Affiliation(s)
- Ignacio Garcia-Verdugo
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR-8619 du CNRS, Université de Paris-Sud, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abou Taam R, Jaubert F, Emond S, Le Bourgeois M, Epaud R, Karila C, Feldmann D, Scheinmann P, de Blic J. Familial interstitial disease with I73T mutation: A mid- and long-term study. Pediatr Pulmonol 2009; 44:167-75. [PMID: 19148933 DOI: 10.1002/ppul.20970] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To describe the long-term course and the management in children of chronic interstitial lung disease associated with I73T mutation. MATERIALS AND METHODS Clinical, radiological, and histological data from one family including five children and two adults were analyzed retrospectively for three patients and prospectively for the others. RESULTS Mean age of onset of respiratory symptoms for children was 6 months (2-15 months). The follow up was 14 months to 15 years (mean 55 months). The children were treated by intravenous high dose methylprednisolone pulses (6-15, mean 12). Four received oral prednisolone (mean 16 months) and hydroxychloroquine, one of these had additional mycophenolate mofetil. One adult with mild respiratory symptoms in infancy and another who was symptom free were also diagnosed. Both of them received no treatment. BAL fluids were obtained in all children: pro-SPC and SPB were positive in all. Lung biopsies were performed in two children respectively at 7 months, showing interstitial pneumonia features with endoluminal macrophage and type II alveolar cells hyperplasia, and at 33 months, showing subpleural microbullae, areas of interstitial pneumonia and type II alveolar cells hyperplasia. Immunohistochemistry showed for both an increased SPB and TTF1 staining in type II cells nuclei and a faint staining for pro-SPC and for ABCA3. Genetic diagnosis obviated the need for biopsy in other cases. The clinical status progressively improved and oxygen supplementation could be stopped after 3-14 months (mean 9 months). The CT scans initially showed ground glass opacities, then reduction in the ground glass pattern associated with clinical improvement and development of cysts. CONCLUSION This kindred illustrates the variability of respiratory involvement and prognosis. It confirms the value of genetic screening for surfactant protein genes mutations.
Collapse
Affiliation(s)
- Rola Abou Taam
- Université Paris Descartes, Assistance Publique des Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dymond M, Attard G, Postle AD. Testing the hypothesis that amphiphilic antineoplastic lipid analogues act through reduction of membrane curvature elastic stress. J R Soc Interface 2008; 5:1371-86. [PMID: 18426775 DOI: 10.1098/rsif.2008.0041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The alkyllysophospholipid (ALP) analogues Mitelfosine and Edelfosine are anticancer drugs whose mode of action is still the subject of debate. It is agreed that the primary interaction of these compounds is with cellular membranes. Furthermore, the membrane-associated protein CTP: phosphocholine cytidylyltransferase (CCT) has been proposed as the critical target. We present the evaluation of our hypothesis that ALP analogues disrupt membrane curvature elastic stress and inhibit membrane-associated protein activity (e.g. CCT), ultimately resulting in apoptosis. This hypothesis was tested by evaluating structure-activity relationships of ALPs from the literature. In addition we characterized the lipid typology, cytotoxicity and critical micelle concentration of novel ALP analogues that we synthesized. Overall we find the literature data and our experimental data provide excellent support for the hypothesis, which predicts that the most potent ALP analogues will be type I lipids.
Collapse
Affiliation(s)
- Marcus Dymond
- School of Chemistry, University of Southampton, Highfield, UK
| | | | | |
Collapse
|
31
|
Glasser SW, Senft AP, Whitsett JA, Maxfield MD, Ross GF, Richardson TR, Prows DR, Xu Y, Korfhagen TR. Macrophage dysfunction and susceptibility to pulmonary Pseudomonas aeruginosa infection in surfactant protein C-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:621-8. [PMID: 18566429 DOI: 10.4049/jimmunol.181.1.621] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine the role of surfactant protein C (SP-C) in host defense, SP-C-deficient (Sftpc-/-) mice were infected with the pulmonary pathogen Pseudomonas aeruginosa by intratracheal injection. Survival of young, postnatal day 14 Sftpc-/- mice was decreased in comparison to Sftpc+/+ mice. The sensitivity to Pseudomonas bacteria was specific to the 129S6 strain of Sftpc-/- mice, a strain that spontaneously develops interstitial lung disease-like lung pathology with age. Pulmonary bacterial load and leukocyte infiltration were increased in the lungs of Sftpc-/- mice 24 h after infection. Early influx of polymorphonuclear leukocytes in the lungs of uninfected newborn Sftpc-/- mice relative to Sftpc+/+ mice indicate that the lack of SP-C promotes proinflammatory responses in the lung. Mucin expression, as indicated by Alcian blue staining, was increased in the airways of Sftpc-/- mice following infection. Phagocytic activity of alveolar macrophages from Sftpc-/- mice was reduced. The uptake of fluorescent beads in vitro and the number of bacteria phagocytosed by alveolar macrophages in vivo was decreased in the Sftpc-/- mice. Alveolar macrophages from Sftpc-/- mice expressed markers of alternative activation that are associated with diminished pathogen response and advancing pulmonary fibrosis. These findings implicate SP-C as a modifier of alveolar homeostasis. SP-C plays an important role in innate host defense of the lung, enhancing macrophage-mediated Pseudomonas phagocytosis, clearance and limiting pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tafel O, Latzin P, Paul K, Winter T, Woischnik M, Griese M. Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulm Med 2008; 8:6. [PMID: 18405368 PMCID: PMC2364613 DOI: 10.1186/1471-2466-8-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/11/2008] [Indexed: 01/08/2023] Open
Abstract
Background The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. Methods We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. Results SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. Conclusion Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.
Collapse
Affiliation(s)
- Oliver Tafel
- Lung Research Group, Children's Hospital of Ludwig Maximilian University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 2008; 76:1456-64. [PMID: 18227173 DOI: 10.1128/iai.01197-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhaled Yersinia pestis produces a severe primary pneumonia known as pneumonic plague, which is contagious and highly lethal to humans and animals. In this study, we first determined the susceptibility of Y. pestis KIM6 to antimicrobial molecules of the airways. We found that (i) rat bronchoalveolar lavage fluid (rBALF) effectively killed KIM6 cells growing at 37 degrees C; (ii) the antibacterial components of rBALF were small peptides (<10 kDa) that included two cationic antimicrobial peptides (CAMPs), the rat cathelicidin rCRAMP, and beta-defensin RBD-1; (iii) the human cathelicidin LL-37 killed KIM6 cells as well as rBALF did; and (iv) the bactericidal property of LL-37 was synergistically amplified by human beta-defensin 1, another constitutively expressed pulmonary CAMP. Second, the effects of three major surface proteins of Y. pestis, namely, the capsular antigen fraction 1 (F1), the pH 6 antigen (Psa fimbriae), and the outer membrane protease Pla, on the bactericidal effect of the antimicrobial rBALF peptides was determined with corresponding deletion mutants. We showed that (i) a Y. pestis psa mutant was only slightly more susceptible to rBALF than the parental KIM6 strain, (ii) a caf (F1 gene) mutant and a caf psa mutant were resistant to rBALF or LL-37, (iii) a caf pla mutant was as susceptible to the effect of rBALF or LL-37 as KIM6 was (caf+ pla+), and (iv) only the single caf mutant (pla+), but not KIM6 or the caf pla double mutant, degraded LL-37. The activity of Pla toward LL-37 was confirmed with pla mutants carrying a single-residue substitution affecting plasminogen cleavage. Taken together, our data indicated that Pla might act as a virulence factor not only by processing plasminogen but also by inactivating CAMPs, particularly when F1 is not expressed.
Collapse
|
34
|
Genetic Abnormalities of Surfactant Metabolism. MOLECULAR PATHOLOGY LIBRARY 2008. [PMCID: PMC7147445 DOI: 10.1007/978-0-387-72430-0_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary surfactant is the complex mixture of lipids and proteins needed to reduce alveolar surface tension at the air-liquid interface and prevent alveolar collapse at the end of expiration. It has been recognized for almost 50 years that a deficiency in surfactant production due to pulmonary immaturity is the principal cause of the respiratory distress syndrome (RDS) observed in prematurely born infants.1 Secondary surfactant deficiency due to injury to the cells involved in its production and functional inactivation of surfactant is also important in the pathophysiology of acute respiratory distress syndrome (ARDS) observed in older children and adults.2,3 In the past 15 years, it has been recognized that surfactant deficiency may result from genetic mechanisms involving mutations in genes encoding critical components of the surfactant system or proteins involved in surfactant metabolism.4,5 Although rare, these single gene disorders provide important insights into normal surfactant metabolism and into the genes in which frequently occurring allelic variants may be important in more common pulmonary diseases.
Collapse
|
35
|
García-Verdugo I, Cañadas O, Taneva SG, Keough KMW, Casals C. Surfactant protein A forms extensive lattice-like structures on 1,2-dipalmitoylphosphatidylcholine/rough-lipopolysaccharide-mixed monolayers. Biophys J 2007; 93:3529-40. [PMID: 17693477 PMCID: PMC2072082 DOI: 10.1529/biophysj.107.109793] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/23/2007] [Indexed: 12/02/2022] Open
Abstract
Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca(2+)-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS.
Collapse
Affiliation(s)
- Ignacio García-Verdugo
- Departamento de Bioquímica y Biología Molecular I and CIBER Enfermedades Respiratorias, Complutense University of Madrid, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Abstract
Here, we describe the approach of defining the genetic contribution to disease and discuss the polymorphisms of some genes that are associated with respiratory disease. The common allelic variants of SP-A1, SP-A2, SP-B, SP-C, and SP-D genes are associated with respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), or respiratory syncytial virus (RSV) bronchiolitis. The main SP-A haplotype, interactively with SP-B Ile131Thr polymorphism and with constitutional and environmental factors, influences the risk of RDS. The polymorphisms of SP-A2 and SP-D are associated with the risk of severe RSV. The polymorphism may turn out to be important in susceptibility to influenza virus. The SP-B intron 4 deletion variant is the risk factor of BPD. Understanding the molecular mechanisms behind the hereditary risk may lead to new focused treatment strategies.
Collapse
Affiliation(s)
- Mikko Hallman
- Department of Pediatrics and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
37
|
Abstract
Although numerous studies have focused on the nature and defensive role of surfactant in the lower airways, relatively little is known about its role in the upper airways. Decreased levels of the main component of surfactant--phospholipids--have been implicated in atrophic rhinitis. The lamellar body arrangement of phospholipids has now been demonstrated in both normal and diseased sinus tissue, resulting in the implication that these structures may play a crucial role in mucociliary clearance against inhaled pathogens, as well as in the regulation of mucous viscosity. Furthermore, they may be secreted from sinonasal ciliated epithelium. Surfactant proteins (SPs) make up a relatively smaller proportion of surfactant, but appear to have an important role in innate immunity. Altered levels of SPs have been observed in a number of respiratory tract diseases. These SPs may prove to play a significant role in chronic sinusitis. Demonstrated expression of SP-A and SP-D in diseased and normal sinus tissue may mean that these SPs are excreted into the airway-lining fluid of the sinuses. Additionally, initial contact and interaction between pathogens and SP-A and SP-D may occur relatively early after inhalation and deposition into the mucus of the respiratory tract. These findings may lead to potential therapeutic options for difficult-to-treat sinus disease in the future.
Collapse
Affiliation(s)
- Rodney J Schlosser
- Division of Rhinology and Sinus Surgery, Dept of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Suite 1130, PO Box 250550, Charleston, SC 29425, USA
| |
Collapse
|
38
|
Mulugeta S, Beers MF. Surfactant protein C: its unique properties and emerging immunomodulatory role in the lung. Microbes Infect 2006; 8:2317-23. [PMID: 16782390 DOI: 10.1016/j.micinf.2006.04.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
Surfactant protein C (SP-C) is a highly hydrophobic protein found in pulmonary surfactant. SP-C is synthesized exclusively in alveolar type II cells as a 21 kDa integral membrane precursor protein and subsequently proteolytically processed to a 3.7 kDa secretory protein. SP-C enhances the adsorption and spreading of phospholipids at the air-liquid interface thereby promoting the surface tension-lowering properties of surfactant. The importance of SP-C in normal lung function is underscored by the recent findings of inflammatory lung diseases associated both with absence of alveolar SP-C and with cellular expression of mutant SP-C isoforms. This review examines our current understanding of the role of SP-C in maintaining alveolar epithelial homeostasis and the potential role of abnormal SP-C expression in the development of lung diseases with particular emphasis on microbial pulmonary infection and inflammation.
Collapse
Affiliation(s)
- Surafel Mulugeta
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
39
|
Davidova VN, Naberezhnykh GA, Yermak IM, Gorbach VI, Solov'eva TF. Determination of binding constants of lipopolysaccharides of different structure with chitosan. BIOCHEMISTRY (MOSCOW) 2006; 71:332-9. [PMID: 16545072 DOI: 10.1134/s0006297906030151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of endotoxins--lipopolysaccharides (LPS) different in degree of the O-specific chain polymerization--with 20- and 130-kD chitosan was studied using the competitive binding of LPS with the complex of chitosan-anionic dye (tropaeolin 000-2) and the direct binding of (125)I-labeled LPS with chitosan immobilized on Sepharose 4B. The interaction of 20-kD chitosan with LPS was non-cooperative, and immobilization of the polycation on Sepharose resulted in its binding to (125)I-labeled LPS with a positive cooperativity. The interaction of LPS possessing a long O-specific chain with 130-kD chitosan was characterized by negative cooperativity. Binding constants of LPS with the polycation and the number of binding sites per amino group of chitosan were determined. The interaction affinity and stoichiometry of the LPS-chitosan complexes significantly depend on the LPS structure and concentration in the reaction mixture. The increase in the length of carbohydrate chains of LPS results in increase in the binding constants and decrease in the bound endotoxin amount.
Collapse
Affiliation(s)
- V N Davidova
- Pacific Institute of Bioorganic Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok.
| | | | | | | | | |
Collapse
|
40
|
Ramírez E, Santana A, Cruz A, Plasencia I, López GE. Molecular dynamics of surfactant protein C: from single molecule to heptameric aggregates. Biophys J 2006; 90:2698-705. [PMID: 16443648 PMCID: PMC1414559 DOI: 10.1529/biophysj.105.073270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which are possible contributors to the pathogenesis of pulmonary alveolar proteinosis. Molecular dynamics simulations using the NAMD2 package were performed for systems containing from one to seven SP-C molecules to study their behavior in water. The results of our simulations show that unfolding of the protein occurs at the amino terminal, and despite this unfolding, no transition from alpha-helix to beta-strand was observed.
Collapse
Affiliation(s)
- Eunice Ramírez
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico 00681
| | | | | | | | | |
Collapse
|
41
|
Réty S, Salamitou S, Garcia-Verdugo I, Hulmes DJS, Le Hégarat F, Chaby R, Lewit-Bentley A. The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J Biol Chem 2005; 280:43073-8. [PMID: 16249180 DOI: 10.1074/jbc.m510087200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lethal disease anthrax is propagated by spores of Bacillus anthracis, which can penetrate into the mammalian host by inhalation, causing a rapid progression of the disease and a mostly fatal outcome. We have solved the three-dimensional structure of the major surface protein BclA on B. anthracis spores. Surprisingly, the structure resembles C1q, the first component of complement, despite there being no sequence homology. Although most assays for C1q-like activity, including binding to C1q receptors, suggest that BclA does not mimic C1q, we show that BclA, as well as C1q, interacts with components of the lung alveolar surfactant layer. Thus, to better recognize and invade its hosts, this pathogenic soil bacterium may have evolved a surface protein whose structure is strikingly close to a mammalian protein.
Collapse
Affiliation(s)
- Stéphane Réty
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquées, CNRS, Unité Mixte de Recherche 8113, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Plasencia I, Keough KMW, Perez-Gil J. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1713:118-28. [PMID: 16002041 DOI: 10.1016/j.bbamem.2005.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/24/2022]
Abstract
Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is inserted and is therefore a candidate motif to participate in interactions with other bilayers or monolayers. In the present work, we have detected intrinsic ability of a peptide based on the sequence of the N-terminal segment of SP-C to interact and insert spontaneously into preformed zwitterionic or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy. These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been related with the ability of SP-C to facilitate reinsertion of surface active lipid molecules into the lung interface during respiratory compression-expansion cycling.
Collapse
Affiliation(s)
- Ines Plasencia
- Departamento de Bioquímica, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
43
|
Abstract
Because the lungs function as the body's gas-exchange organ, they are inevitably exposed to air that is contaminated with pathogens, allergens and pollutants. Host-defence mechanisms within the lungs must facilitate clearance of inhaled pathogens and particles while minimizing an inflammatory response that could damage the thin, delicate gas-exchanging epithelium. Pulmonary surfactant is a complex of lipids and proteins that enhances pathogen clearance and regulates adaptive and innate immune-cell functions. In this article, I review the structure and functions of the surfactant proteins SP-A and SP-D in regulating host immune defence and in modulating inflammatory responses.
Collapse
Affiliation(s)
- Jo Rae Wright
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
44
|
Abstract
Surfactant protein C (SP-C) is a hydrophobic 35-amino acid peptide that co-isolates with the phospholipid fraction of lung surfactant. SP-C represents a structurally and functionally challenging protein for the alveolar type 2 cell, which must synthesize, traffic, and process a 191-197-amino acid precursor protein through the regulated secretory pathway. The current understanding of SP-C biosynthesis considers the SP-C proprotein (proSP-C) as a hybrid molecule that incorporates structural and functional features of both bitopic integral membrane proteins and more classically recognized luminal propeptide hormones, which are subject to post-translational processing and regulated exocytosis. Adding to the importance of a detailed understanding of SP-C biosynthesis has been the recent association of mutations in the proSP-C sequence with chronic interstitial pneumonias in children and adults. Many of these mutations involve either missense or deletion mutations located in a region of the proSP-C molecule that has structural homology to the BRI family of proteins linked to inherited degenerative dementias. This review examines the current state of SP-C biosynthesis with a focus on recent developments related to molecular and cellular mechanisms implicated in the emerging role of SP-C mutations in the pathophysiology of diffuse parenchymal lung disease.
Collapse
Affiliation(s)
- Michael F Beers
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA.
| | | |
Collapse
|
45
|
Yang L, Wei W, Xia J, Tao H, Yang P. Electrochemical Studies of Derivatized Thiol Self-Assembled Monolayers on Gold Electrode in the Presence of Surfactants. ANAL SCI 2005; 21:679-84. [PMID: 15984205 DOI: 10.2116/analsci.21.679] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Chemical, Biological Sensing Technologies & Chemometrics, Hunan University, Changsha, 410082, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Li J, Ikegami M, Na CL, Hamvas A, Espinassous Q, Chaby R, Nogee LM, Weaver TE, Johansson J. N-terminally extended surfactant protein (SP) C isolated from SP-B-deficient children has reduced surface activity and inhibited lipopolysaccharide binding. Biochemistry 2004; 43:3891-8. [PMID: 15049696 DOI: 10.1021/bi036218q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In both humans and mice, a deficiency of surfactant protein B (SP-B) is associated with a decreased concentration of mature SP-C and accumulation of a larger SP-C peptide, denoted SP-C(i), which is not observed under normal conditions. Isolation of hydrophobic polypeptides from the lungs of children who died with two different SP-B mutations yielded pure SP-C(i) and showed only trace amounts of mature SP-C. Determination of the SP-C(i) covalent structure revealed a 12-residue N-terminal peptide segment, followed by a 35-residue segment that is identical to mature SP-C. The SP-C(i) structure determined herein is similar to that of a proposed late intermediate in the processing of proSP-C, suggesting that SP-C(i) is the immediate precursor of SP-C. In bronchoalveolar lavage fluid from transgenic mice with a focal deficiency of SP-B, SP-C(i) was detected in the biophysically active, large aggregate fraction and was associated with membrane structures that are typical for a large aggregate surfactant. However, unlike SP-C, SP-C(i) exhibited a very poor ability to promote phospholipid adsorption, gave high surface tension during cyclic film compression, and did not bind lipopolysaccharide in vitro. SP-C(i) is thus capable of associating with surfactant lipids, but its N-terminal dodecapeptide segment must be proteolytically removed to generate a biologically functional peptide. The results of this study indicate that the early postnatal fatal respiratory distress seen in SP-B-deficient children is combined with the near absence of active variants of SP-C.
Collapse
Affiliation(s)
- Jing Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Plasencia I, Rivas L, Keough KMW, Marsh D, Pérez-Gil J. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers. Biochem J 2004; 377:183-93. [PMID: 14514353 PMCID: PMC1223849 DOI: 10.1042/bj20030815] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 09/22/2003] [Accepted: 09/26/2003] [Indexed: 11/17/2022]
Abstract
In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneously with bilayers composed of either zwitterionic (phosphatidylcholine) or anionic (phosphatidylglycerol) phospholipids. The peptides show higher affinity for anionic than for zwitterionic membranes. Interaction of the peptides with both zwitterionic and anionic membranes promotes phospholipid vesicle aggregation, and leakage of the aqueous content of the vesicles. The lipid-peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N-terminal peptides on the membrane structure are mediated by significant perturbations of the packing order and mobility of phospholipid acyl chain segments deep in the bilayer, as detected by differential scanning calorimetry and spin-label ESR. These results suggest that the N-terminal region of SP-C, even in the absence of acylation, possesses an intrinsic propensity to interact with and perturb phospholipid bilayers, thereby potentially facilitating SP-C promoting bilayer-monolayer transitions at the alveolar spaces.
Collapse
Affiliation(s)
- Ines Plasencia
- Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
48
|
Abstract
Antimicrobial peptides (AMPs) are components of complex host secretions, acting synergistically with other innate defence molecules to combat infection and control resident microbial populations throughout the oral cavity and respiratory tract. AMPs are directly antimicrobial, bind lipopolysaccharide (LPS) and lipoteichoic acid, and are immunomodulatory signals. Pathogenic and commensal organisms display a variety of resistance mechanisms, which are related to structure of cell wall components (e.g. LPS) and cytoplasmic membranes, and peptide breakdown mechanisms. For example, LPS of the AMP-resistant cystic fibrosis pathogen Burkholderia cepacia is under-phosphorylated and highly substituted with charge-neutralising 4-deoxy-4-aminoarabinose. Additionally, host mimicry by addition of phosphorylcholine contributes to resistance in oral and respiratory organisms. Porphyromonas gingivalis, Pseudomonas aeruginosa and other pathogens produce extracellular and membrane-bound proteases that degrade AMPs. Many of these bacterial properties are environmentally regulated. Their modulation in response to host defences and inflammation can result in altered sensitivity to AMPs, and may additionally change other host-microbe interactions, e.g. binding to Toll-like receptors. The diversity and breadth of antimicrobial cover and immunomodulatory function provided by AMPs is central to the ability of a host to respond to the diverse and highly adaptable organisms colonising oral and respiratory mucosa.
Collapse
Affiliation(s)
- Deirdre A Devine
- Division of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds LS2 9LU, UK.
| |
Collapse
|
49
|
Augusto LA, Synguelakis M, Espinassous Q, Lepoivre M, Johansson J, Chaby R. Cellular antiendotoxin activities of lung surfactant protein C in lipid vesicles. Am J Respir Crit Care Med 2003; 168:335-41. [PMID: 12773323 DOI: 10.1164/rccm.200212-1440oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The respiratory system is continuously exposed to airborne particles containing lipopolysaccharide. Our laboratory established previously that the hydrophobic surfactant protein C (SP-C) binds to lipopolysaccharide and to one of its cellular receptors, CD14. Here we examined the influence of SP-C, and of a synthetic analog, on some cellular in vitro effects of lipopolysaccharide. When associated with vesicles of dipalmitoylphosphatidylcholine, SP-C inhibits the binding of a tritium-labeled lipopolysaccharide to the macrophage cell line RAW 264.7. Under similar conditions of presentation, SP-C inhibits the mitogenic effect of lipopolysaccharide on mouse splenocytes, and inhibits the lipopolysaccharide-induced production of tumor necrosis factor-alpha by peritoneal and alveolar macrophages, and of nitric oxide by RAW 264.7 cells. In contrast, tumor necrosis factor-alpha production induced by a lipopeptide, and nitric oxide production induced by picolinic acid, were not affected by SP-C. The lipopolysaccharide-binding capacity of SP-C is resistant to peroxynitrite, a known mediator of acute lung injury formed by reaction of nitric oxide with superoxide anions. These results indicate that SP-C may play a role in lung defense; SP-C resists degradation under inflammatory conditions and traps lipopolysaccharide, preventing it from inducing production of noxious mediators in alveolar cells.
Collapse
Affiliation(s)
- Luis A Augusto
- Laboratory of Nitrogen Oxides Inflammation and Immunity, UMR-8619, Université de Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
50
|
Epaud R, Ikegami M, Whitsett JA, Jobe AH, Weaver TE, Akinbi HT. Surfactant protein B inhibits endotoxin-induced lung inflammation. Am J Respir Cell Mol Biol 2003; 28:373-8. [PMID: 12594064 DOI: 10.1165/rcmb.2002-0071oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transgenic mice, in which the level of surfactant protein (SP)-B mature peptide varied 5.6-fold between SP-B(+/-) and SP-B-overexpressing lines (SP-B+/+/+), were used to test the hypothesis that SP-B protects against endotoxin-induced lung inflammation. Intratracheal administration of endotoxin resulted in significantly lower concentration of SP-B mature peptide and elevated levels of total protein in bronchoalveolar lavage fluid of SP-B(+/-) mice compared with SP-B-overexpressing mice, indicating that endotoxin treatment leads to impairment of SP-B expression coincident with increased lung injury in SP-B(+/-) mice. Recruitment of inflammatory cells and elaboration of proinflammatory cytokines in bronchoalveolar lavage fluid were reduced in SP-B-overexpressing mice compared with SP-B(+/-) mice, suggesting that SP-B inhibited endotoxin-induced lung inflammation. Lung compliance and tissue damping were significantly decreased in SP-B(+/+) and SP-B(+/-) mice, but were not changed in SP-B(+/+/+) mice, consistent with a protective effect of SP-B. The minimum surface tension of large aggregate surfactant was significantly lower for surfactant isolated from SP-B-overexpressing mice, both in the absence and the presence of added plasma proteins. These data suggest that SP-B protected against endotoxin-induced lung inflammation by enhancing surfactant function, resulting in reduced lung injury, decreased influx of inflammatory cells, and lower cytokine levels; in contrast, levels of SP-B in SP-B(+/-) mice were further decreased by endotoxin treatment, likely exacerbating lung injury in this group.
Collapse
Affiliation(s)
- Ralph Epaud
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|