1
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
2
|
Kaiser J, Gertzen CG, Bernauer T, Höfner G, Niessen KV, Seeger T, Paintner FF, Wanner KT, Worek F, Thiermann H, Gohlke H. A novel binding site in the nicotinic acetylcholine receptor for MB327 can explain its allosteric modulation relevant for organophosphorus-poisoning treatment. Toxicol Lett 2022; 373:160-171. [DOI: 10.1016/j.toxlet.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
|
3
|
Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology (Berl) 2022; 239:709-728. [PMID: 35187594 DOI: 10.1007/s00213-022-06096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Perioperative neurocognitive disorder (PND) is a common surgery outcome affecting up to a third of the elderly patients, and it is associated with high morbidity and increased risk for Alzheimer's disease development. PND is characterized by cognitive impairment that can manifest acutely in the form of postoperative delirium (POD) or after hospital discharge as postoperative cognitive dysfunction (POCD). Although POD and POCD are clinically distinct, their development seems to be mediated by a systemic inflammatory reaction triggered by surgical trauma that leads to dysfunction of the blood-brain barrier and facilitates the occurrence of neuroinflammation. Recent studies have suggested that the gut microbiota composition may play a pivotal role in the PND development by modulating the risk of neuroinflammation establishment. In fact, modulation of gut microbiome composition with pre- and probiotics seems to be effective for the prevention and treatment of PND in animals. Interestingly, general anesthetics seem to have major responsibility on the gut microbiota composition changes following surgery and, consequently, can be an important element in the process of PND initiation. This concept represents an important milestone for the understanding of PND pathogenesis and may unveil new opportunities for the development of preventive or mitigatory strategies against the development of these conditions. The aim of this review is to discuss how anesthetics used in general anesthesia can interact and alter the gut microbiome composition and contribute to PND development by favoring the emergence of neuroinflammation.
Collapse
Affiliation(s)
- Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lihua Shang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongxue Jin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Dietzen NM, Arcario MJ, Chen LJ, Petroff JT, Moreland KT, Krishnan K, Brannigan G, Covey DF, Cheng WW. Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites. eLife 2022; 11:74306. [PMID: 34982031 PMCID: PMC8786314 DOI: 10.7554/elife.74306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.
Collapse
Affiliation(s)
- Noah M Dietzen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - Lawrence J Chen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - K Trent Moreland
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, St Louis, United States
| | - Grace Brannigan
- Center for the Computational and Integrative Biology, Rutgers University, Camden, United States.,Department of Physics, Rutgers University, Camden, United States
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St Louis, United States.,Department of Psychiatry, Washington University in St. Louis, St. Louis, United States.,Taylor Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| |
Collapse
|
6
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
7
|
Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SCR, Hibbs RE, Steyaert J, Ulens C. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT 3 receptor via a common vestibule site. eLife 2020; 9:e51511. [PMID: 31990273 PMCID: PMC7015668 DOI: 10.7554/elife.51511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening. In this study, we developed nanobodies (single domain antibodies), which are functionally active as allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites partially overlap with those of small molecule modulators, including a vestibule binding site that is not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and extend drug design possibilities in pLGICs with an accessible vestibule site.
Collapse
Affiliation(s)
- Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Cedric Govaerts
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université libre de BruxellesBrusselsBelgium
| | | | - Kerry L Price
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Radovan Spurny
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Genevieve L Evans
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | | | - Sarah CR Lummis
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Westra RL. Resonance-driven ion transport and selectivity in prokaryotic ion channels. Phys Rev E 2019; 100:062410. [PMID: 31962411 DOI: 10.1103/physreve.100.062410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 06/10/2023]
Abstract
Ion channels exhibit a remarkably high accuracy in selecting uniquely its associated type of ion. The mechanisms behind ion selectivity are not well understood. Current explanations build mainly on molecular biology and bioinformatics. Here we propose a simple physical model for ion selectivity based on the driven damped harmonic oscillator (DDHO). The driving force for this oscillator is provided by self-organizing harmonic turbulent structures in the dehydrating ionic flow through the ion channel, namely, oscillating pressure waves in one dimension, and toroidal vortices in two and three dimensions. Density fluctuations caused by these turbulences efficiently transmit their energy to aqua ions that resonate with the driving frequency. Consequently, these release their hydration shell and exit the ion channel as free ions. Existing modeling frameworks do not express the required complex spatiotemporal dynamics, hence we introduce a macroscopic continuum model for ionic dehydration and transport, based on the hydrodynamics of a dissipative ionic flow through an ion channel, subject to electrostatic and amphiphilic interactions. This model combines three classical physical fields: Navier-Stokes equations from hydrodynamics, Gauss's law from Maxwell theory, and the convection-diffusion equation from continuum physics. Numerical experiments with mixtures of chemical species of ions in various degrees of hydration indeed reveal the emergence of strong oscillations in the ionic flow that are instrumental in the efficient dehydration and cause a strong ionic jet into the cell. As such, they provide a powerful engine for the DDHO mechanism. Theoretical predictions of the modeling framework match significantly with empirical patch-clamp data. The DDHO standard response curve defines a unique resonance frequency that depends on the mass and charge of the ion. In this way, the driving oscillations act as a selection mechanism that filters out one specific ion. Application of the DDHO model to real ion data shows that this mechanism indeed clearly distinguishes between chemical species and between aqua and bare ions with a large Mahalanobis distance and high oscillator quality. The DDHO framework helps to understand how SNP mutations can cause severe genetic pathologies as they destroy the geometry of the channel and so alter the resonance peaks of the required ion type.
Collapse
Affiliation(s)
- Ronald L Westra
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Faulkner C, Plant DF, de Leeuw NH. Modulation of the Gloeobacter violaceus Ion Channel by Fentanyl: A Molecular Dynamics Study. Biochemistry 2019; 58:4804-4808. [PMID: 31718178 DOI: 10.1021/acs.biochem.9b00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fentanyl is an opioid analgesic, which is routinely used in general surgery to suppress the sensation of pain and as the analgesic component in the induction and maintenance of anesthesia. Fentanyl is also used as the main component to induce anesthesia and as a potentiator to the general anesthetic propofol. The mechanism by which fentanyl induces its anesthetic action is still unclear, and we have therefore employed fully atomistic molecular dynamics simulations to probe this process by simulating the interactions of fentanyl with the Gloeobacter violaceus ligand-gated ion channel (GLIC). In this paper, we identify multiple extracellular fentanyl binding sites, which are different from the transmembrane general anesthetic binding sites observed for propofol and other general anesthetics. Our simulations identify a novel fentanyl binding site within the GLIC that results in conformational changes that inhibit conduction through the channel.
Collapse
Affiliation(s)
- Christopher Faulkner
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , United Kingdom
| | - David F Plant
- Atomic Weapons Establishment (AWE) , Aldermaston, Reading RG7 4PR , United Kingdom
| | - Nora H de Leeuw
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , United Kingdom
| |
Collapse
|
10
|
Hippocampal astrocyte dysfunction contributes to etomidate-induced long-lasting synaptic inhibition. Biochem Biophys Res Commun 2019; 519:803-811. [DOI: 10.1016/j.bbrc.2019.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 11/24/2022]
|
11
|
Fourati Z, Howard RJ, Heusser SA, Hu H, Ruza RR, Sauguet L, Lindahl E, Delarue M. Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels. Cell Rep 2019; 23:993-1004. [PMID: 29694907 DOI: 10.1016/j.celrep.2018.03.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022] Open
Abstract
Ion channel modulation by general anesthetics is a vital pharmacological process with implications for receptor biophysics and drug development. Functional studies have implicated conserved sites of both potentiation and inhibition in pentameric ligand-gated ion channels, but a detailed structural mechanism for these bimodal effects is lacking. The prokaryotic model protein GLIC recapitulates anesthetic modulation of human ion channels, and it is accessible to structure determination in both apparent open and closed states. Here, we report ten X-ray structures and electrophysiological characterization of GLIC variants in the presence and absence of general anesthetics, including the surgical agent propofol. We show that general anesthetics can allosterically favor closed channels by binding in the pore or favor open channels via various subsites in the transmembrane domain. Our results support an integrated, multi-site mechanism for allosteric modulation, and they provide atomic details of both potentiation and inhibition by one of the most common general anesthetics.
Collapse
Affiliation(s)
- Zaineb Fourati
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Stephanie A Heusser
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Haidai Hu
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France; Sorbonne Universités, UPMC University Paris 6, 75005 Paris, France
| | - Reinis R Ruza
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Erik Lindahl
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden; Swedish e-Science Research Center, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France.
| |
Collapse
|
12
|
Pandhare A, Pirayesh E, Stuebler AG, Jansen M. Triple arginines as molecular determinants for pentameric assembly of the intracellular domain of 5-HT 3A receptors. J Gen Physiol 2019; 151:1135-1145. [PMID: 31409663 PMCID: PMC6719409 DOI: 10.1085/jgp.201912421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
Serotonin type 3A receptors are homopentameric ligand-gated ion channels that are thought to assemble via interactions involving the subunits’ extracellular and transmembrane domains. Pandhare et al. reveal that channel assembly is also determined by three arginine residues in the receptor’s intracellular domain. Serotonin type 3 receptors (5-HT3Rs) are cation-conducting pentameric ligand-gated ion channels and members of the Cys-loop superfamily in eukaryotes. 5-HT3Rs are found in the peripheral and central nervous system, and they are targets for drugs used to treat anxiety, drug dependence, and schizophrenia, as well as chemotherapy-induced and postoperative nausea and emesis. Decades of research of Cys-loop receptors have identified motifs in both the extracellular and transmembrane domains that mediate pentameric assembly. Those efforts have largely ignored the most diverse domain of these channels, the intracellular domain (ICD). Here we identify molecular determinants within the ICD of serotonin type 3A (5-HT3A) subunits for pentameric assembly by first identifying the segments contributing to pentamerization using deletion constructs of, and finally by making defined amino acid substitutions within, an isolated soluble ICD. Our work provides direct experimental evidence for the contribution of three intracellular arginines, previously implicated in governing the low conductance of 5-HT3ARs, in structural features such as pentameric assembly.
Collapse
Affiliation(s)
- Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Elham Pirayesh
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Antonia G Stuebler
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
13
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
14
|
Hemmings HC, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019; 40:464-481. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in the 21st century towards a comprehensive understanding of the mechanisms of action of general anesthetics, coincident with progress in structural biology and molecular, cellular, and systems neuroscience. This review summarizes important new findings that include target identification through structural determination of anesthetic binding sites, details of receptors and ion channels involved in neurotransmission, and the critical roles of neuronal networks in anesthetic effects on memory and consciousness. These recent developments provide a comprehensive basis for conceptualizing pharmacological control of amnesia, unconsciousness, and immobility.
Collapse
Affiliation(s)
- Hugh C Hemmings
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Paul M Riegelhaupt
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Ken Solt
- Department of Anaesthesia, Harvard Medical School, GRB 444, 55 Fruit St., Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Beverley A Orser
- Departments of Anesthesia and Physiology, Room 3318 Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter A Goldstein
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Zhou C, Johnson KW, Herold KF, Hemmings HC. Differential Inhibition of Neuronal Sodium Channel Subtypes by the General Anesthetic Isoflurane. J Pharmacol Exp Ther 2019; 369:200-211. [PMID: 30792243 DOI: 10.1124/jpet.118.254938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/19/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics depress neurotransmitter release in a brain region- and neurotransmitter-selective manner by unclear mechanisms. Voltage-gated sodium channels (Navs), which are coupled to synaptic vesicle exocytosis, are inhibited by volatile anesthetics through reduction of peak current and modulation of gating. Subtype-selective effects of anesthetics on Nav might contribute to observed neurotransmitter-selective anesthetic effects on release. We analyzed anesthetic effects on Na+ currents mediated by the principal neuronal Nav subtypes Nav1.1, Nav1.2, and Nav1.6 heterologously expressed in ND7/23 neuroblastoma cells using whole-cell patch-clamp electrophysiology. Isoflurane at clinically relevant concentrations induced a hyperpolarizing shift in the voltage dependence of steady-state inactivation and slowed recovery from fast inactivation in all three Nav subtypes, with the voltage of half-maximal steady-state inactivation significantly more positive for Nav1.1 (-49.7 ± 3.9 mV) than for Nav1.2 (-57.5 ± 1.2 mV) or Nav1.6 (-58.0 ± 3.8 mV). Isoflurane significantly inhibited peak Na+ current (I Na) in a voltage-dependent manner: at a physiologically relevant holding potential of -70 mV, isoflurane inhibited peak I Na of Nav1.2 (16.5% ± 5.5%) and Nav1.6 (18.0% ± 7.8%), but not of Nav1.1 (1.2% ± 0.8%). Since Nav subtypes are differentially expressed both between neuronal types and within neurons, greater inhibition of Nav1.2 and Nav1.6 compared with Nav1.1 could contribute to neurotransmitter-selective effects of isoflurane on synaptic transmission.
Collapse
Affiliation(s)
- Cheng Zhou
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Kenneth W Johnson
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Karl F Herold
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Hugh C Hemmings
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| |
Collapse
|
16
|
Abstract
The pentameric γ-aminobutyric acid type A receptors are ion channels activated by ligands, which intervene in the rapid inhibitory transmission in the mammalian CNS. Due to their rich pharmacology and therapeutic potential, it is essential to understand their structure and function thoroughly. This deep characterization was hampered by the lack of experimental structural information for many years. Thus, computational techniques have been extensively combined with experimental data, in order to undertake the study of γ-aminobutyric acid type A receptors and their interaction with drugs. Here, we review the exciting journey made to assess the structures of these receptors and outline major outcomes. Finally, we discuss the brand new structure of the α1β2γ2 subtype and the amazing advances it brings to the field.
Collapse
|
17
|
Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. Proc Natl Acad Sci U S A 2018; 115:E12172-E12181. [PMID: 30541892 DOI: 10.1073/pnas.1813378116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pentameric ligand-gated ion channel (pLGIC) from Gloeobacter violaceus (GLIC) has provided insightful structure-function views on the permeation process and the allosteric regulation of the pLGICs family. However, GLIC is activated by pH instead of a neurotransmitter and a clear picture for the gating transition driven by protons is still lacking. We used an electrostatics-based (finite difference Poisson-Boltzmann/Debye-Hückel) method to predict the acidities of all aspartic and glutamic residues in GLIC, both in its active and closed-channel states. Those residues with a predicted pKa close to the experimental pH50 were individually replaced by alanine and the resulting variant receptors were titrated by ATR/FTIR spectroscopy. E35, located in front of loop F far away from the orthosteric site, appears as the key proton sensor with a measured individual pKa at 5.8. In the GLIC open conformation, E35 is connected through a water-mediated hydrogen-bond network first to the highly conserved electrostatic triad R192-D122-D32 and then to Y197-Y119-K248, both located at the extracellular domain-transmembrane domain interface. The second triad controls a cluster of hydrophobic side chains from the M2-M3 loop that is remodeled during the gating transition. We solved 12 crystal structures of GLIC mutants, 6 of them being trapped in an agonist-bound but nonconductive conformation. Combined with previous data, this reveals two branches of a continuous network originating from E35 that reach, independently, the middle transmembrane region of two adjacent subunits. We conclude that GLIC's gating proceeds by making use of loop F, already known as an allosteric site in other pLGICs, instead of the classic orthosteric site.
Collapse
|
18
|
Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity. Proc Natl Acad Sci U S A 2018; 115:10672-10677. [PMID: 30275330 PMCID: PMC6196478 DOI: 10.1073/pnas.1809650115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to ∼30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.
Collapse
|
19
|
Alphaxalone Binds in Inner Transmembrane β+-α- Interfaces of α1β3γ2 γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2018; 128:338-351. [PMID: 29210709 DOI: 10.1097/aln.0000000000001978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neurosteroids like alphaxalone are potent anxiolytics, anticonvulsants, amnestics, and sedative-hypnotics, with effects linked to enhancement of γ-aminobutyric acid type A (GABAA) receptor gating in the central nervous system. Data locating neurosteroid binding sites on synaptic αβγ GABAA receptors are sparse and inconsistent. Some evidence points to outer transmembrane β-α interfacial pockets, near sites that bind the anesthetics etomidate and propofol. Other evidence suggests that steroids bind more intracellularly in β-α interfaces. METHODS The authors created 12 single-residue β3 cysteine mutations: β3T262C and β3T266C in β3-M2; and β3M283C, β3Y284C, β3M286C, β3G287C, β3F289C, β3V290C, β3F293C, β3L297C, β3E298C, and β3F301C in β3-M3 helices. The authors coexpressed α1 and γ2L with each mutant β3 subunit in Xenopus oocytes and electrophysiologically tested each mutant for covalent sulfhydryl modification by the water-soluble reagent para-chloromercuribenzenesulfonate. Then, the authors assessed whether receptor-bound alphaxalone, etomidate, or propofol blocked cysteine modification, implying steric hindrance. RESULTS Eleven mutant β3 subunits, when coexpressed with α1 and γ2L, formed functional channels that displayed varied sensitivities to the three anesthetics. Exposure to para-chloromercuribenzenesulfonate produced irreversible functional changes in ten mutant receptors. Protection by alphaxalone was observed in receptors with β3V290C, β3F293C, β3L297C, or β3F301C mutations. Both etomidate and propofol protected receptors with β3M286C or β3V290C mutations. Etomidate also protected β3F289C. In α1β3γ2L structural homology models, all these protected residues are located in transmembrane β-α interfaces. CONCLUSIONS Alphaxalone binds in transmembrane β-α pockets of synaptic GABAA receptors that are adjacent and intracellular to sites for the potent anesthetics etomidate and propofol.
Collapse
|
20
|
Price KL, Lummis SCR. Characterization of a 5-HT 3-ELIC Chimera Revealing the Sites of Action of Modulators. ACS Chem Neurosci 2018; 9:1409-1415. [PMID: 29508995 DOI: 10.1021/acschemneuro.8b00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cys-loop receptors are major sites of action for many important therapeutically active compounds, but the sites of action of those that do not act at the orthosteric binding site or at the pore are mostly poorly understood. To help understand these, we here describe a chimeric receptor consisting of the extracellular domain of the 5-HT3A receptor and the transmembrane domain of a prokaryotic homologue, ELIC. Alterations of some residues at the coupling interface are required for function, but the resulting receptor expresses well and responds to 5-HT with a lower EC50 (0.34 μM) than that of the 5-HT3A receptor. Partial agonists and competitive antagonists of the 5-HT3A receptor activate and inhibit the chimera as expected. Examination of a range of receptor modulators, including ethanol, thymol, 5-hydroxyindole, and 5-chloroindole, which can affect the 5-HT3A receptor and ELIC, suggest that these compounds act via the transmembrane domain, except for 5-hydroxyindole, which can compete with 5-HT at the orthosteric binding site. The data throw further light on the importance of coupling interface in Cys-loop receptors and provide a platform for examining the mechanism of action of compounds that act in the extracellular domain of the 5-HT3A receptor and the transmembrane domain of ELIC.
Collapse
Affiliation(s)
- Kerry L. Price
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| |
Collapse
|
21
|
Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation. Proc Natl Acad Sci U S A 2018; 115:E3959-E3968. [PMID: 29632192 DOI: 10.1073/pnas.1717700115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) constitute a widespread class of ion channels, present in archaea, bacteria, and eukaryotes. Upon binding of their agonists in the extracellular domain, the transmembrane pore opens, allowing ions to go through, via a gating mechanism that can be modulated by a number of drugs. Even though high-resolution structural information on pLGICs has increased in a spectacular way in recent years, both in bacterial and in eukaryotic systems, the structure of the open channel conformation of some intensively studied receptors whose structures are known in a nonactive (closed) form, such as Erwinia chrysanthemi pLGIC (ELIC), is still lacking. Here we describe a gammaproteobacterial pLGIC from an endo-symbiont of Tevnia jerichonana (sTeLIC), whose sequence is closely related to the pLGIC from ELIC with 28% identity. We provide an X-ray crystallographic structure at 2.3 Å in an active conformation, where the pore is found to be more open than any current conformation found for pLGICs. In addition, two charged restriction rings are present in the vestibule. Functional characterization shows sTeLIC to be a cationic channel activated at alkaline pH. It is inhibited by divalent cations, but not by quaternary ammonium ions, such as tetramethylammonium. Additionally, we found that sTeLIC is allosterically potentiated by aromatic amino acids Phe and Trp, as well as their derivatives, such as 4-bromo-cinnamate, whose cocrystal structure reveals a vestibular binding site equivalent to, but more deeply buried than, the one already described for benzodiazepines in ELIC.
Collapse
|
22
|
Chen Q, Xu Y, Tang P. X-Ray Crystallographic Studies for Revealing Binding Sites of General Anesthetics in Pentameric Ligand-Gated Ion Channels. Methods Enzymol 2018; 603:21-47. [PMID: 29673527 DOI: 10.1016/bs.mie.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
X-ray crystallography is a powerful tool in structural biology and can offer insight into structured-based understanding of general anesthetic action on various relevant molecular targets, including pentameric ligand-gated ion channels (pLGICs). In this chapter, we outline the procedures for expression and purification of pLGICs. Optimization of crystallization conditions, especially to achieve high-resolution structures of pLGICs bound with general anesthetics, is also presented. Case studies of pLGICs bound with the volatile general anesthetic isoflurane, 2-bromoethanol, and the intravenous general anesthetic ketamine are revisited.
Collapse
Affiliation(s)
- Qiang Chen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
24
|
Abstract
Anesthetics interact with a broad range of different targets, including both soluble and membrane-bound proteins. Understanding these interactions at the molecular level requires detailed structural knowledge of anesthetic-protein complexes, and one of the most productive routes to such knowledge is X-ray crystallography. In this chapter we discuss the application of this technique to the analysis of complexes of anesthetics with soluble proteins. The model protein apoferritin is highlighted, and protocols are presented for obtaining diffraction-quality crystals of this protein in complex with different general anesthetics.
Collapse
|
25
|
Forman SA. Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 2018; 602:369-389. [PMID: 29588039 DOI: 10.1016/bs.mie.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
General anesthetics are known to act in part by binding to and altering the function of pentameric ligand-gated ion channels such as nicotinic acetylcholine and γ-aminobutyric acid type A receptors. Combining heterologous expression of the subunits that assemble to form these ion channels, mutagenesis techniques and voltage-clamp electrophysiology have enabled a variety of "structure-function" approaches to questions of where anesthetic binds to these ion channels and how they enhance or inhibit channel function. Here, we review the evolution of concepts and experimental strategies during the last three decades, since molecular biological and electrophysiological tools became widely used. Topics covered include: (1) structural models as interpretive frameworks, (2) various electrophysiological approaches and their limitations, (3) Monod-Wyman-Changeux allosteric models as functional frameworks, (4) structural strategies including chimeras and point mutations, and (5) methods based on cysteine substitution and covalent modification. We discuss in particular depth the experimental design considerations for substituted cysteine modification-protection studies.
Collapse
Affiliation(s)
- Stuart A Forman
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
26
|
Abstract
The precise mechanism by which propofol enhances GABAergic transmission remains unclear, but much progress has been made regarding the underlying structural and dynamic mechanisms. Furthermore, it is now clear that propofol has additional molecular targets, many of which are functionally influenced at concentrations achieved clinically. Focusing primarily on molecular targets, this brief review attempts to summarize some of this recent progress while pointing out knowledge gaps and controversies. It is not intended to be comprehensive but rather to stimulate further thought, discussion, and study on the mechanisms by which propofol produces its pleiotropic effects.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
28
|
Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2017; 293:2534-2545. [PMID: 29237730 PMCID: PMC5818190 DOI: 10.1074/jbc.m117.815316] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the β8-β9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.
Collapse
Affiliation(s)
- Florian Delbart
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marijke Brams
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Fabian Gruss
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sandro Boland
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium
| | - Patrick Chaltin
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium.,the Center for Innovation and Stimulation of Drug Discovery Leuven and Center for Drug Design and Discovery, KU Leuven, 3001 Heverlee, Belgium
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Wouter G Touw
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Robbie P Joosten
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sandra Liekens
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
29
|
Ghosh B, Tsao TW, Czajkowski C. A chimeric prokaryotic-eukaryotic pentameric ligand gated ion channel reveals interactions between the extracellular and transmembrane domains shape neurosteroid modulation. Neuropharmacology 2017; 125:343-352. [PMID: 28803966 PMCID: PMC5600277 DOI: 10.1016/j.neuropharm.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are the targets of several clinical and endogenous allosteric modulators including anesthetics and neurosteroids. Molecular mechanisms underlying allosteric drug modulation are poorly understood. Here, we constructed a chimeric pLGIC by fusing the extracellular domain (ECD) of the proton-activated, cation-selective bacterial channel GLIC to the transmembrane domain (TMD) of the human ρ1 chloride-selective GABAAR, and tested the hypothesis that drug actions are regulated locally in the domain that houses its binding site. The chimeric channels were proton-gated and chloride-selective demonstrating the GLIC ECD was functionally coupled to the GABAρ TMD. Channels were blocked by picrotoxin and inhibited by pentobarbital, etomidate and propofol. The point mutation, ρ TMD W328M, conferred positive modulation and direct gating by pentobarbital. The data suggest that the structural machinery mediating general anesthetic modulation resides in the TMD. Proton-activation and neurosteroid modulation of the GLIC-ρ chimeric channels, however, did not simply mimic their respective actions on GLIC and GABAρ revealing that across domain interactions between the ECD and TMD play important roles in determining their actions. Proton-induced current responses were biphasic suggesting that the chimeric channels contain an additional proton sensor. Neurosteroid modulation of the GLIC-ρ chimeric channels by the stereoisomers, 5α-THDOC and 5β-THDOC, were swapped compared to their actions on GABAρ indicating that positive versus negative neurosteroid modulation is not encoded solely in the TMD nor by neurosteroid isomer structure but is dependent on specific interdomain connections between the ECD and TMD. Our data reveal a new mechanism for shaping neurosteroid modulation.
Collapse
Affiliation(s)
- Borna Ghosh
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA; Eli Lilly and Company, 1220 W Morris St, Indianapolis, IN 46221, USA
| | - Tzu-Wei Tsao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA; Physiology Training Program, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Cynthia Czajkowski
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
30
|
Ion BF, Wells MM, Chen Q, Xu Y, Tang P. Ketamine Inhibition of the Pentameric Ligand-Gated Ion Channel GLIC. Biophys J 2017; 113:605-612. [PMID: 28793215 DOI: 10.1016/j.bpj.2017.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ketamine inhibits pentameric ligand-gated ion channels (pLGICs), including the bacterial pLGIC from Gloeobacter violaceus (GLIC). The crystal structure of GLIC shows R-ketamine bound to an extracellular intersubunit cavity. Here, we performed molecular dynamics simulations of GLIC in the absence and presence of R- or S-ketamine. No stable binding of S-ketamine in the original cavity was observed in the simulations, largely due to its unfavorable access to residue D154, which provides important electrostatic interactions to stabilize R-ketamine binding. Contrary to the symmetric binding shown in the crystal structure, R-ketamine moved away from some of the binding sites and was bound to GLIC asymmetrically at the end of simulations. The asymmetric binding is consistent with the experimentally measured negative cooperativity of ketamine binding to GLIC. In the presence of R-ketamine, all subunits showed changes in structure and dynamics, irrespective of binding stability; the extracellular intersubunit cavity expanded and intersubunit electrostatic interactions involved in channel activation were altered. R-ketamine binding promoted a conformational shift toward closed GLIC. Conformational changes near the ketamine-binding site were propagated to the interface between the extracellular and transmembrane domains, and further to the pore-lining TM2 through two pathways: pre-TM1 and the β1-β2 loop. Both signaling pathways have been predicted previously using the perturbation-based Markovian transmission model. The study provides a structural and dynamics basis for the inhibitory modulation of ketamine on pLGICs.
Collapse
Affiliation(s)
- Bogdan F Ion
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marta M Wells
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qiang Chen
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Xu
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei Tang
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
31
|
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Neuron 2017; 90:452-70. [PMID: 27151638 DOI: 10.1016/j.neuron.2016.03.032] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
Collapse
Affiliation(s)
- Ákos Nemecz
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France
| | - Marie S Prevost
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Anaïs Menny
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France; Université Pierre et Marie Curie (UPMC), Cellule Pasteur, 75005 Paris, France
| | - Pierre-Jean Corringer
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France.
| |
Collapse
|
32
|
Amin J, Subbarayan MS. Orthosteric- versus allosteric-dependent activation of the GABA A receptor requires numerically distinct subunit level rearrangements. Sci Rep 2017; 7:7770. [PMID: 28798394 PMCID: PMC5552871 DOI: 10.1038/s41598-017-08031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/07/2017] [Indexed: 12/05/2022] Open
Abstract
Anaesthetic molecules act on synaptic transmission via the allosteric modulation of ligand-gated chloride channels, such as hetero-oligomeric α1β2γ2 GABAA receptors. To elucidate the overall activation paradigm via allosteric versus orthosteric sites, we used highly homologous, but homo-oligomeric, ρ1 receptors that are contrastingly insensitive to anaesthetics and respond partially to several full GABA α1β2γ2 receptor agonists. Here, we coexpressed varying ratios of RNAs encoding the wild-type and the mutated ρ1 subunits, which are anaesthetic-sensitive and respond with full efficacy to partial GABA agonists, to generate distinct ensembles of receptors containing five, four, three, two, one, or zero mutated subunits. Using these experiments, we then demonstrate that, in the pentamer, three anaesthetic-sensitive ρ1 subunits are needed to impart full efficacy to the partial GABA agonists. By contrast, five anaesthetic-sensitive subunits are required for direct activation by anaesthetics alone, and only one anaesthetic-sensitive subunit is sufficient to confer the anaesthetic-dependent potentiation to the GABA current. In conclusion, our data indicate that GABA and anaesthetics holistically activate the GABAA ρ1 receptor through distinct subunit level rearrangements and suggest that in contrast to the global impact of GABA via orthosteric sites, the force of anaesthetics through allosteric sites may not propagate to the neighbouring subunits and, thus, may have only a local and limited effect on the ρ1 GABAA receptor model system.
Collapse
Affiliation(s)
- Jahanshah Amin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA.
| | - Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
33
|
Forman SA, Miller KW. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 2017; 123:1263-1273. [PMID: 27167687 DOI: 10.1213/ane.0000000000001368] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.
Collapse
Affiliation(s)
- Stuart A Forman
- From the Department of Anesthesia Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
34
|
Arcario MJ, Mayne CG, Tajkhorshid E. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel. J Biol Chem 2017; 292:9480-9492. [PMID: 28420728 PMCID: PMC5465477 DOI: 10.1074/jbc.m117.780197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel.
Collapse
Affiliation(s)
- Mark J Arcario
- From the Center for Biophysics and Quantitative Biology.,Department of Biochemistry, College of Medicine, and.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- From the Center for Biophysics and Quantitative Biology, .,Department of Biochemistry, College of Medicine, and.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
35
|
Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc Natl Acad Sci U S A 2016; 113:E6696-E6703. [PMID: 27791038 DOI: 10.1073/pnas.1603101113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8-β9 loop in the extracellular ligand-binding domain. The β8-β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8-β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors.
Collapse
|
36
|
Mayne CG, Arcario MJ, Mahinthichaichan P, Baylon JL, Vermaas JV, Navidpour L, Wen PC, Thangapandian S, Tajkhorshid E. The cellular membrane as a mediator for small molecule interaction with membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2290-2304. [PMID: 27163493 PMCID: PMC4983535 DOI: 10.1016/j.bbamem.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
The cellular membrane constitutes the first element that encounters a wide variety of molecular species to which a cell might be exposed. Hosting a large number of structurally and functionally diverse proteins associated with this key metabolic compartment, the membrane not only directly controls the traffic of various molecules in and out of the cell, it also participates in such diverse and important processes as signal transduction and chemical processing of incoming molecular species. In this article, we present a number of cases where details of interaction of small molecular species such as drugs with the membrane, which are often experimentally inaccessible, have been studied using advanced molecular simulation techniques. We have selected systems in which partitioning of the small molecule with the membrane constitutes a key step for its final biological function, often binding to and interacting with a protein associated with the membrane. These examples demonstrate that membrane partitioning is not only important for the overall distribution of drugs and other small molecules into different compartments of the body, it may also play a key role in determining the efficiency and the mode of interaction of the drug with its target protein. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Mark J Arcario
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States; College of Medicine, University of Illinois at Urbana-Champaign, United States.
| | - Paween Mahinthichaichan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States.
| | - Javier L Baylon
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States.
| | - Josh V Vermaas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States.
| | - Latifeh Navidpour
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Po-Chao Wen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Sundarapandian Thangapandian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States; College of Medicine, University of Illinois at Urbana-Champaign, United States.
| |
Collapse
|
37
|
Desai R, Savechenkov PY, Zolkowska D, Ge RL, Rogawski MA, Bruzik KS, Forman SA, Raines DE, Miller KW. Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α1 β3 γ2L GABAA receptor account for their in vivo effects. J Physiol 2016; 593:4943-61. [PMID: 26378885 DOI: 10.1113/jp270971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Most barbiturates are anaesthetics but unexpectedly a few are convulsants whose mechanism of action is poorly understood. We synthesized and characterized a novel pair of chiral barbiturates that are capable of photolabelling their binding sites on GABAA receptors. In mice the S-enantiomer is a convulsant, but the R-enantiomer is an anticonvulsant. The convulsant S-enantiomer binds solely at an inhibitory site. It is both an open state inhibitor and a resting state inhibitor. Its action is pH independent, suggesting the pyrimidine ring plays little part in binding. The inhibitory site is not enantioselective because the R-enantiomer inhibits with equal affinity. In contrast, only the anticonvulsant R-enantiomer binds to the enhancing site on open channels, causing them to stay open longer. The enhancing site is enantioselective. The in vivo actions of the convulsant S-enantiomer are accounted for by its interactions with GABAA receptors. ABSTRACT Most barbiturates are anaesthetics but a few unexpectedly are convulsants. We recently located the anaesthetic sites on GABAA receptors (GABAA Rs) by photolabelling with an anaesthetic barbiturate. To apply the same strategy to locate the convulsant sites requires the creation and mechanistic characterization of a suitable agent. We synthesized enantiomers of a novel, photoactivable barbiturate, 1-methyl-5-propyly-5-(m-trifluoromethyldiazirinyl) phenyl barbituric acid (mTFD-MPPB). In mice, S-mTFD-MPPB acted as a convulsant, whereas R-mTFD-MPPB acted as an anticonvulsant. Using patch clamp electrophysiology and fast solution exchange on recombinant human α1 β3 γ2L GABAA Rs expressed in HEK cells, we found that S-mTFD-MPPB inhibited GABA-induced currents, whereas R-mTFD-MPPB enhanced them. S-mTFD-MPPB caused inhibition by binding to either of two inhibitory sites on open channels with bimolecular kinetics. It also inhibited closed, resting state receptors at similar concentrations, decreasing the channel opening rate and shifting the GABA concentration-response curve to the right. R-mTFD-MPPB, like most anaesthetics, enhanced receptor gating by rapidly binding to allosteric sites on open channels, initiating a rate-limiting conformation change to stabilized open channel states. These states had slower closing rates, thus shifting the GABA concentration-response curve to the left. Under conditions when most GABAA Rs were open, an inhibitory action of R-mTFD-MPPB was revealed that had a similar IC50 to that of S-mTFD-MPPB. Thus, the inhibitory sites are not enantioselective, and the convulsant action of S-mTFD-MPPB results from its negligible affinity for the enhancing, anaesthetic sites. Interactions with these two classes of barbiturate binding sites on GABAA Rs underlie the enantiomers' different pharmacological activities in mice.
Collapse
Affiliation(s)
- Rooma Desai
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pavel Y Savechenkov
- Deparment of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Ri Le Ge
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Karol S Bruzik
- Deparment of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Stuart A Forman
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Douglas E Raines
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Keith W Miller
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
38
|
Burgos CF, Yévenes GE, Aguayo LG. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol Pharmacol 2016; 90:318-25. [PMID: 27401877 DOI: 10.1124/mol.116.105726] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
39
|
From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Prog Lipid Res 2016; 63:1-13. [DOI: 10.1016/j.plipres.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
|
40
|
Abstract
BACKGROUND Identifying functionally relevant anesthetic-binding sites in pentameric ligand-gated ion channels (pLGICs) is an important step toward understanding the molecular mechanisms underlying anesthetic action. The anesthetic propofol is known to inhibit cation-conducting pLGICs, including a prokaryotic pLGIC from Erwinia chrysanthemi (ELIC), but the sites responsible for functional inhibition remain undetermined. METHODS We photolabeled ELIC with a light-activated derivative of propofol (AziPm) and performed fluorine-19 nuclear magnetic resonance experiments to support propofol binding to a transmembrane domain (TMD) intrasubunit pocket. To differentiate sites responsible for propofol inhibition from those that are functionally irrelevant, we made an ELIC-γ-aminobutyric acid receptor (GABAAR) chimera that replaced the ELIC-TMD with the α1β3GABAAR-TMD and compared functional responses of ELIC-GABAAR and ELIC with propofol modulations. RESULTS Photolabeling showed multiple AziPm-binding sites in the extracellular domain (ECD) but only one site in the TMD with labeled residues M265 and F308 in the resting state of ELIC. Notably, this TMD site is an intrasubunit pocket that overlaps with binding sites for anesthetics, including propofol, found previously in other pLGICs. Fluorine-19 nuclear magnetic resonance experiments supported propofol binding to this TMD intrasubunit pocket only in the absence of agonist. Functional measurements of ELIC-GABAAR showed propofol potentiation of the agonist-elicited current instead of inhibition observed on ELIC. CONCLUSIONS The distinctly different responses of ELIC and ELIC-GABAAR to propofol support the functional relevance of propofol binding to the TMD. Combining the newly identified TMD intrasubunit pocket in ELIC with equivalent TMD anesthetic sites found previously in other cationic pLGICs, we propose this TMD pocket as a common site for anesthetic inhibition of pLGICs.
Collapse
|
41
|
Puthenkalam R, Hieckel M, Simeone X, Suwattanasophon C, Feldbauer RV, Ecker GF, Ernst M. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What? Front Mol Neurosci 2016; 9:44. [PMID: 27378845 PMCID: PMC4910578 DOI: 10.3389/fnmol.2016.00044] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023] Open
Abstract
Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational states provided important insights into structural rearrangements of binding sites during conformational transitions. The impact of structural variation and conformational motion on the shape of the investigated binding sites was analyzed. Rules for best template and alignment choice were obtained and can generally be applied to modeling of cys-loop receptors. Overall, we provide an updated structure based view of ligand binding sites present in GABAA receptors.
Collapse
Affiliation(s)
- Roshan Puthenkalam
- Department of Molecular Neurosciences, Medical University of ViennaVienna, Austria
| | - Marcel Hieckel
- Department of Molecular Neurosciences, Medical University of ViennaVienna, Austria
| | - Xenia Simeone
- Department of Molecular Neurosciences, Medical University of ViennaVienna, Austria
| | | | - Roman V. Feldbauer
- Austrian Research Institute for Artificial Intelligence (OFAI)Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of ViennaVienna, Austria
| | - Margot Ernst
- Department of Molecular Neurosciences, Medical University of ViennaVienna, Austria
| |
Collapse
|
42
|
Heusser SA, Yoluk Ö, Klement G, Riederer EA, Lindahl E, Howard RJ. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. J Neurochem 2016; 138:243-53. [PMID: 27102368 DOI: 10.1111/jnc.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate-gated chloride channel (GluClcryst ) as a structurally accessible model for GABAA receptors. In contrast to native-like controls, GluClcryst exhibits classical activation by its neurotransmitter ligand L-glutamate. The modified channel is also sensitive to allosteric modulators associated with human GABAA receptors, and to site-directed mutations predicted to alter channel opening.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Özge Yoluk
- Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Göran Klement
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erika A Riederer
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, USA
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
43
|
Laurent B, Murail S, Shahsavar A, Sauguet L, Delarue M, Baaden M. Sites of Anesthetic Inhibitory Action on a Cationic Ligand-Gated Ion Channel. Structure 2016; 24:595-605. [DOI: 10.1016/j.str.2016.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
|
44
|
Jaiteh M, Taly A, Hénin J. Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors. PLoS One 2016; 11:e0151934. [PMID: 26986966 PMCID: PMC4795631 DOI: 10.1371/journal.pone.0151934] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 01/27/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.
Collapse
Affiliation(s)
- Mariama Jaiteh
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Sauguet L, Fourati Z, Prangé T, Delarue M, Colloc'h N. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel. PLoS One 2016; 11:e0149795. [PMID: 26910105 PMCID: PMC4765991 DOI: 10.1371/journal.pone.0149795] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022] Open
Abstract
GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
| | - Zeineb Fourati
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
| | - Thierry Prangé
- Laboratoire de cristallographie et RMN biologiques (UMR 8015 CNRS), Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
- * E-mail:
| | - Nathalie Colloc'h
- CNRS, UMR 6301, ISTCT CERVOxy group, GIP Cyceron, Caen, France
- UNICAEN, Normandie Univ., UMR 6301 ISTCT, Caen, France
- CEA, DSV/I2BM, UMR 6301 ISTCT, Caen, France
| |
Collapse
|
46
|
Ostrowski M, Porowinska D, Prochnicki T, Prevost M, Raynal B, Baron B, Sauguet L, Corringer PJ, Faure G. Neurotoxic phospholipase A2 from rattlesnake as a new ligand and new regulator of prokaryotic receptor GLIC (proton-gated ion channel from G. violaceus). Toxicon 2016; 116:63-71. [PMID: 26854368 DOI: 10.1016/j.toxicon.2016.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/26/2022]
Abstract
Neurotoxic phospholipases A2 (sPLA2) from snake venoms interact with various protein targets with high specificity and potency. They regulate function of multiple receptors or channels essential to life processes including neuronal or neuromuscular chemoelectric signal transduction. These toxic sPLA2 exhibit high pharmacological potential and determination of PLA2-receptor binding sites represents challenging part in the receptor-channel biochemistry and pharmacology. To investigate the mechanism of interaction of neurotoxic PLA2 with its neuronal receptor at the molecular level, we used as a model crotoxin, a heterodimeric sPLA2 from rattlesnake venom and proton-gated ion channel GLIC, a bacterial homolog of pentameric ligand-gated ion channels. The three-dimensional structures of both partners, crotoxin and GLIC have been solved by X-ray crystallography and production of full-length pentameric GLIC (with ECD and TM domains) is well established. In the present study, for the first time, we demonstrated physical and functional interaction of full-length purified and solubilized GLIC with CB, (PLA2 subunit of crotoxin). We identified GLIC as a new protein target of CB and CB as a new ligand of GLIC, and showed that this non covalent interaction (PLA2-GLIC) involves the extracellular domain of GLIC. We also determined a novel function of CB as an inhibitor of proton-gated ion channel activity. In agreement with conformational changes observed upon formation of the complex, CB appears to be negative allosteric modulator (NAM) of GLIC. Finally, we proposed a possible stoichiometric model for CB - GLIC interaction based on analytical ultracentrifugation.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowinska
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Prochnicki
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Marie Prevost
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Bertrand Raynal
- Institu Pasteur, Plate-Forme de Biophysique des Macromolecules et de leurs Interactions, 75015 Paris, France
| | - Bruno Baron
- Institu Pasteur, Plate-Forme de Biophysique des Macromolecules et de leurs Interactions, 75015 Paris, France
| | - Ludovic Sauguet
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
47
|
Gong P, Hong H, Perkins EJ. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers. Biomark Med 2015; 9:1225-39. [PMID: 26508561 DOI: 10.2217/bmm.15.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.
Collapse
Affiliation(s)
- Ping Gong
- Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
48
|
Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC. Sci Rep 2015; 5:13833. [PMID: 26346220 PMCID: PMC4561908 DOI: 10.1038/srep13833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but molecular mechanisms underlying anesthetic action remain debatable. We found that ELIC, a pLGIC from Erwinia chrysanthemi, can be functionally inhibited by isoflurane and other anesthetics. Structures of ELIC co-crystallized with isoflurane in the absence or presence of an agonist revealed double isoflurane occupancies inside the pore near T237(6′) and A244(13′). A pore-radius contraction near the extracellular entrance was observed upon isoflurane binding. Electrophysiology measurements with a single-point mutation at position 6′ or 13′ support the notion that binding at these sites renders isoflurane inhibition. Molecular dynamics simulations suggested that isoflurane binding was more stable in the resting than in a desensitized pore conformation. This study presents compelling evidence for a direct pore-binding mechanism of isoflurane inhibition, which has a general implication for inhibitory action of general anesthetics on pLGICs.
Collapse
|
49
|
Purtell K, Gingrich KJ, Ouyang W, Herold KF, Hemmings HC. Activity-dependent depression of neuronal sodium channels by the general anaesthetic isoflurane. Br J Anaesth 2015; 115:112-21. [PMID: 26089447 DOI: 10.1093/bja/aev203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The mechanisms by which volatile anaesthetics such as isoflurane alter neuronal function are poorly understood, in particular their presynaptic mechanisms. Presynaptic voltage-gated sodium channels (Na(v)) have been implicated as a target for anaesthetic inhibition of neurotransmitter release. We hypothesize that state-dependent interactions of isoflurane with Na(v) lead to increased inhibition of Na(+) current (I(Na)) during periods of high-frequency neuronal activity. METHODS The electrophysiological effects of isoflurane, at concentrations equivalent to those used clinically, were measured on recombinant brain-type Na(v)1.2 expressed in ND7/23 neuroblastoma cells and on endogenous Na(v) in isolated rat neurohypophysial nerve terminals. Rate constants determined from experiments on the recombinant channel were used in a simple model of Na(v) gating. RESULTS At resting membrane potentials, isoflurane depressed peak I(Na) and shifted steady-state inactivation in a hyperpolarizing direction. After membrane depolarization, isoflurane accelerated entry (τ(control)=0.36 [0.03] ms compared with τ(isoflurane)=0.33 [0.05] ms, P<0.05) and slowed recovery (τ(control)=6.9 [1.1] ms compared with τ(isoflurane)=9.0 [1.9] ms, P<0.005) from apparent fast inactivation, resulting in enhanced depression of I(Na), during high-frequency stimulation of both recombinant and endogenous nerve terminal Na(v). A simple model of Na(v) gating involving stabilisation of fast inactivation, accounts for this novel form of activity-dependent block. CONCLUSIONS Isoflurane stabilises the fast-inactivated state of neuronal Na(v) leading to greater depression of I(Na) during high-frequency stimulation, consistent with enhanced inhibition of fast firing neurones.
Collapse
Affiliation(s)
- K Purtell
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - K J Gingrich
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - W Ouyang
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA Present address: College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - K F Herold
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - H C Hemmings
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
50
|
Marabelli A, Lape R, Sivilotti L. Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study. ACTA ACUST UNITED AC 2015; 145:23-45. [PMID: 25548135 PMCID: PMC4278187 DOI: 10.1085/jgp.201411234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|