1
|
Glendenning LM, Zhou JY, Kukan EN, Gao C, Cummings RD, Joshi S, Whiteheart SW, Cobb BA. Platelet-localized ST6Gal1 does not impact IgG sialylation. Glycobiology 2023; 33:943-953. [PMID: 37379323 PMCID: PMC10859628 DOI: 10.1093/glycob/cwad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
The IgG antibody class forms an important basis of the humoral immune response, conferring reciprocal protection from both pathogens and autoimmunity. IgG function is determined by the IgG subclass, as defined by the heavy chain, as well as the glycan composition at N297, the conserved site of N-glycosylation within the Fc domain. For example, lack of core fucose promotes increased antibody-dependent cellular cytotoxicity, whereas α2,6-linked sialylation by the enzyme ST6Gal1 helps to drive immune quiescence. Despite the immunological significance of these carbohydrates, little is known about how IgG glycan composition is regulated. We previously reported that mice with ST6Gal1-deficient B cells have unaltered IgG sialylation. Likewise, ST6Gal1 released into the plasma by hepatocytes does not significantly impact overall IgG sialylation. Since IgG and ST6Gal1 have independently been shown to exist in platelet granules, it was possible that platelet granules could serve as a B cell-extrinsic site for IgG sialylation. To address this hypothesis, we used a platelet factor 4 (Pf4)-Cre mouse to delete ST6Gal1 in megakaryocytes and platelets alone or in combination with an albumin-Cre mouse to also remove it from hepatocytes and the plasma. The resulting mouse strains were viable and had no overt pathological phenotype. We also found that despite targeted ablation of ST6Gal1, no change in IgG sialylation was apparent. Together with our prior findings, we can conclude that in mice, neither B cells, the plasma, nor platelets have a substantial role in homeostatic IgG sialylation.
Collapse
Affiliation(s)
- Leandre M Glendenning
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Emily N Kukan
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Chao Gao
- Harvard Medical School Center for Glycoscience, National Center for Functional Glycomics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Richard D Cummings
- Harvard Medical School Center for Glycoscience, National Center for Functional Glycomics, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone Street, Lexington, KY 40536-0509, USA
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone Street, Lexington, KY 40536-0509, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| |
Collapse
|
2
|
Wang Y, Lin S, Wu J, Jiang M, Lin J, Zhang Y, Ding H, Zhou H, Shen N, Di W. Control of lupus activity during pregnancy via the engagement of IgG sialylation: novel crosstalk between IgG sialylation and pDC functions. Front Med 2023; 17:549-561. [PMID: 37010728 DOI: 10.1007/s11684-022-0965-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 04/04/2023]
Abstract
Immunoglobulin (IgG) glycosylation affects the effector functions of IgG in a myriad of biological processes and has been closely associated with numerous autoimmune diseases, including systemic lupus erythematosus (SLE), thus underlining the pathogenic role of glycosylation aberration in autoimmunity. This study aims to explore the relationship between IgG sialylation patterns and lupus pregnancy. Relative to that in serum samples from the control cohort, IgG sialylation level was aberrantly downregulated in serum samples from the SLE cohort at four stages (from preconception to the third trimester of pregnancy) and was significantly associated with lupus activity and fetal loss during lupus pregnancy. The type I interferon signature of pregnant patients with SLE was negatively correlated with the level of IgG sialylation. The lack of sialylation dampened the ability of IgG to suppress the functions of plasmacytoid dendritic cells (pDCs). RNA-seq analysis further revealed that the expression of genes associated with the spleen tyrosine kinase (SYK) signaling pathway significantly differed between IgG- and deSia-IgG-treated pDCs. This finding was confirmed by the attenuation of the ability to phosphorylate SYK and BLNK in deSia-IgG. Finally, the coculture of pDCs isolated from pregnant patients with SLE with IgG/deSia-IgG demonstrated the sialylation-dependent anti-inflammatory function of IgG. Our findings suggested that IgG influences lupus activity through regulating pDCs function via the modulation of the SYK pathway in a sialic acid-dependent manner.
Collapse
Affiliation(s)
- You Wang
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sihan Lin
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayue Wu
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Meng Jiang
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Zhang
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| | - Wen Di
- Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Xu X, Wu Y, Jia G, Zhu Q, Li D, Xie K. A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and immunotherapy responsiveness in ovarian cancer. J Ovarian Res 2023; 16:5. [PMID: 36611197 PMCID: PMC9826597 DOI: 10.1186/s13048-022-01088-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most fatal gynaecological malignancy and has a poor prognosis. Glycosylation, the biosynthetic process that depends on specific glycosyltransferases (GTs), has recently attracted increasing importance due to the vital role it plays in cancer. In this study, we aimed to determine whether OC patients could be stratified by glycosyltransferase gene profiles to better predict the prognosis and efficiency of immune checkpoint blockade therapies (ICBs). METHODS We retrieved transcriptome data across 420 OC and 88 normal tissue samples using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively. An external validation dataset containing 185 OC samples was downloaded from the Gene Expression Omnibus (GEO) database. Knockdown and pathway prediction of B4GALT5 were conducted to investigate the function and mechanism of B4GALT5 in OC proliferation, migration and invasion. RESULTS A total of 50 differentially expressed GT genes were identified between OC and normal ovarian tissues. Two clusters were stratified by operating consensus clustering, but no significant prognostic value was observed. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 6-gene signature was built that classified OC patients in the TCGA cohort into a low- or high-risk group. Patients with high scores had a worse prognosis than those with low scores. This risk signature was further validated in an external GEO dataset. Furthermore, the risk score was an independent risk predictor, and a nomogram was created to improve the accuracy of prognostic classification. Notably, the low-risk OC patients exhibited a higher degree of antitumor immune cell infiltration and a superior response to ICBs. B4GALT5, one of six hub genes, was identified as a regulator of proliferation, migration and invasion in OC. CONCLUSION Taken together, we established a reliable GT-gene-based signature to predict prognosis, immune status and identify OC patients who would benefit from ICBs. GT genes might be a promising biomarker for OC progression and a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Xuyao Xu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Yue Wu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Genmei Jia
- grid.459791.70000 0004 1757 7869Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Qiaoying Zhu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Dake Li
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Kaipeng Xie
- grid.459791.70000 0004 1757 7869Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China ,grid.459791.70000 0004 1757 7869Department of Public Health, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| |
Collapse
|
4
|
Cobb BA. Reply to Werner and Nimmerjahn letter to the Glyco-Forum. Glycobiology 2022; 32:919-920. [PMID: 36036839 PMCID: PMC9764433 DOI: 10.1093/glycob/cwac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Rusiniak ME, Punch PR, Hait NC, Maiti A, Burns RT, Chapla D, Moremen KW, Zhao P, Wells L, Hoffmeister K, Lau JTY. Extracellular ST6GAL1 regulates monocyte-macrophage development and survival. Glycobiology 2022; 32:701-711. [PMID: 35661210 PMCID: PMC9280526 DOI: 10.1093/glycob/cwac032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Interaction of immune cells with the systemic environment is necessary for the coordinated development and execution of immune responses. Monocyte-macrophage lineage cells reside at the junction of innate and adaptive immunity. Previously we reported that the sialyltransferase ST6GAL1 in the extracellular milieu modulates B cell development and IgG production, granulocyte production, and attenuates acute airway inflammation to bacterial challenge in mouse models. Here, we report that extracellular ST6GAL1 also elicits profound responses in monocyte-macrophage lineage cells. We show that recombinant ST6GAL1 adheres to subsets of thioglycolate-elicited inflammatory cells in the mouse peritoneum and to cultured human monocyte THP-1 cells. Exposure of the inflammatory cells to recombinant ST6GAL1 elicited wholesale changes in the gene expression profile of primary mouse myeloid cells; most notable was the striking up-regulation of monocyte-macrophage and monocyte-derived dendritic cell development pathway signature genes and transcription factors PU.1, NFκB and their target genes, driving increased monocyte-macrophage population and survival ex vivo. In the cultured human monocyte cells, the essential cell surface receptor of the monocyte-macrophage lineage, the M-CSF receptor (M-CSF-R, Csfr1) was a target of extracellular ST6GAL1 catalytic activity. Extracellular ST6GAL1 activated the M-CSF-R and initiated intracellular signaling events, namely, the nuclear translocation of NFκB subunit p65, and phosphorylation of ERK 1/2 and AKT. The findings implicate extracellular ST6GAL1 in monocyte development by a mechanism initiated at the cell surface and support an emerging paradigm of an extracellular glycan-modifying enzyme as a central regulator coordinating immune hematopoietic cell development and function.
Collapse
Affiliation(s)
- Michael E Rusiniak
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Patrick R Punch
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14215, United States
| | - Nitai C Hait
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Robert T Burns
- Translational Glycomics Center, Blood Research Institute, 8727 W. Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Karin Hoffmeister
- Translational Glycomics Center, Blood Research Institute, 8727 W. Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
6
|
Alshabeeb M, Alomar FA, Khan A. Impact of SLCO1B1*5 on Flucloxacillin and Co-Amoxiclav-Related Liver Injury. Front Pharmacol 2022; 13:882962. [PMID: 35754504 PMCID: PMC9214039 DOI: 10.3389/fphar.2022.882962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiosyncratic drug-induced liver injury (DILI) is a serious uncommon disease that may develop as a result of the intake of certain drugs such as the antimicrobials flucloxacillin and co-amoxiclav. The reported cases showed significant associations between DILI and various human leukocyte (HLA) markers. The solute carrier organic anion transporter 1B1 (SLCO1B1), a non-HLA candidate gene, was previously reported as a risk factor for liver injury induced by rifampin and methimazole. This study presumed that SLCO1B1 may play a general role in the DILI susceptibility and therefore investigated the association of rs4149056 (SLCO1B1*5, T521C) polymorphism with flucloxacillin- and co-amoxiclav-induced liver injury. Methodology: We recruited 155 and 165 DILI cases of white ancestral origin from various European countries but mainly from the United Kingdom owing to flucloxacillin and co-amoxiclav, respectively. Only adult patients (≥18 years) who were diagnosed with liver injury and who showed i) clinical jaundice or bilirubin >2x the upper limit of normal (ULN), ii) alanine aminotransferase (ALT) >5x ULN or iii) alkaline phosphatase (ALP) >2x ULN and bilirubin > ULN were selected. The population reference sample (POPRES), a European control group (n = 282), was used in comparison with the investigated cases. TaqMan SNP genotyping custom assay designed by Applied Biosystems was used to genotype both DILI cohorts for SLCO1B1 polymorphism (rs4149056). Allelic discrimination analysis was performed using a step one real-time PCR machine. Genotype differences between cases and controls were examined using Fisher's exact test. GraphPad Prism version 5.0 was used to determine the p-value, odds ratio, and 95% confidence interval. Compliance of the control group with Hardy-Weinberg equilibrium was proven using a web-based calculator available at https://wpcalc.com/en/equilibrium-hardy-weinberg/. Results: A small number of cases failed genotyping in each cohort. Thus, only 149 flucloxacillin and 162 co-amoxiclav DILI cases were analyzed. Genotyping of both DILI cohorts did not show evidence of association with the variant rs4149056 (T521C) (OR = 0.71, 95% CI = 0.46-1.12; p = 0.17 for flucloxacillin cases and OR = 0.87, 95% CI = 0.56-1.33; p = 0.58 for co-amoxiclav), although slightly lower frequency (22.8%) of positive flucloxacillin cases was noticed than that of POPRES controls (29.4%). Conclusion: Carriage of the examined allele SLCO1B1*5 is not considered a risk factor for flucloxacillin DILI or co-amoxiclav DILI as presumed. Testing a different allele (SLCO1B1*1B) and another family member gene (SLCO1B3) may still be needed to provide a clearer role of SLCO1B drug transporters in DILI development-related to the chosen antimicrobials.
Collapse
Affiliation(s)
- Mohammad Alshabeeb
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amjad Khan
- Department of Biological Sciences (Zoology), Faculty of Science, University of Lakki Marwat, Lakki Marwat, Pakistan
| |
Collapse
|
7
|
Oswald DM, Lehoux SD, Zhou JY, Glendenning LM, Cummings RD, Cobb BA. ST6Gal1 in plasma is dispensable for IgG sialylation. Glycobiology 2022; 32:803-813. [PMID: 35746897 DOI: 10.1093/glycob/cwac039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The glycosylation of IgG has attracted increased attention due to the impact of N-glycan modifications at N297 on IgG function, acting primarily through modulation of Fc domain conformation and Fcγ receptor binding affinities and signaling. However, the mechanisms regulating IgG glycosylation and especially α2,6-sialylation of its N-glycan remain poorly understood. We observed previously that IgG is normally sialylated in mice with B cells lacking the sialyltransferase ST6Gal1. This supported the hypothesis that IgG may be sialylated outside of B cells, perhaps through the action of hepatocyte-released plasma ST6Gal1. Here we demonstrate that this model is incorrect. Animals lacking hepatocyte expressed ST6Gal1 retain normal IgG α2,6-sialylation, despite the lack of detectable ST6Gal1 in plasma. Moreover, we confirmed that B cells were not a redundant source of IgG sialylation. Thus, while α2,6-sialylation is lacking in IgG from mice with germline ablation of ST6Gal1, IgG α2,6-sialylation is normal in mice lacking ST6Gal1 in either hepatocytes or B cells. These results indicate that IgG α2,6-sialylation arises after release from a B cell, but is not dependent on plasma-localized ST6Gal1 activity.
Collapse
Affiliation(s)
- Douglas M Oswald
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| | - Sylvain D Lehoux
- Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycoscience, National Center for Functional Glycomics, Boston, MA, USA
| | - Julie Y Zhou
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| | - Leandre M Glendenning
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycoscience, National Center for Functional Glycomics, Boston, MA, USA
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, OH, USA
| |
Collapse
|
8
|
Irons EE, Cortes Gomez E, Andersen VL, Lau JTY. Bacterial colonization and TH17 immunity are shaped by intestinal sialylation in neonatal mice. Glycobiology 2022; 32:414-428. [PMID: 35157771 PMCID: PMC9022908 DOI: 10.1093/glycob/cwac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Interactions between the neonate host and its gut microbiome are central to the development of a healthy immune system. However, the mechanisms by which animals alter early colonization of microbiota for their benefit remain unclear. Here, we investigated the role of early-life expression of the α2,6-sialyltransferase ST6GAL1 in microbiome phylogeny and mucosal immunity. Fecal, upper respiratory, and oral microbiomes of pups expressing or lacking St6gal1 were analyzed by 16S rRNA sequencing. At weaning, the fecal microbiome of St6gal1-KO mice had reduced Clostridiodes, Coprobacillus, and Adlercreutzia, but increased Helicobacter and Bilophila. Pooled fecal microbiomes from syngeneic donors were transferred to antibiotic-treated wild-type mice, before analysis of recipient mucosal immune responses by flow cytometry, RT-qPCR, microscopy, and ELISA. Transfer of St6gal1-KO microbiome induced a mucosal Th17 response, with expression of T-bet and IL-17, and IL-22-dependent gut lengthening. Early life intestinal sialylation was characterized by RT-qPCR, immunoblot, microscopy, and sialyltransferase enzyme assays in genetic mouse models at rest or with glucocorticoid receptor modulators. St6gal1 expression was greatest in the duodenum, where it was mediated by the P1 promoter and efficiently inhibited by dexamethasone. Our data show that the inability to produce α2,6-sialyl ligands contributes to microbiome-dependent Th17 inflammation, highlighting a pathway by which the intestinal glycosylation regulates mucosal immunity.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Valerie L Andersen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
9
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Oswald DM, Jones MB, Cobb BA. Modulation of hepatocyte sialylation drives spontaneous fatty liver disease and inflammation. Glycobiology 2020; 30:346-359. [PMID: 31742330 DOI: 10.1093/glycob/cwz096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Circulatory protein glycosylation is a biomarker of multiple disease and inflammatory states and has been applied in the clinic for liver dysfunction, heart disease and diabetes. With the notable exception of antibodies, the liver produces most of the circulatory glycoproteins, including the acute phase proteins released as a function of the inflammatory response. Among these proteins is β-galactoside α2,6-sialyltransferase (ST6Gal1), an enzyme required for α2,6-linked sialylation of glycoproteins. Here, we describe a hepatocyte-specific conditional knockout of ST6Gal1 (H-cKO) using albumin promoter-driven Cre-lox recombination. We confirm the loss of circulatory glycoprotein α2,6 sialylation and note no obvious dysfunction or pathology in young H-cKO mice, yet these mice show robust changes in plasma glycoprotein fucosylation, branching and the abundance of bisecting GlcNAc and marked changes in a number of metabolic pathways. As H-cKO mice aged, they spontaneously developed fatty liver disease characterized by the buildup of fat droplets in the liver, inflammatory cytokine production and a shift in liver leukocyte phenotype away from anti-inflammatory Kupffer cells and towards proinflammatory M1 macrophages. These findings connect hepatocyte and circulatory glycoprotein sialylation to the regulation of metabolism and inflammation, potentially identifying the glycome as a new target for liver-driven disease.
Collapse
Affiliation(s)
- Douglas M Oswald
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark B Jones
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Cobb BA. The history of IgG glycosylation and where we are now. Glycobiology 2020; 30:202-213. [PMID: 31504525 DOI: 10.1093/glycob/cwz065] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
IgG glycosylation is currently at the forefront of both immunology and glycobiology, likely due in part to the widespread and growing use of antibodies as drugs. For over four decades, it has been recognized that the conserved N-linked glycan on asparagine 297 found within the second Ig domain of the heavy chain (CH2) that helps to comprise Fc region of IgG plays a special role in IgG structure and function. Changes in galactosylation, fucosylation and sialylation are now well-established factors, which drive differential IgG function, ranging from inhibitory/anti-inflammatory to activating complement and promoting antibody-dependent cellular cytotoxicity. Thus, if we are to truly understand how to design and deploy antibody-based drugs with maximal efficacy and evaluate proper vaccine responses from a protective and functional perspective, a deep understanding of IgG glycosylation is essential. This article is intended to provide a comprehensive review of the IgG glycosylation field and the impact glycans have on IgG function, beginning with the earliest findings over 40 years ago, in order to provide a robust foundation for moving forward.
Collapse
Affiliation(s)
- Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Holdbrooks AT, Ankenbauer KE, Hwang J, Bellis SL. Regulation of inflammatory signaling by the ST6Gal-I sialyltransferase. PLoS One 2020; 15:e0241850. [PMID: 33166339 PMCID: PMC7652342 DOI: 10.1371/journal.pone.0241850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
The ST6Gal-I sialyltransferase, an enzyme that adds α2-6-linked sialic acids to N-glycosylated proteins, regulates multiple immunological processes. However, the contribution of receptor sialylation to inflammatory signaling has been under-investigated. In the current study, we uncovered a role for ST6Gal-I in promoting sustained signaling through two prominent inflammatory pathways, NFκB and JAK/STAT. Using the U937 monocytic cell model, we determined that knockdown (KD) of ST6Gal-I expression had no effect on the rapid activation of NFκB by TNF (≤ 30 min), whereas long-term TNF-induced NFκB activation (2–6 hr) was diminished in ST6Gal-I-KD cells. These data align with prior work in epithelial cells showing that α2–6 sialylation of TNFR1 prolongs TNF-dependent NFκB activation. Similar to TNF, long-term, but not short-term, LPS-induced activation of NFκB was suppressed by ST6Gal-I KD. ST6Gal-I KD cells also exhibited reduced long-term IRF3 and STAT3 activation by LPS. Given that ST6Gal-I activity modulated LPS-dependent signaling, we conducted pull-down assays using SNA (a lectin specific for α2–6 sialic acids) to show that the LPS receptor, TLR4, is a substrate for sialylation by ST6Gal-I. We next assessed signaling by IFNγ, IL-6 and GM-CSF, and found that ST6Gal-I-KD had a limited effect on STAT activation induced by these cytokines. To corroborate these findings, signaling was monitored in bone marrow derived macrophages (BMDMs) from mice with myeloid-specific deletion of ST6Gal-I (LysMCre/ST6Gal-Ifl/fl). In agreement with data from U937 cells, BMDMs with ST6Gal-I knockout displayed reduced long-term activation of NFκB by both TNF and LPS, and diminished long-term LPS-dependent STAT3 activation. However, STAT activation induced by IFNγ, IL-6 and GM-CSF was comparable in wild-type and ST6Gal-I knockout BMDMs. These results implicate ST6Gal-I-mediated receptor sialylation in prolonging the activity of select signaling cascades including TNF/NFκB, LPS/NFκB, and LPS/STAT3, providing new insights into ST6Gal-I’s role in modulating the inflammatory phenotype of monocytic cells.
Collapse
Affiliation(s)
- Andrew T Holdbrooks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
13
|
Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Trans-sialidase Associated with Atherosclerosis: Defining the Identity of a Key Enzyme Involved in the Pathology. Curr Drug Targets 2020; 20:938-941. [PMID: 30848200 DOI: 10.2174/1389450120666190308111619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is associated with the increased trans-sialidase activity, which can be detected in the blood plasma of atherosclerosis patients. The likely involvement in the disease pathogenesis made this activity an interesting research subject and the enzyme that may perform such activity was isolated and characterized in terms of substrate specificity and enzymatic properties. It was found that the enzyme has distinct optimum pH values, and its activity was enhanced by the presence of Ca2+ ions. Most importantly, the enzyme was able to cause atherogenic modification of lowdensity lipoprotein (LDL) particles in vitro. However, the identity of the discovered enzyme remained to be defined. Currently, sialyltransferases, mainly ST6Gal I, are regarded as major contributors to sialic acid metabolism in human blood. In this mini-review, we discuss the possibility that atherosclerosis- associated trans-sialidase does, in fact, belong to the sialyltransferases family.
Collapse
Affiliation(s)
- Victor Y Glanz
- Department of Genetics, Cytology and Bioengineering, Faculty of Biology and Medicine, Voronezh State University, Voronezh, Russian Federation
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russian Federation.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
14
|
Irons EE, Punch PR, Lau JTY. Blood-Borne ST6GAL1 Regulates Immunoglobulin Production in B Cells. Front Immunol 2020; 11:617. [PMID: 32391003 PMCID: PMC7190976 DOI: 10.3389/fimmu.2020.00617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Humoral immunity is an effective but metabolically expensive defense mechanism. It is unclear whether systemic cues exist to communicate the dynamic need for antigen presentation and immunoglobulin production. Here, we report a novel role for the liver-produced, acute phase reactant ST6GAL1 in IgG production. B cell expression of ST6GAL1, a sialyltransferase mediating the attachment of α2,6-linked sialic acids on N-glycans, is classically implicated in the dysregulated B cell development and immunoglobulin levels of St6gal1-deficient mice. However, the blood-borne pool of ST6GAL1, upregulated during systemic inflammation, can also extrinsically modify leukocyte cell surfaces. We show that B cell independent, extracellular ST6GAL1 enhances B cell IgG production and increases blood IgG titers. B cells of mice lacking the hepatocyte specific St6gal1 promoter have reduced sialylation of cell surface CD22 and CD45 and produce less IgG upon stimulation. Sialylation of B cells by extracellular ST6GAL1 boosts expression of IgM, IgD, and CD86, proliferation, and IgG production in vitro. In vivo, elevation of blood ST6GAL1 enhances B cell development and systemic IgG in a CD22-dependent manner. Our data point to a function of an extracellular glycosyltransferase in promoting humoral immunity. Manipulation of systemic ST6GAL1 may represent an effective therapeutic approach for humoral insufficiency.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY, United States
| | - Patrick R Punch
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
15
|
Abberant Immunoglobulin G Glycosylation in Rheumatoid Arthritis by LTQ-ESI-MS. Int J Mol Sci 2020; 21:ijms21062045. [PMID: 32192063 PMCID: PMC7139372 DOI: 10.3390/ijms21062045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant glycosylation has been observed in many autoimmune diseases. For example, aberrant glycosylation of immunoglobulin G (IgG) has been implicated in rheumatoid arthritis (RA) pathogenesis. The aim of this study is to investigate IgG glycosylation and whether there is an association with rheumatoid factor levels in the serum of RA patients. We detected permethylated N-glycans of the IgG obtained in serum from 44 RA patients and 30 healthy controls using linear ion-trap electrospray ionization mass spectrometry (LTQ-ESI-MS), a highly sensitive and efficient approach in the detection and identification of N-glycans profiles. IgG N-glycosylation and rheumatoid factor levels were compared in healthy controls and RA patients. Our results suggested that total IgG purified from serum of RA patients shows significantly lower galactosylation (p = 0.0012), lower sialylation (p < 0.0001) and higher fucosylation (p = 0.0063) levels compared with healthy controls. We observed a positive correlation between aberrant N-glycosylation and rheumatoid factor level in the RA patients. In conclusion, we identified aberrant glycosylation of IgG in the serum of RA patients and its association with elevated levels of rheumatoid factor.
Collapse
|
16
|
Glycomic Signatures of Plasma IgG Improve Preoperative Prediction of the Invasiveness of Small Lung Nodules. Molecules 2019; 25:molecules25010028. [PMID: 31861777 PMCID: PMC6982969 DOI: 10.3390/molecules25010028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Preoperative assessment of tumor invasiveness is essential to avoid overtreatment for patients with small-sized ground-glass nodules (GGNs) of 10 mm or less in diameter. However, it is difficult to determine the pathological state by computed tomography (CT) examination alone. Aberrant glycans has emerged as a tool to identify novel potential disease biomarkers. In this study, we used a lectin microarray-based strategy to investigate whether glycosylation changes in plasma immunoglobulin G (IgG) provide additional information about the invasiveness of small GGNs before surgery. Two independent cohorts (discovery set, n = 92; test set, n = 210) of GGN patients were used. Five of 45 lectins (Sambucus nigra agglutinin, SNA; Datura stramonium agglutinin, DSA; Galanthus nivalis agglutinin, GNA; Euonymus europaeus lectin, EEL; and Vicia villosa agglutinin, VVA) were identified as independent factors associated with pathological invasiveness of small GGNs (p < 0.01). Receiver-operating characteristic (ROC) curve analysis indicated the combination of these five lectins could significantly improve the accuracy of CT in diagnosing invasive GGNs, with an area under the curve (AUC) of 0.792 (p < 0.001), a sensitivity of 74.6%, and specificity of 74.4%, which was superior to current clinical biomarkers. These results suggest that the multilectin assay based on plasma IgG glycosylation may be a useful in vitro complementary test to enhance preoperative determination of the invasiveness of GGNs and guide surgeons to select proper clinical management to avoid overtreatment.
Collapse
|
17
|
Abstract
Glycosylation of IgG Fc domains is a central mechanism in the diversification of antibody function. Modifications to the core Fc glycan impact antibody function by shifting the balance of Type I and Type II Fc gamma receptors (FcγR) that will be engaged by immune complexes. This, in turn, modulates the effector cells and functions that can be recruited during immune activation. Critically, humans have evolved to regulate Fc glycan modifications for immune homeostasis. Dysregulation in Fc glycan modifications can lead to loss of immune tolerance, symptomatic autoimmunity, and susceptibility to infectious diseases. Here, we discuss IgG Fc glycosylation and its role in human health and disease.
Collapse
Affiliation(s)
- Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Irons EE, Lee-Sundlov MM, Zhu Y, Neelamegham S, Hoffmeister KM, Lau JT. B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. eLife 2019; 8:47328. [PMID: 31408003 PMCID: PMC6713473 DOI: 10.7554/elife.47328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022] Open
Abstract
The immune response relies on the integration of cell-intrinsic processes with cell-extrinsic cues. During infection, B cells vacate the marrow during emergency granulopoiesis but return upon restoration of homeostasis. Here we report a novel glycosylation-mediated crosstalk between marrow B cells and hematopoietic progenitors. Human B cells secrete active ST6GAL1 sialyltransferase that remodels progenitor cell surface glycans to suppress granulopoiesis. In mouse models, ST6GAL1 from B cells alters the sialylation profile of bone marrow populations, and mature IgD+ B cells were enriched in sialylated bone marrow niches. In clinical multiple myeloma, ST6GAL1 abundance in the multiple myeloma cells negatively correlated with neutrophil abundance. These observations highlight not only the ability of medullary B cells to influence blood cell production, but also the disruption to normal granulopoiesis by excessive ST6GAL1 in malignancy.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | | | - Yuqi Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, United States
| | | | - Joseph Ty Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| |
Collapse
|
19
|
Abstract
Objective: To investigate the potential role of β-galactosidase in altering immunoglobulin G (IgG) galactosylation in serum of rheumatoid arthritis (RA).Methods: The expression level and activity of β-galactosidase in serum and CD 19+ B cells were measured by enzyme-linked immune sorbent assay (ELISA). The effect of β-galactosidase on the N-glycan changes in serum from mice intravenously treated with β-galactosidase was observed by linear ion-trap quadrupole-electrospray ionization mass spectrometry (LTQ-ESI-MS). We established a collagen-induced arthritis (CIA) rat model to explore the biological function of β-galactosidase in RA.Results: The expression level of β-galactosidase in serum of 32 patients was elevated when compared with those of 30 healthy controls. The activity and expression level of β-galactosidase in CD19+ B cells from RA patients was higher than those from healthy controls. The ratio of m/z 1142/937 was reduced in mice treated with β-galactosidase when compared with normal mice. We found that β-galactosidase was implicated in the development of inflammation by affecting body weight and elevating the expression level of interleukin-6, tumor necrosis factor-α, and rheumatoid factor in the serum.Conclusions: Our results suggested the high level of β-galactosidase in B cells and serum of RA patients and revealed that altered β-galactosidase may be implicated in the progression of inflammation.
Collapse
Affiliation(s)
- Zhipeng Su
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Jingjing Gao
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Qing Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Yanping Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Yunsen Li
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| |
Collapse
|
20
|
Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018; 333:65-79. [DOI: 10.1016/j.cellimm.2018.07.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
|
21
|
Irons EE, Lau JTY. Systemic ST6Gal-1 Is a Pro-survival Factor for Murine Transitional B Cells. Front Immunol 2018; 9:2150. [PMID: 30294329 PMCID: PMC6159744 DOI: 10.3389/fimmu.2018.02150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 11/13/2022] Open
Abstract
Humoral immunity depends on intrinsic B cell developmental programs guided by systemic signals that convey physiologic needs. Aberrant cues or their improper interpretation can lead to immune insufficiency or a failure of tolerance and autoimmunity. The means by which such systemic signals are conveyed remain poorly understood. Hence, further insight is essential to understanding and treating autoimmune diseases and to the development of improved vaccines. ST6Gal-1 is a sialyltransferase that constructs the α2,6-sialyl linkage on cell surface and extracellular glycans. The requirement for functional ST6Gal-1 in the development of humoral immunity is well documented. Canonically, ST6Gal-1 resides within the intracellular ER-Golgi secretory apparatus and participates in cell-autonomous glycosylation. However, a significant pool of extracellular ST6Gal-1 exists in circulation. Here, we segregate the contributions of B cell intrinsic and extrinsic ST6Gal-1 to B cell development. We observed that B cell-intrinsic ST6Gal-1 is required for marginal zone B cell development, while B cell non-autonomous ST6Gal-1 modulates B cell development and survival at the early transitional stages of the marrow and spleen. Exposure to extracellular ST6Gal-1 ex vivo enhanced the formation of IgM-high B cells from immature precursors, and increased CD23 and IgM expression. Extrinsic sialylation by extracellular ST6Gal-1 augmented BAFF-mediated activation of the non-canonical NF-kB, p38 MAPK, and PI3K/AKT pathways, and accelerated tyrosine phosphorylation after B cell receptor stimulation. in vivo, systemic ST6Gal-1 did not influence homing of B cells to the spleen but was critical for their long-term survival and systemic IgG levels. Circulatory ST6Gal-1 levels respond to inflammation, infection, and malignancy in mammals, including humans. In turn, we have shown previously that systemic ST6Gal-1 regulates inflammatory cell production by modifying bone marrow myeloid progenitors. Our data here point to an additional role of systemic ST6Gal-1 in guiding B cell development, which supports the concept that circulating ST6Gal-1 is a conveyor of systemic cues to guide the development of multiple branches of immune cells.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
22
|
Baum LG, Cobb BA. The direct and indirect effects of glycans on immune function. Glycobiology 2018; 27:619-624. [PMID: 28460052 DOI: 10.1093/glycob/cwx036] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
The biological impact of glycans is as diverse and complex as the impact of proteins on biology. Familiar roles include those as a protein folding checkpoint in the endoplasmic reticulum and as a modulator of the serum half-life of secreted glycoproteins, but it has become clear over the last several decades that glycans are key signaling moieties, participate in cell-cell interactions and modulate the function of individual proteins, to name but a few examples. In the immune system, the majority of microbial "patterns" are glycans or glycoconjugates, while virtually all cell surface receptors are glycoproteins, and antibody glycosylation critically influences antibody function. In order to provide a simple contextual framework to understand the myriad roles, glycans play in immunity, we propose that glycan effects are considered direct or indirect, depending on their direct participation or their indirect effects on other components in a given biological process or pathway. Here, we present the published evidence that supports this framework, which ultimately leads to the conclusion that we should learn to embrace the complexity inherent to the glycome and its potential as a largely uncharted but target rich area of new therapeutic investigation.
Collapse
Affiliation(s)
- Linda G Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
The Glycoscience of Immunity. Trends Immunol 2018; 39:523-535. [PMID: 29759949 DOI: 10.1016/j.it.2018.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023]
Abstract
Carbohydrates, or glycans, are as integral to biology as nucleic acids and proteins. In immunology, glycans are well known to drive diverse functions ranging from glycosaminoglycan-mediated chemokine presentation and selectin-dependent leukocyte trafficking to the discrimination of self and non-self through the recognition of sialic acids by Siglec (sialic acid-binding Ig-like lectin) receptors. In recent years, a number of key immunological discoveries are driving a renewed and burgeoning appreciation for the importance of glycans. In this review, we highlight these findings which collectively help to define and refine our knowledge of the function and impact of glycans within the immune response.
Collapse
|
24
|
Emerging glycobiology tools: A renaissance in accessibility. Cell Immunol 2018; 333:2-8. [PMID: 29759530 DOI: 10.1016/j.cellimm.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
The glycobiology of the immune response is a topic that has garnered increased attention due to a number of key discoveries surrounding IgG function, the specificity of some broadly neutralizing anti-HIV antibodies, cancer immunoregulation by galectin molecules and others. This review is the opening article in a Special Edition of Cellular Immunology focused on glycoimmunology, and has the goal of setting the context for these articles by providing a mini-review of how glycans impact immunity. We also focus on some of the technological and methodological advances in the field of glycobiology that are being deployed to lower the barrier of entry into the glycosciences, and to more fully interrogate the glycome and its function.
Collapse
|
25
|
Jones MB. IgG and leukocytes: Targets of immunomodulatory α2,6 sialic acids. Cell Immunol 2018; 333:58-64. [PMID: 29685495 DOI: 10.1016/j.cellimm.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/30/2018] [Indexed: 12/27/2022]
Abstract
ST6Gal1 is a critical sialyltransferase enzyme that controls the addition of α2,6-linked sialic acids to the termini of glycans. Attachment of sialic acids to glycoproteins as a posttranslational modification influences cellular responses, and is a well-known modifier of immune cell behavior. ST6Gal1 activity impacts processes such as: effector functions of immunoglobulin G via Fc sialylation, hematopoietic capacity by hematopoietic stem and progenitor cell surface sialylation, and lymphocyte activation thresholds though CD22 engagement and inhibition of galectins. This review summarizes recent studies that suggest α2,6 sialylation by ST6Gal1 has an immunoregulatory effect on immune reactions.
Collapse
Affiliation(s)
- Mark B Jones
- Case Western Reserve University, School of Medicine, Department of Pathology, Cleveland, OH 44106, United States.
| |
Collapse
|
26
|
Pagan JD, Kitaoka M, Anthony RM. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell 2018; 172:564-577.e13. [PMID: 29275858 PMCID: PMC5849077 DOI: 10.1016/j.cell.2017.11.041] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Self-reactive IgGs contribute to the pathology of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Paradoxically, IgGs are used to treat inflammatory diseases in the form of high-dose intravenous immunoglobulin (IVIG). Distinct glycoforms on the IgG crystallizable fragment (Fc) dictate these divergent functions. IgG anti-inflammatory activity is attributed to sialylation of the Fc glycan. We therefore sought to convert endogenous IgG to anti-inflammatory mediators in vivo by engineering solubilized glycosyltransferases that attach galactose or sialic acid. When both enzymes were administered in a prophylactic or therapeutic fashion, autoimmune inflammation was markedly attenuated in vivo. The enzymes worked through a similar pathway to IVIG, requiring DC-SIGN, STAT6 signaling, and FcγRIIB. Importantly, sialylation was highly specific to pathogenic IgG at the site of inflammation, driven by local platelet release of nucleotide-sugar donors. These results underscore the therapeutic potential of glycoengineering in vivo.
Collapse
Affiliation(s)
- Jose D Pagan
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Maya Kitaoka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
27
|
Abstract
Glycosylation is one of the most frequent post-translational modification of proteins. Many membrane and secreted proteins are decorated by sugar chains mainly linked to asparagine (N-linked) or to serine or threonine (O-linked). The biosynthesis of the sugar chains is mainly controlled by the activity of their biosynthetic enzymes: the glycosyltransferases. Glycosylation plays multiple roles, including the fine regulation of the biological activity of glycoproteins. Inflammaging is a chronic low grade inflammatory status associated with aging, probably caused by the continuous exposure of the immune system to inflammatory stimuli of endogenous and exogenous origin. The aging-associated glycosylation changes often resemble those observed in inflammatory conditions. One of the most reproducible markers of calendar and biological aging is the presence of N-glycans lacking terminal galactose residues linked to Asn297 of IgG heavy chains (IgG-G0). Although the mechanism(s) generating IgG-G0 remain unclear, their presence in a variety of inflammatory conditions suggests a link with inflammaging. In addition, these aberrantly glycosylated IgG can exert a pro-inflammatory effect through different mechanisms, triggering a self-fueling inflammatory loop. A strong association with aging has been documented also for the plasmatic forms of glycosyltrasferases B4GALT1 and ST6GAL1, although their role in the extracellular glycosylation of antibodies does not appear likely. Siglecs, are a group of sialic acid binding mammalian lectins which mainly act as inhibitory receptors on the surface of immune cells. In general activity of Siglecs appears to be associated with long life, probably because of their ability to restrain aging-associated inflammation.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
28
|
Manhardt CT, Punch PR, Dougher CWL, Lau JTY. Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem 2017; 292:13514-13520. [PMID: 28717006 DOI: 10.1074/jbc.c117.795138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have documented that extracellular sialyltransferases can remodel both cell-surface and secreted glycans by a process other than the canonical cell-autonomous glycosylation that occurs within the intracellular secretory apparatus. Despite association of the abundance of these extracellular sialyltransferases, particularly ST6Gal-1, with disease states such as cancer and a variety of inflammatory conditions, the prevalence of this extrinsic glycosylation pathway in vivo remains unknown. Here we observed no significant extrinsic sialylation in resting mice, suggesting that extrinsic sialylation is not a constitutive process. However, extrinsic sialylation in the periphery could be triggered by inflammatory challenges, such as exposure to ionizing radiation or to bacterial lipopolysaccharides. Sialic acids from circulating platelets were used in vivo to remodel target cell surfaces. Platelet activation was minimally sufficient to elicit extrinsic sialylation, as demonstrated with the FeCl3 model of mesenteric artery thrombosis. Although extracellular ST6Gal-1 supports extrinsic sialylation, other sialyltransferases are present in systemic circulation. We also observed in vivo extrinsic sialylation in animals deficient in ST6Gal-1, demonstrating that extrinsic sialylation is not mediated exclusively by ST6Gal-1. Together, these observations form an emerging picture of glycans biosynthesized by the canonical cell-autonomous glycosylation pathway, but subjected to remodeling by extracellular glycan-modifying enzymes.
Collapse
Affiliation(s)
| | | | | | - Joseph T Y Lau
- From the Departments of Molecular and Cellular Biology and
| |
Collapse
|
29
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
30
|
Jennewein MF, Alter G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol 2017; 38:358-372. [DOI: 10.1016/j.it.2017.02.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
|
31
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
32
|
Catera M, Borelli V, Malagolini N, Chiricolo M, Venturi G, Reis CA, Osorio H, Abruzzo PM, Capri M, Monti D, Ostan R, Franceschi C, Dall'Olio F. Identification of novel plasma glycosylation-associated markers of aging. Oncotarget 2016; 7:7455-68. [PMID: 26840264 PMCID: PMC4884931 DOI: 10.18632/oncotarget.7059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The pro- or anti-inflammatory activities of immunoglobulins G (IgGs) are controlled by the structure of the glycan N-linked to Asn297 of their heavy chain. The age-associated low grade inflammation (inflammaging) is associated with increased plasmatic levels of agalactosylated IgGs terminating with N-acetylglucosamine (IgG-G0) whose biogenesis has not been fully explained. Although the biosynthesis of glycans is in general mediated by glycosyltransferases associated with internal cell membranes, the extracellular glycosylation of circulating glycoproteins mediated by plasmatic glycosyltransferases has been recently demonstrated. In this study we have investigated the relationship between plasmatic glycosyltransferases, IgG glycosylation and inflammatory and aging markers. In cohorts of individuals ranging from infancy to centenarians we determined the activity of plasmatic β4 galactosyltransferase(s) (B4GALTs) and of α2,6-sialyltransferase ST6GAL1, the glycosylation of IgG, the GlycoAge test (a glycosylation-based marker of aging) and the plasma level of inflammatory and liver damage markers. Our results show that: 1) plasmatic B4GALTs activity is a new marker of aging, showing a linear increase throughout the whole age range. 2) plasmatic ST6GAL1 was high only in children and in people above 80, showing a quadratic relationship with age. 3) Neither plasmatic glycosyltransferase correlated with markers of liver damage. 4) plasmatic ST6GAL1 showed a positive association with acute phase proteins in offspring of short lived parents, but not in centenarians or in their offspring. 5) Although the glycosylation of IgGs was not correlated with the level of the two plasmatic glycosyltransferases, it showed progressive age-associated changes consistent with a shift toward a pro-inflammatory glycotype.
Collapse
Affiliation(s)
- Mariangela Catera
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Vincenzo Borelli
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Nadia Malagolini
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Mariella Chiricolo
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Giulia Venturi
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, and Institute of Molecular Pathology and Immunology of The University of Porto IPATIMUP), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine of The University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - Hugo Osorio
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, and Institute of Molecular Pathology and Immunology of The University of Porto IPATIMUP), Porto, Portugal.,Faculty of Medicine of The University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - Provvidenza M Abruzzo
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Miriam Capri
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Daniela Monti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", University of Florence, Florence, Italy
| | - Rita Ostan
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| | - Fabio Dall'Olio
- Dipartimento di Medicina Specialistica Diagnostica e Sperimentale (DIMES) University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Dekkers G, Plomp R, Koeleman CAM, Visser R, von Horsten HH, Sandig V, Rispens T, Wuhrer M, Vidarsson G. Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans. Sci Rep 2016; 6:36964. [PMID: 27872474 PMCID: PMC5131652 DOI: 10.1038/srep36964] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Immunoglobulin G (IgG) mediates its immune functions through complement and cellular IgG-Fc receptors (FcγR). IgG contains an evolutionary conserved N-linked glycan at position Asn297 in the Fc-domain. This glycan consists of variable levels of fucose, galactose, sialic acid, and bisecting N-acetylglucosamine (bisection). Of these variations, the lack of fucose strongly enhances binding to the human FcγRIII, a finding which is currently used to improve the efficacy of therapeutic monoclonal antibodies. The influence of the other glycan traits is largely unknown, mostly due to lack of glyco-engineering tools. We describe general methods to produce recombinant proteins of any desired glycoform in eukaryotic cells. Decoy substrates were used to decrease the level of fucosylation or galactosylation, glycosyltransferases were transiently overexpressed to enhance bisection, galactosylation and sialylation and in vitro sialylation was applied for enhanced sialylation. Combination of these techniques enable to systematically explore the biological effect of these glycosylation traits for IgG and other glycoproteins.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research, Department Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco Visser
- Sanquin Research, Department Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans H. von Horsten
- ProBioGen AG, Berlin, Germany
- HTW-Berlin University of Applied Sciences, Life Science Engineering, Berlin, Germany
| | | | - Theo Rispens
- Sanquin Research, Department Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Buffone A, Nasirikenari M, Manhardt CT, Lugade A, Bogner PN, Sackstein R, Thanavala Y, Neelamegham S, Lau JTY. Leukocyte-borne α(1,3)-fucose is a negative regulator of β2-integrin-dependent recruitment in lung inflammation. J Leukoc Biol 2016; 101:459-470. [PMID: 27566832 DOI: 10.1189/jlb.3a0516-215rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/13/2023] Open
Abstract
Leukocyte recruitment in inflammation is a multistep, sequential cascade where the initial step is the selectin-dependent tethering, followed by the formation of firmer integrin-mediated adhesive forces leading to extravasation. The α(1,3)-fucose-containing sialyl-Lewis X (sLeX) is the archetypical ligand on leukocyte surfaces mediating selectin interactions. Canonically, disruption of α(1,3)-fucose formation ablates selectin-mediated adhesion, dramatically reducing trafficking. We report a paradoxical response to α(1,3)-fucose deficiency in which the loss exacerbated rather than attenuated leukocyte recruitment in a murine model of acute airway inflammation. The architecture of the capillary-dominated vasculature in the lung minimized the importance of the selectin dependent step, and we observed that α(1,3)-fucose deficiency augmented CXCR2-mediated Rap1-GTP signaling to enhance the β2-integrin-ICAM-1-binding axis. The data disclose a previously unknown function for α(1,3)-fucose, in which this structure negatively regulates the integrin activation step in leukocyte recruitment.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Charles T Manhardt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Amit Lugade
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Robert Sackstein
- Department of Dermatology Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA;
| |
Collapse
|
35
|
Subedi GP, Barb AW. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 2016; 8:1512-1524. [PMID: 27492264 DOI: 10.1080/19420862.2016.1218586] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Immunoglobulin G1 (IgG1) is the most abundant circulating human antibody and also the scaffold for many therapeutic monoclonal antibodies (mAbs). The destruction of IgG-coated targets by cell-mediated pathways begins with an interaction between the IgG Fc region and multiple varieties of membrane-bound Fc γ receptors (FcγRs) on the surface of leukocytes. This interaction requires the presence of an asparagine-linked (N-)glycan on the Fc, and variations in the N-glycan composition can affect the affinity of CD16A binding (an FcγR). Contemporary efforts to glycoengineer mAbs focus on increasing CD16A affinity, and thus treatment efficacy, but it is unclear how these changes affect affinity for the other FcγRs. Here, we measure binding of the extracellular Fc-binding domains for human CD16A and B, CD32A, B and C, and CD64 to 6 well-defined IgG1 Fc glycoforms that cover ∼85% of the pool of human IgG1 Fc glycoforms. Core α1-6 fucosylation showed the greatest changes with CD16B (8.5-fold decrease), CD16A (3.9-fold decrease) and CD32B/C (1.8-fold decrease), but did not affect binding to CD32A. Adding galactose to the non-reducing termini of the complex-type, biantennary glycan increased affinity for all CD16s and 32s tested by 1.7-fold. Sialylation did not change the affinity of core-fucosylated Fc, but increased the affinity of afucosylated Fc slightly by an average of 1.16-fold for all CD16s and CD32s tested. The effects of fucose and galactose modification are additive, suggesting the contributions of these residues to Fc γ receptor affinity are independent.
Collapse
Affiliation(s)
- Ganesh P Subedi
- a Roy J. Carver Department of Biochemistry , Biophysics and Molecular Biology, Iowa State University , Ames , IA , USA
| | - Adam W Barb
- a Roy J. Carver Department of Biochemistry , Biophysics and Molecular Biology, Iowa State University , Ames , IA , USA
| |
Collapse
|
36
|
Abstract
IgG carrying terminal α2,6-linked sialic acids added to conserved N-glycans within the Fc domain by the sialyltransferase ST6Gal1 accounts for the anti-inflammatory effects of large-dose i.v. Ig (IVIg) in autoimmunity. Here, B-cell-specific ablation of ST6Gal1 in mice revealed that IgG sialylation can occur in the extracellular environment of the bloodstream independently of the B-cell secretory pathway. We also discovered that secreted ST6Gal1 is produced by cells lining central veins in the liver and that IgG sialylation is powered by serum-localized nucleotide sugar donor CMP-sialic acid that is at least partially derived from degranulating platelets. Thus, antibody-secreting cells do not exclusively control the sialylation-dependent anti-inflammatory function of IgG. Rather, IgG sialylation can be regulated by the liver and platelets through the corresponding release of enzyme and sugar donor into the cardiovascular circulation.
Collapse
|
37
|
Liou LB, Huang CC. Sialyltransferase and Neuraminidase Levels/Ratios and Sialic Acid Levels in Peripheral Blood B Cells Correlate with Measures of Disease Activity in Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis: A Pilot Study. PLoS One 2016; 11:e0151669. [PMID: 26981635 PMCID: PMC4794174 DOI: 10.1371/journal.pone.0151669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
Objective We attempted to determine whether the level of enzymes sialyltransferase (ST) and neuraminidase (Neu) and sialic acid (SIA) in patients with systemic lupus erythematosus (SLE) correlates with the SLE Disease Activity Index (SLEDAI) and in patients with rheumatoid arthritis (RA) correlates with the Disease Activity Score28 (DAS28). Methods We examined cell-surface levels of ST6Gal-1, Neu1, ST3Gal-1, Neu3, α-2,6-SIA, and α-2,3-SIA by using fluorescent anti-enzyme antibodies, fluorescent-conjugated Sambucus nigra lectin, and fluorescent-conjugated Maackia amurensis lectin on blood cells in SLE and RA patients and assessed correlations of these levels with SLEDAI and with DAS28. Areas under the curve (AUC) were calculated for different variables against SLEDAI. Results The B-cell ST3Gal-1/Neu3 ratio positively correlated with SLEDAI scores (ρ = 0.409 and P = 0.002, statistically significant after Bonferroni’ correction for multiple analyses.). It was supported by the inverse correlation of B-cell Neu3 levels with SLEDAI scores (ρ = −0.264, P = 0.048). The B-cell ST3Gal-1/Neu3 ratio against SLEDAI yielded an AUC of 0.689, which was comparable to that of anti-dsDNA levels at 0.635. In contrast, both ST3Gal-1 and Neu3 levels of RA B cells (r = 0.376, P = 0.013; r = 0.425, P = 0.005, respectively) correlated positively with high disease-activity DAS28 scores. Conclusion B-cell ST3Gal-1/Neu3 ratios in SLE and B-cell ST3Gal-1 and Neu3 levels in RA with high disease-activity DAS28 scores correlated with disease activity measures and may be useful in monitoring disease activities.
Collapse
Affiliation(s)
- Lieh-bang Liou
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Lin-kou, Kwei-san District, Tao-yuan City, Taiwan
- Chang Gung University College of Medicine, Kwei-san District, Tao-yuan City, Taiwan
- * E-mail: ;
| | - Che-ching Huang
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital at Lin-kou, Kwei-san District, Tao-yuan City, Taiwan
| |
Collapse
|
38
|
Acute phase inflammation is characterized by rapid changes in plasma/peritoneal fluid N-glycosylation in mice. Glycoconj J 2016; 33:457-70. [PMID: 26924641 PMCID: PMC4891370 DOI: 10.1007/s10719-015-9648-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 12/02/2022]
Abstract
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (>95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae (“branching sialylation”) characterized by the presence of α2-6-linked NeuGc on the GlcNAc of the NeuGcα2-3-Galβ1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both α2-3-linked NeuGc and “branching sialylation” were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.
Collapse
|
39
|
Malard-Castagnet S, Dugast E, Degauque N, Pallier A, Soulillou JP, Cesbron A, Giral M, Harb J, Brouard S. Sialylation of antibodies in kidney recipients with de novo donor specific antibody, with or without antibody mediated rejection. Hum Immunol 2015; 77:1076-1083. [PMID: 26546874 DOI: 10.1016/j.humimm.2015.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND DSA are associated with reduced long-term transplant function and increased prevalence of chronic rejection in some patients, whereas others do not: our goal was to determine whether the sialylation of IgG and DSA could help to explain in these last cases their "non-aggressive" and/or "protective" biological activity. METHODS The sialylation level of total IgG in blood from two groups of kidney-transplant patients with de novo DSA, one with an AMR (DSA+AMR+), and the other without were studied. RESULTS In the DSA+AMR- patients total IgG were more sialylated at time of transplant, and at the first detection of DSA, class I DSA were 2.6-fold more sialylated (mean 9.943±1.801 versus 3.898±2.475, p=0.058); DSA+AMR+ patients exhibited higher levels of class II DSA. CONCLUSIONS In our study, higher levels of sialylated IgG are detectable on day of transplant in patients who do not develop AMR, they have higher sialylated class I DSA at the initial detection of DSA, whereas class II DSA are significantly higher in patients who develop AMR. This is the first report suggesting that transplant outcome, and particularly AMR, is associated with levels of sialylated IgG antibodies. Our data suggest that DSA are functionally heterogeneous and that further studies with an enlarged cohort may improve our understanding of their clinical impact.
Collapse
Affiliation(s)
- Stéphanie Malard-Castagnet
- Etablissement Français du sang, Pays de la Loire, HLA Laboratory, 34 Boulevard Jean Monnet, 44011 Nantes, France; Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France.
| | - Emilie Dugast
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France; Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Nicolas Degauque
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France; Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Annaïck Pallier
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France.
| | - Jean Paul Soulillou
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France; Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Anne Cesbron
- Etablissement Français du sang, Pays de la Loire, HLA Laboratory, 34 Boulevard Jean Monnet, 44011 Nantes, France.
| | - Magali Giral
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France; Université de Nantes, Faculté de Médecine, Nantes, France; CIC Biothérapie, 5, allée de l'Ile Gloriette, 44093 Nantes Cedex 0144035, Nantes, France; CHU Nantes, CRB, 9 quai Moncousu, 44093 Nantes Cedex 1, Nantes F-44093, France.
| | - Jean Harb
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France; Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Sophie Brouard
- Institut National de la Sante Et de la Recherche Médicale INSERM U1064, and Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu, LabEx Transplantex, CHU de Nantes, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 01, France; CIC Biothérapie, 5, allée de l'Ile Gloriette, 44093 Nantes Cedex 0144035, Nantes, France; CHU Nantes, CRB, 9 quai Moncousu, 44093 Nantes Cedex 1, Nantes F-44093, France.
| |
Collapse
|
40
|
Subedi GP, Hanson QM, Barb AW. Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient FcγRIIIa binding. Structure 2014; 22:1478-88. [PMID: 25199692 DOI: 10.1016/j.str.2014.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
Abstract
Immunoglobulin G1 (IgG1)-based therapies are widespread, and many function through interactions with low-affinity Fc γ receptors (FcγR). N-glycosylation of the IgG1 Fc domain is required for FcγR binding, though it is unclear why. Structures of the FcγR:Fc complex fail to explain this because the FcγR polypeptide does not bind the N-glycan. Here we identify a link between motion of the N-glycan and Fc:FcγRIIIa affinity that explains the N-glycan requirement. Fc F241 and F243 mutations decreased the N-glycan/polypeptide interaction and increased N-glycan mobility. The affinity of the Fc mutants for FcγRIIIa was directly proportional to the degree of glycan restriction (R(2) = 0.82). The IgG1 Fc K246F mutation stabilized the N-glycan and enhanced affinity for FcγRIIIa. Allosteric modulation of a protein/protein interaction represents a previously undescribed role for N-glycans in biology. Conserved features suggesting a similar N-glycan/aromatic interaction were also found in IgD, IgE, and IgM, but not IgA.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
41
|
Liu H, Wang Z, Yu S, Xu J. Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory response†. Cardiovasc Res 2014; 103:131-9. [PMID: 24788415 DOI: 10.1093/cvr/cvu116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Hypoxia induces vascular inflammation by a mechanism not fully understood. Emerging evidence implicates O-GlcNAc transferase (OGT) in inflammation. This study explored the role of OGT in hypoxia-induced vascular endothelial inflammatory response. METHODS AND RESULTS Hypoxia was either induced (1% O2 chamber) or mimicked by exposure to hypoxia-mimetic agents in cultured endothelial cells. Hypoxia increased hypoxia-inducible factor (HIF-1α) and inflammatory response (gene and protein expression of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and E-selectin) but, surprisingly, reduced OGT protein (not mRNA) levels. Hypoxia-mimetic CoCl2 failed to reduce OGT when proteasome inhibitors were present, suggesting proteasome involvement. Indeed, CoCl2 enhanced 26S proteasome functionality evidenced by diminished reporter (Ub(G76V)-GFP) proteins in proteasome reporter cells, likely due to increased chymotrypsin-like activities. Mechanistically, β-TrCP1 mediated OGT degradation, since siRNA ablation of this E3 ubiquitin ligase stabilized OGT. Administration of the oxidative stress inhibitors reversed both proteasome activation and OGT degradation. Furthermore, up-regulation of OGT by stabilization, overexpression, or activation mitigated CoCl2-elicited inflammatory response. These observations were recapitulated in a mouse (C57BL/6J) model mimicking hypoxia, in which lung tissues presented higher levels of HIF-1α, proteasome activity, and inflammatory response, but lower levels of OGT (n = 5/group, hypoxia vs. normoxia, P < 0.05). However, administration of an activator of OGT (glucosamine: 1 mg/g/day, vehicle: saline, ip, 5 days) abolished the up-regulation of proteasome activity and inflammatory response (n = 5/group, the treated vs. untreated hypoxia groups, P < 0.05). CONCLUSIONS 26S proteasome-mediated OGT reduction contributed to hypoxia-induced vascular endothelial inflammatory response. Modulation of OGT may represent a new approach to treat diseases characterized by hypoxic inflammation.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxiao Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shujie Yu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jian Xu
- Section of Endocrinology and Diabetes, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
42
|
Novokmet M, Lukić E, Vučković F, Ðurić Ž, Keser T, Rajšl K, Remondini D, Castellani G, Gašparović H, Gornik O, Lauc G. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep 2014; 4:4347. [PMID: 24614541 PMCID: PMC3949295 DOI: 10.1038/srep04347] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/24/2014] [Indexed: 12/19/2022] Open
Abstract
Recovery after cardiac surgery is a complex process that has to compensate for both individual variability and extensive tissue damage in the context of systemic inflammation. Protein glycosylation is essential in many steps of the inflammatory cascade, but due to technological limitations the role of individual variation in glycosylation in systemic inflammation has not been addressed until now. We analysed composition of the total plasma and IgG N-glycomes in 107 patients undergoing cardiac surgery. In nearly all individuals plasma N-glycome underwent the same pattern of changes in the first 72 h, revealing a general mechanism of glycosylation changes. To the contrary, changes in the IgG glycome were very individualized. Bi-clustering analysis revealed the existence of four distinct patterns of changes. One of them, characterized by a rapid increase in galactosylated glycoforms, was associated with nearly double mortality risk measured by EuroSCORE II. Our results indicate that individual variation in IgG glycosylation changes during acute systemic inflammation associates with increased mortality risk and indicates new avenues for the development of personalized diagnostic and therapeutic approach.
Collapse
Affiliation(s)
| | - Edita Lukić
- Department of Orthopaedic Surgery University Hospital Centre Zagreb, Croatia
| | | | - Željko Ðurić
- Clinic for Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Toma Keser
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Katarina Rajšl
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Daniel Remondini
- Department of Physics and Astronomy DIFA, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy DIFA, University of Bologna, Bologna, Italy
| | - Hrvoje Gašparović
- Clinic for Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Olga Gornik
- 1] University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia [2]
| | - Gordan Lauc
- 1] Genos Glycoscience Laboratory, Zagreb, Croatia [2] University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia [3]
| |
Collapse
|
43
|
Yang X, Ma F. Balance of sialylation contributing to functional recovery in synovial fluid via microwave diathermy. Med Hypotheses 2014; 82:460-1. [PMID: 24529914 DOI: 10.1016/j.mehy.2014.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/17/2022]
Abstract
Microwave diathermy is a recommended physicotherapeutics commonly for the cases in treating inflammatory arthritis and improving the post-operative complications, which could help the synovial's fluid of the joints recover to being physiological status. Sialylation of the components especially on the glycan proteins and cell surface in the synovial fluid plays the key role for the joints normal function including lubrication and local inflammation. Here, we proposed that natural thermal radiation of microwave facilitate the local hemangiectasis and aid the balance of sialylation and desialylation of the synovin and cell surfaces in the joint fluid which might contribute to alleviate local joint symptom and assist joint functional recovery.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Orthopedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan, China
| | - Fang Ma
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China; Joint Laboratory for Reproductive Medicine, SCU-CUHK, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
44
|
Ogata S, Shimizu C, Franco A, Touma R, Kanegaye JT, Choudhury BP, Naidu NN, Kanda Y, Hoang LT, Hibberd ML, Tremoulet AH, Varki A, Burns JC. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS One 2013; 8:e81448. [PMID: 24324693 PMCID: PMC3855660 DOI: 10.1371/journal.pone.0081448] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
Objectives Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient’s own endogenous IgG. Methods We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. Results There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Conclusions Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.
Collapse
Affiliation(s)
- Shohei Ogata
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Chisato Shimizu
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Alessandra Franco
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Ranim Touma
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - John T. Kanegaye
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Biswa P. Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Natasha N. Naidu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Yutaka Kanda
- Kyowa Hakko Kirin California, Inc., La Jolla, California, United States of America
| | - Long T. Hoang
- Division of Infectious Disease 1, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L. Hibberd
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Adriana H. Tremoulet
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
|
46
|
Abstract
Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 982A 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
47
|
The regulatory power of glycans and their binding partners in immunity. Trends Immunol 2013; 34:290-8. [PMID: 23485517 DOI: 10.1016/j.it.2013.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Glycans and glycan-binding proteins are central to a properly functioning immune system. Perhaps the best known example of this is the selectin family of surface proteins that are primarily found on leukocytes, and which bind to endothelial glycans near sites of infection or inflammation and enable extravasation into tissues. In the past decade, however, several other immune pathways that are dependent on or sensitive to changes in glycan-mediated mechanisms have been revealed. These include antibody function, apoptosis, T helper (Th)1 versus Th2 skewing, T cell receptor signaling, and MHC class II antigen presentation. Here, we highlight how regulated changes in protein glycosylation both at the cell surface and on secreted glycoproteins can positively and negatively modulate the immune response.
Collapse
|