1
|
Liu H, Yang S, Zhang Q, Wang S, Zhang B, Xu Y, Fu X, Zhou S, Zhang P, Wang H, Di L, Xu X, Xu X, Liu C, Yang C, Wang Y, Jiang R. S-ketamine alleviates morphine-induced hyperalgesia via decreasing the gut Enterobacteriaceae levels: Comparison with R-ketamine. Neuroscience 2025; 568:240-252. [PMID: 39837364 DOI: 10.1016/j.neuroscience.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Opioid-induced hyperalgesia (OIH) is a serious complication during the pain treatment. Ketamine has been commonly reported to treat OIH, but the mechanisms remain unclear. Gut microbiota is recently recognized as one of the important mechanisms underlying the occurrence and treatment of OIH. However, whether ketamine enantiomers could alleviate OIH through gut microbiota that still needs to be clarified. METHODS The OIH model was established by morphine injection for 3 consecutive days, followed by hierarchical clustering analysis of behavioral results into susceptible or resilient group. Broad-spectrum antibiotic cocktail (ABx) was used to eradicated the gut microbiota of mice. Subsequently, fecal microbiota transplantation (FMT) was performed. S- or R-ketamine was administered as pretreatment 30 min before morphine injection. Fecal samples were collected for 16S rRNA gene sequencing after completion of all behavioral tests. RESULTS Approximately 60% of the mice developed OIH after morphine exposure with abnormal locomotion and anxiety-like behaviors. Pseudo germ-free mice treated with ABx did not develop hyperalgesia, whereas pseudo germ-free mice that received fecal microbiota transplantation from OIH mice developed hyperalgesia. Interestingly, S-ketamine but not R-ketamine rescued mice from OIH. The principal co-ordinates analysis (PCoA) suggested that the distribution of gut microbiota differed among the groups. Importantly, levels of Enterobacteriaceae were increased in OIH susceptible group, while decreased after S-ketamine treatment. CONCLUSION S-ketamine but not R-ketamine was able to alleviate morphine-induced OIH, and this mechanism is probably related to decreasing the levels of gut Enterobacteriaceae.
Collapse
Affiliation(s)
- Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bingyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yidong Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suli Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peiyao Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haoran Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingxiao Di
- The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China
| | - Xiangqing Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd and Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Xiangyang Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd and Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
3
|
de Abreu MM, Binda NS, Reis MPFCA, Diniz DM, Cordeiro MDN, Borges MH, de Lima ME, Ribeiro FM, Gomez MV, da Silva JF. Spinal antinociceptive effect of the PnTx4(5-5) peptide is possibly mediated by the NMDA autoreceptors. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230103. [PMID: 39686943 PMCID: PMC11649190 DOI: 10.1590/1678-9199-jvatitd-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/11/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Medications currently used to treat pain are frequently associated with serious adverse effects and rapid development of tolerance. Thus, there is a need to develop more effective, and safer medicines for the population. Blocking NMDA receptors (NMDAR) has shown to be a promising target for the development of new drugs. That statement is due to NMDAR activation and glutamate release in the spinal cord which affects chronic pain modulation. Therefore, the aim of this study was to evaluate the possible spinal antinociceptive activity of PnTx4(5-5) toxin. The peptide is purified from the venom of the spider P. nigriventer and its affinity for NMDAR and sodium channels Nav1.2-1.6 has already been established. METHODS We compared its effect and safety with MK-801 (NMDAR antagonist) and evaluated its influence on glutamate and reactive oxygen species (ROS) levels in CSF. PnTx4(5-5) was administered intrathecally in the Formalin test and co-administered with NMDA in the Spontaneous pain test. After three minutes of observation, mice cerebrospinal fluid was collected to measure glutamate and ROS levels. RESULTS The spider peptide inhibited nociception as post-treatment in the inflammatory phase of the Formalin test. Furthermore, it inhibited spontaneous nociception induced by NMDA, being more potent and effective than MK-801 in both models tested. A glutamate rise level in the CSF of mice was significantly reduced by the toxin, but ROS increase was not affected. The animals' motor skills were not affected by the tested doses of NMDAR inhibitors. CONCLUSION In conclusion, the results suggest PnTx4(5-5) may mediate its antinociceptive effect in the spinal cord not only by inhibiting postsynaptic receptors but probably also by acting on autoreceptors. This effect does not affect the motricity of mice at the highest dose tested, which suggests that it has therapeutic potential and safety for use as a painkiller.
Collapse
Affiliation(s)
| | - Nancy Scardua Binda
- Department of Pharmacy, Federal University of Ouro Preto (UFOP),
Ouro Preto, MG, Brazil
| | | | - Danuza Montijo Diniz
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Marta do Nascimento Cordeiro
- Professor Carlos Diniz Research and Development Center, Ezequiel
Dias Foundation(FUNED), Belo Horizonte, MG, Brazil
| | - Márcia Helena Borges
- Professor Carlos Diniz Research and Development Center, Ezequiel
Dias Foundation(FUNED), Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Federal University of
Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
4
|
Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I, Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, Riba P, Tábi T, Harsing LG, Zádor F, Al-Khrasani M. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int J Mol Sci 2024; 25:11136. [PMID: 39456918 PMCID: PMC11508341 DOI: 10.3390/ijms252011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid analgesic tolerance (OAT), among other central side effects, limits opioids' indispensable clinical use for managing chronic pain. Therefore, there is an existing unmet medical need to prevent OAT. Extrasynaptic N-methyl D-aspartate receptors (NMDARs) containing GluN2B subunit blockers delay OAT, indicating the involvement of glutamate in OAT. Glycine acts as a co-agonist on NMDARs, and glycine transporters (GlyTs), particularly GlyT-1 inhibitors, could affect the NMDAR pathways related to OAT. Chronic subcutaneous treatments with morphine and NFPS, a GlyT-1 inhibitor, reduced morphine antinociceptive tolerance (MAT) in the rat tail-flick assay, a thermal pain model. In spinal tissues of rats treated with a morphine-NFPS combination, NFPS alone, or vehicle-comparable changes in µ-opioid receptor activation, protein and mRNA expressions were seen. Yet, no changes were observed in GluN2B mRNA levels. An increase was observed in glycine and glutamate contents of cerebrospinal fluids from animals treated with a morphine-NFPS combination and morphine, respectively. Finally, GlyT-1 inhibitors are likely to delay MAT by mechanisms relying on NMDARs functioning rather than an increase in opioid efficacy. This study, to the best of our knowledge, shows for the first time the impact of GlyT-1 inhibitors on MAT. Nevertheless, future studies are required to decipher the exact mechanisms.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Péter P. Lakatos
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Edina Szücs
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Judit Mária Kirchlechner-Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sándor Benyhe
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Tamás Tábi
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| |
Collapse
|
5
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
6
|
Hung 洪瑋辰 WC, Chen 陳志成 CC, Yen 嚴震東 CT, Min 閔明源 MY. Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice. eNeuro 2024; 11:ENEURO.0087-24.2024. [PMID: 39256039 PMCID: PMC11391502 DOI: 10.1523/eneuro.0087-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.
Collapse
Affiliation(s)
- Wei-Chen Hung 洪瑋辰
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | | | - Cheng-Tung Yen 嚴震東
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yuan Min 閔明源
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Yao C, Fang X, Ru Q, Li W, Li J, Mehsein Z, Tolias KF, Li L. Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia. Brain 2024; 147:2507-2521. [PMID: 38577773 PMCID: PMC11224607 DOI: 10.1093/brain/awae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.
Collapse
Affiliation(s)
- Changqun Yao
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Xing Fang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan 430056, China
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Zeinab Mehsein
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Galambos AR, Papp ZT, Boldizsár I, Zádor F, Köles L, Harsing LG, Al-Khrasani M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024; 12:421. [PMID: 38398023 PMCID: PMC10886540 DOI: 10.3390/biomedicines12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers β-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| |
Collapse
|
9
|
Han X, Pinto LG, Vilar B, McNaughton PA. Opioid-Induced Hyperalgesia and Tolerance Are Driven by HCN Ion Channels. J Neurosci 2024; 44:e1368232023. [PMID: 38124021 PMCID: PMC11059424 DOI: 10.1523/jneurosci.1368-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active μ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.
Collapse
Affiliation(s)
- Xue Han
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
10
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Pahan P, Xie JY. Microglial inflammation modulates opioid analgesic tolerance. J Neurosci Res 2023; 101:1383-1392. [PMID: 37186407 PMCID: PMC11410303 DOI: 10.1002/jnr.25199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
As we all know, opioids are the drugs of choice for treating severe pain. However, very often, opioid use leads to tolerance, dependence, and hyperalgesia. Therefore, understanding the mechanisms underlying opioid tolerance and designing strategies for increasing the efficacy of opioids in chronic pain are important areas of research. Microglia are brain macrophages that remove debris and dead cells from the brain and participate in immune defense of the central nervous system during an insult or injury. However, recent studies indicate that microglial activation and generation of proinflammatory molecules (e.g., cytokines, nitric oxide, eicosanoids, etc.) in the brain may contribute to opioid tolerance and other side effects of opioid use. In this review, we will summarize the evidence and possible mechanisms by which proinflammatory molecules produced by activated microglia may antagonize the analgesic effect induced by opioids, and thus, lead to opioid tolerance. We will also delineate specific examples of studies that suggest therapeutic targets to counteract the development of tolerance clinically using suppressors of microglial inflammation.
Collapse
Affiliation(s)
- Priyanka Pahan
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Arkansas, Jonesboro, USA
| | - Jennifer Yanhua Xie
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Arkansas, Jonesboro, USA
| |
Collapse
|
12
|
Jin D, Chen H, Zhou MH, Chen SR, Pan HL. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors. J Neurosci 2023; 43:5593-5607. [PMID: 37451981 PMCID: PMC10401648 DOI: 10.1523/jneurosci.0601-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with μ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
13
|
Xie WJ, Hong JS, Feng CF, Chen HF, Li W, Li YC. Pharmacological interventions for preventing opioid-induced hyperalgesia in adults after opioid-based anesthesia: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1199794. [PMID: 37426819 PMCID: PMC10324676 DOI: 10.3389/fphar.2023.1199794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Opioid-induced hyperalgesia (OIH) is an adverse event of prolonged opioid use that increases pain intensity. The optimal drug to prevent these adverse effects is still unknown. We aimed to conduct a network meta-analysis to compare different pharmacological interventions for preventing the increase in postoperative pain intensity caused by OIH. Methods: Several databases were searched independently for randomized controlled trials (RCTs) comparing various pharmacological interventions to prevent OIH. The primary outcomes were postoperative pain intensity at rest after 24 h and the incidence of postoperative nausea and vomiting (PONV). Secondary outcomes included pain threshold at 24 h after surgery, total morphine consumption over 24 h, time to first postoperative analgesic requirement, and shivering incidence. Results: In total, 33 RCTs with 1711 patients were identified. In terms of postoperative pain intensity, amantadine, magnesium sulphate, pregabalin, dexmedetomidine, ibuprofen, flurbiprofen plus dexmedetomidine, parecoxib, parecoxib plus dexmedetomidine, and S (+)-ketamine plus methadone were all associated with milder pain intensity than placebo, with amantadine being the most effective (SUCRA values = 96.2). Regarding PONV incidence, intervention with dexmedetomidine or flurbiprofen plus dexmedetomidine resulted in a lower incidence than placebo, with dexmedetomidine showing the best result (SUCRA values = 90.3). Conclusion: Amantadine was identified as the best in controlling postoperative pain intensity and non-inferior to placebo in the incidence of PONV. Dexmedetomidine was the only intervention that outperformed placebo in all indicators. Clinical Trial Registration: https://www.crd.york.ac. uk/prospero/display_record.php?, CRD42021225361.
Collapse
Affiliation(s)
- Wei-Ji Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji-Shuang Hong
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cheng-Fei Feng
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao-Feng Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yong-Chun Li
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
14
|
Mo J, Lu Z, Peng J, Li XP, Lan L, Wang H, Peng Y. PAG neuronal NMDARs activation mediated morphine-induced hyperalgesia by HMGB1-TLR4 dependent microglial inflammation. J Psychiatr Res 2023; 164:150-161. [PMID: 37352811 DOI: 10.1016/j.jpsychires.2023.05.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
Morphine is one of the most effective and widely used analgesic drugs. However, chronic morphine use caused opioid-induced hyperalgesia (OIH). The development of OIH limits the use of morphine. The mechanisms of OIH are not fully understood. Toll-like receptor4 (TLR4) and glutamate receptors in the periaqueductal gray (PAG) are critical in OIH, however, the association between TLR4 and N-methyl-D-aspartate Receptors (NMDARs) activation in PAG remains unclear. Microglia activation, increased TLR4/p65 nuclear factor-kappa B (p65 NF-κB) and proinflammatory cytokines in microglia, and phosphorylation of NMDAR1 subunit (NR1) and NMDAR2B subunit (NR2B) in neurons were observed in PAG of OIH mice. Up-regulations of TLR4/p65 NF-κB and proinflammatory cytokines (IL-1β, IL-6, TNF-α) in BV2 cells were prevented by inhibiting and knocking down TLR4. By inhibiting myeloid differentiation factor 2 (MD2) and knocking down the High-mobility group box 1 (HMGB1), we found that morphine activated TLR4 by HMGB1 but not MD2. We co-cultured Neuro-2a (N2A) with BV2 microglial cell line and found that instead of directly phosphorylating NMDAR subunits, morphine increased the phosphorylation of NR1 and NR2B by inducing TLR4-mediated microglia inflammation. Knocking TLR4 out of PAG by Lentivirus-GFP-TLR4 shRNA reversed these changes and relieved OIH. Our findings suggested that the secretion of HMGB1 induced by morphine-activated TLR4 in microglia, and the proinflammatory factors released by activated microglia phosphorylated NR1 and NR2B of adjacent neurons, induced increased neuronal excitability. In conclusion, TLR4/NMDARs in PAG were involved in the development and maintenance of OIH and supported novel strategies for OIH treatment.
Collapse
Affiliation(s)
- Jingjing Mo
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zijing Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510510, Guangdong, China
| | - Jialing Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang-Pen Li
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lihuan Lan
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510828, Guangdong, China.
| |
Collapse
|
15
|
Huang Y, Chen H, Jin D, Chen SR, Pan HL. NMDA Receptors at Primary Afferent-Excitatory Neuron Synapses Differentially Sustain Chemotherapy- and Nerve Trauma-Induced Chronic Pain. J Neurosci 2023; 43:3933-3948. [PMID: 37185237 PMCID: PMC10217996 DOI: 10.1523/jneurosci.0183-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
16
|
Ferreyra S, González S. Therapeutic potential of progesterone in spinal cord injury-induced neuropathic pain: At the crossroads between neuroinflammation and N-methyl-D-aspartate receptor. J Neuroendocrinol 2023; 35:e13181. [PMID: 35924434 DOI: 10.1111/jne.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
In recent decades, an area of active research has supported the notion that progesterone promotes a wide range of remarkable protective actions in experimental models of nervous system trauma or disease, and has also provided a strong basis for considering this steroid as a promising molecule for modulating the complex maladaptive changes that lead to neuropathic pain, especially after spinal cord injury. In this review, we intend to give the readers a brief appraisal of the main mechanisms underlying the increased excitability of the spinal circuit in the pain pathway after trauma, with particular emphasis on those mediated by the activation of resident glial cells, the subsequent release of proinflammatory cytokines and their impact on N-methyl-D-aspartate receptor function. We then summarize the available preclinical data pointing to progesterone as a valuable repurposing molecule for blocking critical cellular and molecular events that occur in the dorsal horn of the injured spinal cord and are related to the development of chronic pain. Since the treatment and management of neuropathic pain after spinal injury remains challenging, the potential therapeutic value of progesterone opens new traslational perspectives to prevent central pain.
Collapse
Affiliation(s)
- Sol Ferreyra
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
| | - Susana González
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| |
Collapse
|
17
|
Jin D, Chen H, Chen SR, Pan HL. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens. J Neurochem 2023; 164:143-157. [PMID: 36222452 PMCID: PMC9892208 DOI: 10.1111/jnc.15706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Glutamate NMDA receptors (NMDARs) in the nucleus accumbens (NAc) are critically involved in drug dependence and reward. α2δ-1 is a newly discovered NMDAR-interacting protein that promotes synaptic trafficking of NMDARs independently of its conventional role as a calcium channel subunit. However, it remains unclear how repeated opioid exposure affects synaptic NMDAR activity and α2δ-1-NMDAR interaction in the NAc. In this study, whole-cell patch-clamp recordings showed that repeated treatment with morphine in mice markedly increased the NMDAR-mediated frequency of miniature excitatory postsynaptic currents (mEPSCs) and amplitude of puff NMDAR currents in medium spiny neurons in the NAc core region. Morphine treatment significantly increased the physical interaction of α2δ-1 with GluN1 and their synaptic trafficking in the NAc. In Cacna2d1 knockout mice, repeated treatment with morphine failed to increase the frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Furthermore, inhibition of α2δ-1 with gabapentin or disruption of the α2δ-1-NMDAR interaction with the α2δ-1 C terminus-interfering peptide blocked the morphine-elevated frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Correspondingly, systemically administered gabapentin, Cacna2d1 ablation, or microinjection of the α2δ-1 C terminus-interfering peptide into the NAc core attenuated morphine-induced conditioned place preference and locomotor sensitization. Our study reveals that repeated opioid exposure strengthens presynaptic and postsynaptic NMDAR activity in the NAc via α2δ-1. The α2δ-1-bound NMDARs in the NAc have a key function in the rewarding effect of opioids and could be targeted for treating opioid use disorder and addiction.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Chen SR, Chen H, Jin D, Pan HL. Brief Opioid Exposure Paradoxically Augments Primary Afferent Input to Spinal Excitatory Neurons via α2δ-1-Dependent Presynaptic NMDA Receptors. J Neurosci 2022; 42:9315-9329. [PMID: 36379705 PMCID: PMC9794381 DOI: 10.1523/jneurosci.1704-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Treatment with opioids not only inhibits nociceptive transmission but also elicits a rebound and persistent increase in primary afferent input to the spinal cord. Opioid-elicited long-term potentiation (LTP) from TRPV1-expressing primary afferents plays a major role in opioid-induced hyperalgesia and analgesic tolerance. Here, we determined whether opioid-elicited LTP involves vesicular glutamate transporter-2 (VGluT2) or vesicular GABA transporter (VGAT) neurons in the spinal dorsal horn of male and female mice and identified underlying signaling mechanisms. Spinal cord slice recordings revealed that µ-opioid receptor (MOR) stimulation with DAMGO initially inhibited dorsal root-evoked EPSCs in 87% VGluT2 neurons and subsequently induced LTP in 49% of these neurons. Repeated morphine treatment increased the prevalence of VGluT2 neurons displaying LTP with a short onset latency. In contrast, DAMGO inhibited EPSCs in 46% VGAT neurons but did not elicit LTP in any VGAT neurons even in morphine-treated mice. Spinal superficial laminae were densely innervated by MOR-containing nerve terminals and were occupied by mostly VGluT2 neurons and few VGAT neurons. Furthermore, conditional Grin1 knockout in dorsal root ganglion neurons diminished DAMGO-elicited LTP in lamina II neurons and attenuated hyperalgesia and analgesic tolerance induced by repeated treatment with morphine. In addition, DAMGO-elicited LTP in VGluT2 neurons was abolished by protein kinase C inhibition, gabapentin, Cacna2d1 knockout, or disrupting the α2δ-1-NMDA receptor interaction with an α2δ-1 C terminus peptide. Thus, brief MOR stimulation distinctively potentiates nociceptive primary afferent input to excitatory dorsal horn neurons via α2δ-1-coupled presynaptic NMDA receptors, thereby causing hyperalgesia and reducing analgesic actions of opioids.SIGNIFICANCE STATEMENT Opioid drugs are potent analgesics for treating severe pain and are commonly used during general anesthesia. However, opioid use often induces pain hypersensitivity, rapid loss of analgesic efficacy, and dose escalation, which can cause dependence, addiction, and even overdose fatality. This study demonstrates for the first time that brief opioid exposure preferentially augments primary sensory input to genetically identified glutamatergic excitatory, but not GABAergic/glycinergic inhibitory, neurons in nociceptive dorsal horn circuits. This opioid-elicited synaptic plasticity is cell type specific and mediated by protein kinase C-dependent and α2δ-1-dependent activation of NMDA receptors at primary sensory nerve terminals. These findings elucidate how intraoperative use of opioids for preemptive analgesia paradoxically aggravates postoperative pain and increases opioid consumption and suggest new strategies to improve opioid analgesic efficacy.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
19
|
Jin D, Chen H, Huang Y, Chen SR, Pan HL. δ-Opioid receptors in primary sensory neurons tonically restrain nociceptive input in chronic pain but do not enhance morphine analgesic tolerance. Neuropharmacology 2022; 217:109202. [PMID: 35917874 DOI: 10.1016/j.neuropharm.2022.109202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
δ-Opioid receptors (DORs, encoded by the Oprd1 gene) are expressed throughout the peripheral and central nervous system, and DOR stimulation reduces nociception. Previous studies suggest that DORs promote the development of analgesic tolerance of μ-opioid receptor (MOR) agonists. It is uncertain whether DORs expressed in primary sensory neurons are involved in regulating chronic pain and MOR agonist-induced tolerance. In this study, we generated Oprd1 conditional knockout (Oprd1-cKO) mice by crossing Advillin-Cre mice with Oprd1-floxed mice. DOR expression in the dorsal root ganglion was diminished in Oprd1-cKO mice. Systemic or intrathecal injection of the DOR agonist SNC-80 produced analgesia in wild-type (WT), but not Oprd1-cKO, mice. In contrast, intracerebroventricular injection of SNC-80 produced a similar analgesic effect in WT and Oprd1-cKO mice. However, morphine-induced analgesia, hyperalgesia, or analgesic tolerance did not differ between WT and Oprd1-cKO mice. Compared with WT mice, Oprd1-cKO mice showed increased mechanical and heat hypersensitivity after nerve injury or tissue inflammation. Furthermore, blocking DORs with naltrindole increased nociceptive sensitivity induced by nerve injury or tissue inflammation in WT, but not Oprd1-cKO, mice. In addition, naltrindole potentiated glutamatergic input from primary afferents to spinal dorsal horn neurons increased by nerve injury or CFA in WT mice; this effect was absent in Oprd1-cKO mice. Our findings indicate that DORs in primary sensory neurons are critically involved in the analgesic effect of DOR agonists but not morphine-induced analgesic tolerance. Presynaptic DORs at primary afferent central terminals constitutively inhibit inflammatory and neuropathic pain by restraining glutamatergic input to spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Rattanawong W, Rapoport A, Srikiatkhachorn A. Neurobiology of migraine progression. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100094. [PMID: 35720639 PMCID: PMC9204797 DOI: 10.1016/j.ynpai.2022.100094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Chronic migraine is one of the most devastating headache disorders. The estimated prevalence is 1.4-2.2% in the population. The factors which may predispose to the process of migraine progression include high frequency of migraine attacks, medication overuse, comorbid pain syndromes, and obesity. Several studies showed that chronic migraine results in the substantial anatomical and physiological changes in the brain. Despite no clear explanation regarding the pathophysiologic process leading to the progression, certain features such as increased sensory sensitivity, cutaneous allodynia, impaired habituation, identify the neuronal hyperexcitability as the plausible mechanism. In this review, we describe two main mechanisms which can lead to this hyperexcitability. The first is persistent sensitization caused by repetitive and prolonged trigeminal nociceptive activation. This process results in changes in several brain networks related to both pain and non-pain behaviours. The second mechanism is the decrease in endogenous brainstem inhibitory control, hence increasing the excitability of neurons in the trigeminal noceptive system and cerebral cortex. The combination of increased pain matrix connectivity, including hypothalamic hyperactivity and a weak serotonergic system, may contribute to migraine chronification.
Collapse
Affiliation(s)
- Wanakorn Rattanawong
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, 10520, Thailand
| | - Alan Rapoport
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, 10520, Thailand
| |
Collapse
|
21
|
Dedek A, Hildebrand ME. Advances and Barriers in Understanding Presynaptic N-Methyl-D-Aspartate Receptors in Spinal Pain Processing. Front Mol Neurosci 2022; 15:864502. [PMID: 35431805 PMCID: PMC9008455 DOI: 10.3389/fnmol.2022.864502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, N-methyl-D-aspartate (NMDA) receptors have been known to play a critical role in the modulation of both acute and chronic pain. Of particular interest are NMDA receptors expressed in the superficial dorsal horn (SDH) of the spinal cord, which houses the nociceptive processing circuits of the spinal cord. In the SDH, NMDA receptors undergo potentiation and increases in the trafficking of receptors to the synapse, both of which contribute to increases in excitability and plastic increases in nociceptive output from the SDH to the brain. Research efforts have primarily focused on postsynaptic NMDA receptors, despite findings that presynaptic NMDA receptors can undergo similar plastic changes to their postsynaptic counterparts. Recent technological advances have been pivotal in the discovery of mechanisms of plastic changes in presynaptic NMDA receptors within the SDH. Here, we highlight these recent advances in the understanding of presynaptic NMDA receptor physiology and their modulation in models of chronic pain. We discuss the role of specific NMDA receptor subunits in presynaptic membranes of nociceptive afferents and local SDH interneurons, including their modulation across pain modalities. Furthermore, we discuss how barriers such as lack of sex-inclusive research and differences in neurodevelopmental timepoints have complicated investigations into the roles of NMDA receptors in pathological pain states. A more complete understanding of presynaptic NMDA receptor function and modulation across pain states is needed to shed light on potential new therapeutic treatments for chronic pain.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Department, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael E. Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Neuroscience Department, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- *Correspondence: Michael E. Hildebrand,
| |
Collapse
|
22
|
Zhang X, Zhang N, Liu D, Ding J, Zhang Y, Zhu Z. Research advances in the clinical application of esketamine. IBRAIN 2022; 8:55-67. [PMID: 37786420 PMCID: PMC10528803 DOI: 10.1002/ibra.12019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 10/04/2023]
Abstract
Esketamine is dextrorotatory ketamine, which is an enantiomer of ketamine. Compared with ketamine, it has the advantages of a fast metabolism, fewer side effects, and strong pharmacological effects, so it is more suitable for clinical use. Esketamine has a powerful analgesic effect and has little effect on breathing. It has a wide range of applications in the fields of pediatric anesthesia, conscious sedation anesthesia, and emergency analgesia. In addition, it is also used for pain that is difficult to relieve with conventional drugs and to prevent postoperative pain. Various routes of administration are also suitable for patients who need short-term analgesia and sedation. As a drug, esketamine inevitably brings some side effects when it is used clinically. In this article, by introducing the mechanism of action and pharmacological characteristics of esketamine, its clinical application is reviewed, and it provides a reference for the more reasonable and safe clinical application of esketamine.
Collapse
Affiliation(s)
- Xiao‐Xi Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Nai‐Xin Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Xing Liu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jun Ding
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Nan Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
23
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
24
|
Li Y, Bao Y, Zheng H, Qin Y, Hua B. Can Src protein tyrosine kinase inhibitors be combined with opioid analgesics? Src and opioid-induced tolerance, hyperalgesia and addiction. Biomed Pharmacother 2021; 139:111653. [PMID: 34243625 DOI: 10.1016/j.biopha.2021.111653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
The clinical application of opioids may be accompanied by a series of adverse consequences, such as opioid tolerance, opioid-induced hyperalgesia, opioid dependence or addiction. In view of this issue, clinicians are faced with the dilemma of treating various types of pain with or without opioids. In this review, we discuss that Src protein tyrosine kinase plays an important role in these adverse consequences, and Src inhibitors can solve these problems well. Therefore, Src inhibitors have the potential to be used in combination with opioids to achieve synergy. How to combine them together to maximize the analgesic effect while avoiding unnecessary trouble provides a topic for follow-up research.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
25
|
Khan F, Mehan A. Addressing opioid tolerance and opioid-induced hypersensitivity: Recent developments and future therapeutic strategies. Pharmacol Res Perspect 2021; 9:e00789. [PMID: 34096178 PMCID: PMC8181203 DOI: 10.1002/prp2.789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Opioids are a commonly prescribed and efficacious medication for the treatment of chronic pain but major side effects such as addiction, respiratory depression, analgesic tolerance, and paradoxical pain hypersensitivity make them inadequate and unsafe for patients requiring long-term pain management. This review summarizes recent advances in our understanding of the outcomes of chronic opioid administration to lay the foundation for the development of novel pharmacological strategies that attenuate opioid tolerance and hypersensitivity; the two main physiological mechanisms underlying the inadequacies of current therapeutic strategies. We also explore mechanistic similarities between the development of neuropathic pain states, opioid tolerance, and hypersensitivity which may explain opioids' lack of efficacy in certain patients. The findings challenge the current direction of analgesic research in developing non-opioid alternatives and we suggest that improving opioids, rather than replacing them, will be a fruitful avenue for future research.
Collapse
Affiliation(s)
- Faris Khan
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Aman Mehan
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
26
|
Kyzer JL, McGuire M, Park H, Belz TF, Bonakdar R, Janda KD, Wenthur CJ. Anti-Opioid Antibodies in Individuals Using Chronic Opioid Therapy for Lower Back Pain. ACS Pharmacol Transl Sci 2020; 3:896-906. [PMID: 33073189 DOI: 10.1021/acsptsci.0c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/28/2022]
Abstract
In addition to the risk of developing opioid use disorder (OUD), known side-effects of long-term opioid use include chronic inflammation and hyperalgesia, which may arise from immune responses induced following chronic opioid use. To investigate this hypothesis, blood samples were obtained from individuals with chronic back pain who were either chronically taking prescription opioids or had minimal recent opioid exposure. Patient samples were analyzed using an enzyme-linked immunosorbent assay (ELISA) against hydrocodone- or oxycodone-hapten conjugates to assess the levels of antibodies present in the samples. While no specific response was seen in opioid-naïve subjects, we observed varying levels of anti-opioid IgM antibodies in the exposed subjects. In these subjects, antibody formation was found to be weakly correlated with current reported daily opioid dose. Other drugs of abuse found to elicit an immune response have been shown to generate advanced glycation end-products (AGEs) through reaction with glucose and subsequent modification of self-proteins. Investigations into this potential mechanism of anti-opioid antibody production identified reduced the formation of reactive intermediate species upon norhydrocodone reaction with glucose in comparison with nornicotine, thus identifying potentially important differences in hapten processing to yield the observed adaptive immune response.
Collapse
Affiliation(s)
- Jillian L Kyzer
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Mason McGuire
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Hyeri Park
- Department of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tyson F Belz
- Department of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Robert Bonakdar
- Scripps Center for Integrative Medicine, Scripps Clinic, La Jolla, California 92037, United States
| | - Kim D Janda
- Department of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Cody J Wenthur
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
27
|
Abstract
Understanding the molecular biology of opioid analgesia is essential for its proper implementation and mechanistic approach to its modulation in order to maximize analgesia and minimize undesired effects. By appreciating the molecular mechanisms intrinsic to opioid analgesia, one can manipulate a molecular target to augment or diminish a specific effect using adjuvant drugs, select an appropriate opioid for opioid rotation or define a molecular target for new opioid drug development. In this review, we present the cellular and molecular mechanisms of opioid analgesia and that of the associated phenomena of tolerance, dependence, and hyperalgesia. The specific mechanisms highlighted are those that presently can be clinically addressed.
Collapse
|
28
|
Yuan L, Luo L, Ma X, Wang W, Yu K, Shi H, Chen J, Chen D, Xu T. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice. Neuropharmacology 2020; 176:108222. [PMID: 32659289 DOI: 10.1016/j.neuropharm.2020.108222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Chronic morphine exposure persistently activates Gαi/o protein-coupled receptors and enhances adenylyl cyclase (AC) activity, which can increase cyclic adenosine monophosphate (cAMP) production. Direct binding of cAMP to the cytoplasmic site on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases the probability of channel opening. HCN channels play a prominent role in chronic pain the disease that shares some common mechanisms with opioid tolerance. This compensatory AC activation may be responsible for the induction of morphine-induced analgesic tolerance. We investigated spinal cAMP formation and expression of HCN2 in the spinal cord, and observed the effect of AC inhibition on the induction of morphine analgesic tolerance. We found that chronic morphine-induced antinociceptive tolerance increased spinal cAMP formation and the expression of spinal HCN2. Inhibition of spinal AC partially blocked chronic morphine-induced cAMP formation and prevented the induction of morphine-induced analgesic tolerance. Inhibition of HCN2 also showed a partial preventive effect on morphine-induced tolerance, hypothermia tolerance and also the right-shift of the dose-response curve. We conclude that repeated morphine treatment increases AC activity and cAMP formation, and also spinal HCN2 expression, blockade of AC or HCN2 can prevent the development of morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Limin Luo
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenying Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kangkang Yu
- Department of Pathology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jian Chen
- Department of Orthopaedics, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Dake Chen
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
29
|
Calcineurin Inhibition Causes α2δ-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity. J Neurosci 2020; 40:3707-3719. [PMID: 32269108 DOI: 10.1523/jneurosci.0282-20.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2δ-1-GluN1 complexes in the spinal cord and the level of α2δ-1-bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide completely reversed the effects of FK506. In α2δ-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2δ-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2δ-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2δ-1-bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2δ-1 and NMDARs and their synaptic trafficking in the spinal cord. α2δ-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2δ-1 or disrupting α2δ-1-NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2δ-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.
Collapse
|
30
|
α2δ-1-Bound N-Methyl-D-aspartate Receptors Mediate Morphine-induced Hyperalgesia and Analgesic Tolerance by Potentiating Glutamatergic Input in Rodents. Anesthesiology 2020; 130:804-819. [PMID: 30839350 DOI: 10.1097/aln.0000000000002648] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic use of μ-opioid receptor agonists paradoxically causes both hyperalgesia and the loss of analgesic efficacy. Opioid treatment increases presynaptic N-methyl-D-aspartate receptor activity to potentiate nociceptive input to spinal dorsal horn neurons. However, the mechanism responsible for this opioid-induced activation of presynaptic N-methyl-D-aspartate receptors remains unclear. α2δ-1, formerly known as a calcium channel subunit, interacts with N-methyl-D-aspartate receptors and is primarily expressed at presynaptic terminals. This study tested the hypothesis that α2δ-1-bound N-methyl-D-aspartate receptors contribute to presynaptic N-methyl-D-aspartate receptor hyperactivity associated with opioid-induced hyperalgesia and analgesic tolerance. METHODS Rats (5 mg/kg) and wild-type and α2δ-1-knockout mice (10 mg/kg) were treated intraperitoneally with morphine twice/day for 8 consecutive days, and nociceptive thresholds were examined. Presynaptic N-methyl-D-aspartate receptor activity was recorded in spinal cord slices. Coimmunoprecipitation was performed to examine protein-protein interactions. RESULTS Chronic morphine treatment in rats increased α2δ-1 protein amounts in the dorsal root ganglion and spinal cord. Chronic morphine exposure also increased the physical interaction between α2δ-1 and N-methyl-D-aspartate receptors by 1.5 ± 0.3 fold (means ± SD, P = 0.009, n = 6) and the prevalence of α2δ-1-bound N-methyl-D-aspartate receptors at spinal cord synapses. Inhibiting α2δ-1 with gabapentin or genetic knockout of α2δ-1 abolished the increase in presynaptic N-methyl-D-aspartate receptor activity in the spinal dorsal horn induced by morphine treatment. Furthermore, uncoupling the α2δ-1-N-methyl-D-aspartate receptor interaction with an α2δ-1 C terminus-interfering peptide fully reversed morphine-induced tonic activation of N-methyl-D-aspartate receptors at the central terminal of primary afferents. Finally, intraperitoneal injection of gabapentin or intrathecal injection of an α2δ-1 C terminus-interfering peptide or α2δ-1 genetic knockout abolished the mechanical and thermal hyperalgesia induced by chronic morphine exposure and largely preserved morphine's analgesic effect during 8 days of morphine treatment. CONCLUSIONS α2δ-1-Bound N-methyl-D-aspartate receptors contribute to opioid-induced hyperalgesia and tolerance by augmenting presynaptic N-methyl-D-aspartate receptor expression and activity at the spinal cord level.
Collapse
|
31
|
Wang Z, Tao Y, Song C, Liu P, Wang C, Li Y, Cui W, Xie K, Zhang L, Wang G. Spinal hevin mediates membrane trafficking of GluA1-containing AMPA receptors in remifentanil-induced postoperative hyperalgesia in mice. Neurosci Lett 2020; 722:134855. [PMID: 32088196 DOI: 10.1016/j.neulet.2020.134855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Hevin, a matricellular protein involved in tissue repair and remodeling, is crucial for initiation and development of excitatory synapses. Besides, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) is an ionotropic transmembrane receptor for glutamate that mediates fast synaptic transmission in the central nervous system (CNS). This study aimed to investigate the correlation between spinal Hevin and AMPA receptors in remifentanil-induced postoperative hyperalgesia in mice. METHODS Remifentanil (1.33 μg/kg/min for 60 min) was subcutaneously injected into a mouse model of postoperative pain. The von Frey and hot plate tests were performed to assess mechanical and thermal hyperalgesia. The gene and protein expression of Hevin and the membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn of spinal cord were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. In addition, Hevin-shRNA, exogenous Hevin, and 1-naphtylacetyl-spermine (NASPM) were administrated intrathecally to assess the relationship between spinal Hevin and AMPA receptors. RESULTS Perioperative administration of remifentanil can aggravate and prolong incision-induced mechanical and thermal hyperalgesia. Treatment with remifentanil increased the expression of spinal Hevin and the membrane trafficking of AMPA receptors. Additionally, knockdown of spinal Hevin attenuated pain hypersensitivity and downregulated membrane trafficking of AMPA receptors after treatment with remifentanil. Meanwhile, preadministration of NASPM reversed spontaneous pain and membrane trafficking of spinal GluA1-containing AMPA receptors induced by exogenous Hevin in naïve mice. CONCLUSIONS Spinal Hevin was involved in the maintenance of remifentanil-induced postoperative hyperalgesia via modulating membrane trafficking of AMPA receptors.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yuzhu Tao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Peng Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
32
|
Uniyal A, Gadepalli A, Akhilesh, Tiwari V. Underpinning the Neurobiological Intricacies Associated with Opioid Tolerance. ACS Chem Neurosci 2020; 11:830-839. [PMID: 32083459 DOI: 10.1021/acschemneuro.0c00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The opioid crisis is a major threat of the 21st century, with a remarkable juxtaposition of use and abuse. Opioids are the most potent and efficacious class of analgesics, but despite their proven therapeutic efficacy, they have recently been degraded to third-line therapy for the management of chronic pain in clinics. The reason behind this is the development of potential side effects and tolerance after repeated dosing. Opioid tolerance is the major limiting factor leading to the withdrawal of treatment, severe side effects due to dose escalation, and sometimes even death of the patients. Every day more than 90 people die due to opioids overdose in America, and a similar trend has been seen across the globe. Over the past two decades, researchers have been trying to dissect the neurobiological mechanism of opioid tolerance. Research on opioid tolerance shifted toward central nervous system-based adaptations because tolerance is much more than just a cellular phenomenon. Thus, neurobiological adaptations associated with opioid tolerance are important to understand in order to find newer pain therapeutics. These adaptations are associated with alterations in ascending and descending pain pathways, reward circuitry modulations, receptor desensitization and down-regulation, receptor internalization, heterodimerization, and altered epigenetic regulation. The present Review is focused on novel circuitries associated with opioid tolerance in different areas of the brain, such as periaqueductal gray, rostral ventromedial medulla, dorsal raphe nucleus, ventral tegmental area, and nucleus accumbens. Understanding the neurobiological modulations associated with chronic opioid exposure and tolerance will pave the way for the development of novel pharmacological tools for safer and better management of chronic pain in patients.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
33
|
Huang M, Pu S, Jiang W, Worley PF, Xu T. Deficiency of SHANK3 isoforms impairs thermal hyperalgesia and dysregulates the expression of postsynaptic proteins in the spinal cord. Neurosci Res 2020; 163:26-33. [PMID: 32147472 DOI: 10.1016/j.neures.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
SHANK3 is one of the scaffolding proteins in the postsynaptic density (PSD). Pain perception and underlying mechanisms were investigated in Shank3 exon 21 deficient (Shank3△C) mice. Sixty-six mice were attributed according to their genotype to three groups: (1) wild-type (WT), (2) heterozygous Shank3△C/+, and (3) homozygous Shank3△C/△C. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and thermal hyperalgesia was determined. CFA treatment reduced the thermal threshold in the WT group; groups expressing mutations of Shank3 (△C/+ and △C/△C) had higher thresholds after CFA administration compared to the WT group. Mice with Shank3 mutations (△C/+ or △C/△C) had a lower expression of GluN2A and IP3R proteins and a higher expression of mGluR5 protein in the PSD compared to WT mice without changes in GluN1, GluN2B, and Homer expression. The crosslinking of Homer-IP3R, but not Homer-mGluR5, was decreased in the total lysate. Deficit of Shank3 exon 21 may lead to impaired perception of thermal pain in mice under inflammatory conditions. This impairment may result from protein dysregulation in the PSD like downregulation of the GluN2A subunit, which may reduce NMDAR-mediated currents, and/or decreased crosslinking between Homer and IP3R, which may reduce the release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Min Huang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Shaofeng Pu
- Pain Management Center, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Wei Jiang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China.
| |
Collapse
|
34
|
Murphy GS, Avram MJ, Greenberg SB, Shear TD, Deshur MA, Dickerson D, Bilimoria S, Benson J, Maher CE, Trenk GJ, Teister KJ, Szokol JW. Postoperative Pain and Analgesic Requirements in the First Year after Intraoperative Methadone for Complex Spine and Cardiac Surgery. Anesthesiology 2020; 132:330-342. [PMID: 31939849 DOI: 10.1097/aln.0000000000003025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Methadone is a long-acting opioid that has been reported to reduce postoperative pain scores and analgesic requirements and may attenuate development of chronic postsurgical pain. The aim of this secondary analysis of two previous trials was to follow up with patients who had received a single intraoperative dose of either methadone or traditional opioids for complex spine or cardiac surgical procedures. METHODS Preplanned analyses of long-term outcomes were conducted for spinal surgery patients randomized to receive 0.2 mg/kg methadone at the start of surgery or 2 mg hydromorphone at surgical closure, and for cardiac surgery patients randomized to receive 0.3 mg/kg methadone or 12 μg/kg fentanyl intraoperatively. A pain questionnaire assessing the weekly frequency (the primary outcome) and intensity of pain was mailed to subjects 1, 3, 6, and 12 months after surgery. Ordinal data were compared with the Mann-Whitney U test, and nominal data were compared using the chi-square test or Fisher exact probability test. The criterion for rejection of the null hypothesis was P < 0.01. RESULTS Three months after surgery, patients randomized to receive methadone for spine procedures reported the weekly frequency of chronic pain was less (median score 0 on a 0 to 4 scale [less than once a week] vs. 3 [daily] in the hydromorphone group, P = 0.004). Patients randomized to receive methadone for cardiac surgery reported the frequency of postsurgical pain was less at 1 month (median score 0) than it was in patients randomized to receive fentanyl (median score 2 [twice per week], P = 0.004). CONCLUSIONS Analgesic benefits of a single dose of intraoperative methadone were observed during the first 3 months after spinal surgery (but not at 6 and 12 months), and during the first month after cardiac surgery, when the intensity and frequency of pain were the greatest.
Collapse
Affiliation(s)
- Glenn S Murphy
- From the Department of Anesthesiology, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois (G.S.M., S.B.G., T.D.S., M.A.D., D.D., S.B., J.B., C.E.M., G.J.T., K.J.T., J.W.S.) the Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (M.J.A.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Intraoperative Methadone in Surgical Patients: A Review of Clinical Investigations. Anesthesiology 2020; 131:678-692. [PMID: 31094758 DOI: 10.1097/aln.0000000000002755] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Tang X, Zhang X, Li S, Chi X, Luo A, Zhao Y. NR2B receptor- and calpain-mediated KCC2 cleavage resulted in cognitive deficiency exposure to isoflurane. Neurotoxicology 2020; 76:75-83. [PMID: 31672664 DOI: 10.1016/j.neuro.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND During brain development, volatile anesthetic can rapidly interfere with physiologic patterns of dendritic development and synaptogenesis and impair the formation of precise neuronal circuits. KCC2 plays vital roles in spine development and synaptogenesis through its Cl- transport function and structural interactions with the spine cytoskeleton protein 4.1 N. The aim of this study was to dissect the mechanism of volatile anesthetics, which impair dendritic development and synaptogenesis via mediation of KCC2 cleavage. METHODS Westernblotting was employed to assess the expression change of NR2B, NR2A, calpain-1, calpain-2, KCC2, and 4.1 N protein of rat (PND 5). Co-immunoprecipitation was applied to demonstrate the interaction between KCC2 and 4.1 N protein. Long-term cognitive deficiency was assessed by MWM. Lentivirus-calpain-2 was administered by hippocampus stereotaxic injection. RESULTS There was a significant increase in the level of NR2B instead of NR2A exposure to isoflurane. Calpain-2 was excessively activated via NR2B after 6 h of isoflurane exposure. The expression of plasmalemmal KCC2 and 4.1 N protein was significantly decreased treated with isoflurane. The isoflurane group showed longer traveled distance, prolonged escape latency, less time spent in the target quadrant, and decreased platform crossings. Pretreatment with ifenprodil and downregulated calpain-2 expression significantly alleviated these neurotoxicity responses and cognitive deficiency after isoflurane exposure. CONCLUSIONS A significant increase in NR2B, excessive activation of calpain-2 and increased cleavage of plasmalemmal KCC2, are involved in isoflurane-induced neurotoxicity and long-term cognitive deficiency. Blocking NR2B and calpain-2 activity significantly attenuated these responses. The KCC2 cleavage mediated by NR2B and calpain-2 is a major determinant of isoflurane-induced long-term cognitive deficiency.
Collapse
Affiliation(s)
- Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xiaohui Chi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
37
|
Abstract
Opioids are very potent and efficacious drugs, traditionally used for both acute and chronic pain conditions. However, the use of opioids is frequently associated with the occurrence of adverse effects or clinical problems. Other than adverse effects and dependence, the development of tolerance is a significant problem, as it requires increased opioid drug doses to achieve the same effect. Mechanisms of opioid tolerance include drug-induced adaptations or allostatic changes at the cellular, circuitry, and system levels. Dose escalation in long-term opioid therapy might cause opioid-induced hyperalgesia (OIH), which is a state of hypersensitivity to painful stimuli associated with opioid therapy, resulting in exacerbation of pain sensation rather than relief of pain. Various strategies may provide extra-opioid analgesia. There are drugs that may produce independent analgesic effects. A tailored treatment provided by skilled personnel, in accordance with the individual condition, is mandatory. Any treatment aimed at reducing opioid consumption may be indicated in these circumstances. Interventional techniques able to decrease the pain input may allow a decrease in the opioid dose, thus reverting the mechanisms producing tolerance of OIH. Intrathecal therapy with local anesthetics and a sympathetic block are the most common techniques utilized in these circumstances.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Main Regional Center of Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, Italy. .,Palliative/Supportive Care and Rehabilitation, MD Anderson, Houston, TX, USA.
| | | | | |
Collapse
|
38
|
Weng Y, Wu J, Li L, Shao J, Li Z, Deng M, Zou W. Circular RNA expression profile in the spinal cord of morphine tolerated rats and screen of putative key circRNAs. Mol Brain 2019; 12:79. [PMID: 31533844 PMCID: PMC6751888 DOI: 10.1186/s13041-019-0498-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Morphine tolerance developed after repeated or continuous morphine treatment is a global health concern hindering the control of chronic pain. In our previous research, we have reported that the expression of lncRNAs and microRNAs have been greatly modified in the spinal cord of morphine tolerated rats, and the modulating role of miR-873a-5p, miR-219-5p and miR-365 have already been confirmed. However, whether circular RNAs, another essential kind of non-coding RNA, are involved in the pathogenesis of morphine tolerance is still beyond our knowledge. In this study, we conducted microarray analysis for circRNA profile and found a large number of circRNAs changed greatly in the spinal cord by morphine treatment. Among them, we selected nine circRNAs for validation, and seven circRNAs are confirmed. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) analysis were used for functional annotation. Besides, we confirmed the modified expression of seven circRNAs after validation by real-time PCR, selected 3 most prominently modulated ones among them and predicted their downstream miRNA-mRNA network and analyzed their putative function via circRNA-miRNA-mRNA pathway. Finally, we enrolled the differentially expressed mRNAs derived from the identical spinal cord, these validated circRNAs and their putative miRNA targets for ceRNA analysis and screened a promising circRNA-miRNA-mRNA pathway in the development of morphine tolerance. This study, for the first time, provided valuable information on circRNA profile and gave clues for further study on the circRNA mechanism of morphine tolerance.
Collapse
Affiliation(s)
- Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Anesthesiology, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Anesthesiology, Hunan Cancer Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
39
|
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019; 11:E459. [PMID: 31387301 PMCID: PMC6723487 DOI: 10.3390/toxins11080459] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Already a well-established treatment for different autonomic and movement disorders, the use of botulinum toxin type A (BoNT/A) in pain conditions is now continuously expanding. Currently, the only approved use of BoNT/A in relation to pain is the treatment of chronic migraines. However, controlled clinical studies show promising results in neuropathic and other chronic pain disorders. In comparison with other conventional and non-conventional analgesic drugs, the greatest advantages of BoNT/A use are its sustained effect after a single application and its safety. Its efficacy in certain therapy-resistant pain conditions is of special importance. Novel results in recent years has led to a better understanding of its actions, although further experimental and clinical research is warranted. Here, we summarize the effects contributing to these advantageous properties of BoNT/A in pain therapy, specific actions along the nociceptive pathway, consequences of its central activities, the molecular mechanisms of actions in neurons, and general pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000 Zagreb, Croatia
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
40
|
Xiao L, Han X, Wang XE, Li Q, Shen P, Liu Z, Cui Y, Chen Y. Spinal Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1) Signaling Contributes to Morphine-Induced Analgesic Tolerance in Rats. Neuroscience 2019; 413:206-218. [PMID: 31220544 DOI: 10.1016/j.neuroscience.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that phosphorylated serum- and glucocorticoid-regulated kinase 1 (SGK1) is associated with spinal nociceptive sensitization by modulating glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined whether spinal SGK1 signaling contributes to the development of morphine analgesic tolerance. Chronic morphine administration markedly induced phosphorylation of SGK1 in the spinal dorsal horn neurons. Intrathecal injection of SGK1 inhibitor GSK-650394 reduced the development of morphine tolerance with a significant leftward shift in morphine dose-effect curve. Furthermore, spinal inhibition of SGK1 suppressed morphine-induced phosphorylation of nuclear factor kappa B (NF-κB) p65 and upregulation of NMDAR NR1 and NR2B expression in the spinal dorsal horn. In contrast, intrathecal administration of NMDAR antagonist MK-801 had no effect on the phosphorylation of SGK1 in morphine-treated rats. In addition, morphine-induced upregulation of NR2B, but not NR1, was significantly abolished by intrathecal pretreatment with PDTC, a specific NF-κB activation inhibitor. Finally, spinal delivery of SGK1 small interfering RNA exhibited similar inhibitory effects on morphine-induced tolerance, phosphorylation of NF-κB p65, as well as upregulation of NR1 and NR2B expression. Our findings demonstrate that spinal SGK1 contributes to the development of morphine tolerance by enhancing NF-κB p65/NMDAR signaling. Interfering spinal SGK1 signaling pathway could be a potential strategy for prevention of morphine tolerance in chronic pain management.
Collapse
Affiliation(s)
- Li Xiao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-E Wang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pu Shen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Liu
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yu Cui
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Willeford A, Atayee RS, Winters KD, Mesarwi P. The Enigma of Low-Dose Ketamine for Treatment of Opioid-Induced Hyperalgesia in the Setting of Psychosocial Suffering and Cancer-Associated Pain. J Pain Palliat Care Pharmacother 2019; 32:248-255. [DOI: 10.1080/15360288.2019.1615028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Deng M, Chen SR, Pan HL. Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci 2019; 76:1889-1899. [PMID: 30788514 PMCID: PMC6482077 DOI: 10.1007/s00018-019-03047-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1-NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1-bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.
Collapse
Affiliation(s)
- Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Huang M, Luo L, Zhang Y, Wang W, Dong J, Du W, Jiang W, Xu T. Metabotropic glutamate receptor 5 signalling induced NMDA receptor subunits alterations during the development of morphine-induced antinociceptive tolerance in mouse cortex. Biomed Pharmacother 2019; 110:717-726. [DOI: 10.1016/j.biopha.2018.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
|
44
|
Sun J, Chen SR, Chen H, Pan HL. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia. J Physiol 2019; 597:1661-1675. [PMID: 30578671 DOI: 10.1113/jp277428] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS μ-Opioid receptors (MORs) are expressed peripherally and centrally, but the loci of MORs responsible for clinically relevant opioid analgesia are uncertain. Crossing Oprm1flox/flox and AdvillinCre/+ mice completely ablates MORs in dorsal root ganglion neurons and reduces the MOR expression level in the spinal cord. Presynaptic MORs expressed at primary afferent central terminals are essential for synaptic inhibition and potentiation of sensory input by opioids. MOR ablation in primary sensory neurons diminishes analgesic effects produced by systemic and intrathecal opioid agonists and abolishes chronic opioid treatment-induced hyperalgesia. These findings demonstrate a critical role of MORs expressed in primary sensory neurons in opioid analgesia and suggest new strategies to increase the efficacy and reduce adverse effects of opioids. ABSTRACT The pain and analgesic systems are complex, and the actions of systemically administered opioids may be mediated by simultaneous activation of μ-opioid receptors (MORs, encoded by the Oprm1 gene) at multiple, interacting sites. The loci of MORs and circuits responsible for systemic opioid-induced analgesia and hyperalgesia remain unclear. Previous studies using mice in which MORs are removed from Nav1.8- or TRPV1-expressing neurons provided only an incomplete and erroneous view about the role of peripheral MORs in opioid actions in vivo. In the present study, we determined the specific role of MORs expressed in primary sensory neurons in the analgesic and hyperalgesic effects produced by systemic opioid administration. We generated Oprm1 conditional knockout (Oprm1-cKO) mice in which MOR expression is completely deleted from dorsal root ganglion neurons and substantially reduced in the spinal cord, which was confirmed by immunoblotting and immunocytochemical labelling. Both opioid-induced inhibition and potentiation of primary sensory input were abrogated in Oprm1-cKO mice. Remarkably, systemically administered morphine potently inhibited acute thermal and mechanical nociception and persistent inflammatory pain in control mice but had little effect in Oprm1-cKO mice. The analgesic effect of intrathecally administered morphine was also profoundly reduced in Oprm1-cKO mice. Additionally, chronic morphine treatment-induced hyperalgesia was absent in Oprm1-cKO mice. Our findings directly challenge the notion that clinically relevant opioid analgesia is mediated mostly by centrally expressed MORs. MORs in primary sensory neurons, particularly those expressed presynaptically at the first sensory synapse in the spinal cord, are crucial for both opioid analgesia and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Jie Sun
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Anesthesiology, The First Affiliated Hospital/Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
45
|
Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 2018; 148:252-274. [PMID: 30431158 DOI: 10.1111/jnc.14627] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Painful peripheral neuropathy is a severe and difficult-to-treat neurological complication associated with cancer chemotherapy. Although chemotherapeutic drugs such as paclitaxel are known to cause tonic activation of presynaptic NMDA receptors (NMDARs) to potentiate nociceptive input, the molecular mechanism involved in this effect is unclear. α2δ-1, commonly known as a voltage-activated calcium channel subunit, is a newly discovered NMDAR-interacting protein and plays a critical role in NMDAR-mediated synaptic plasticity. Here we show that paclitaxel treatment in rats increases the α2δ-1 expression level in the dorsal root ganglion and spinal cord and the mRNA levels of GluN1, GluN2A, and GluN2B in the spinal cord. Paclitaxel treatment also potentiates the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. Strikingly, inhibiting α2δ-1 trafficking with pregabalin, disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus-interfering peptide, or α2δ-1 genetic ablation fully reverses paclitaxel treatment-induced presynaptic NMDAR-mediated glutamate release from primary afferent terminals to spinal dorsal horn neurons. In addition, intrathecal injection of pregabalin or α2δ-1 C-terminus-interfering peptide and α2δ-1 knockout in mice markedly attenuate paclitaxel-induced pain hypersensitivity. Our findings indicate that α2δ-1 is required for paclitaxel-induced tonic activation of presynaptic NMDARs at the spinal cord level. Targeting α2δ-1-bound NMDARs, not the physiological α2δ-1-free NMDARs, may be a new strategy for treating chemotherapy-induced neuropathic pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Youfang Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 2018; 148:275-290. [PMID: 30444263 DOI: 10.1111/jnc.14628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with μ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
47
|
Lueptow LM, Fakira AK, Bobeck EN. The Contribution of the Descending Pain Modulatory Pathway in Opioid Tolerance. Front Neurosci 2018; 12:886. [PMID: 30542261 PMCID: PMC6278175 DOI: 10.3389/fnins.2018.00886] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023] Open
Abstract
Opioids remain among the most effective pain-relieving therapeutics. However, their long-term use is limited due to the development of tolerance and potential for addiction. For many years, researchers have explored the underlying mechanisms that lead to this decreased effectiveness of opioids after repeated use, and numerous theories have been proposed to explain these changes. The most widely studied theories involve alterations in receptor trafficking and intracellular signaling. Other possible mechanisms include the recruitment of new structural neuronal and microglia networks. While many of these theories have been developed using molecular and cellular techniques, more recent behavioral data also supports these findings. In this review, we focus on the mechanisms that underlie tolerance within the descending pain modulatory pathway, including alterations in intracellular signaling, neural-glial interactions, and neurotransmission following opioid exposure. Developing a better understanding of the relationship between these various mechanisms, within different parts of this pathway, is vital for the identification of more efficacious, novel therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior UCLA, Los Angeles, CA, United States
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, UT, United States
| |
Collapse
|
48
|
Opioid-induced hyperalgesia in clinical anesthesia practice: what has remained from theoretical concepts and experimental studies? Curr Opin Anaesthesiol 2018; 30:458-465. [PMID: 28590258 DOI: 10.1097/aco.0000000000000485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the phenomenon of opioid-induced hyperalgesia (OIH) and its implications for clinical anesthesia. The goal of this review is to give an update on perioperative prevention and treatment strategies, based on findings in preclinical and clinical research. RECENT FINDINGS Several systems have been suggested to be involved in the pathophysiology of OIH with a focus on the glutaminergic system. Very recently preclinical data revealed that peripheral μ-opioid receptors (MORs) are key players in the development of OIH and acute opioid tolerance (AOT). Peripheral MOR antagonists could, thus, become a new prevention/treatment option of OIH in the perioperative setting. Although the impact of OIH on postoperative pain seems to be moderate, recent evidence suggests that increased hyperalgesia following opioid treatment correlates with the risk of developing persistent pain after surgery. In clinical practice, distinction among OIH, AOT and acute opioid withdrawal remains difficult, especially because a specific quantitative sensory test to diagnose OIH has not been validated yet. SUMMARY Since the immediate postoperative period is not ideal to initiate long-term treatment for OIH, the best strategy is to prevent its occurrence. A multimodal approach, including choice of opioid, dose limitations and addition of nonopioid analgesics, is recommended.
Collapse
|
49
|
Maher DP, Zhang Y, Ahmed S, Doshi T, Malarick C, Stabach K, Mao J, Chen L. Chronic Opioid Therapy Modifies QST Changes After Ketamine Infusion in Chronic Pain Patients. THE JOURNAL OF PAIN 2017; 18:1468-1475. [PMID: 28802882 PMCID: PMC5729746 DOI: 10.1016/j.jpain.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 12/30/2022]
Abstract
The long-term effects of opioids on sensitization processes are believed to be mediated through the N-methyl-D-aspartate receptor. Quantitative sensory testing (QST) changes observed after a ketamine infusion have been previously described but the effect that chronic opioids will have is not known. The results of this prospective randomized factorial trial compared the thermal QST changes observed after a .05 mg/kg ketamine infusion or a saline placebo in chronic pain subjects who were either opioid-naive or were chronically using opioids for chronic noncancer pain are presented. No baseline QST differences were noted between the 4 groups at baseline. Comparison of changes preinfusion with postinfusion QST measurements resulted in decreased average change in temporal summation response between opioid subjects who received a placebo compared with those who received a ketamine infusion (-5.22, SD = 9.96 vs 13.81, SD = 19.55; P = .004). Additionally, the average change in temporal summation was decreased among subjects who received a ketamine infusion and were not chronically using opioids compared with subjects who were using chronic opioids and received a placebo infusion (-1.91, SD = 13.25 vs 13.81, SD = 19.55; P = .007). The results indicate that low-dose ketamine infusions produce subtle changes in QST phenotypes that are modified by the chronic use of opioids. This illustrates the potential diagnostic and therapeutic value of ketamine in the setting of chronic opioid use. PERSPECTIVE The presented data further our understanding of modulation of sensory perception in the setting of chronic opioid use and the role of the N-methyl-D-aspartate receptor. The use of low-dose ketamine infusions may be useful for the treatment as well as diagnosis of opioid-related neuropathic conditions.
Collapse
Affiliation(s)
- Dermot P Maher
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland.
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Shihab Ahmed
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Tina Doshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Charlene Malarick
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kristin Stabach
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lucy Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
50
|
Abstract
Supplemental Digital Content is Available in the Text. This descriptive case series among adults documents that pain can return temporarily at healed, previously pain-free injury sites during acute opioid withdrawal. Withdrawal pain can be a barrier to opioid cessation. Yet, little is known about old injury site pain in this context. We conducted an exploratory mixed-methods descriptive case series using a web-based survey and in-person interviews with adults recruited from pain and addiction treatment and research settings. We included individuals who self-reported a past significant injury that was healed and pain-free before the initiation of opioids, which then became temporarily painful upon opioid cessation—a phenomenon we have named withdrawal-associated injury site pain (WISP). Screening identified WISP in 47 people, of whom 34 (72%) completed the descriptive survey, including 21 who completed qualitative interviews. Recalled pain severity scores for WISP were typically high (median: 8/10; interquartile range [IQR]: 2), emotionally and physically aversive, and took approximately 2 weeks to resolve (median: 14; IQR: 24 days). Withdrawal-associated injury site pain intensity was typically slightly less than participants' original injury pain (median: 10/10; IQR: 3), and more painful than other generalized withdrawal symptoms which also lasted approximately 2 weeks (median: 13; IQR: 25 days). Fifteen surveyed participants (44%) reported returning to opioid use because of WISP in the past. Participants developed theories about the etiology of WISP, including that the pain is the brain's way of communicating a desire for opioids. This research represents the first known documentation that previously healed, and pain-free injury sites can temporarily become painful again during opioid withdrawal, an experience which may be a barrier to opioid cessation, and a contributor to opioid reinitiation.
Collapse
|