1
|
Mavridou V, King MS, Bazzone A, Springett R, Kunji ERS. Membrane potential stimulates ADP import and ATP export by the mitochondrial ADP/ATP carrier due to its positively charged binding site. SCIENCE ADVANCES 2024; 10:eadp7725. [PMID: 39485853 PMCID: PMC11529707 DOI: 10.1126/sciadv.adp7725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The mitochondrial adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier imports ADP into the mitochondrion and exports ATP to the cell. Here, we demonstrate that 3.3 positive charges are translocated with the negatively charged substrate in each transport step. They can be assigned to three positively charged residues of the central substrate-binding site and two asparagine/arginine pairs. In this way, the membrane potential stimulates not only the ATP4- export step, as a net -0.7 charge is transported, but also the ADP3- import step, as a net +0.3 charge is transported with the electric field. These positive charge movements also inhibit the import of ATP and export of ADP in the presence of a membrane potential, allowing these nucleotides to be maintained at high concentrations in the cytosol and mitochondrial matrix to drive the hydrolysis and synthesis of ATP, respectively. Thus, this is the mechanism by which the membrane potential drives adenine nucleotide exchange with high directional fluxes to fuel the cellular processes.
Collapse
Affiliation(s)
- Vasiliki Mavridou
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstrasse 70A, D-80339 Munich, Germany
| | | | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Liu Y, Yu X, Jiang W. The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04435-7. [PMID: 39177735 DOI: 10.1007/s12035-024-04435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) is a specific protein complex located in the inner mitochondrial membrane. Comprising a heterodimer of two homodimeric membrane proteins, mitochondrial pyruvate carrier 1 and mitochondrial pyruvate carrier 2, MPC connects cytoplasmic metabolism to mitochondrial metabolism by transferring pyruvate from the cytoplasm to the mitochondria. The nervous system requires substantial energy to maintain its function, and the mitochondrial energy supply is closely linked to neurological function. Mitochondrial dysfunction can induce or exacerbate intracerebral pathologies. MPC influences mitochondrial function due to its specific role as a pyruvate transporter. However, recent studies on MPC and mitochondrial dysfunction in neurological disorders have yielded controversial results, and the underlying mechanisms remain unclear. In this brief review, we provide an overview of the structure and function of MPC. We further discuss the potential mechanisms and feasibility of targeting MPC in treating Parkinson's disease, Alzheimer's disease, and cerebral ischemia/hypoxia injury. This review aims to offer insights into MPC as a target for clinical treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Cimadamore-Werthein C, King MS, Lacabanne D, Pyrihová E, Jaiquel Baron S, Kunji ER. Human mitochondrial carriers of the SLC25 family function as monomers exchanging substrates with a ping-pong kinetic mechanism. EMBO J 2024; 43:3450-3465. [PMID: 38937634 PMCID: PMC11329753 DOI: 10.1038/s44318-024-00150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.
Collapse
Affiliation(s)
- Camila Cimadamore-Werthein
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Stephany Jaiquel Baron
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
4
|
Leung PM, Grinter R, Tudor-Matthew E, Lingford JP, Jimenez L, Lee HC, Milton M, Hanchapola I, Tanuwidjaya E, Kropp A, Peach HA, Carere CR, Stott MB, Schittenhelm RB, Greening C. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nat Commun 2024; 15:3219. [PMID: 38622143 PMCID: PMC11018855 DOI: 10.1038/s41467-024-47324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Such trace gas oxidation is recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. However, it is unclear whether archaea can also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurs across a wide range of temperatures (10 to 70 °C) and enhances ATP production during starvation-induced persistence under temperate conditions. The genome of A. brierleyi encodes a canonical CO dehydrogenase and four distinct [NiFe]-hydrogenases, which are differentially produced in response to electron donor and acceptor availability. Another archaeon, Metallosphaera sedula, can also oxidize atmospheric H2. Our results suggest that trace gas oxidation is a common trait of Sulfolobales archaea and may play a role in their survival and niche expansion, including during dispersal through temperate environments.
Collapse
Affiliation(s)
- Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Eve Tudor-Matthew
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - James P Lingford
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Luis Jimenez
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Han-Chung Lee
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Michael Milton
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Iresha Hanchapola
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Erwin Tanuwidjaya
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Hanna A Peach
- Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō, 3377, Aotearoa New Zealand
| | - Carlo R Carere
- Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō, 3377, Aotearoa New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Matthew B Stott
- Geomicrobiology Research Group, Department of Geothermal Sciences, Te Pū Ao | GNS Science, Wairakei, Taupō, 3377, Aotearoa New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
5
|
Tavoulari S, Sichrovsky M, Kunji ERS. Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiol (Oxf) 2023; 238:e14016. [PMID: 37366179 PMCID: PMC10909473 DOI: 10.1111/apha.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The mitochondrial pyruvate carrier (MPC) resides in the mitochondrial inner membrane, where it links cytosolic and mitochondrial metabolism by transporting pyruvate produced in glycolysis into the mitochondrial matrix. Due to its central metabolic role, it has been proposed as a potential drug target for diabetes, non-alcoholic fatty liver disease, neurodegeneration, and cancers relying on mitochondrial metabolism. Little is known about the structure and mechanism of MPC, as the proteins involved were only identified a decade ago and technical difficulties concerning their purification and stability have hindered progress in functional and structural analyses. The functional unit of MPC is a hetero-dimer comprising two small homologous membrane proteins, MPC1/MPC2 in humans, with the alternative complex MPC1L/MPC2 forming in the testis, but MPC proteins are found throughout the tree of life. The predicted topology of each protomer consists of an amphipathic helix followed by three transmembrane helices. An increasing number of inhibitors are being identified, expanding MPC pharmacology and providing insights into the inhibitory mechanism. Here, we provide critical insights on the composition, structure, and function of the complex and we summarize the different classes of small molecule inhibitors and their potential in therapeutics.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Maximilian Sichrovsky
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Zhou Y, Syed JH, Semchonok DA, Wright E, Kyrilis FL, Hamdi F, Kastritis PL, Bruce BD, Reynolds TB. Solubilization, purification, and characterization of the hexameric form of phosphatidylserine synthase from Candida albicans. J Biol Chem 2023:104756. [PMID: 37116705 DOI: 10.1016/j.jbc.2023.104756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Phosphatidylserine (PS) synthase from Candida albicans, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis. Rational drug design or small molecule screening are effective ways to identify specific inhibitors of Cho1, but both will be facilitated by protein purification. Due to the transmembrane nature of Cho1, methods were needed to solubilize and purify the native form of Cho1. Here, we used six non-ionic detergents and three styrene maleic acids (SMAs) to solubilize an HA-tagged Cho1 protein from the total microsomal fractions. Blue native PAGE (BN-PAGE) and immunoblot analysis revealed a single band corresponding to Cho1 in all detergent-solubilized fractions, while two bands were present in the SMA2000-solubilized fraction. Our enzymatic assay suggests that digitonin- or DDM-solubilized enzyme has the most PS synthase activity. Pull-downs of HA-tagged Cho1 in the digitonin-solubilized fraction reveal an apparent MW of Cho1 consistent with a hexamer. Furthermore, negative-staining electron microscopy analysis and AlphaFold2 structure prediction modeling suggest the hexamer is composed of a trimer of dimers. We purified Cho1 protein to near-homogeneity as a hexamer using affinity chromatography and TEV protease treatment, and optimized Cho1 enzyme activity for manganese and detergent concentrations, temperature (24°C), and pH (8.0). The purified Cho1 has a Km for its substrate CDP-diacylglycerol of 72.20 μM with a Vmax of 0.079 nmol/(μg*min) while exhibiting a sigmoidal kinetic curve for its other substrate serine, indicating cooperative binding. Purified hexameric Cho1 can potentially be used in downstream structure determination and small drug screening.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, United States
| | - Jawhar H Syed
- Department of Biochemistry Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Dmitry A Semchonok
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edward Wright
- Department of Biochemistry Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barry D Bruce
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, United States; Department of Biochemistry Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, United States
| |
Collapse
|
7
|
Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE. Chemistry and Analysis of Organic Compounds in Dinosaurs. BIOLOGY 2022; 11:670. [PMID: 35625398 PMCID: PMC9138232 DOI: 10.3390/biology11050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
This review provides an overview of organic compounds detected in non-avian dinosaur fossils to date. This was enabled by the development of sensitive analytical techniques. Non-destructive methods and procedures restricted to the sample surface, e.g., light and electron microscopy, infrared (IR) and Raman spectroscopy, as well as more invasive approaches including liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), time-of-flight secondary ion mass spectrometry, and immunological methods were employed. Organic compounds detected in samples of dinosaur fossils include pigments (heme, biliverdin, protoporphyrin IX, melanin), and proteins, such as collagens and keratins. The origin and nature of the observed protein signals is, however, in some cases, controversially discussed. Molecular taphonomy approaches can support the development of suitable analytical methods to confirm reported findings and to identify further organic compounds in dinosaur and other fossils in the future. The chemical properties of the various organic compounds detected in dinosaurs, and the techniques utilized for the identification and analysis of each of the compounds will be discussed.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany;
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Paul Martin Sander
- Institute of Geosciences, Section Paleontology, University of Bonn, D-53113 Bonn, Germany;
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| |
Collapse
|
8
|
Uncoupling Proteins and Regulated Proton Leak in Mitochondria. Int J Mol Sci 2022; 23:ijms23031528. [PMID: 35163451 PMCID: PMC8835771 DOI: 10.3390/ijms23031528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.
Collapse
|
9
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
10
|
Kunji ERS, King MS, Ruprecht JJ, Thangaratnarajah C. The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology (Bethesda) 2021; 35:302-327. [PMID: 32783608 PMCID: PMC7611780 DOI: 10.1152/physiol.00009.2020] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the mitochondrial carrier family (SLC25) transport a variety of compounds across the inner membrane of mitochondria. These transport steps provide building blocks for the cell and link the pathways of the mitochondrial matrix and cytosol. An increasing number of diseases and pathologies has been associated with their dysfunction. In this review, the molecular basis of these diseases is explained based on our current understanding of their transport mechanism.
Collapse
Affiliation(s)
- Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Chancievan Thangaratnarajah
- Groningen Biomolecular Sciences and Biotechnology Institute, Membrane Enzymology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
The mitochondrial ADP/ATP carrier exists and functions as a monomer. Biochem Soc Trans 2021; 48:1419-1432. [PMID: 32725219 PMCID: PMC7458400 DOI: 10.1042/bst20190933] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
For more than 40 years, the oligomeric state of members of the mitochondrial carrier family (SLC25) has been the subject of debate. Initially, the consensus was that they were dimeric, based on the application of a large number of different techniques. However, the structures of the mitochondrial ADP/ATP carrier, a member of the family, clearly demonstrated that its structural fold is monomeric, lacking a conserved dimerisation interface. A re-evaluation of previously published data, with the advantage of hindsight, concluded that technical errors were at the basis of the earlier dimer claims. Here, we revisit this topic, as new claims for the existence of dimers of the bovine ADP/ATP carrier have emerged using native mass spectrometry of mitochondrial membrane vesicles. However, the measured mass does not agree with previously published values, and a large number of post-translational modifications are proposed to account for the difference. Contrarily, these modifications are not observed in electron density maps of the bovine carrier. If they were present, they would interfere with the structure and function of the carrier, including inhibitor and substrate binding. Furthermore, the reported mass does not account for three tightly bound cardiolipin molecules, which are consistently observed in other studies and are important stabilising factors for the transport mechanism. The monomeric carrier has all of the required properties for a functional transporter and undergoes large conformational changes that are incompatible with a stable dimerisation interface. Thus, our view that the native mitochondrial ADP/ATP carrier exists and functions as a monomer remains unaltered.
Collapse
|
12
|
Ardalan A, Sowlati-Hashjin S, Uwumarenogie SO, Fish M, Mitchell J, Karttunen M, Smith MD, Jelokhani-Niaraki M. Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. J Phys Chem B 2020; 125:169-183. [PMID: 33373220 DOI: 10.1021/acs.jpcb.0c09422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stoichiometry of uncoupling proteins (UCPs) and their coexistence as functional monomeric and associated forms in lipid membranes remain intriguing open questions. In this study, tertiary and quaternary structures of UCP2 were analyzed experimentally and through molecular dynamics (MD) simulations. UCP2 was overexpressed in the inner membrane of Escherichia coli, then purified and reconstituted in lipid vesicles. Structure and proton transport function of UCP2 were characterized by circular dichroism (CD) spectroscopy and fluorescence methods. Findings suggest a tetrameric functional form for UCP2. MD simulations conclude that tetrameric UCP2 is a dimer of dimers, is more stable than its monomeric and dimeric forms, is asymmetrical and induces asymmetry in the membrane's lipid structure, and a biphasic on-off switch between the dimeric units is its possible mode of transport. MD simulations also show that the water density inside the UCP2 monomer is asymmetric, with the cytoplasmic side having a higher water density and a wider radius. In contrast, the structurally comparable adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier (AAC1) did not form tetramers, implying that tetramerization cannot be generalized to all mitochondrial carriers.
Collapse
Affiliation(s)
- Afshan Ardalan
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7
| | - Stephanie O Uwumarenogie
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Michael Fish
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5.,Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Joel Mitchell
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7.,Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
13
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
14
|
Aw YTV, Seidi A, Hayward JA, Lee J, Makota FV, Rug M, van Dooren GG. A key cytosolic iron-sulfur cluster synthesis protein localizes to the mitochondrion of Toxoplasma gondii. Mol Microbiol 2020; 115:968-985. [PMID: 33222310 DOI: 10.1111/mmi.14651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe-S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe-S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe-S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N-terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe-S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe-S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe-S cluster biosynthesis, and imply that the assembly of cytosolic Fe-S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites.
Collapse
Affiliation(s)
- Yi Tong Vincent Aw
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Azadeh Seidi
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - F Victor Makota
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Senoo N, Kandasamy S, Ogunbona OB, Baile MG, Lu Y, Claypool SM. Cardiolipin, conformation, and respiratory complex-dependent oligomerization of the major mitochondrial ADP/ATP carrier in yeast. SCIENCE ADVANCES 2020; 6:eabb0780. [PMID: 32923632 PMCID: PMC7455186 DOI: 10.1126/sciadv.abb0780] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 05/30/2023]
Abstract
The phospholipid cardiolipin has pleiotropic structural and functional roles that are collectively essential for mitochondrial biology. Yet, the molecular details of how this lipid supports the structure and function of proteins and protein complexes are poorly understood. To address this property of cardiolipin, we use the mitochondrial adenosine 5'-diphosphate/adenosine 5'-triphosphate carrier (Aac) as a model. Here, we have determined that cardiolipin is critical for both the tertiary and quaternary assembly of the major yeast Aac isoform Aac2 as well as its conformation. Notably, these cardiolipin-provided structural roles are separable. In addition, we show that multiple copies of Aac2 engage in shared complexes that are largely dependent on the presence of assembled respiratory complexes III and IV or respiratory supercomplexes. Intriguingly, the assembly state of Aac2 is sensitive to its transport-related conformation. Together, these results expand our understanding of the numerous structural roles provided by cardiolipin for mitochondrial membrane proteins.
Collapse
|
16
|
Zhang Y, Fernie AR. On the Detection and Functional Significance of the Protein-Protein Interactions of Mitochondrial Transport Proteins. Biomolecules 2020; 10:E1107. [PMID: 32722450 PMCID: PMC7464641 DOI: 10.3390/biom10081107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
17
|
Na Ayutthaya PP, Lundberg D, Weigel D, Li L. Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) for the Analysis of Protein Oligomers in Plants. ACTA ACUST UNITED AC 2020; 5:e20107. [DOI: 10.1002/cppb.20107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Derek Lundberg
- Department of Molecular BiologyMax Planck Institute for Developmental Biology Tübingen Germany
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental Biology Tübingen Germany
| | - Lei Li
- Department of Molecular BiologyMax Planck Institute for Developmental Biology Tübingen Germany
| |
Collapse
|
18
|
Rowe RK, Matasci KR, Rickelmann AR, Muli CS, Doherty EE, Smith TB, Pistel WL, McIntyre S, Palandoken H, Hagen JP. The Physico-Chemical Properties of Sugar-Oxime-Ether Surfactants. TENSIDE SURFACT DET 2020. [DOI: 10.3139/113.110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Sugar oxime ether surfactants are a new class of surfactants produced by the reaction of a sugar with a hydrophobic alkoxyamine, producing an oxime ether linkage. We examined nine examples of this class of surfactants. The sugars used were maltose, sucrose, and glyceraldehyde; the alkoxyamines were decyloxyamine, dodecyloxya mine, and adamantyloxyamine. For the resulting surfactants we determined their thermal stability, melting point, water solubility, effect on surface tension, and critical micelle concentration. We found that all the compounds tested were thermally stable and decreased substantially the surface tension of water.
Collapse
|
19
|
Rampelt H, Sucec I, Bersch B, Horten P, Perschil I, Martinou JC, van der Laan M, Wiedemann N, Schanda P, Pfanner N. The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biol 2020; 18:2. [PMID: 31907035 PMCID: PMC6945462 DOI: 10.1186/s12915-019-0733-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. RESULTS Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. CONCLUSIONS The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.
Collapse
Affiliation(s)
- Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Iva Sucec
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Beate Bersch
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | | | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, 66421 Homburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Paul Schanda
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
20
|
Abstract
Saccharomyces cerevisiae is one of the most popular expression systems for eukaryotic membrane proteins. Here, we describe protocols for the expression and purification of mitochondrial membrane proteins developed in our laboratory during the last 15 years. To optimize their expression in a functional form, different promoter systems as well as codon-optimization and complementation strategies were established. Purification approaches were developed which remove the membrane protein from the affinity column by specific proteolytic cleavage rather than by elution. This strategy has several important advantages, most notably improving the purity of the sample, as contaminants stay bound to the column, thus eliminating the need for a secondary purification step, such as size exclusion chromatography. This strategy also avoids dilution of the sample, which would occur as a consequence of elution, precluding the need for concentration steps, and thus preventing detergent concentration.
Collapse
Affiliation(s)
- Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1437-1445. [DOI: 10.1016/j.bbamem.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
|
22
|
Tavoulari S, Thangaratnarajah C, Mavridou V, Harbour ME, Martinou JC, Kunji ER. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J 2019; 38:e100785. [PMID: 30979775 PMCID: PMC6517818 DOI: 10.15252/embj.2018100785] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is critical for cellular homeostasis, as it is required in central metabolism for transporting pyruvate from the cytosol into the mitochondrial matrix. MPC has been implicated in many diseases and is being investigated as a drug target. A few years ago, small membrane proteins, called MPC1 and MPC2 in mammals and Mpc1, Mpc2 and Mpc3 in yeast, were proposed to form large protein complexes responsible for this function. However, the MPC complexes have never been isolated and their composition, oligomeric state and functional properties have not been defined. Here, we identify the functional unit of MPC from Saccharomyces cerevisiae In contrast to earlier hypotheses, we demonstrate that MPC is a hetero-dimer, not a multimeric complex. When not engaged in hetero-dimers, the yeast Mpc proteins can also form homo-dimers that are, however, inactive. We show that the earlier described substrate transport properties and inhibitor profiles are embodied by the hetero-dimer. This work provides a foundation for elucidating the structure of the functional complex and the mechanism of substrate transport and inhibition.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Vasiliki Mavridou
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael E Harbour
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Wolfe AJ, Gugel JF, Chen M, Movileanu L. Kinetics of Membrane Protein-Detergent Interactions Depend on Protein Electrostatics. J Phys Chem B 2018; 122:9471-9481. [PMID: 30251852 DOI: 10.1021/acs.jpcb.8b07889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions of a membrane protein with a detergent micelle represent a fundamental process with practical implications in structural and chemical biology. Quantitative assessment of the kinetics of protein-detergent complex (PDC) interactions has always been challenged by complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. Here, we show the kinetic reads of the desorption of maltoside-containing detergents from β-barrel membrane proteins. Using steady-state fluorescence polarization (FP) anisotropy measurements, we recorded real-time, specific signatures of the PDC interactions. The results of these measurements were used to infer the model-dependent rate constants of association and dissociation of the proteomicelles. Remarkably, the kinetics of the PDC interactions depend on the overall protein charge despite the nonionic nature of the detergent monomers. In the future, this approach might be employed for high-throughput screening of kinetic fingerprints of different membrane proteins stabilized in micelles that contain mixtures of various detergents.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.,Structural Biology, Biochemistry, and Biophysics Program , Syracuse University , 111 College Place , Syracuse , New York 13244-4100 , United States
| | - Jack F Gugel
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States
| | - Min Chen
- Department of Chemistry , University of Massachusetts , 820 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003-9336 , United States
| | - Liviu Movileanu
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.,Structural Biology, Biochemistry, and Biophysics Program , Syracuse University , 111 College Place , Syracuse , New York 13244-4100 , United States.,Department of Biomedical and Chemical Engineering , Syracuse University , 223 Link Hall , Syracuse , New York 13244 , United States
| |
Collapse
|
24
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
25
|
Hofherr A, Seger C, Fitzpatrick F, Busch T, Michel E, Luan J, Osterried L, Linden F, Kramer-Zucker A, Wakimoto B, Schütze C, Wiedemann N, Artati A, Adamski J, Walz G, Kunji ERS, Montell C, Watnick T, Köttgen M. The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biol 2018; 16:e2005651. [PMID: 30080851 PMCID: PMC6095617 DOI: 10.1371/journal.pbio.2005651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/16/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023] Open
Abstract
Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated Ca2+ signals into respective physiological functions are unknown. Here, we show that the Ca2+-regulated mitochondrial ATP-Mg/Pi solute carrier 25 A 25 (SLC25A25) acts downstream of TRPP2 in an evolutionarily conserved metabolic signaling pathway. We identify SLC25A25 as an essential component in this cilia-dependent pathway using a genome-wide forward genetic screen in Drosophila melanogaster, followed by a targeted analysis of SLC25A25 function in zebrafish left-right patterning. Our data suggest that TRPP2 ion channels regulate mitochondrial SLC25A25 transporters via Ca2+ establishing an evolutionarily conserved molecular link between ciliary signaling and mitochondrial metabolism.
Collapse
Affiliation(s)
- Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Claudia Seger
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fiona Fitzpatrick
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Tilman Busch
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elisabeth Michel
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jingting Luan
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lea Osterried
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Frieder Linden
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Albrecht Kramer-Zucker
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Barbara Wakimoto
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Conny Schütze
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Terry Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
26
|
Seidel K, Kühnert J, Adrian L. The Complexome of Dehalococcoides mccartyi Reveals Its Organohalide Respiration-Complex Is Modular. Front Microbiol 2018; 9:1130. [PMID: 29946299 PMCID: PMC6005880 DOI: 10.3389/fmicb.2018.01130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022] Open
Abstract
Dehalococcoides mccartyi strain CBDB1 is a slow growing strictly anaerobic microorganism dependent on halogenated compounds as terminal electron acceptor for anaerobic respiration. Indications have been described that the membrane-bound proteinaceous organohalide respiration complex of strain CBDB1 is functional without quinone-mediated electron transfer. We here study this multi-subunit protein complex in depth in regard to participating protein subunits and interactions between the subunits using blue native gel electrophoresis coupled to mass spectrometric label-free protein quantification. Applying three different solubilization modes to detach the respiration complex from the membrane we describe different solubilization snapshots of the organohalide respiration complex. The results demonstrate the existence of a two-subunit hydrogenase module loosely binding to the rest of the complex, tight binding of the subunit HupX to OmeA and OmeB, predicted to be the two subunits of a molybdopterin-binding redox subcomplex, to form a second module, and the presence of two distinct reductive dehalogenase module variants with different sizes. In our data we obtained biochemical evidence for the specificity between a reductive dehalogenase RdhA (CbdbA80) and its membrane anchor protein RdhB (CbdbB3). We also observed weak interactions between the reductive dehalogenase and the hydrogenase module suggesting a not yet recognized contact surface between these two modules. Especially an interaction between the two integral membrane subunits OmeB and RdhB seems to promote the integrity of the complex. With the different solubilization strengths we observe successive disintegration of the complex into its subunits. The observed architecture would allow the association of different reductive dehalogenase modules RdhA/RdhB with the other two protein complex modules when the strain is growing on different electron acceptors. In the search for other respiratory complexes in strain CBDB1 the remarkable result is not the detection of a standard ATPase but the absence of any other abundant membrane complex although an 11-subunit version of complex I (Nuo) is encoded in the genome.
Collapse
Affiliation(s)
- Katja Seidel
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Joana Kühnert
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane. mBio 2018; 9:mBio.02293-17. [PMID: 29739907 PMCID: PMC5941077 DOI: 10.1128/mbio.02293-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malaria parasites increase host erythrocyte permeability to ions and nutrients via a broad-selectivity channel known as the plasmodial surface anion channel (PSAC), linked to parasite-encoded CLAG3 and two associated proteins. These proteins lack the multiple transmembrane domains typically present in channel-forming proteins, raising doubts about their precise roles. Using the virulent human Plasmodium falciparum parasite, we report that CLAG3 undergoes self-association and that this protein’s expression determines channel phenotype quantitatively. We overcame epigenetic silencing of clag3 paralogs and engineered parasites that express two CLAG3 isoforms simultaneously. Stoichiometric expression of these isoforms yielded intermediate channel phenotypes, in agreement with observed trafficking of both proteins to the host membrane. Coimmunoprecipitation and surface labeling revealed formation of CLAG3 oligomers. In vitro selections applied to these transfectant lines yielded distinct mutants with correlated changes in channel activity. These findings support involvement of the identified oligomers in PSAC formation and parasite nutrient acquisition. Malaria parasites are globally important pathogens that evade host immunity by replicating within circulating erythrocytes. To facilitate intracellular growth, these parasites increase erythrocyte nutrient uptake through an unusual ion channel. The parasite CLAG3 protein is a key determinant of this channel, but its lack of homology to known ion channels has raised questions about possible mechanisms. Using a new method that allows simultaneous expression of two different CLAG3 proteins, we identify self-association of CLAG3. The two expressed isoforms faithfully traffic to and insert in the host membrane, while remaining associated with two unrelated parasite proteins. Both the channel phenotypes and molecular changes produced upon selections with a highly specific channel inhibitor are consistent with a multiprotein complex that forms the nutrient pore. These studies support direct involvement of the CLAG3 protein in channel formation and are relevant to antimalarial drug discovery projects targeting parasite nutrient acquisition.
Collapse
|
28
|
Chisholm SA, Kalanon M, Nebl T, Sanders PR, Matthews KM, Dickerman BK, Gilson PR, de Koning-Ward TF. The malaria PTEX component PTEX88 interacts most closely with HSP101 at the host-parasite interface. FEBS J 2018; 285:2037-2055. [PMID: 29637707 DOI: 10.1111/febs.14463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
The pathogenic nature of malaria infections is due in part to the export of hundreds of effector proteins that actively remodel the host erythrocyte. The Plasmodium translocon of exported proteins (PTEX) has been shown to facilitate the trafficking of proteins into the host cell, a process that is essential for the survival of the parasite. The role of the auxiliary PTEX component PTEX88 remains unclear, as previous attempts to elucidate its function through reverse genetic approaches showed that in contrast to the core components PTEX150 and HSP101, knockdown of PTEX88 did not give rise to an export phenotype. Here, we have used biochemical approaches to understand how PTEX88 assembles within the translocation machinery. Proteomic analysis of the PTEX88 interactome showed that PTEX88 interacts closely with HSP101 but has a weaker affinity with the other core constituents of PTEX. PTEX88 was also found to associate with other PV-resident proteins, including chaperones and members of the exported protein-interacting complex that interacts with the major virulence factor PfEMP1, the latter contributing to cytoadherence and parasite virulence. Despite being expressed for the duration of the blood-stage life cycle, PTEX88 was only discretely observed at the parasitophorous vacuole membrane during ring stages and could not always be detected in the major high molecular weight complex that contains the other core components of PTEX, suggesting that its interaction with the PTEX complex may be dynamic. Together, these data have enabled the generation of an updated model of PTEX that now includes how PTEX88 assembles within the complex.
Collapse
Affiliation(s)
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Thomas Nebl
- The Walter and Eliza Hall Institute, Parkville, Australia
| | - Paul R Sanders
- Burnet Institute, Prahran, Australia.,Monash University, Melbourne, Australia
| | | | | | - Paul R Gilson
- Burnet Institute, Prahran, Australia.,Monash University, Melbourne, Australia
| | | |
Collapse
|
29
|
Aoyama A, Murai M, Ichimaru N, Aburaya S, Aoki W, Miyoshi H. Epoxycyclohexenedione-Type Compounds Make Up a New Class of Inhibitors of the Bovine Mitochondrial ADP/ATP Carrier. Biochemistry 2018; 57:1031-1044. [PMID: 29313673 DOI: 10.1021/acs.biochem.7b01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the extensive screening of our chemical library, we found epoxycyclohexenedione (ECHD)-type compounds (AMM-59 and -120) as unique inhibitors of the bovine heart mitochondrial ADP/ATP carrier (AAC). This study investigated the mechanism of inhibition of AAC by ECHDs using submitochondrial particles (SMPs). Proteomic analyses of ECHD-bound AAC as well as biochemical characterization using different SH reagents showed that ECHDs inhibit the function of AAC by covalently binding primarily to Cys57 and secondarily to Cys160. Interestingly, AAC remarkably aggregated in SMPs upon being incubated with high concentrations of ECHDs for a long period of time. This aggregation was observed under both oxidative and reductive conditions of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SMP proteins, indicating that aggregation is not caused by intermolecular S-S linkages. ECHDs are the first chemicals, to the best of our knowledge, to induce prominent structural alteration in AAC without forming intermolecular S-S linkages. When all solvent-accessible cysteines (Cys57, Cys160, and Cys257) were previously modified by N-ethylmaleimide, the aggregation of AAC was completely suppressed. In contrast, when Cys57 or Cys160 is selectively modified by a SH reagent, the covalent binding of ECHDs to a residual free residue of the two cysteines is sufficient to induce aggregation. The aggregation-inducing ability of another ECHD analogue (AMM-124), which has an alkyl chain that is shorter than those of AMM-59 and -120, was significantly less efficient than that of the two compounds. On the basis of these results, the mechanism underlying the aggregation of AAC induced by ECHDs is discussed.
Collapse
Affiliation(s)
- Ayaki Aoyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Naoya Ichimaru
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Harborne SPD, King MS, Crichton PG, Kunji ERS. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci Rep 2017; 7:45383. [PMID: 28350015 PMCID: PMC5369052 DOI: 10.1038/srep45383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state.
Collapse
Affiliation(s)
- Steven P. D. Harborne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin S. King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Paul G. Crichton
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
31
|
Mandacaru SC, do Vale LHF, Vahidi S, Xiao Y, Skinner OS, Ricart CAO, Kelleher NL, de Sousa MV, Konermann L. Characterizing the Structure and Oligomerization of Major Royal Jelly Protein 1 (MRJP1) by Mass Spectrometry and Complementary Biophysical Tools. Biochemistry 2017; 56:1645-1655. [PMID: 28252287 DOI: 10.1021/acs.biochem.7b00020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Royal jelly (RJ) triggers the development of female honeybee larvae into queens. This effect has been attributed to the presence of major royal jelly protein 1 (MRJP1) in RJ. MRJP1 isolated from royal jelly is tightly associated with apisimin, a 54-residue α-helical peptide that promotes the noncovalent assembly of MRJP1 into multimers. No high-resolution structural data are available for these complexes, and their binding stoichiometry remains uncertain. We examined MRJP1/apisimin using a range of biophysical techniques. We also investigated the behavior of deglycosylated samples, as well as samples with reduced apisimin content. Our mass spectrometry (MS) data demonstrate that the native complexes predominantly exist in a (MRJP14 apisimin4) stoichiometry. Hydrogen/deuterium exchange MS reveals that MRJP1 within these complexes is extensively disordered in the range of residues 20-265. Marginally stable secondary structure (likely antiparallel β-sheet) exists around residues 266-432. These weakly structured regions interchange with conformers that are extensively unfolded, giving rise to bimodal (EX1) isotope distributions. We propose that the native complexes have a "dimer of dimers" quaternary structure in which MRJP1 chains are bridged by apisimin. Specifically, our data suggest that apisimin acts as a linker that forms hydrophobic contacts involving the MRJP1 segment 316VLFFGLV322. Deglycosylation produces large soluble aggregates, highlighting the role of glycans as aggregation inhibitors. Samples with reduced apisimin content form dimeric complexes with a (MRJP12 apisimin1) stoichiometry. The information uncovered in this work will help pave the way toward a better understanding of the unique physiological role played by MRJP1 during queen differentiation.
Collapse
Affiliation(s)
- Samuel C Mandacaru
- Department of Chemistry, Western University , London, Ontario, Canada N6A 5B7.,Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Luis H F do Vale
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil.,Proteomics Center of Excellence, Departments of Chemistry and Molecular Biosciences, Northwestern University , Evanston, Illinois 60611, United States
| | - Siavash Vahidi
- Department of Chemistry, Western University , London, Ontario, Canada N6A 5B7
| | - Yiming Xiao
- Department of Chemistry, Western University , London, Ontario, Canada N6A 5B7
| | - Owen S Skinner
- Proteomics Center of Excellence, Departments of Chemistry and Molecular Biosciences, Northwestern University , Evanston, Illinois 60611, United States
| | - Carlos A O Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Neil L Kelleher
- Proteomics Center of Excellence, Departments of Chemistry and Molecular Biosciences, Northwestern University , Evanston, Illinois 60611, United States
| | - Marcelo Valle de Sousa
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Lars Konermann
- Department of Chemistry, Western University , London, Ontario, Canada N6A 5B7
| |
Collapse
|
32
|
Crichton PG, Lee Y, Kunji ERS. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 2017; 134:35-50. [PMID: 28057583 PMCID: PMC5395090 DOI: 10.1016/j.biochi.2016.12.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022]
Abstract
Uncoupling protein 1 (UCP1) is an integral membrane protein found in the mitochondrial inner membrane of brown adipose tissue, and facilitates the process of non-shivering thermogenesis in mammals. Its activation by fatty acids, which overcomes its inhibition by purine nucleotides, leads to an increase in the proton conductance of the inner mitochondrial membrane, short-circuiting the mitochondrion to produce heat rather than ATP. Despite 40 years of intense research, the underlying molecular mechanism of UCP1 is still under debate. The protein belongs to the mitochondrial carrier family of transporters, which have recently been shown to utilise a domain-based alternating-access mechanism, cycling between a cytoplasmic and matrix state to transport metabolites across the inner membrane. Here, we review the protein properties of UCP1 and compare them to those of mitochondrial carriers. UCP1 has the same structural fold as other mitochondrial carriers and, in contrast to past claims, is a monomer, binding one purine nucleotide and three cardiolipin molecules tightly. The protein has a single substrate binding site, which is similar to those of the dicarboxylate and oxoglutarate carriers, but also contains a proton binding site and several hydrophobic residues. As found in other mitochondrial carriers, UCP1 has two conserved salt bridge networks on either side of the central cavity, which regulate access to the substrate binding site in an alternating way. The conserved domain structures and mobile inter-domain interfaces are consistent with an alternating access mechanism too. In conclusion, UCP1 has retained all of the key features of mitochondrial carriers, indicating that it operates by a conventional carrier-like mechanism.
Collapse
Affiliation(s)
- Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Yang Lee
- Laboratory of Molecular Biology, Medical Research Council, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Edmund R S Kunji
- Mitochondrial Biology Unit, Medical Research Council, Cambridge Biomedical Campus, Wellcome Trust, MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
33
|
Efremov RG, Gatsogiannis C, Raunser S. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Methods Enzymol 2017; 594:1-30. [DOI: 10.1016/bs.mie.2017.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, Arai S, Wada I, Sugiura T, Yamashita A. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem 2016; 292:1122-1141. [PMID: 27927984 DOI: 10.1074/jbc.m116.746602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase (SMS) is the key enzyme for cross-talk between bioactive sphingolipids and glycerolipids. In mammals, SMS consists of two isoforms: SMS1 is localized in the Golgi apparatus, whereas SMS2 is localized in both the Golgi and plasma membranes. SMS2 seems to exert cellular functions through protein-protein interactions; however, the existence and functions of quaternary structures of SMS1 and SMS2 remain unclear. Here we demonstrate that both SMS1 and SMS2 form homodimers. The SMSs have six membrane-spanning domains, and the N and C termini of both proteins face the cytosolic side of the Golgi apparatus. Chemical cross-linking and bimolecular fluorescence complementation revealed that the N- and/or C-terminal tails of the SMSs were in close proximity to those of the other SMS in the homodimer. Homodimer formation was significantly decreased by C-terminal truncations, SMS1-ΔC22 and SMS2-ΔC30, indicating that the C-terminal tails of the SMSs are primarily responsible for homodimer formation. Moreover, immunoprecipitation using deletion mutants revealed that the C-terminal tail of SMS2 mainly interacted with the C-terminal tail of its homodimer partner, whereas the C-terminal tail of SMS1 mainly interacted with a site other than the C-terminal tail of its homodimer partner. Interestingly, homodimer formation occurred in the endoplasmic reticulum (ER) membrane before trafficking to the Golgi apparatus. Reduced homodimerization caused by C-terminal truncations of SMSs significantly reduced ER-to-Golgi transport. Our findings suggest that the C-terminal tails of SMSs are involved in homodimer formation, which is required for efficient transport from the ER.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yoko Nemoto-Sasaki
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Naoki Matsumoto
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Takashi Tanikawa
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Saori Oka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yusuke Tanaka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Seisuke Arai
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Takayuki Sugiura
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Atsushi Yamashita
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| |
Collapse
|
35
|
Thompson K, Majd H, Dallabona C, Reinson K, King MS, Alston CL, He L, Lodi T, Jones SA, Fattal-Valevski A, Fraenkel ND, Saada A, Haham A, Isohanni P, Vara R, Barbosa IA, Simpson MA, Deshpande C, Puusepp S, Bonnen PE, Rodenburg RJ, Suomalainen A, Õunap K, Elpeleg O, Ferrero I, McFarland R, Kunji ERS, Taylor RW. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am J Hum Genet 2016; 99:860-876. [PMID: 27693233 PMCID: PMC5065686 DOI: 10.1016/j.ajhg.2016.08.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022] Open
Abstract
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Homa Majd
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Cristina Dallabona
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Karit Reinson
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Genetics, United Laboratories, Tartu University Hospital, 51014 Tartu, Estonia
| | - Martin S King
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tiziana Lodi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, St Marys Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Aviva Fattal-Valevski
- Paediatric Neurology Unit, "Dana" Children Hospital, Tel Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel Aviv University, 64239 Tel Aviv, Israel
| | - Nitay D Fraenkel
- Department of Respiratory Rehabilitation, Alyn Hospital, Jerusalem 91090, Israel
| | - Ann Saada
- Metabolic Laboratory Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alon Haham
- Neonatal Intensive Care Unit, "Lis" Maternity Hospital, Tel Aviv Sourasky Medical Centre, 64239 Tel Aviv, Israel
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Roshni Vara
- Department of Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London SE1 7EH, UK
| | - Inês A Barbosa
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, London SE1 9RY, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, London SE1 9RY, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Sanna Puusepp
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Genetics, United Laboratories, Tartu University Hospital, 51014 Tartu, Estonia
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, 00290 Helsinki, Finland; Department of Neurosciences, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Katrin Õunap
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Genetics, United Laboratories, Tartu University Hospital, 51014 Tartu, Estonia
| | - Orly Elpeleg
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Edmund R S Kunji
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
36
|
Zainabadi K. Malaria Parasite CLAG3, a Protein Linked to Nutrient Channels, Participates in High Molecular Weight Membrane-Associated Complexes in the Infected Erythrocyte. PLoS One 2016; 11:e0157390. [PMID: 27299521 PMCID: PMC4907441 DOI: 10.1371/journal.pone.0157390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/27/2016] [Indexed: 11/24/2022] Open
Abstract
Malaria infected erythrocytes show increased permeability to a number of solutes important for parasite growth as mediated by the Plasmodial Surface Anion Channel (PSAC). The P. falciparum clag3 genes have recently been identified as key determinants of PSAC, though exactly how they contribute to channel function and whether additional host/parasite proteins are required remain unknown. To begin to answer these questions, I have taken a biochemical approach. Here I have used an epitope-tagged CLAG3 parasite to perform co-immunoprecipitation experiments using membrane fractions of infected erythrocytes. Native PAGE and mass spectrometry studies reveal that CLAG3 participate in at least three different high molecular weight complexes: a ~720kDa complex consisting of CLAG3, RHOPH2 and RHOPH3; a ~620kDa complex consisting of CLAG3 and RHOPH2; and a ~480kDa complex composed solely of CLAG3. Importantly, these complexes can be found throughout the parasite lifecycle but are absent in untransfected controls. Extracellular biotin labeling and protease susceptibility studies localize the 480kDa complex to the erythrocyte membrane. This complex, likely composed of a homo-oligomer of 160kDa CLAG3, may represent a functional subunit, possibly the pore, of PSAC.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore. Biosci Rep 2016; 36:BSR20160046. [PMID: 26934982 PMCID: PMC4847171 DOI: 10.1042/bsr20160046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
The bacterial ferrous iron acquisition protein FeoB assembles as a homotrimer that is predicted to form a central pore lined by conserved cysteine residues. Structure-function analysis of FeoB indicates a putative mechanism more akin to a GTP-gated channel than a transporter. Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.
Collapse
|
38
|
The transport mechanism of the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2379-93. [PMID: 27001633 DOI: 10.1016/j.bbamcr.2016.03.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
39
|
Killinger BA, Moszczynska A. Characterization of α-Synuclein Multimer Stoichiometry in Complex Biological Samples by Electrophoresis. Anal Chem 2016; 88:4071-84. [PMID: 26937787 PMCID: PMC4898865 DOI: 10.1021/acs.analchem.6b00419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The
aberrant aggregation of α-synuclein in the brain is a
hallmark of Parkinson’s disease (PD). In vivo soluble α-synuclein
occurs as a monomer and several multimers, the latter of which may
be important for the biological function of α-synuclein. Currently,
there is a lack of reproducible methods to compare α-synuclein
multimer abundance between complex biological samples. Here we developed
a method, termed “multimer-PAGE,” that combines in-gel
chemical cross-linking with several common electrophoretic techniques
to measure the stoichiometry of soluble α-synuclein multimers
in brain tissue lysates. Results show that soluble α-synuclein
from the rat brain exists as several high molecular weight species
of approximately 56 kDa (αS56), 80 kDa (αS80), and 100
kDa (αS100) that comigrate with endogenous lipids, detergents,
and/or micelles during blue native gel electrophoresis (BN-PAGE).
Co-extraction of endogenous lipids with α-synuclein was essential
for the detection of soluble α-synuclein multimers. Homogenization
of brain tissue in small buffer volumes (>50 mg tissue per 1 mL
buffer)
increased relative lipid extraction and subsequently resulted in abundant
soluble multimer detection via multimer-PAGE. α-Synuclein multimers
captured by directly cross-linking soluble lysates resembled those
observed following multimer-PAGE. The ratio of multimer (αS80)
to monomer (αS17) increased linearly with protein input into
multimer-PAGE, suggesting to some extent, multimers were also formed
during electrophoresis. Overall, soluble α-synuclein maintains
lipid interactions following tissue disruption and readily forms multimers
when this lipid–protein complex is preserved. Once the multimer-PAGE
technique was validated, relative stoichiometric comparisons could
be conducted simultaneously between 14 biological samples. Multimer-PAGE
provides a simple inexpensive biochemical technique to study the molecular
factors influencing α-synuclein multimerization.
Collapse
Affiliation(s)
- Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
| |
Collapse
|
40
|
Complex formation and turnover of mitochondrial transporters and ion channels. J Bioenerg Biomembr 2016; 49:101-111. [DOI: 10.1007/s10863-016-9648-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
|
41
|
The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem J 2016; 473:797-804. [PMID: 26759378 DOI: 10.1042/bj20151029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein homeostasis is crucial for cellular function and integrity and is therefore maintained by several classes of proteins possessing chaperone and/or proteolytic activities. In the present study, we focused on characterization of LACE1 (lactation elevated 1) function in mitochondrial protein homeostasis. LACE1 is the human homologue of yeast mitochondrial Afg1 (ATPase family gene 1) ATPase, a member of the SEC18-NSF, PAS1, CDC48-VCP, TBP family. Yeast Afg1 was shown to mediate degradation of mitochondrially encoded complex IV subunits, and, on the basis of its similarity to CDC48 (p97/VCP), it was suggested to facilitate extraction of polytopic membrane proteins. We show that LACE1, which is a mitochondrial integral membrane protein, exists as part of three complexes of approximately 140, 400 and 500 kDa and is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. We demonstrate that LACE1 mediates degradation of nuclear-encoded complex IV subunits COX4 (cytochrome c oxidase 4), COX5A and COX6A, and is required for normal activity of complexes III and IV of the respiratory chain. Using affinity purification of LACE1-FLAG expressed in a LACE1-knockdown background, we show that the protein interacts physically with COX4 and COX5A subunits of complex IV and with mitochondrial inner-membrane protease YME1L. Finally, we demonstrate by ectopic expression of both K142A Walker A and E214Q Walker B mutants, that an intact ATPase domain is essential for LACE1-mediated degradation of nuclear-encoded complex IV subunits. Thus the present study establishes LACE1 as a novel factor with a crucial role in mitochondrial protein homeostasis.
Collapse
|
42
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
43
|
Harborne SPD, Ruprecht JJ, Kunji ERS. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1245-53. [PMID: 26164100 PMCID: PMC4562336 DOI: 10.1016/j.bbabio.2015.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic α-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic α-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic α-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic α-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Steven P D Harborne
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Jonathan J Ruprecht
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
44
|
Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin. Proc Natl Acad Sci U S A 2015; 112:6973-8. [PMID: 26038550 DOI: 10.1073/pnas.1503833112] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.
Collapse
|
45
|
Vanderperre B, Bender T, Kunji ERS, Martinou JC. Mitochondrial pyruvate import and its effects on homeostasis. Curr Opin Cell Biol 2015; 33:35-41. [DOI: 10.1016/j.ceb.2014.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022]
|
46
|
Liu Y, Wang X, Chen XJ. Misfolding of mutant adenine nucleotide translocase in yeast supports a novel mechanism of Ant1-induced muscle diseases. Mol Biol Cell 2015; 26:1985-94. [PMID: 25833713 PMCID: PMC4472010 DOI: 10.1091/mbc.e15-01-0030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
Missense mutations in membrane proteins cause dominant diseases by unknown mechanisms. Pathogenic mutations in adenine nucleotide translocase 1 affect protein folding and the assembly of multiple protein complexes. The misfolding of one single protein is therefore sufficient to induce proteostatic stress on the membrane. Approximately one-third of proteins in the cell reside in the membrane. Mutations in membrane proteins can induce conformational changes and expose nonnative polar domains/residues to the lipid environment. The molecular effect of the resulting membrane stress is poorly defined. Adenine nucleotide translocase 1 (Ant1) is a mitochondrial inner membrane protein involved in ATP/ADP exchange. Missense mutations in the Ant1 isoform cause autosomal dominant progressive external ophthalmoplegia (adPEO), cardiomyopathy, and myopathy. The mechanism of the Ant1-induced pathologies is highly debated. Here we show that equivalent mutations in the yeast Aac2 protein cause protein misfolding. Misfolded Aac2 drastically affects the assembly and stability of multiple protein complexes in the membrane, which ultimately inhibits cell growth. Despite causing similar proteostatic damages, the adPEO- but not the cardiomyopathy/myopathy-type Aac2 proteins form large aggregates. The data suggest that the Ant1-induced diseases belong to protein misfolding disorders. Protein homeostasis is subtly maintained on the mitochondrial inner membrane and can be derailed by the misfolding of one single protein with or without aggregate formation. This finding could have broad implications for understanding other dominant diseases (e.g., retinitis pigmentosa) caused by missense mutations in membrane proteins.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
47
|
Bender T, Pena G, Martinou JC. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J 2015; 34:911-24. [PMID: 25672363 DOI: 10.15252/embj.201490197] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPCFERM and MPCOX. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPCOX has a higher transport activity than MPCFERM, which is dependent on the C-terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.
Collapse
Affiliation(s)
- Tom Bender
- Department of Cell Biology, University of Geneva, Genève, Switzerland
| | - Gabrielle Pena
- Department of Cell Biology, University of Geneva, Genève, Switzerland
| | | |
Collapse
|
48
|
Crichton PG, Lee Y, Ruprecht JJ, Cerson E, Thangaratnarajah C, King MS, Kunji ERS. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J Biol Chem 2015; 290:8206-17. [PMID: 25653283 PMCID: PMC4375477 DOI: 10.1074/jbc.m114.616607] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here.
Collapse
Affiliation(s)
- Paul G Crichton
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Yang Lee
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jonathan J Ruprecht
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elizabeth Cerson
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Chancievan Thangaratnarajah
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Martin S King
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
49
|
Monné M, Palmieri F. Antiporters of the mitochondrial carrier family. CURRENT TOPICS IN MEMBRANES 2014; 73:289-320. [PMID: 24745987 DOI: 10.1016/b978-0-12-800223-0.00008-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both, and the oxoglutarate/malate carrier is independent of them. The structure of the bovine ADP/ATP carrier consists of a six-transmembrane α-helix bundle with a pseudo-threefold symmetry and a closed matrix gate. By using this structure as a template in homology modeling, residues engaged in substrate binding and the formation of a cytoplasmic gate in MCs have been proposed. The functional importance of the residues of the binding site, the matrix, and the cytoplasmic gates is supported by transport activities of different MCs with single point mutations. Cumulative evidence has been used to postulate a general transport mechanism for MCs.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy; Department of Sciences, University of Basilicata, Potenza, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy.
| |
Collapse
|
50
|
Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ 2014; 21:1925-35. [PMID: 25146925 DOI: 10.1038/cdd.2014.119] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 06/24/2014] [Accepted: 07/13/2014] [Indexed: 01/15/2023] Open
Abstract
In non-apoptotic cells, Bak constitutively resides in the mitochondrial outer membrane. In contrast, Bax is in a dynamic equilibrium between the cytosol and mitochondria, and is commonly predominant in the cytosol. In response to an apoptotic stimulus, Bax and Bak change conformation, leading to Bax accumulation at mitochondria and Bak/Bax oligomerization to form a pore in the mitochondrial outer membrane that is responsible for cell death. Using blue native-PAGE to investigate how Bax oligomerizes in the mitochondrial outer membrane, we observed that, like Bak, a proportion of Bax that constitutively resides at mitochondria associates with voltage-dependent anion channel (VDAC)2 prior to an apoptotic stimulus. During apoptosis, Bax dissociates from VDAC2 and homo-oligomerizes to form high molecular weight oligomers. In cells that lack VDAC2, constitutive mitochondrial localization of Bax and Bak was impaired, suggesting that VDAC2 has a role in Bax and Bak import to, or stability at, the mitochondrial outer membrane. However, following an apoptotic stimulus, Bak and Bax retained the ability to accumulate at VDAC2-deficient mitochondria and to mediate cell death. Silencing of Bak in VDAC2-deficient cells indicated that Bax required either VDAC2 or Bak in order to translocate to and oligomerize at the mitochondrial outer membrane to efficiently mediate apoptosis. In contrast, efficient Bak homo-oligomerization at the mitochondrial outer membrane and its pro-apoptotic function required neither VDAC2 nor Bax. Even a C-terminal mutant of Bax (S184L) that localizes to mitochondria did not constitutively target mitochondria deficient in VDAC2, but was recruited to mitochondria following an apoptotic stimulus dependent on Bak or upon over-expression of Bcl-xL. Together, our data suggest that Bax localizes to the mitochondrial outer membrane via alternate mechanisms, either constitutively via an interaction with VDAC2 or after activation via interaction with Bcl-2 family proteins.
Collapse
|