1
|
Liu Q, Liu Y, Liu T, Fan J, Xia Z, Zhou Y, Deng X. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:55. [PMID: 39325109 PMCID: PMC11427655 DOI: 10.1007/s13659-024-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Collapse
Affiliation(s)
- Qiantong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanyun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Science, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Cioffi E, Coppola G, Musumeci O, Gallone S, Silvestri G, Rossi S, Piemonte F, D'Amico J, Tessa A, Santorelli FM, Casali C. Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature. Neurogenetics 2024; 25:51-67. [PMID: 38334933 PMCID: PMC11076336 DOI: 10.1007/s10048-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Olimpia Musumeci
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Jessica D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
3
|
Wheeler S, Bhardwaj M, Kenyon V, Ferraz MJ, Aerts JMFG, Sillence DJ. Mitochondrial dysfunction in NPC1-deficiency is not rescued by drugs targeting the glucosylceramidase GBA2 and the cholesterol-binding proteins TSPO and StARD1. FEBS Lett 2024; 598:477-484. [PMID: 38302739 DOI: 10.1002/1873-3468.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.
Collapse
Affiliation(s)
- Simon Wheeler
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | | | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Dan J Sillence
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
4
|
Meelua W, Thinkumrob N, Saparpakorn P, Pengthaisong S, Hannongbua S, Ketudat Cairns JR, Jitonnom J. Structural basis for inhibition of a GH116 β-glucosidase and its missense mutants by GBA2 inhibitors: Crystallographic and quantum chemical study. Chem Biol Interact 2023; 384:110717. [PMID: 37726065 DOI: 10.1016/j.cbi.2023.110717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
The crystal structure of the Thermoanaerobacterium xylanolyticum in glycoside hydrolase family 116 (TxGH116) β-glucosidase provides a structural model for human GBA2 glucosylceramidase, an enzyme defective in hereditary spastic paraplegia and a potential therapeutic target for treating Gaucher disease. To assess the therapeutic potential of known inhibitors, the X-ray structure of TxGH116 in complex with isofagomine (IFG) was determined at 2.0 Å resolution and showed the IFG bound in a relaxed chair conformation. The binding of IFG and 7 other iminosugar inhibitors to wild-type and mutant enzymes (Asp508His and Arg786His) mimicking GBA2 pathogenic variants was then evaluated computationally by two-layered ONIOM calculations (at the B3LYP:PM7 level). Calculations showed that six charged residues, Glu441, Asp452, His507, Asp593, Glu777, and Arg786 influence inhibitor binding most. His507, Glu777 and Arg786, form strong hydrogen bonds with the inhibitors (∼1.4-1.6 Å). Thus, the missense mutation of one of these residues in Arg786His has a greater effect on the interaction energies for all inhibitors compared to Asp508His. In line with the experimental data for the inhibitors that have been tested, the favorable interaction energy between the inhibitors and the TxGH116 protein followed the trend: isofagomine > 1-deoxynojirimycin > glucoimidazole > N-butyl-deoxynojirimycin ≈ N-nonyl-deoxynojirimycin > conduritol B epoxide ≈ azepane 1 > azepane 2. The obtained structural and energetic properties and comparison to the GBA2 model can lead to understanding of structural requirement for inhibitor binding in GH116 to aid the design of high potency GBA2 inhibitors.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao, 56000, Thailand; Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | | | - Salila Pengthaisong
- Center for Biomolecular Structure, Function and Application, and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand.
| |
Collapse
|
5
|
Quelle-Regaldie A, Gandoy-Fieiras N, Rodríguez-Villamayor P, Maceiras S, Losada AP, Folgueira M, Cabezas-Sáinz P, Barreiro-Iglesias A, Villar-López M, Quiroga-Berdeal MI, Sánchez L, Sobrido MJ. Severe neurometabolic phenotype in npc1−/− zebrafish with a C-terminal mutation. Front Mol Neurosci 2023; 16:1078634. [PMID: 37008782 PMCID: PMC10063808 DOI: 10.3389/fnmol.2023.1078634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Nerea Gandoy-Fieiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodríguez-Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sandra Maceiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Villar-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga-Berdeal
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- *Correspondence: Laura Sánchez,
| | - María Jesús Sobrido
- Hospital Teresa Herrera, Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- María Jesús Sobrido,
| |
Collapse
|
6
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
7
|
Inhibitors of Glucosylceramide Synthase. Methods Mol Biol 2023; 2613:271-288. [PMID: 36587085 DOI: 10.1007/978-1-0716-2910-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glucosylceramide synthase can be targeted by high affinity small molecular weight inhibitors for the study of glycosphingolipid metabolism and function or for the treatment of glycosphingolipid storage disorders, including Gaucher and Fabry disease. This work is exemplified by the discovery and development of eliglustat tartrate, the first stand-alone small chemical entity approved for the treatment of Gaucher disease type 1. The development of inhibitors of glucosylceramide synthase that have utility for either research or clinical purposes begins with a testing funnel for screening candidate inhibitors for activity against this enzyme and for activity in lowering the content of glucosylceramide in intact cells. Two common assays for glucosylceramide synthase, one enzyme based and another cell based, are the focus of this chapter.
Collapse
|
8
|
Tang Z, Motoyoshi K, Honda T, Nakamura H, Murayama T. Amyloid Beta-Peptide 25-35 (Aβ 25-35) Induces Cytotoxicity via Multiple Mechanisms: Roles of the Inhibition of Glucosylceramide Synthase by Aβ 25-35 and Its Protection by D609. Biol Pharm Bull 2021; 44:1419-1426. [PMID: 34602551 DOI: 10.1248/bpb.b21-00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingolipids (SLs), such as ceramide, glucosylceramide (GlcCer), and sphingomyelin, play important roles in the normal development/functions of the brain and peripheral tissues. Disruption of SL homeostasis in cells/organelles, specifically up-regulation of ceramide, is involved in multiple diseases including Alzheimer's disease (AD). One of the pathological features of AD is aggregates of amyloid beta (Aβ) peptides, and SLs regulate both the formation/aggregation of Aβ and Aβ-induced cellular responses. Up-regulation of ceramide levels via de novo and salvage synthesis pathways is reported in Aβ-treated cells and brains with AD; however, the effects of Aβ on ceramide decomposition pathways have not been elucidated. Thus, we investigated the effects of the 25-35-amino acid Aβ peptide (Aβ25-35), the fundamental cytotoxic domain of Aβ, on SL metabolism in cells treated with the fluorescent nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide). Aβ25-35 treatment reduced the formation of NBD-GlcCer mediated by GlcCer synthase (GCS) without affecting the formation of NBD-sphingomyelin or NBD-ceramide-1-phosphate, and reduced cell viability. Aβ25-35-induced responses decreased in cells treated with D609, a putative inhibitor of sphingomyelin synthases. Aβ25-35-induced cytotoxicity significantly increased in GCS-knockout cells and pharmacological inhibition of GCS alone demonstrated cytotoxicity. Our study revealed that Aβ25-35-induced cytotoxicity is at least partially mediated by the inhibition of GCS activity.
Collapse
Affiliation(s)
- Zhihui Tang
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kaisei Motoyoshi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
9
|
Nakanishi E, Uemura N, Akiyama H, Kinoshita M, Masanori S, Taruno Y, Yamakado H, Matsuzawa SI, Takeda S, Hirabayashi Y, Takahashi R. Impact of Gba2 on neuronopathic Gaucher's disease and α-synuclein accumulation in medaka (Oryzias latipes). Mol Brain 2021; 14:80. [PMID: 33971917 PMCID: PMC8111776 DOI: 10.1186/s13041-021-00790-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Homozygous mutations in the lysosomal glucocerebrosidase gene, GBA1, cause Gaucher’s disease (GD), while heterozygous mutations in GBA1 are a strong risk factor for Parkinson’s disease (PD), whose pathological hallmark is intraneuronal α-synuclein (asyn) aggregates. We previously reported that gba1 knockout (KO) medaka exhibited glucosylceramide accumulation and neuronopathic GD phenotypes, including short lifespan, the dopaminergic and noradrenergic neuronal cell loss, microglial activation, and swimming abnormality, with asyn accumulation in the brains. A recent study reported that deletion of GBA2, non-lysosomal glucocerebrosidase, in a non-neuronopathic GD mouse model rescued its phenotypes. In the present study, we generated gba2 KO medaka and examined the effect of Gba2 deletion on the phenotypes of gba1 KO medaka. The Gba2 deletion in gba1 KO medaka resulted in the exacerbation of glucosylceramide accumulation and no improvement in neuronopathic GD pathological changes, asyn accumulation, or swimming abnormalities. Meanwhile, though gba2 KO medaka did not show any apparent phenotypes, biochemical analysis revealed asyn accumulation in the brains. gba2 KO medaka showed a trend towards an increase in sphingolipids in the brains, which is one of the possible causes of asyn accumulation. In conclusion, this study demonstrated that the deletion of Gba2 does not rescue the pathological changes or behavioral abnormalities of gba1 KO medaka, and GBA2 represents a novel factor affecting asyn accumulation in the brains.
Collapse
Affiliation(s)
- Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan. .,Department of Pathology and Laboratory Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-2676, USA.
| | - Hisako Akiyama
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Kyoto University Graduate School of Agriculture, Kyoto, 606-8502, Japan
| | - Sawamura Masanori
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| |
Collapse
|
10
|
Effect of Expression of Human Glucosylceramidase 2 Isoforms on Lipid Profiles in COS-7 Cells. Metabolites 2020; 10:metabo10120488. [PMID: 33261081 PMCID: PMC7761373 DOI: 10.3390/metabo10120488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023] Open
Abstract
Glucosylceramide (GlcCer) is a major membrane lipid and the precursor of gangliosides. GlcCer is mainly degraded by two enzymes, lysosomal acid β-glucosidase (GBA) and nonlysosomal β-glucosidase (GBA2), which may have different isoforms because of alternative splicing. To understand which GBA2 isoforms are active and how they affect glycosphingolipid levels in cells, we expressed nine human GBA2 isoforms in COS-7 cells, confirmed their expression by qRT-PCR and Western blotting, and assayed their activity to hydrolyze 4-methylumbelliferyl-β-D-glucopyranoside (4MUG) in cell extracts. Human GBA2 isoform 1 showed high activity, while the other isoforms had activity similar to the background. Comparison of sphingolipid levels by ultra-high resolution/accurate mass spectrometry (UHRAMS) analysis showed that isoform 1 overexpression increased ceramide and decreased hexosylceramide levels. Comparison of ratios of glucosylceramides to the corresponding ceramides in the extracts indicated that GBA2 isoform 1 has broad specificity for the lipid component of glucosylceramide, suggesting that only one GBA2 isoform 1 is active and affects sphingolipid levels in the cell. Our study provides new insights into how increased breakdown of GlcCer affects cellular lipid metabolic networks.
Collapse
|
11
|
Gehin M, Melchior M, Welford RWD, Sidharta PN, Dingemanse J. Assessment of Target Engagement in a First-in-Human Trial with Sinbaglustat, an Iminosugar to Treat Lysosomal Storage Disorders. Clin Transl Sci 2020; 14:558-567. [PMID: 33142037 PMCID: PMC7993281 DOI: 10.1111/cts.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022] Open
Abstract
In this first-in-human study, the tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of single and multiple oral doses of sinbaglustat, a dual inhibitor of glucosylceramide synthase (GCS) and non-lysosomal glucosyl ceramidase (GBA2), were investigated in healthy subjects. The single-ascending dose (SAD) and multiple-ascending dose (MAD) studies were randomized, double-blind, and placebo-controlled. Single doses from 10 to 2,000 mg in men and multiple doses from 30 to 1,000 mg twice daily for 7 days in male and female subjects were investigated. Tolerability, PK, and PD data were collected up to 3 days after (last) treatment administration and analyzed descriptively. Sinbaglustat was well-tolerated in the SAD and MAD studies, however, at the highest dose of the MAD, three of the four female subjects presented a similar pattern of general symptoms. In all cohorts, sinbaglustat was rapidly absorbed. Thereafter, plasma concentrations decreased biphasically. In the MAD study, steady-state conditions were reached on Day 2 without accumulation. During sinbaglustat treatment, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide, and globotriaosylceramide decreased in a dose-dependent manner, reflecting GCS inhibition. The more complex the glycosphingolipid, the more time was required to elicit PD changes. After treatment stop, GlcCer levels returned to baseline and increased above baseline at lowest doses, probably due to the higher potency of sinbaglustat on GBA2 compared to GCS. Overall, sinbaglustat was welltolerated up to the highest tested doses. The PK profile is compatible with b.i.d. dosing. Sinbaglustat demonstrated target engagement in the periphery for GCS and GBA2.
Collapse
Affiliation(s)
- Martine Gehin
- Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Meggane Melchior
- Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Richard W D Welford
- Drug Discovery, Translational Biomarkers, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Jasper Dingemanse
- Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
12
|
Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review. Int J Mol Sci 2020; 21:ijms21197159. [PMID: 32998334 PMCID: PMC7584006 DOI: 10.3390/ijms21197159] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The challenges in the diagnosis, prognosis, and monitoring of Gaucher disease (GD), an autosomal recessive inborn error of glycosphingolipid metabolism, can negatively impact clinical outcomes. This systematic literature review evaluated the value of glucosylsphingosine (lyso-Gb1), as the most reliable biomarker currently available for the diagnosis, prognosis, and disease/treatment monitoring of patients with GD. Literature searches were conducted using MEDLINE, Embase, PubMed, ScienceOpen, Science.gov, Biological Abstracts, and Sci-Hub to identify original research articles relevant to lyso-Gb1 and GD published before March 2019. Seventy-four articles met the inclusion criteria, encompassing 56 related to pathology and 21 related to clinical biomarkers. Evidence for lyso-Gb1 as a pathogenic mediator of GD was unequivocal, although its precise role requires further elucidation. Lyso-Gb1 was deemed a statistically reliable diagnostic and pharmacodynamic biomarker in GD. Evidence supports lyso-Gb1 as a disease-monitoring biomarker for GD, and some evidence supports lyso-Gb1 as a prognostic biomarker, but further study is required. Lyso-Gb1 meets the criteria for a biomarker as it is easily accessible and reliably quantifiable in plasma and dried blood spots, enables the elucidation of GD molecular pathogenesis, is diagnostically valuable, and reflects therapeutic responses. Evidentiary standards appropriate for verifying inter-laboratory lyso-Gb1 concentrations in plasma and in other anatomical sites are needed.
Collapse
|
13
|
Loberto N, Mancini G, Bassi R, Carsana EV, Tamanini A, Pedemonte N, Dechecchi MC, Sonnino S, Aureli M. Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconj J 2020; 37:623-633. [PMID: 32666337 PMCID: PMC7501107 DOI: 10.1007/s10719-020-09935-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Giulia Mancini
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Rosaria Bassi
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Emma Veronica Carsana
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, 37126, Verona, Italy
| | | | - Maria Cristina Dechecchi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement, University of Verona, 37134, Verona, Italy
| | - Sandro Sonnino
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Massimo Aureli
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy.
| |
Collapse
|
14
|
Sultana S, Stewart J, van der Spoel AC. Truncated mutants of beta-glucosidase 2 (GBA2) are localized in the mitochondrial matrix and cause mitochondrial fragmentation. PLoS One 2020; 15:e0233856. [PMID: 32492073 PMCID: PMC7269613 DOI: 10.1371/journal.pone.0233856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme β-glucosidase 2 (GBA2) is clinically relevant because it is targeted by the drug miglustat (Zavesca®) and because it is involved in inherited diseases. Mutations in the GBA2 gene are associated with two neurological diseases on the ataxia-spasticity spectrum, hereditary spastic paraplegia 46 (SPG46) and Marinesco-Sjögren-like syndrome (MSS). To establish how GBA2 mutations give rise to neurological pathology, we have begun to investigate mutant forms of GBA2 encoded by disease-associated GBA2 alleles. Previously, we found that five GBA2 missense mutants and five C-terminally truncated mutants lacked enzyme activity. Here we have examined the cellular locations of wild-type (WT) and mutant forms of GBA2 by confocal and electron microscopy, using transfected cells. Similar to GBA2-WT, the D594H and M510Vfs*17 GBA2 mutants were located at the plasma membrane, whereas the C-terminally truncated mutants terminating after amino acids 233 and 339 (GBA2-233 and -339) were present in the mitochondrial matrix, induced mitochondrial fragmentation and loss of mitochondrial transmembrane potential. Deletional mutagenesis indicated that residues 161–200 are critical for the mitochondrial fragmentation of GBA2-233 and -339. Considering that the mitochondrial fragmentation induced by GBA2-233 and -339 is consistently accompanied by their localization to the mitochondrial matrix, our deletional analysis raises the possibility that that GBA2 residues 161–200 harbor an internal targeting sequence for transport to the mitochondrial matrix. Altogether, our work provides new insights into the behaviour of GBA2-WT and disease-associated forms of GBA2.
Collapse
Affiliation(s)
- Saki Sultana
- The Atlantic Research Centre, Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacklyn Stewart
- Biomedical Sciences Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aarnoud C. van der Spoel
- The Atlantic Research Centre, Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- The Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
15
|
Colaco A, Kaya E, Adriaenssens E, Davis LC, Zampieri S, Fernández‐Suárez ME, Tan CY, Deegan PB, Porter FD, Galione A, Bembi B, Dardis A, Platt FM. Mechanistic convergence and shared therapeutic targets in Niemann-Pick disease. J Inherit Metab Dis 2020; 43:574-585. [PMID: 31707734 PMCID: PMC7317544 DOI: 10.1002/jimd.12191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 01/07/2023]
Abstract
Niemann-Pick disease type C (NPC) and Tangier disease are genetically and clinically distinct rare inborn errors of metabolism. NPC is caused by defects in either NPC1 or NPC2; whereas Tangier disease is caused by a defect in ABCA1. Tangier disease is currently without therapy, whereas NPC can be treated with miglustat, a small molecule inhibitor of glycosphingolipid biosynthesis that slows the neurological course of the disease. When a Tangier disease patient was misdiagnosed with NPC and treated with miglustat, her symptoms improved. This prompted us to consider whether there is mechanistic convergence between these two apparently unrelated rare inherited metabolic diseases. In this study, we found that when ABCA1 is defective (Tangier disease) there is secondary inhibition of the NPC disease pathway, linking these two diseases at the level of cellular pathophysiology. In addition, this study further supports the hypothesis that miglustat, as well as other substrate reduction therapies, may be potential therapeutic agents for treating Tangier disease as fibroblasts from multiple Tangier patients were corrected by miglustat treatment.
Collapse
Affiliation(s)
| | - Ecem Kaya
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | | | | | - Chong Y. Tan
- Lysosomal Disorders UnitAddenbrooke's HospitalCambridgeUK
| | | | - Forbes D. Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesdaMaryland
| | | | - Bruno Bembi
- University Hospital Santa Maria della MisericordiaUdineItaly
| | - Andrea Dardis
- University Hospital Santa Maria della MisericordiaUdineItaly
| | | |
Collapse
|
16
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49930-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
N-Butyldeoxygalactonojirimycin Induces Reversible Infertility in Male CD Rats. Int J Mol Sci 2019; 21:ijms21010301. [PMID: 31906257 PMCID: PMC6982022 DOI: 10.3390/ijms21010301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
This study shows for the first time that an iminosugar exerts anti-spermiogenic effect, inducing reversible infertility in a species that is not related to C57BL/6 male mice. In CD rats, N-butyldeoxygalactonojirimycin (NB-DGJ) caused reversible infertility at 150 mg/kg/day when administered daily as single oral dose. NB-DGJ inhibited CD rat-derived testicular β-glucosidase 2 (GBA2) activity at 10 µM but did not inhibit CD rat-derived testicular ceramide-specific glucosyltransferase (CGT) at doses up to 1000 µM. Pharmacokinetic studies revealed that sufficient plasma levels of NB-DGJ (50 µM) were achieved to inhibit the enzyme. Fertility was blocked after 35 days of treatment and reversed one week after termination of treatment. The rapid return of fertility indicates that the major effect of NB-DGJ may be epididymal rather than testicular. Collectively, our in vitro and in vivo studies in rats suggest that iminosugars should continue to be pursued as potential lead compounds for development of oral, non-hormonal male contraceptives. The study also adds evidence that GBA2, and not CGT, is the major target for the contraceptive effect of iminosugars.
Collapse
|
18
|
Dai GY, Yin J, Li KE, Chen DK, Liu Z, Bi FC, Rong C, Yao N. The Arabidopsis AtGCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. J Biol Chem 2019; 295:717-728. [PMID: 31819005 DOI: 10.1074/jbc.ra119.011274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Indexed: 11/06/2022] Open
Abstract
Cellular membranes contain many lipids, some of which, such as sphingolipids, have important structural and signaling functions. The common sphingolipid glucosylceramide (GlcCer) is present in plants, fungi, and animals. As a major plant sphingolipid, GlcCer is involved in the formation of lipid microdomains, and the regulation of GlcCer is key for acclimation to stress. Although the GlcCer biosynthetic pathway has been elucidated, little is known about GlcCer catabolism, and a plant GlcCer-degrading enzyme (glucosylceramidase (GCD)) has yet to be identified. Here, we identified AtGCD3, one of four Arabidopsis thaliana homologs of human nonlysosomal glucosylceramidase, as a plant GCD. We found that recombinant AtGCD3 has a low Km for the fluorescent lipid C6-NBD GlcCer and preferentially hydrolyzes long acyl-chain GlcCer purified from Arabidopsis leaves. Testing of inhibitors of mammalian glucosylceramidases revealed that a specific inhibitor of human β-glucosidase 2, N-butyldeoxynojirimycin, inhibits AtGCD3 more effectively than does a specific inhibitor of human β-glucosidase 1, conduritol β-epoxide. We also found that Glu-499 and Asp-647 in AtGCD3 are vital for GCD activity. GFP-AtGCD3 fusion proteins mainly localized to the plasma membrane or the endoplasmic reticulum membrane. No obvious growth defects or changes in sphingolipid contents were observed in gcd3 mutants. Our results indicate that AtGCD3 is a plant glucosylceramidase that participates in GlcCer catabolism by preferentially hydrolyzing long-acyl-chain GlcCers.
Collapse
Affiliation(s)
- Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai-En Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang-Cheng Bi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Wheeler S, Sillence DJ. Niemann-Pick type C disease: cellular pathology and pharmacotherapy. J Neurochem 2019; 153:674-692. [PMID: 31608980 DOI: 10.1111/jnc.14895] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| |
Collapse
|
20
|
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 2019; 14:40. [PMID: 31703585 PMCID: PMC6842240 DOI: 10.1186/s13024-019-0339-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD. Methods To study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD. Results The present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD. Conclusions These findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.
Collapse
Affiliation(s)
- Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA
| | - Aarnoud C van der Spoel
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
21
|
Bouscary A, Quessada C, Mosbach A, Callizot N, Spedding M, Loeffler JP, Henriques A. Ambroxol Hydrochloride Improves Motor Functions and Extends Survival in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. Front Pharmacol 2019; 10:883. [PMID: 31447678 PMCID: PMC6692493 DOI: 10.3389/fphar.2019.00883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial and fatal neurodegenerative disease. Growing evidence connects sphingolipid metabolism to the pathophysiology of ALS. In particular, levels of ceramides, glucosylceramides, and gangliosides are dysregulated in the central nervous system and at the neuromuscular junctions of both animal models and patients. Glucosylceramide is the main precursor of complex glycosphingolipids that is degraded by lysosomal (GBA1) or non-lysosomal (GBA2) glucocerebrosidase. Here, we report that GBA2, but not GBA1, activity is markedly increased in the spinal cord, of SOD1G86R mice, an animal model of familial ALS, even before disease onset. We therefore investigated the effects of ambroxol hydrochloride, a known GBA2 inhibitor, in SOD1G86R mice. A presymptomatic administration of ambroxol hydrochloride, in the drinking water, delayed disease onset, protecting neuromuscular junctions, and the number of functional spinal motor neurons. When administered at disease onset, ambroxol hydrochloride delayed motor function decline, protected neuromuscular junctions, and extended overall survival of the SOD1G86R mice. In addition, ambroxol hydrochloride improved motor recovery and muscle re-innervation after transient sciatic nerve injury in non-transgenic mice and promoted axonal elongation in an in vitro model of motor unit. Our study suggests that ambroxol hydrochloride promotes and protects motor units and improves axonal plasticity, and that this generic compound is a promising drug candidate for ALS.
Collapse
Affiliation(s)
- Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Cyril Quessada
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Althéa Mosbach
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | | | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Spedding Research Solutions SAS, Le Vesinet, France
| |
Collapse
|
22
|
Wheeler S, Haberkant P, Bhardwaj M, Tongue P, Ferraz MJ, Halter D, Sprong H, Schmid R, Aerts JM, Sullo N, Sillence DJ. Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiol Dis 2019; 127:242-252. [DOI: 10.1016/j.nbd.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
|
23
|
Harzer K, Yildiz Y, Beck-Wödl S. Assay of β-glucosidase 2 (GBA2) activity using lithocholic acid β-3-O-glucoside substrate for cultured fibroblasts and glucosylceramide for brain tissue. Biol Chem 2019; 400:745-752. [PMID: 30864417 DOI: 10.1515/hsz-2018-0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/27/2018] [Indexed: 11/15/2022]
Abstract
Beta (β)-glucosidase 2 (GBA2) is deficient in a form of human spastic paraplegia due to defects in GBA2 (SPG46). GBA2 was proposed as a modifier of Gaucher disease, a lysosomal storage disease resulting from deficient β-glucosidase 1; GBA1. Current GBA2 activity assays using artificial substrates incompletely model the activity encountered in vivo. We studied GBA2 activity, using lithocholic acid β-glucoside or glucosylceramide as natural β-glucosidase substrates in murine tissues or cultured patient fibroblasts with the pathologic genotypes: Gba1-/-; Gba2-/-; GBA1-/-; GBA2+/- and found expected and unexpected deviations from normal controls.
Collapse
Affiliation(s)
- Klaus Harzer
- Department of Neuropediadrics, Neurometabolic Laboratory, Children's Hospital, University of Tübingen, Hoppe-Seyler-Str. 1, D-72076 Tübingen, Germany
| | - Yildiz Yildiz
- Internal Medicine, Medicnova Hospital, Selemad 10, FL-9487 Gamprin-Bendern, Liechtenstein
| | - Stefanie Beck-Wödl
- Department of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, D-72076 Tübingen, Germany
| |
Collapse
|
24
|
Welford RWD, Mühlemann A, Garzotti M, Rickert V, Groenen PMA, Morand O, Üçeyler N, Probst MR. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum Mol Genet 2019; 27:3392-3403. [PMID: 29982630 PMCID: PMC6140777 DOI: 10.1093/hmg/ddy248] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene coding for α-galactosidase A (α-GalA). The deleterious mutations lead to accumulation of α-GalA substrates, including globotriaosylceramide (Gb3) and globotriaosylsphingosine. Progressive glycolipid storage results in cellular dysfunction, leading to organ damage and clinical disease, i.e. neuropathic pain, impaired renal function and cardiomyopathy. Many Fabry patients are treated by bi-weekly intravenous infusions of replacement enzyme. While the only available oral therapy is an α-GalA chaperone, which is indicated for a limited number of patients with specific 'amenable' mutations. Lucerastat is an orally bioavailable inhibitor of glucosylceramide synthase (GCS) that is in late stage clinical development for Fabry disease. Here we investigated the ability of lucerastat to lower Gb3, globotriaosylsphingosine and lysosomal staining in cultured fibroblasts from 15 different Fabry patients. Patients' cells included 13 different pathogenic variants, with 13 cell lines harboring GLA mutations associated with the classic disease phenotype. Lucerastat dose dependently reduced Gb3 in all cell lines. For 13 cell lines the Gb3 data could be fit to an IC50 curve, giving a median IC50 [interquartile range (IQR)] = 11 μM (8.2-18); the median percent reduction (IQR) in Gb3 was 77% (70-83). Lucerastat treatment also dose dependently reduced LysoTracker Red staining of acidic compartments. Lucerastat's effects in the cell lines were compared to those with current treatments-agalsidase alfa and migalastat. Consequently, the GCS inhibitor lucerastat provides a viable mechanism to reduce Gb3 accumulation and lysosome volume, suitable for all Fabry patients regardless of genotype.
Collapse
Affiliation(s)
- R W D Welford
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - A Mühlemann
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - M Garzotti
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - V Rickert
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - P M A Groenen
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - O Morand
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - N Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - M R Probst
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| |
Collapse
|
25
|
Artola M, Kuo CL, Lelieveld LT, Rowland RJ, van der Marel GA, Codée JDC, Boot RG, Davies GJ, Aerts JMFG, Overkleeft HS. Functionalized Cyclophellitols Are Selective Glucocerebrosidase Inhibitors and Induce a Bona Fide Neuropathic Gaucher Model in Zebrafish. J Am Chem Soc 2019; 141:4214-4218. [PMID: 30811188 PMCID: PMC6418866 DOI: 10.1021/jacs.9b00056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gaucher disease is caused by inherited deficiency in glucocerebrosidase (GBA, a retaining β-glucosidase), and deficiency in GBA constitutes the largest known genetic risk factor for Parkinson's disease. In the past, animal models of Gaucher disease have been generated by treatment with the mechanism-based GBA inhibitors, conduritol B epoxide (CBE), and cyclophellitol. Both compounds, however, also target other retaining glycosidases, rendering generation and interpretation of such chemical knockout models complicated. Here we demonstrate that cyclophellitol derivatives carrying a bulky hydrophobic substituent at C8 are potent and selective GBA inhibitors and that an unambiguous Gaucher animal model can be readily generated by treatment of zebrafish with these.
Collapse
Affiliation(s)
| | | | | | - Rhianna J Rowland
- Department of Chemistry, York Structural Biology Laboratory , University of York , Heslington, York YO10 5DD , United Kingdom
| | | | | | | | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory , University of York , Heslington, York YO10 5DD , United Kingdom
| | | | | |
Collapse
|
26
|
Substrate reduction therapy for inborn errors of metabolism. Emerg Top Life Sci 2019; 3:63-73. [PMID: 33523197 PMCID: PMC7289018 DOI: 10.1042/etls20180058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Inborn errors of metabolism (IEM) represent a growing group of monogenic disorders each associated with inherited defects in a metabolic enzyme or regulatory protein, leading to biochemical abnormalities arising from a metabolic block. Despite the well-established genetic linkage, pathophysiology and clinical manifestations for many IEMs, there remains a lack of transformative therapy. The available treatment and management options for a few IEMs are often ineffective or expensive, incurring a significant burden to individual, family, and society. The lack of IEM therapies, in large part, relates to the conceptual challenge that IEMs are loss-of-function defects arising from the defective enzyme, rendering pharmacologic rescue difficult. An emerging approach that holds promise and is the subject of a flurry of pre-/clinical applications, is substrate reduction therapy (SRT). SRT addresses a common IEM phenotype associated with toxic accumulation of substrate from the defective enzyme, by inhibiting the formation of the substrate instead of directly repairing the defective enzyme. This minireview will summarize recent highlights towards the development of emerging SRT, with focussed attention towards repurposing of currently approved drugs, approaches to validate novel targets and screen for hit molecules, as well as emerging advances in gene silencing as a therapeutic modality.
Collapse
|
27
|
Wheeler S, Schmid R, Sillence DJ. Lipid⁻Protein Interactions in Niemann⁻Pick Type C Disease: Insights from Molecular Modeling. Int J Mol Sci 2019; 20:E717. [PMID: 30736449 PMCID: PMC6387118 DOI: 10.3390/ijms20030717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
The accumulation of lipids in the late endosomes and lysosomes of Niemann⁻Pick type C disease (NPCD) cells is a consequence of the dysfunction of one protein (usually NPC1) but induces dysfunction in many proteins. We used molecular docking to propose (a) that NPC1 exports not just cholesterol, but also sphingosine, (b) that the cholesterol sensitivity of big potassium channel (BK) can be traced to a previously unappreciated site on the channel's voltage sensor, (c) that transient receptor potential mucolipin 1 (TRPML1) inhibition by sphingomyelin is likely an indirect effect, and (d) that phosphoinositides are responsible for both the mislocalization of annexin A2 (AnxA2) and a soluble NSF (N-ethylmaleimide Sensitive Fusion) protein attachment receptor (SNARE) recycling defect. These results are set in the context of existing knowledge of NPCD to sketch an account of the endolysosomal pathology key to this disease.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK.
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
28
|
Kuo CL, Kallemeijn WW, Lelieveld LT, Mirzaian M, Zoutendijk I, Vardi A, Futerman AH, Meijer AH, Spaink HP, Overkleeft HS, Aerts JMFG, Artola M. In vivo inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activity-based protein profiling. FEBS J 2019; 286:584-600. [PMID: 30600575 PMCID: PMC6850446 DOI: 10.1111/febs.14744] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/16/2018] [Accepted: 01/01/2019] [Indexed: 01/18/2023]
Abstract
Glucocerebrosidase (GBA) is a lysosomal β‐glucosidase‐degrading glucosylceramide. Its deficiency causes Gaucher disease (GD), a common lysosomal storage disorder. Carrying a genetic abnormality in GBA constitutes at present the largest genetic risk factor for Parkinson's disease (PD). Conduritol B epoxide (CBE), a mechanism‐based irreversible inhibitor of GBA, is used to generate cell and animal models for investigations on GD and PD. However, CBE may have additional glycosidase targets besides GBA. Here, we present the first in vivo target engagement study for CBE, employing a suite of activity‐based probes to visualize catalytic pocket occupancy of candidate off‐target glycosidases. Only at significantly higher CBE concentrations, nonlysosomal glucosylceramidase (GBA2) and lysosomal α‐glucosidase were identified as major off‐targets in cells and zebrafish larvae. A tight, but acceptable window for selective inhibition of GBA in the brain of mice was observed. On the other hand, cyclophellitol, a closer glucose mimic, was found to inactivate with equal affinity GBA and GBA2 and therefore is not suitable to generate genuine GD‐like models. Enzymes Glucocerebrosidase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/2/1/45.html), nonlysosomal β‐glucocerebrosidase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/2/1/45.html); cytosolic β‐glucosidase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/2/1/21.html); α‐glucosidases (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/2/1/20.html); β‐glucuronidase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/2/1/31.html).
Collapse
Affiliation(s)
- Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Wouter W Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Lindsey T Lelieveld
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Iris Zoutendijk
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Marta Artola
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| |
Collapse
|
29
|
Bennett LL, Fellner C. Pharmacotherapy of Gaucher Disease: Current and Future Options. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2018; 43:274-309. [PMID: 29719368 PMCID: PMC5912244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The clinical manifestations of Gaucher disease, a rare genetic lysosomal storage disorder, are debilitating, and the neuronopathic forms of the disease are fatal. The authors describe the current and investigational therapies for treatment.
Collapse
|
30
|
Hyun JY, Kang NR, Shin I. Carbohydrate Microarrays Containing Glycosylated Fluorescent Probes for Assessment of Glycosidase Activities. Org Lett 2018; 20:1240-1243. [DOI: 10.1021/acs.orglett.8b00180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji Young Hyun
- Center for Biofunctional
Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Na Rae Kang
- Center for Biofunctional
Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Injae Shin
- Center for Biofunctional
Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
31
|
Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease. Sci Rep 2018; 8:157. [PMID: 29317695 PMCID: PMC5760709 DOI: 10.1038/s41598-017-18405-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
Gaucher disease is a lysosomal storage disease characterized by the malfunction of glucocerebrosidase resulting in the accumulation of glucosylceramide and other sphingolipids in certain cells. Although the disease symptoms are usually attributed to the storage of undigested substrate in lysosomes, here we show that glycosphingolipids accumulating in the plasma membrane cause profound changes in the properties of the membrane. The fluidity of the sphingolipid-enriched membrane decreased accompanied by the enlargement of raft-like ordered membrane domains. The mobility of non-raft proteins and lipids was severely restricted, while raft-resident components were only mildly affected. The rate of endocytosis of transferrin receptor, a non-raft protein, was significantly retarded in Gaucher cells, while the endocytosis of the raft-associated GM1 ganglioside was unaffected. Interferon-γ-induced STAT1 phosphorylation was also significantly inhibited in Gaucher cells. Atomic force microscopy revealed that sphingolipid accumulation was associated with a more compliant membrane capable of producing an increased number of nanotubes. The results imply that glycosphingolipid accumulation in the plasma membrane has significant effects on membrane properties, which may be important in the pathogenesis of Gaucher disease.
Collapse
|
32
|
Woeste MA, Wachten D. The Enigmatic Role of GBA2 in Controlling Locomotor Function. Front Mol Neurosci 2017; 10:386. [PMID: 29234271 PMCID: PMC5712312 DOI: 10.3389/fnmol.2017.00386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The non-lysosomal glucosylceramidase GBA2 catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Loss of GBA2 function results in accumulation of glucosylceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP) and autosomal-recessive cerebellar ataxia (ARCA). Patients suffering from these disorders exhibit impaired locomotion and neurological abnormalities. GBA2 mutations found in these patients have been proposed to impair GBA2 function. However, the molecular mechanism underlying the occurrence of mutations in the GBA2 gene and the development of locomotor dysfunction is not well-understood. In this review, we aim to summarize recent findings regarding mutations in the GBA2 gene and their impact on GBA2 function in health and disease.
Collapse
Affiliation(s)
- Marina A Woeste
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.,Molecular Physiology, Center of Advanced European Studies and Research, Minerva Max Planck Research Group, Bonn, Germany
| |
Collapse
|
33
|
Gu X, Gupta V, Yang Y, Zhu JY, Carlson EJ, Kingsley C, Tash JS, Schönbrunn E, Hawkinson J, Georg GI. Structure-Activity Studies of N-Butyl-1-deoxynojirimycin (NB-DNJ) Analogues: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2. ChemMedChem 2017; 12:1977-1984. [PMID: 28975712 PMCID: PMC5725710 DOI: 10.1002/cmdc.201700558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 12/26/2022]
Abstract
Analogues of N‐butyl‐1‐deoxynojirimycin (NB‐DNJ) were prepared and assayed for inhibition of ceramide‐specific glucosyltransferase (CGT), non‐lysosomal β‐glucosidase 2 (GBA2) and the lysosomal β‐glucosidase 1 (GBA1). Compounds 5 a–6 f, which carry sterically demanding nitrogen substituents, and compound 13, devoid of the C3 and C5 hydroxy groups present in DNJ/NB‐DGJ (N‐butyldeoxygalactojirimycin) showed no inhibitory activity for CGT or GBA2. Inversion of stereochemistry at C4 of N‐(n‐butyl)‐ and N‐(n‐nonyl)‐DGJ (compounds 24) also led to a loss of activity in these assays. The aminocyclopentitols N‐(n‐butyl)‐ (35 a), N‐(n‐nonyl)‐4‐amino‐5‐(hydroxymethyl)cyclopentane‐ (35 b), and N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl)‐1,2,3‐triol (35 f), were found to be selective inhibitors of GBA1 and GBA2 that did not inhibit CGT (>1 mm), with the exception of 35 f, which inhibited CGT with an IC50 value of 1 mm. The N‐butyl analogue 35 a was 100‐fold selective for inhibiting GBA1 over GBA2 (Ki values of 32 nm and 3.3 μm for GBA1 and GBA2, respectively). The N‐nonyl analogue 35 b displayed a Ki value of ≪14 nm for GBA1 inhibition and a Ki of 43 nm for GBA2. The N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl) derivative 35 f had Ki values of ≈16 and 14 nm for GBA1 and GBA2, respectively. The related N‐bis‐substituted aminocyclopentitols were found to be significantly less potent inhibitors than their mono‐substituted analogues. The aminocyclopentitol scaffold should hold promise for further inhibitor development.
Collapse
Affiliation(s)
- Xingxian Gu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.,Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | | | - Yan Yang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jin-Yi Zhu
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Erick J Carlson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Carolyn Kingsley
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Joseph S Tash
- University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ernst Schönbrunn
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jon Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
34
|
Ashmus RA, Shen DL, Vocadlo DJ. Fluorescence-Quenched Substrates for Quantitative Live Cell Imaging of Glucocerebrosidase Activity. Methods Enzymol 2017; 598:199-215. [PMID: 29306435 DOI: 10.1016/bs.mie.2017.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Glucocerebrosidase (GCase) is a lysosomal glycoside hydrolase that cleaves the glycolipid glucosylceramide (GlcCer). Deficiencies of this enzyme lead to accumulation of GlcCer and the development of the lysosomal storage disease known as Gaucher's disease. Recently, loss-of-function mutations in the GBA1 gene that encodes GCase have been linked to Parkinson's disease. Currently pursued therapeutic strategies to increase GCase involve enzyme replacement therapy, chemical chaperone therapy, and GCase activators. A challenge associated with advancing such strategies is to efficiently monitor GCase activity within the lysosomes of live cells. In this chapter, we review the design and use of the fluorescent-quenched probe GBA1-FQ2 to quantitatively measure GCase activity in lysosomes of live cells.
Collapse
|
35
|
de la Fuente C, Burke DG, Eaton S, Heales SJ. Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover. Neurochem Int 2017; 109:94-100. [DOI: 10.1016/j.neuint.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
|
36
|
Boudewyn LC, Sikora J, Kuchar L, Ledvinova J, Grishchuk Y, Wang SL, Dobrenis K, Walkley SU. N-butyldeoxynojirimycin delays motor deficits, cerebellar microgliosis, and Purkinje cell loss in a mouse model of mucolipidosis type IV. Neurobiol Dis 2017; 105:257-270. [PMID: 28610891 PMCID: PMC5555164 DOI: 10.1016/j.nbd.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease exhibiting progressive intellectual disability, motor impairment, and premature death. There is currently no cure or corrective treatment. The disease results from mutations in the gene encoding mucolipin-1, a transient receptor potential channel believed to play a key role in lysosomal calcium egress. Loss of mucolipin-1 and subsequent defects lead to a host of cellular aberrations, including accumulation of glycosphingolipids (GSLs) in neurons and other cell types, microgliosis and, as reported here, cerebellar Purkinje cell loss. Several studies have demonstrated that N-butyldeoxynojirimycin (NB-DNJ, also known as miglustat), an inhibitor of the enzyme glucosylceramide synthase (GCS), successfully delays the onset of motor deficits, improves longevity, and rescues some of the cerebellar abnormalities (e.g., Purkinje cell death) seen in another lysosomal disease known as Niemann-Pick type C (NPC). Given the similarities in pathology between MLIV and NPC, we examined whether miglustat would be efficacious in ameliorating disease progression in MLIV. Using a full mucolipin-1 knockout mouse (Mcoln1-/-), we found that early miglustat treatment delays the onset and progression of motor deficits, delays cerebellar Purkinje cell loss, and reduces cerebellar microgliosis characteristic of MLIV disease. Quantitative mass spectrometry analyses provided new data on the GSL profiles of murine MLIV brain tissue and showed that miglustat partially restored the wild type profile of white matter enriched lipids. Collectively, our findings indicate that early miglustat treatment delays the progression of clinically relevant pathology in an MLIV mouse model, and therefore supports consideration of miglustat as a therapeutic agent for MLIV disease in humans.
Collapse
Affiliation(s)
- Lauren C Boudewyn
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jakub Sikora
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Kuchar
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Ledvinova
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yulia Grishchuk
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Shirley L Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven U Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Henriques A, Huebecker M, Blasco H, Keime C, Andres CR, Corcia P, Priestman DA, Platt FM, Spedding M, Loeffler JP. Inhibition of β-Glucocerebrosidase Activity Preserves Motor Unit Integrity in a Mouse Model of Amyotrophic Lateral Sclerosis. Sci Rep 2017; 7:5235. [PMID: 28701774 PMCID: PMC5507914 DOI: 10.1038/s41598-017-05313-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
- Spedding Research Solutions SAS, Le Vesinet, France
| | | | - Hélène Blasco
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Céline Keime
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 67404, Illkirch, France
| | - Christian R Andres
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Centre SLA, Tours, France
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.
| |
Collapse
|
38
|
Schonauer S, Körschen HG, Penno A, Rennhack A, Breiden B, Sandhoff K, Gutbrod K, Dörmann P, Raju DN, Haberkant P, Gerl MJ, Brügger B, Zigdon H, Vardi A, Futerman AH, Thiele C, Wachten D. Identification of a feedback loop involving β-glucosidase 2 and its product sphingosine sheds light on the molecular mechanisms in Gaucher disease. J Biol Chem 2017; 292:6177-6189. [PMID: 28258214 DOI: 10.1074/jbc.m116.762831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
The lysosomal acid β-glucosidase GBA1 and the non-lysosomal β-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of β-glucosidase activity in general.
Collapse
Affiliation(s)
- Sophie Schonauer
- From the Minerva Max Planck Research Group, Molecular Physiology, and
| | - Heinz G Körschen
- the Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Anke Penno
- the Department of Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Andreas Rennhack
- the Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Bernadette Breiden
- the LIMES Institute, c/o Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Konrad Sandhoff
- the LIMES Institute, c/o Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Katharina Gutbrod
- the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Diana N Raju
- From the Minerva Max Planck Research Group, Molecular Physiology, and
| | - Per Haberkant
- the Proteomic Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Mathias J Gerl
- the Biochemie-Zentrum (BZH), Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Britta Brügger
- the Biochemie-Zentrum (BZH), Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Hila Zigdon
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Ayelet Vardi
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Anthony H Futerman
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Christoph Thiele
- the Department of Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- From the Minerva Max Planck Research Group, Molecular Physiology, and .,the Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
39
|
Affiliation(s)
- Jessica M. Mc Donald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-4296; ,
| | - Dimitri Krainc
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-4296; ,
| |
Collapse
|
40
|
Guérard N, Morand O, Dingemanse J. Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: safety, tolerability, and pharmacokinetics in healthy subjects. Orphanet J Rare Dis 2017; 12:9. [PMID: 28088251 PMCID: PMC5237539 DOI: 10.1186/s13023-017-0565-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lucerastat, an inhibitor of glucosylceramide synthase, has the potential to restore the balance between synthesis and degradation of glycosphingolipids in glycolipid storage disorders such as Gaucher disease and Fabry disease. The safety, tolerability, and pharmacokinetics of oral lucerastat were evaluated in two separate randomized, double-blind, placebo-controlled, single- and multiple-ascending dose studies (SAD and MAD, respectively) in healthy male subjects. METHODS In the SAD study, 31 subjects received placebo or a single oral dose of 100, 300, 500, or 1000 mg lucerastat. Eight additional subjects received two doses of 1000 mg lucerastat or placebo separated by 12 h. In the MAD study, 37 subjects received placebo or 200, 500, or 1000 mg b.i.d. lucerastat for 7 consecutive days. Six subjects in the 500 mg cohort received lucerastat in both absence and presence of food. RESULTS In the SAD study, 15 adverse events (AEs) were reported in ten subjects. Eighteen AEs were reported in 15 subjects in the MAD study, in which the 500 mg dose cohort was repeated because of elevated alanine aminotransferase (ALT) values in 4 subjects, not observed in other dose cohorts. No severe or serious AE was observed. No clinically relevant abnormalities regarding vital signs and 12-lead electrocardiograms were observed. Lucerastat Cmax values were comparable between studies, with geometric mean Cmax 10.5 (95% CI: 7.5, 14.7) and 11.1 (95% CI: 8.7, 14.2) μg/mL in the SAD and MAD study, respectively, after 1000 mg lucerastat b.i.d. tmax (0.5 - 4 h) and t1/2 (3.6 - 8.1 h) were also within the same range across dose groups in both studies. Using the Gough power model, dose proportionality was confirmed in the SAD study for Cmax and AUC0-∞, and for AUC0-12 in the MAD study. Fed-to-fasted geometric mean ratio for AUC0-12 was 0.93 (90% CI: 0.80, 1.07) and tmax was the same with or without food, indicating no food effect. CONCLUSIONS Incidence of drug-related AEs did not increase with dose. No serious AEs were reported for any subject. Overall, lucerastat was well tolerated. These results warrant further investigation of substrate reduction therapy with lucerastat in patients with glycolipid storage disorders. SAD study was registered on clinicaltrials.gov under the identifier NCT02944487 on the 24th of October 2016 (retrospectively registered). MAD study was registered on clinicaltrials.gov under the identifier NCT02944474 on the 25th of October 2016 (retrospectively registered). TRIAL REGISTRATION A Study to Assess the Safety and Tolerability of Lucerastat in Subjects With Fabry Disease. Clinicaltrials.gov: NCT02930655 .
Collapse
Affiliation(s)
- N. Guérard
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland
| | - O. Morand
- Department of Global Clinical Science & Epidemiology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland
| | - J. Dingemanse
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland
| |
Collapse
|
41
|
|
42
|
Futerman AH, Platt FM. The metabolism of glucocerebrosides - From 1965 to the present. Mol Genet Metab 2017; 120:22-26. [PMID: 27955980 DOI: 10.1016/j.ymgme.2016.11.390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022]
Abstract
Gaucher disease is caused by the defective catabolism of the simple glycosphingolipid, glucosylceramide (GlcCer), due to mutations in the GBA1 gene which encodes for acid β-glucosidase (GCase), the lysosomal enzyme that degrades GlcCer. Today, Gaucher disease patients are routinely treated with recombinant GCase, in a treatment regimen known as enzyme replacement therapy (ERT). We now review the biochemical basis of ERT and discuss how this treatment has advanced since it was first pioneered by Dr. Roscoe Brady in the 1960s. We will place particular emphasis on the three dimensional structure of GCase, and subsequently discuss a relatively new treatment paradigm, substrate reduction therapy (SRT), in which GlcCer synthesis is partially inhibited, thus reducing its accumulation. Both of these approaches are based on studies and concepts developed by Dr. Brady over his remarkable research career spanning six decades.
Collapse
Affiliation(s)
- Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
43
|
Hashimoto N, Matsumoto I, Takahashi H, Ashikawa H, Nakamura H, Murayama T. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme. Neuropharmacology 2016; 110:458-469. [DOI: 10.1016/j.neuropharm.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
|
44
|
Charoenwattanasatien R, Pengthaisong S, Breen I, Mutoh R, Sansenya S, Hua Y, Tankrathok A, Wu L, Songsiriritthigul C, Tanaka H, Williams S, Davies GJ, Kurisu G, Cairns JRK. Bacterial β-Glucosidase Reveals the Structural and Functional Basis of Genetic Defects in Human Glucocerebrosidase 2 (GBA2). ACS Chem Biol 2016; 11:1891-900. [PMID: 27115290 PMCID: PMC4949581 DOI: 10.1021/acschembio.6b00192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human glucosylcerebrosidase 2 (GBA2) of the CAZy family GH116 is responsible for the breakdown of glycosphingolipids on the cytoplasmic face of the endoplasmic reticulum and Golgi apparatus. Genetic defects in GBA2 result in spastic paraplegia and cerebellar ataxia, while cross-talk between GBA2 and GBA1 glucosylceramidases may affect Gaucher disease. Here, we report the first three-dimensional structure for any GH116 enzyme, Thermoanaerobacterium xylanolyticum TxGH116 β-glucosidase, alone and in complex with diverse ligands. These structures allow identification of the glucoside binding and active site residues, which are shown to be conserved with GBA2. Mutagenic analysis of TxGH116 and structural modeling of GBA2 provide a detailed structural and functional rationale for pathogenic missense mutations of GBA2.
Collapse
Affiliation(s)
- Ratana Charoenwattanasatien
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan,School
of Biochemistry, Institute of Science, Suranaree
Univerity of Technology, Nakhon
Ratchasima 30000, Thailand,Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Salila Pengthaisong
- School
of Biochemistry, Institute of Science, Suranaree
Univerity of Technology, Nakhon
Ratchasima 30000, Thailand,Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Imogen Breen
- Structural
Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Risa Mutoh
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sompong Sansenya
- Department
of Chemistry, Faculty of Science, Rajamangala
University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Yanling Hua
- Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,Center for
Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anupong Tankrathok
- Department
of Biotechnology, Faculty of Agro-Industrial Technology, Kalasin University, Kalasin 46000, Thailand
| | - Liang Wu
- Structural
Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Chomphunuch Songsiriritthigul
- Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,Synchrotron
Light Research Institute, Nakhon
Ratchasima 30000, Thailand
| | - Hideaki Tanaka
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Spencer
J. Williams
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J. Davies
- Structural
Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom,Tel.: +44 1904 322511. Fax: +44 1904 322516. E-mail:
| | - Genji Kurisu
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan,Tel.: +81 6-6879-8604. Fax: +81-6-6879-8606. E-mail:
| | - James R. Ketudat Cairns
- School
of Biochemistry, Institute of Science, Suranaree
Univerity of Technology, Nakhon
Ratchasima 30000, Thailand,Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand,Tel.: +66 44
224304. Fax: +66 44 224185. E-mail:
| |
Collapse
|
45
|
Vardi A, Zigdon H, Meshcheriakova A, Klein AD, Yaacobi C, Eilam R, Kenwood BM, Rahim AA, Massaro G, Merrill AH, Vitner EB, Futerman AH. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. J Pathol 2016; 239:496-509. [DOI: 10.1002/path.4751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Ayelet Vardi
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Hila Zigdon
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Anna Meshcheriakova
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Andrés D Klein
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Chen Yaacobi
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Raya Eilam
- Department of Veterinary Resources; Weizmann Institute of Science; Rehovot Israel
| | - Brandon M Kenwood
- School of Biology and Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA USA
| | - Ahad A Rahim
- Department of Pharmacology, School of Pharmacy; University College London; London UK
| | - Giulia Massaro
- Department of Pharmacology, School of Pharmacy; University College London; London UK
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA USA
| | - Einat B Vitner
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Anthony H Futerman
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
46
|
Coutinho MF, Santos JI, Alves S. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders. Int J Mol Sci 2016; 17:ijms17071065. [PMID: 27384562 PMCID: PMC4964441 DOI: 10.3390/ijms17071065] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT), with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be) investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT), whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s). Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, Research and Development Unit, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Juliana Inês Santos
- Department of Human Genetics, Research and Development Unit, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Sandra Alves
- Department of Human Genetics, Research and Development Unit, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| |
Collapse
|
47
|
Kaidonis X, Byers S, Ranieri E, Sharp P, Fletcher J, Derrick-Roberts A. N-butyldeoxynojirimycin treatment restores the innate fear response and improves learning in mucopolysaccharidosis IIIA mice. Mol Genet Metab 2016; 118:100-10. [PMID: 27106513 DOI: 10.1016/j.ymgme.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and the secondary neuronal storage of gangliosides GM2 and GM3 in the brain. GM2 storage is associated with CNS deterioration in the GM2 gangliosidosis group of lysosomal storage disorders and may also contribute to MPS CNS disease. N-butyldeoxynojirimycin, an inhibitor of ceramide glucosyltransferase activity and therefore of ganglioside synthesis, was administered to MPS IIIA mice both prior to maximal GM2 and GM3 accumulation (early treatment) and after the maximum level of ganglioside had accumulated in the brain (late treatment) to determine if behaviour was altered by ganglioside level. Ceramide glucosyltransferase activity was decreased in both treatment groups; however, brain ganglioside levels were only decreased in the late treatment group. Learning in the water cross maze was improved in both groups and the innate fear response was also restored in both groups. A reduction in the expression of inflammatory gene Ccl3 was observed in the early treatment group, while IL1β expression was reduced in both treatment groups. Thus, it appears that NB-DNJ elicits a transient decrease in brain ganglioside levels, some modulation of inflammatory cytokines and a functional improvement in behaviour that can be elicited both before and after overt neurological changes manifest. SYNOPSIS NB-DNJ improves learning and restores the innate fear response in MPS IIIA mice by decreasing ceramide glucosyltransferase activity and transiently reducing ganglioside storage and/or modulating inflammatory signals.
Collapse
Affiliation(s)
- Xenia Kaidonis
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Genetics, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Genetics, University of Adelaide, Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Enzo Ranieri
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia
| | - Peter Sharp
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia
| | - Janice Fletcher
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Ainslie Derrick-Roberts
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
48
|
Astudillo L, Therville N, Colacios C, Ségui B, Andrieu-Abadie N, Levade T. Glucosylceramidases and malignancies in mammals. Biochimie 2016; 125:267-80. [DOI: 10.1016/j.biochi.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
|
49
|
Harlan FK, Lusk JS, Mohr BM, Guzikowski AP, Batchelor RH, Jiang Y, Naleway JJ. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities. PLoS One 2016; 11:e0156312. [PMID: 27228111 PMCID: PMC4882035 DOI: 10.1371/journal.pone.0156312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022] Open
Abstract
Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and monitoring the effect of secondary therapeutic agents on lysosomal enzyme activity in drug development for the lysosomal storage disorders and allied diseases.
Collapse
Affiliation(s)
- Fiona Karen Harlan
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | - Jason Scott Lusk
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | | | | | - Robert Hardy Batchelor
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | - Ying Jiang
- Research and Development, Marker Gene Technologies, Inc., Eugene, OR, United States of America
| | | |
Collapse
|
50
|
CNS-accessible Inhibitor of Glucosylceramide Synthase for Substrate Reduction Therapy of Neuronopathic Gaucher Disease. Mol Ther 2016; 24:1019-1029. [PMID: 26948439 PMCID: PMC4923322 DOI: 10.1038/mt.2016.53] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by a deficiency of glucocerebrosidase and the consequent lysosomal accumulation of unmetabolized glycolipid substrates. Enzyme-replacement therapy adequately manages the visceral manifestations of nonneuronopathic type-1 Gaucher patients, but not the brain disease in neuronopathic types 2 and 3 GD. Substrate reduction therapy through inhibition of glucosylceramide synthase (GCS) has also been shown to effectively treat the visceral disease. Here, we evaluated the efficacy of a novel small molecule inhibitor of GCS with central nervous system (CNS) access (Genz-682452) to treat the brain disease. Treatment of the conduritol β epoxide-induced mouse model of neuronopathic GD with Genz-682452 reduced the accumulation of liver and brain glycolipids (>70% and >20% respectively), extent of gliosis, and severity of ataxia. In the genetic 4L;C* mouse model, Genz-682452 reduced the levels of substrate in the brain by >40%, the extent of gliosis, and paresis. Importantly, Genz-682452-treated 4L;C* mice also exhibited an ~30% increase in lifespan. Together, these data indicate that an orally available antagonist of GCS that has CNS access is effective at attenuating several of the neuropathologic and behavioral manifestations associated with mouse models of neuronopathic GD. Therefore, Genz-682452 holds promise as a potential therapeutic approach for patients with type-3 GD.
Collapse
|