1
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Zamer BA, Cui ZG, Eladl MA, Hamad M, Muhammad JS. Estrogen treatment in combination with pyruvate kinase M2 inhibition precipitate significant cumulative antitumor effects in colorectal cancer. J Biochem Mol Toxicol 2024; 38:e23799. [PMID: 39132768 DOI: 10.1002/jbt.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
It is well established that pyruvate kinase M2 (PKM2) activity contributes to metabolic reprogramming in various cancers, including colorectal cancer (CRC). Estrogen or 17β-estradiol (E2) signaling is also known to modulate glycolysis markers in cancer cells. However, whether the inhibition of PKM2 combined with E2 treatment could adversely affect glucose metabolism in CRC cells remains to be investigated. First, we confirmed the metabolic plasticity of CRC cells under varying environmental conditions. Next, we identified glycolysis markers that were upregulated in CRC patients and assessed in vitro mRNA levels following E2 treatment. We found that PKM2 expression, which is highly upregulated in CRC clinical samples, is not altered by E2 treatment in CRC cells. In this study, glucose uptake, generation of reactive oxygen species (ROS), lactate production, cell viability, and apoptosis were evaluated in CRC cells following E2 treatment, PKM2 silencing, or a combination of both. Compared to individual treatments, combination therapy resulted in a significant reduction in cell viability and enhanced apoptosis. Glucose uptake and ROS production were markedly reduced in PKM2-silenced E2-treated cells. The data presented here suggest that E2 signaling combined with PKM2 inhibition cumulatively targets glucose metabolism in a manner that negatively impacts CRC cell growth. These findings hold promise for novel therapeutic strategies targeting altered metabolic pathways in CRC.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Zheng-Guo Cui
- Department of Environmental Health, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mohamed Ahmed Eladl
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Babaeenezhad E, Abdolvahabi Z, Asgharzadeh S, Abdollahi M, Shakeri S, Moradi Sarabi M, Yarahmadi S. Potential function of microRNA miRNA-206 in breast cancer pathogenesis: Mechanistic aspects and clinical implications. Pathol Res Pract 2024; 260:155454. [PMID: 39002434 DOI: 10.1016/j.prp.2024.155454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Breast cancer (BC) is a major public health problem that affects women worldwide. Growing evidence has highlighted the role of miRNA-206 in BC pathogenesis. Changes in its expression have diagnostic and prognostic potential as they are associated with clinicopathological parameters, including lymph node metastasis, overall survival, tumor size, metastatic stage, resistance to chemotherapy, and recurrence. In the present study, we summarized, assessed, and discussed the most recent understanding of the functions of miRNA-206 in BC. Unexpectedly, miRNA-206 was found to control both oncogenic and tumor-suppressive pathways. We also considered corresponding downstream effects and upstream regulators. Finally, we addressed the diagnostic and prognostic value of miRNA-206 and its potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Asgharzadeh
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masume Abdollahi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Shakeri
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Jia W, Wu Q, Shen M, Yu X, An S, Zhao L, Huang G, Liu J. PFKFB3 regulates breast cancer tumorigenesis and Fulvestrant sensitivity by affecting ERα stability. Cell Signal 2024; 119:111184. [PMID: 38640982 DOI: 10.1016/j.cellsig.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.
Collapse
Affiliation(s)
- Wenzhi Jia
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Clinical Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai, China.
| |
Collapse
|
5
|
Qiu D, Zhao B, Wang W, Zheng G, Wang Z, Wang X, Li Y, Liao Z, Zhao Y, Zhang Y. The predictive value of PFKFB3 in bladder cancer prognosis. Heliyon 2024; 10:e31347. [PMID: 38803949 PMCID: PMC11128530 DOI: 10.1016/j.heliyon.2024.e31347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3) influences cancer progression via participating in tumor aerobic glycolysis. In this study, we aimed to evaluate the prognostic significance of PFKFB3 in bladder cancer (BLCA) patients by analyzing a combination of publicly available databases, clinical patient data, and bladder tumor samples from our hospital. Single-cell and bulk RNA-seq data of bladder cancer, obtained from ENA, GEO, and TCGA databases, were utilized for our analysis. The results indicated that PFKFB3 mRNA expression was markedly elevated in bladder cancer compared to paired normal tissue. Furthermore, BLCA patients with high PFKFB3 expression exhibited a significantly worse prognosis (P < 0.05). To validate these findings, clinical data and immunohistochemistry staining were performed on specimens obtained from 89 BLCA patients who underwent radical cystectomy at either Qingdao University Affiliated Hospital or Peking Union Medical College Hospital. The findings from this verification process confirmed that high expression of PFKFB3 serves as a biomarker for predicting worse prognosis in BLCA patients (OR: 2.462, 95 % CI: 1.202-5.042, P = 0.012). To facilitate clinical application, we developed a nomogram based on four variables, including PFKFB3 expression, to predict the survival of BLCA patients. Importantly, this nomogram demonstrated a low mean prediction error of 0.03. Taken together, our findings suggest that PFKFB3 has the potential to serve as both a prognostic biomarker and a therapeutic target for BLCA patients.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Bin Zhao
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Guoyang Zheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Yanan Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhangcheng Liao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Clinical College, Qingdao University, Qingdao, Shandong, 266003, PR China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| |
Collapse
|
6
|
Liu P, Sun D, Zhang S, Chen S, Wang X, Li H, Wei F. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies. Cell Biosci 2024; 14:21. [PMID: 38341583 DOI: 10.1186/s13578-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.
Collapse
Affiliation(s)
- Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
7
|
Ahn S, Park JH, Grimm SL, Piyarathna DWB, Samanta T, Putluri V, Mezquita D, Fuqua SA, Putluri N, Coarfa C, Kaipparettu BA. Metabolomic Rewiring Promotes Endocrine Therapy Resistance in Breast Cancer. Cancer Res 2024; 84:291-304. [PMID: 37906431 PMCID: PMC10842725 DOI: 10.1158/0008-5472.can-23-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Approximately one-third of endocrine-treated women with estrogen receptor alpha-positive (ER+) breast cancers are at risk of recurrence due to intrinsic or acquired resistance. Thus, it is vital to understand the mechanisms underlying endocrine therapy resistance in ER+ breast cancer to improve patient treatment. Mitochondrial fatty acid β-oxidation (FAO) has been shown to be a major metabolic pathway in triple-negative breast cancer (TNBC) that can activate Src signaling. Here, we found metabolic reprogramming that increases FAO in ER+ breast cancer as a mechanism of resistance to endocrine therapy. A metabolically relevant, integrated gene signature was derived from transcriptomic, metabolomic, and lipidomic analyses in TNBC cells following inhibition of the FAO rate-limiting enzyme carnitine palmitoyl transferase 1 (CPT1), and this TNBC-derived signature was significantly associated with endocrine resistance in patients with ER+ breast cancer. Molecular, genetic, and metabolomic experiments identified activation of AMPK-FAO-oxidative phosphorylation (OXPHOS) signaling in endocrine-resistant ER+ breast cancer. CPT1 knockdown or treatment with FAO inhibitors in vitro and in vivo significantly enhanced the response of ER+ breast cancer cells to endocrine therapy. Consistent with the previous findings in TNBC, endocrine therapy-induced FAO activated the Src pathway in ER+ breast cancer. Src inhibitors suppressed the growth of endocrine-resistant tumors, and the efficacy could be further enhanced by metabolic priming with CPT1 inhibition. Collectively, this study developed and applied a TNBC-derived signature to reveal that metabolic reprogramming to FAO activates the Src pathway to drive endocrine resistance in ER+ breast cancer. SIGNIFICANCE Increased fatty acid oxidation induced by endocrine therapy activates Src signaling to promote endocrine resistance in breast cancer, which can be overcome using clinically approved therapies targeting FAO and Src.
Collapse
Affiliation(s)
- Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sandra L. Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | | | - Tagari Samanta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Advanced Technology Core, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Dereck Mezquita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suzanne A.W. Fuqua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Boscaro C, Ramaschi GE, Trevisi L, Cignarella A, Bolego C. MiR-206 inhibits estrogen signaling and ovarian cancer cell migration without affecting GPER. Life Sci 2023; 333:122135. [PMID: 37778413 DOI: 10.1016/j.lfs.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIMS Estrogen-regulated pathways are involved in the etiology and progression of epithelial ovarian cancer (EOC), but the relative contribution of estrogen receptor isoforms is unclear. Only a subset of patients responds to antiestrogens including tamoxifen. Based on our previous evidence that miR-206 behaves as an oncosuppressor in EOC, we hypothesized that miR-206 would interfere with G protein-coupled estrogen receptor (GPER)-mediated signaling and cell motility. MAIN METHODS PFKFB3 and FAK proteins from OC cells challenged with selective estrogen receptor agonist and antagonist were measured by Western blotting. Cell proliferation and motility were analyzed by MTT and Boyden chamber, respectively. Estrogen-dependent cells were transfected with miR-206 mimic or control using Lipofectamine. KEY FINDINGS The migration of SKOV3 and OVCAR5 cells significantly increased following treatment with 17β-estradiol (E2) and the selective GPER agonist G1. However, tamoxifen failed to inhibit E2 effect and even promoted SKOV3 cell migration. Estrogen receptor ligands did not affect SKOV3 proliferation. The GPER antagonist G15 significantly prevented E2-mediated upregulation of PFKFB3 expression, while G1 concentration-dependently upregulated PFKFB3 levels. Consistent with the functional link between PFKFB3 and FAK activation, E2 and G1 increased FAK phosphorylation at Tyr397. Transfection with miR-206 abolished estrogen-induced EOC migration and down-regulated PFKFB3 protein levels. Notably, miR-206 transfection reduced ERα protein abundance, whereas GPER amount was unchanged. SIGNIFICANCE By blocking estrogen signaling and G1-induced EOC cell invasiveness with no direct interference with GPER levels, miR-206 mimics have the potential to act as pathway-selective antagonists and deserve further testing as RNA therapeutics in estrogen-dependent EOC.
Collapse
Affiliation(s)
| | | | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.
| |
Collapse
|
9
|
Gu X, Li X, Zhang X, Tong L, Feng R, Liu L, Sun H, Zhang Q, Bian T, Zhang J, Gao L, Zhang C, Liu J, Liu Y. Noncoding RNA-Mediated High Expression of PFKFB3 Correlates with Poor Prognosis and Tumor Immune Infiltration of Lung Adenocarcinoma. Onco Targets Ther 2023; 16:767-783. [PMID: 37771939 PMCID: PMC10522466 DOI: 10.2147/ott.s416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
Background There is growing evidence showing that 6-phosphofructo-2-kinase (PFKFB3) plays crucial roles in different types of human cancers, including LUAD; however, the specific mechanism by which PFKFB3 plays a role in LUAD remains unclear. Methods We investigated the expression of PFKFB3 and explored the underlying mechanism as well as the correlation with immune markers using several online datasets, such as Tumor Immune Estimate Resource (TIMER), UALCAN, and the Cancer Genome Atlas (TCGA) databases, miRWalk, Targetscan, MiRDB and starBase database. Western blot and immunohistochemistry analysis were performed to verify the corresponding outcomes. Results It was shown that the mRNA expression of PFKFB3 was lower in LUAD than in the normal tissues, while its protein expression was not consistent with the mRNA level. The expression of PFKFB3 was correlated with clinicopathological parameters and several signaling pathways. The potential long chain (lnc)RNA/microRNA/PFKFB3 axis and the possible mechanism by which tumor progression in LUAD is promoted was predicted. We obtained the LINC01798/LINC02086/AP000845.1/HAGLR-miR-17-5p-PFKFB3 axis after comprehensive analyses of expression, correlation, and survival. Moreover, the expression of PFKFB3 was positively correlated with immune cells and immune checkpoint expression, including PD-1, PD-L1 and CTLA-4. Conclusion The present study demonstrated that noncoding RNAs mediated the upregulation of PFKFB3 and was associated with a poor prognosis and immune tumor infiltration in LUAD.
Collapse
Affiliation(s)
- Xue Gu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Xue Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Li Tong
- Department of Pathology, Affiliated Hospital of Nantong University, Dalian Medical University, Nantong, 226001, People’s Republic of China
| | - Ran Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Lihua Gao
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Chenxi Zhang
- Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jian Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
10
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|
11
|
Dama A, Baggio C, Trevisi L, Bolego C, Cignarella A. Regulation of human endothelial cell migration by oral contraceptive estrogen receptor ligands. Eur J Pharmacol 2023; 945:175591. [PMID: 36804546 DOI: 10.1016/j.ejphar.2023.175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Ethinylestradiol (EE) and estetrol (E4) are the two main estrogenic agents used in combined oral contraceptives. These compounds have different binding affinity to and efficacy on estrogen receptors (ER) subtypes. We previously reported that treatment with estrogenic agents enhances angiogenesis via nongenomic, G protein-coupled estrogen receptor (GPER)-dependent mechanisms. However, the impact of EE and E4 on human endothelial function has been little investigated. EE and E4 (10-9- 10-7 M) significantly enhanced migration of human umbilical vein endothelial cells (HUVECs) using scratch and Boyden chamber assays. Mechanistically, both agents increased accumulation of phosphorylated protein tyrosine kinase 2 on tyrosine 397 (FAK Y397), a key player in endothelial cell motility, after 30-min treatment. Treatment with increasing concentrations of EE, but not E4, enhanced accumulation of the glycolysis activator PFKFB3. Of note, effects of EE and E4 on endothelial migration and signalling proteins were abolished by addition of the GPER antagonist G36 (10-6 M). Thus, EE and E4 induced comparable endothelial responses in vitro, suggesting no apparent alterations of vascular remodelling and regeneration capacity by oral contraceptives containing these agents.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, Padova, Italy; Albanian University, Tirana, Albania
| | - Chiara Baggio
- Department of Medicine, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
12
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
13
|
Jingtai Z, Linfei H, Yuyang Q, Ning K, Xinwei Y, Xin W, Xianhui R, Dongmei H, Weiwei Y, Xiangrui M, Tianze Z, Wei W, Xiangqian Z. Targeting Aurora-A inhibits tumor progression and sensitizes thyroid carcinoma to Sorafenib by decreasing PFKFB3-mediated glycolysis. Cell Death Dis 2023; 14:224. [PMID: 36990998 PMCID: PMC10060208 DOI: 10.1038/s41419-023-05709-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
AbstractThyroid cancer (TC) is the most common endocrine tumor, amongst which anaplastic thyroid carcinoma (ATC) is the most deadly. Aurora-A usually functions as oncogenes, and its inhibitor Alisertib exerts a powerful antitumor effect in various tumors. However, the mechanism of Aurora-A in regulating TC cell energy supply remains unclear. In the present study, we demonstrated the antitumor effect of Alisertib and an association between high Aurora-A expression and shorter survival. Multi-omics data and in vitro validation data suggested that Aurora-A induced PFKFB3-mediated glycolysis to increase ATP supply, which significantly upregulated the phosphorylation of ERK and AKT. Furthermore, the combination of Alisertib and Sorafenib had a synergistic effect, further confirmed in xenograft models and in vitro. Collectively, our study provides compelling evidence of the prognostic value of Aurora-A expression and suggests that Aurora-A upregulates PFKFB3-mediated glycolysis to enhance ATP supply and promote TC progression. Combining Alisertib with Sorafenib has huge prospects for application in treating advanced thyroid carcinoma.
Collapse
|
14
|
Cheng X, Jia X, Wang C, Zhou S, Chen J, Chen L, Chen J. Hyperglycemia induces PFKFB3 overexpression and promotes malignant phenotype of breast cancer through RAS/MAPK activation. World J Surg Oncol 2023; 21:112. [PMID: 36973739 PMCID: PMC10044395 DOI: 10.1186/s12957-023-02990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common tumor in women worldwide. Diabetes mellitus is a global chronic metabolic disease with increasing incidence. Diabetes mellitus has been reported to positively regulate the development of many tumors. However, the specific mechanism of hyperglycemic environment regulating breast cancer remains unclear. PFKFB3 (6-phosphofructose-2-kinase/fructose-2, 6-bisphosphatase 3) is a key regulatory factor of the glycolysis process in diabetes mellitus, as well as a promoter of breast cancer. So, we want to explore the potential link between PFKFB3 and the poor prognosis of breast cancer patients with hyperglycemia in this study. METHODS Cell culture was utilized to construct different-glucose breast cancer cell lines. Immunohistochemistry was adopted to analyze the protein level of PFKFB3 in benign breast tissues, invasive ductal carcinoma with diabetes and invasive ductal carcinoma without diabetes. The Kaplan-Meier plotter database and GEO database (GSE61304) was adopted to analyze the survival of breast cancer patients with different PFKFB3 expression. Western blot was adopted to analyze the protein level of PFKFB3, epithelial-mesenchymal transition (EMT)-related protein and extracellular regulated protein kinases (ERK) in breast cancer cells. Gene Set Cancer Analysis (GSCA) was utilized to investigate the potential downstream signaling pathways of PFKFB3. TargetScan and OncomiR were utilized to explore the potential mechanism of PFKFB3 overexpression by hyperglycemia. Transfections (including siRNAs and miRNA transfection premiers) was utilized to restrain or mimic the expression of the corresponding RNA. Cell functional assays (including cell counting, MTT, colony formation, wound-healing, and cell migration assays) were utilized to explore the proliferation and migration of breast cancer cells. RESULTS In this study, we demonstrated that the expression of PFKFB3 in breast cancer complicated with hyperglycemia was higher than that in breast cancer with euglycemia through cell experiment in vitro and histological experiment. PFKFB3 overexpression decreased the survival period of breast cancer patients and was correlated with a number of clinicopathological parameters of breast cancer complicated with diabetes. PFKFB3 promoted the proliferation and migration of breast cancer in a hyperglycemic environment and might be regulated by miR-26. In addition, PFKFB3 stimulated epithelial-mesenchymal transition of breast cancer in a hyperglycemic environment. In terms of downstream mechanism exploration, we predicted and verified the cancer-promoting effect of PFKFB3 in breast cancer complicated with hyperglycemia through RAS/MAPK pathway. CONCLUSIONS In conclusion, PFKFB3 could be overexpressed by hyperglycemia and might be a potential therapeutic target for breast cancer complicated with diabetes.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Xiupeng Jia
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Chunnian Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Shangyan Zhou
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Jiayi Chen
- Department of Experimental Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Lei Chen
- Department of Cytopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Jinping Chen
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
15
|
Das C, Adhikari S, Bhattacharya A, Chakraborty S, Mondal P, Yadav SS, Adhikary S, Hunt CR, Yadav K, Pandita S, Roy S, Tainer JA, Ahmed Z, Pandita TK. Epigenetic-Metabolic Interplay in the DNA Damage Response and Therapeutic Resistance of Breast Cancer. Cancer Res 2023; 83:657-666. [PMID: 36661847 PMCID: PMC11285093 DOI: 10.1158/0008-5472.can-22-3015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shalini S. Yadav
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Clayton R Hunt
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kamlesh Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| | - Shruti Pandita
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, 78229, USA
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zamal Ahmed
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
16
|
Salem K, Reese RM, Alarid ET, Fowler AM. Progesterone Receptor-Mediated Regulation of Cellular Glucose and 18F-Fluorodeoxyglucose Uptake in Breast Cancer. J Endocr Soc 2022; 7:bvac186. [PMID: 36601022 PMCID: PMC9795483 DOI: 10.1210/jendso/bvac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
Context Positron emission tomography imaging with 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) is used clinically for initial staging, restaging, and assessing therapy response in breast cancer. Tumor FDG uptake in steroid hormone receptor-positive breast cancer and physiologic FDG uptake in normal breast tissue can be affected by hormonal factors such as menstrual cycle phase, menopausal status, and hormone replacement therapy. Objective The purpose of this study was to determine the role of the progesterone receptor (PR) in regulating glucose and FDG uptake in breast cancer cells. Methods and Results PR-positive T47D breast cancer cells treated with PR agonists had increased FDG uptake compared with ethanol control. There was no significant change in FDG uptake in response to PR agonists in PR-negative MDA-MB-231 cells, MDA-MB-468 cells, or T47D PR knockout cells. Treatment of T47D cells with PR antagonists inhibited the effect of R5020 on FDG uptake. Using T47D cell lines that only express either the PR-A or the PR-B isoform, PR agonists increased FDG uptake in both cell types. Experiments using actinomycin D and cycloheximide demonstrated the requirement for both transcription and translation in PR regulation of FDG uptake. GLUT1 and PFKFB3 mRNA expression and the enzymatic activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were increased after progestin treatment of T47D cells. Conclusion Thus, progesterone and progestins increase FDG uptake in T47D breast cancer cells through the classical action of PR as a ligand-activated transcription factor. Ligand-activated PR ultimately increases expression and activity of proteins involved in glucose uptake, glycolysis, and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca M Reese
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
17
|
Pacheco-Velázquez SC, Ortega-Mejía II, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Tapia-Martínez G, Peñalosa-Castro I, Aguilar-Ponce JL, Granados-Rivas JC, Moreno-Sánchez R, Rodríguez-Enríquez S. 17-β Estradiol up-regulates energy metabolic pathways, cellular proliferation and tumor invasiveness in ER+ breast cancer spheroids. Front Oncol 2022; 12:1018137. [PMID: 36419896 PMCID: PMC9676491 DOI: 10.3389/fonc.2022.1018137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
Several biological processes related to cancer malignancy are regulated by 17-β estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERβ receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ignacio Peñalosa-Castro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | | | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Rafael Moreno-Sánchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| |
Collapse
|
18
|
Morita T. Seeking an Important Role on Metabolomics—Effects of β-Estradiol on Lipoprotein Metabolism in Mammary Tumors. YAKUGAKU ZASSHI 2022; 142:1191-1199. [DOI: 10.1248/yakushi.22-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Morita
- Department of Biochemistry, Faculty and Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
19
|
Insight into Potential Interactions of Thyroid Hormones, Sex Hormones and Their Stimulating Hormones in the Development of Non-Alcoholic Fatty Liver Disease. Metabolites 2022; 12:metabo12080718. [PMID: 36005590 PMCID: PMC9414490 DOI: 10.3390/metabo12080718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common manifestation of metabolic syndrome. In addition to lifestyle, endocrine hormones play a role in the dysregulation of hepatic metabolism. The most common endocrine hormones contributing to metabolic syndrome are alterations in the levels of thyroid hormones (THs, predominantly in subclinical hypothyroidism) and of sex hormones (in menopause). These hormonal changes influence hepatic lipid and glucose metabolism and may increase hepatic fat accumulation. This review compares the effects of sex hormones, THs and the respective stimulating hormones, Thyroid-Stimulating Hormone (TSH) and Follicle-Stimulating Hormone (FSH), on the development of hepatosteatosis. TSH and FSH may be more relevant to the dysregulation of hepatic metabolism than the peripheral hormones because metabolic changes were identified when only levels of the stimulating hormones were abnormal and the peripheral hormones were still in the reference range. Increased TSH and FSH levels appear to have additive effects on the development of NAFLD and to act independently from each other.
Collapse
|
20
|
FitzPatrick AM. Is Estrogen a Missing Culprit in Thyroid Eye Disease? Sex Steroid Hormone Homeostasis Is Key to Other Fibrogenic Autoimmune Diseases - Why Not This One? Front Immunol 2022; 13:898138. [PMID: 35784325 PMCID: PMC9248759 DOI: 10.3389/fimmu.2022.898138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex bias in autoimmune disease (AID) prevalence is known, but the role of estrogen in disease progression is more complex. Estrogen can even be protective in some AIDs; but in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc), estrogen, its metabolites, and its receptors have been demonstrated to play critical, localized inflammatory roles. Estrogen is instrumental to the fibrosis seen in RA, SLE, SSc and other disease states, including breast cancer and uterine leiomyomas. Fibrotic diseases tend to share a common pattern in which lymphocyte-monocyte interactions generate cytokines which stimulate the deposition of fibrogenic connective tissue. RA, SLE, SSc and thyroid eye disease (TED) have very similar inflammatory and fibrotic patterns-from pathways to tissue type. The thorough investigations that demonstrated estrogen's role in the pathology of RA, SLE, and SSc could, and possibly should, be carried out in TED. One might even expect to find an even greater role for estrogen, and sex steroid homeostasis in TED, given that TED is typically sequalae to Graves' disease (GD), or Hashimoto's disease (HD), and these are endocrine disorders that can create considerable sex steroid hormone dysregulation. This paper highlights the pathophysiology similarities in 4 AIDs, examines the evidence of sex steroid mediated pathology across 3 AIDs and offers a case study and speculation on how this may be germane to TED.
Collapse
|
21
|
Jones BC, Pohlmann PR, Clarke R, Sengupta S. Treatment against glucose-dependent cancers through metabolic PFKFB3 targeting of glycolytic flux. Cancer Metastasis Rev 2022; 41:447-458. [PMID: 35419769 DOI: 10.1007/s10555-022-10027-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
Abstract
Reprogrammed metabolism and high energy demand are well-established properties of cancer cells that enable tumor growth. Glycolysis is a primary metabolic pathway that supplies this increased energy demand, leading to a high rate of glycolytic flux and a greater dependence on glucose in tumor cells. Finding safe and effective means to control glycolytic flux and curb cancer cell proliferation has gained increasing interest in recent years. A critical step in glycolysis is controlled by the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which converts fructose 6-phosphate (F6P) to fructose 2,6-bisphosphate (F2,6BP). F2,6BP allosterically activates the rate-limiting step of glycolysis catalyzed by PFK1 enzyme. PFKFB3 is often overexpressed in many human cancers including pancreatic, colon, prostate, and breast cancer. Hence, PFKFB3 has gained increased interest as a compelling therapeutic target. In this review, we summarize and discuss the current knowledge of PFKFB3 functions, its role in cellular pathways and cancer development, its transcriptional and post-translational activity regulation, and the multiple pharmacologic inhibitors that have been used to block PFKFB3 activity in cancer cells. While much remains to be learned, PFKFB3 continues to hold great promise as an important therapeutic target either as a single agent or in combination with current interventions for breast and other cancers.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Paula R Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
22
|
Ishfaq M, Bashir N, Riaz SK, Manzoor S, Khan JS, Bibi Y, Sami R, Aljahani AH, Alharthy SA, Shahid R. Expression of HK2, PKM2, and PFKM Is Associated with Metastasis and Late Disease Onset in Breast Cancer Patients. Genes (Basel) 2022; 13:549. [PMID: 35328104 PMCID: PMC8955648 DOI: 10.3390/genes13030549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
Abstract
The reprogramming of energy metabolism is one of the hallmarks of cancer and is crucial for tumor progression. Altered aerobic glycolysis is a well-known characteristic of cancer cell metabolism. In the present study, the expression profiles of key metabolic genes (HK2, PFKM, and PKM2) were assessed in the breast cancer cohort of Pakistan using quantitative polymerase chain reaction (qPCR) and IHC. Expression patterns were correlated with molecular subtypes and clinical parameters in the patients. A significant upregulation of key glycolytic genes was observed in tumor samples in comparison to their adjacent controls (p < 0.0001). The expression of the studied glycolytic genes was significantly increased in late clinical stages, positive nodal involvement, and distant metastasis (p < 0.05). HK2 and PKM2 were found to be upregulated in luminal B, whereas PFKM was overexpressed in the luminal A subtype of breast cancer. The genes were positively correlated with the proliferation marker Ki67 (p < 0.001). Moreover, moderate positive linear correlations between HK2 and PKM2 (r = 0.476), HK2 and PFKM (r = 0.473), and PKM2 and PFKM (r = 0.501) were also observed (p < 0.01). These findings validate that the key regulatory genes in glycolysis can serve as potential biomarkers and/or molecular targets for breast cancer management. However, the clinical significance of these molecules needs to be further validated through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Mehreen Ishfaq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (M.I.); (N.B.)
| | - Nabiha Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (M.I.); (N.B.)
| | - Syeda Kiran Riaz
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan;
| | - Shumaila Manzoor
- National Veterinary Lab, National Agricultural Research Centre, Islamabad 44000, Pakistan;
| | - Jahangir Sarwar Khan
- Department of General Surgery, Rawalpindi Medical University, Rawalpindi 46000, Pakistan;
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Saif A. Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia;
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (M.I.); (N.B.)
| |
Collapse
|
23
|
Galindo CM, Oliveira Ganzella FAD, Klassen G, Souza Ramos EAD, Acco A. Nuances of PFKFB3 signaling in breast cancer. Clin Breast Cancer 2022; 22:e604-e614. [DOI: 10.1016/j.clbc.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
|
24
|
Wang X, Zhang Y, Li Y, Tang M, Deng Q, Mao J, Du L. Estrogen Regulates Glucose Metabolism in Cattle Neutrophils Through Autophagy. Front Vet Sci 2021; 8:773514. [PMID: 34912878 PMCID: PMC8666889 DOI: 10.3389/fvets.2021.773514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle is the major reason for a reduced glycogen content in polymorphonuclear neutrophils (PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the high incidence of perinatal diseases. The perinatal period is accompanied by dramatic changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to be closely associated with PMNs function. However, the precise regulatory mechanism of E2 on glucose metabolism in cattle PMNs has not been elucidated. Cattle PMNs were cultured in RPMI 1640 with 2.5 (LG), 5.5 (NG) and 25 (HG) mM glucose and E2 at 20 (EL), 200 (EM) and 450 (EH) pg/mL. We found that E2 maintained PMNs viability in different glucose conditions, and promoted glycogen synthesis by inhibiting PFK1, G6PDH and GSK-3β activity in LG while enhancing PFK1 and G6PDH activity and inhibiting GSK-3β activity in HG. E2 increased the ATP content in LG but decreased it in HG. This indicated that the E2-induced increase/decrease of ATP content may be independent of glycolysis and the pentose phosphate pathway (PPP). Further analysis showed that E2 promoted the activity of hexokinase (HK) and GLUT1, GLUT4 and SGLT1 expression in LG, while inhibiting GLUT1, GLUT4 and SGLT1 expression in HG. Finally, we found that E2 increased LC3, ATG5 and Beclin1 expression, inhibited p62 expression, promoting AMPK-dependent autophagy in LG, but with the opposite effect in HG. Moreover, E2 increased the Bcl-2/Bax ratio and decreased the apoptosis rate of PMNs in LG but had the opposite effect in HG. These results showed that E2 could promote AMPK-dependent autophagy and inhibit apoptosis in response to glucose-deficient environments. This study elucidated the detailed mechanism by which E2 promotes glycogen storage through enhancing glucose uptake and retarding glycolysis and the PPP in LG. Autophagy is essential for providing ATP to maintain the survival and immune potential of PMNs. These results provided significant evidence for further understanding the effects of E2 on PMNs immune potential during the hypoglycemia accompanying perinatal NEB in cattle.
Collapse
Affiliation(s)
- Xinbo Wang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yuming Zhang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yansong Li
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Mingyu Tang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Qinghua Deng
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Liyin Du
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|
25
|
Circulating oestradiol determines liver lipid deposition in rats fed standard diets partially unbalanced with higher lipid or protein proportions. Br J Nutr 2021; 128:1499-1508. [PMID: 34776031 PMCID: PMC9557166 DOI: 10.1017/s0007114521004505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ingestion of excess lipids often produces the accumulation of liver fat. The modulation of diet energy partition affects this process and other metabolic responses, and oestrogens and androgens are implied in this process. Ten-week-old male and female rats were fed with either standard rat chow (SD), SD enriched with coconut oil (high-fat diet, HF), SD enriched with protein (high-protein diet, HP) or a ‘cafeteria’ diet (CAF) for 1 month. HF and CAF diets provided the same lipid-derived percentage of energy (40 %), HP diet protein energy derived was twice (40 %) that of the SD. Animals were killed under anaesthesia and samples of blood and liver were obtained. Hepatic lipid content showed sex-related differences: TAG accumulation tended to increase in HF and CAF fed males. Cholesterol content was higher only in the CAF males. Plasma oestradiol in HF and HP males was higher than in CAF. Circulating cholesterol was inversely correlated with plasma oestradiol. These changes agreed with the differences in the expression of some enzymes related to lipid and energy metabolism, such as fatty acid synthetase or phosphoglycolate phosphatase. Oestrogen protective effects extend to males with ‘normal’ diets, that is, not unbalanced by either lipid or protein, but this protection was not enough against the CAF diet. Oestradiol seems to actively modulate the liver core of 2C-3C partition of energy substrates, regulating cholesterol deposition and lactate production.
Collapse
|
26
|
Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun Biol 2021; 4:1264. [PMID: 34737380 PMCID: PMC8569015 DOI: 10.1038/s42003-021-02790-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid β-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate dehydrogenase kinase 4), that may function as switches between the two sexually dimorphic metabolic pathways. Interestingly, Pfkfb3 and Pdk4 show male-enriched and estradiol-enhanced expression, respectively. Moreover, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Considering that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women, and under pathological conditions involving skeletal muscles. Baba et al. analyzed the transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes and identified Pfkfb3 and Pdk4 as differentially regulated genes between males and diestrus females. The authors found that Pfkfb3 and Pdk4 may act as metabolic switches, showed male-enriched and estradiol-enhanced expression, respectively and contributed to sexually dimorphic metabolism.
Collapse
|
27
|
Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10:cells10112913. [PMID: 34831136 PMCID: PMC8616071 DOI: 10.3390/cells10112913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Reinier Alvarez
- Department of Neurological Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
- Correspondence:
| |
Collapse
|
28
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
29
|
Xing J, Jia Z, Xu Y, Chen M, Yang Z, Chen Y, Han Y. KLF9 (Kruppel Like Factor 9) induced PFKFB3 (6-Phosphofructo-2-Kinase/Fructose-2, 6-Biphosphatase 3) downregulation inhibits the proliferation, metastasis and aerobic glycolysis of cutaneous squamous cell carcinoma cells. Bioengineered 2021; 12:7563-7576. [PMID: 34612136 PMCID: PMC8806463 DOI: 10.1080/21655979.2021.1980644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common skin cancer in humans with increasing incidence. In this paper, we focused on the effects of krueppel-like factor 9 (KLF9) on the progression of CSCC cells by binding to PFKFB3. mRNA and protein expressions of KLF9 and PFKFB3 in human HaCaT and CSCC cells were, respectively, examined by RT-qPCR analysis and Western blot. The viability, proliferation, invasion and migration of A431 cells after transfection were analyzed with MTT, clone formation, transwell and wound healing assays. The levels of glucose, lactic acid and ATP in transfected A431 cells were detected by their commercial kits. Ki-67 expression in transfected A431 cells was determined using immunofluorescence analysis and in tumor tissues was analyzed by immunohistochemistry. The levels of migration, EMT and aerobic glycolysis-related proteins were tested with Western blot. The combination of KLF9 and PFKFB3 was confirmed by dual-luciferase reporter assay and ChIP. As a result, PFKFB3 expression was elevated in CSCC cells compared with HaCaT. Knockdown of PFKFB3 restrained the proliferation, metastasis, and aerobic glycolysis of CSCC cells. In addition, KLF9 could bind to PFKFB3. Downregulation of KLF9 crippled the inhibitory effect of knockdown of PFKFB3 on the proliferation, metastasis, and aerobic glycolysis of CSCC cells. In conclusion, PFKFB3 was transcriptionally regulated by KLF9, and PFKFB3 silencing inhibits the proliferation, metastasis, and aerobic glycolysis of cutaneous squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese Pla General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Jia
- Peking Union Medical College, Beijing, China
| | - Yichi Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese Pla General Hospital, Beijing, China
| | - Muzi Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese Pla General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese Pla General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese Pla General Hospital, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese Pla General Hospital, Beijing, China
| |
Collapse
|
30
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Ozcan SC, Mutlu A, Altunok TH, Gurpinar Y, Sarioglu A, Guler S, Muchut RJ, Iglesias AA, Celikler S, Campbell PM, Yalcin A. Simultaneous inhibition of PFKFB3 and GLS1 selectively kills KRAS-transformed pancreatic cells. Biochem Biophys Res Commun 2021; 571:118-124. [PMID: 34325126 DOI: 10.1016/j.bbrc.2021.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Activating mutations of the oncogenic KRAS in pancreatic ductal adenocarcinoma (PDAC) are associated with an aberrant metabolic phenotype that may be therapeutically exploited. Increased glutamine utilization via glutaminase-1 (GLS1) is one such feature of the activated KRAS signaling that is essential to cell survival and proliferation; however, metabolic plasticity of PDAC cells allow them to adapt to GLS1 inhibition via various mechanisms including activation of glycolysis, suggesting a requirement for combinatorial anti-metabolic approaches to combat PDAC. We investigated whether targeting the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) in combination with GLS1 can selectively prevent the growth of KRAS-transformed cells. We show that KRAS-transformation of pancreatic duct cells robustly sensitizes them to the dual targeting of GLS1 and PFKFB3. We also report that this sensitivity is preserved in the PDAC cell line PANC-1 which harbors an activating KRAS mutation. We then demonstrate that GLS1 inhibition reduced fructose-2,6-bisphosphate levels, the product of PFKFB3, whereas PFKFB3 inhibition increased glutamine consumption, and these effects were augmented by the co-inhibition of GLS1 and PFKFB3, suggesting a reciprocal regulation between PFKFB3 and GLS1. In conclusion, this study identifies a novel mutant KRAS-induced metabolic vulnerability that may be targeted via combinatorial inhibition of GLS1 and PFKFB3 to suppress PDAC cell growth.
Collapse
Affiliation(s)
- Selahattin C Ozcan
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, 34450, Turkey
| | - Aydan Mutlu
- Department of General Biology, School of Arts & Science, Bursa Uludag University, Bursa, 16059, Turkey
| | - Tugba H Altunok
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Yunus Gurpinar
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Aybike Sarioglu
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Sabire Guler
- Department of Histology & Embryology, School of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Robertino J Muchut
- Department of Molecular Enzymology, Coastal Agrobiotechnology Institute, National University of the Littoral, Santa Fe, 3000, Argentina
| | - Alberto A Iglesias
- Department of Molecular Enzymology, Coastal Agrobiotechnology Institute, National University of the Littoral, Santa Fe, 3000, Argentina
| | - Serap Celikler
- Department of General Biology, School of Arts & Science, Bursa Uludag University, Bursa, 16059, Turkey
| | - Paul M Campbell
- The Marvin and Concetta Greenberg Pancreatic Cancer Institute, Cancer Signaling & Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Abdullah Yalcin
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey.
| |
Collapse
|
32
|
Abstract
This Review focuses on the mechanistic evidence for a link between obesity, dysregulated cellular metabolism and breast cancer. Strong evidence now links obesity with the development of 13 different types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women. A number of local and systemic changes are hypothesized to support this relationship, including increased circulating levels of insulin and glucose as well as adipose tissue-derived oestrogens, adipokines and inflammatory mediators. Metabolic pathways of energy production and utilization are dysregulated in tumour cells and this dysregulation is a newly accepted hallmark of cancer. Dysregulated metabolism is also hypothesized to be a feature of non-neoplastic cells in the tumour microenvironment. Obesity-associated factors regulate metabolic pathways in both breast cancer cells and cells in the breast microenvironment, which provides a molecular link between obesity and breast cancer. Consequently, interventions that target these pathways might provide a benefit in postmenopausal women and individuals with obesity, a population at high risk of breast cancer.
Collapse
Affiliation(s)
- Kristy A Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Arundhathi JRD, Mathur SR, Gogia A, Deo SVS, Mohapatra P, Prasad CP. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep 2021; 48:4733-4745. [PMID: 34047880 DOI: 10.1007/s11033-021-06414-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023]
Abstract
Among breast cancer subtypes, the triple negative breast cancer (TNBC) has the worst prognosis. In absence of any permitted targeted therapy, standard chemotherapy is the mainstay for TNBC treatment. Hence, there is a crucial need to identify potential druggable targets in TNBCs for its effective treatment. In recent times, metabolic reprogramming has emerged as cancer cells hallmark, wherein cancer cells display discrete metabolic phenotypes to fuel cell progression and metastasis. Altered glycolysis is one such phenotype, in which even in oxygen abundance majority of cancer cells harvest considerable amount of energy through elevated glycolytic-flux. In the present review, we attempt to summarize the role of key glycolytic enzymes i.e. HK, Hexokinase; PFK, Phosphofructokinase; PKM2, Pyruvate kinase isozyme type 2; and LDH, Lactate dehydrogenase in TNBCs, and possible therapeutic options presently available.
Collapse
Affiliation(s)
- J R Dev Arundhathi
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - S V S Deo
- Department of Surgical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | | | | |
Collapse
|
34
|
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021; 118:988-1003. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signaling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signaling pathway inhibition include an increase in arterial pressure, left ventricular (LV) dysfunction ultimately causing heart failure, and thromboembolic events, including pulmonary embolism, stroke, and myocardial infarction. Sex steroids such as androgens, progestins, and estrogen and their receptors (ERα, ERβ, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor treatments, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target and cell-type selectivity likely will open the way personalized medicine in men and women requiring antiangiogenic therapy and result in reduced adverse effects and improved therapeutic efficacy.
Collapse
Affiliation(s)
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Italy
| | | | - Antonio Rosato
- Venetian Cancer Institute IOV - IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | | | - Matthias Barton
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.,Molecular Internal Medicine, University of Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|
35
|
Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S, Dzięgiel P. Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets. Cancers (Basel) 2021; 13:909. [PMID: 33671514 PMCID: PMC7926708 DOI: 10.3390/cancers13040909] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.
Collapse
Affiliation(s)
- Krzysztof Kotowski
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.R.); (F.M.)
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.R.); (F.M.)
| | - Stanisław Supplitt
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Daniel Wiczew
- Department of Biochemical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
- Laboratoire de physique et chimie théoriques, Université de Lorraine, F-54000 Nancy, France
| | - Karolina Jabłońska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
| | - Emilia Wiechec
- Department of Biomedical and Clinical Sciences (BKV), Division of Cell Biology, Linköping University, Region Östergötland, 581 85 Linköping, Sweden;
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 581 85 Linköping, Sweden
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.K.); (K.J.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
36
|
Zheng Y, Zhu Y, Zhuge T, Li B, Gu C. Metabolomics Analysis Discovers Estrogen Altering Cell Proliferation via the Pentose Phosphate Pathway in Infertility Patient Endometria. Front Endocrinol (Lausanne) 2021; 12:791174. [PMID: 34867831 PMCID: PMC8636142 DOI: 10.3389/fendo.2021.791174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Estrogen therapy is widely used as a supplementary treatment after hysteroscopy for female infertility patients owing to its protective function that improves endometrial regeneration and menstruation, inhibits recurrent adhesions, and improves subsequent conception rate. The endometrial protective function of such estrogen administration pre-surgery is still controversial. In the current study, 12 infertility patients were enrolled, who were treated with estrogen before hysteroscopy surgery. Using cutting-edge metabolomic analysis, we observed alterations in the pentose phosphate pathway (PPP) intermediates of the patient's endometrial tissues. Furthermore, using Ishikawa endometrial cells, we validated our clinical discovery and identified estrogen-ESR-G6PD-PPP axial function, which promotes estrogen-induced cell proliferation.
Collapse
Affiliation(s)
- Yingxin Zheng
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yuemeng Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ting Zhuge
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bin Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Chao Gu, ; Bin Li,
| | - Chao Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Chao Gu, ; Bin Li,
| |
Collapse
|
37
|
Boscaro C, Trenti A, Baggio C, Scapin C, Trevisi L, Cignarella A, Bolego C. Sex Differences in the Pro-Angiogenic Response of Human Endothelial Cells: Focus on PFKFB3 and FAK Activation. Front Pharmacol 2020; 11:587221. [PMID: 33390959 PMCID: PMC7773665 DOI: 10.3389/fphar.2020.587221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
Female hormones and sex-specific factors are established determinants of endothelial function, yet their relative contribution to human endothelium phenotypes has not been defined. Using human umbilical vein endothelial cells (HUVECs) genotyped by donor's sex, we investigated the influence of sex and estrogenic agents on the main steps of the angiogenic process and on key proteins governing HUVEC metabolism and migratory properties. HUVECs from female donors (fHUVECs) showed increased viability (p < 0.01) and growth rate (p < 0.01) compared with those from males (mHUVECs). Despite higher levels of G-protein coupled estrogen receptor (GPER) in fHUVECs (p < 0.001), treatment with 17β-estradiol (E2) and the selective GPER agonist G1 (both 1-100 nM) did not affect HUVEC viability. Migration and tubularization in vitro under physiological conditions were higher in fHUVECs than in mHUVECs (p < 0.05). E2 treatment (1-100 nM) upregulated the glycolytic activator PFKFB3 with higher potency in fHUVECs than in mHUVECs, despite comparable baseline levels. Moreover, Y576/577 phosphorylation of focal adhesion kinase (FAK) was markedly enhanced in fHUVECs (p < 0.001), despite comparable Src activation levels. While the PI3K inhibitor LY294002 (25 µM) inhibited HUVEC migration (p < 0.05), Akt phosphorylation levels in fHUVECs and mHUVECs were comparable. Finally, digitoxin treatment, which inhibits Y576/577 FAK phosphorylation, abolished sexual dimorphism in HUVEC migration. These findings unravel complementary modulation of HUVEC functional phenotypes and signaling molecules involved in angiogenesis by hormone microenvironment and sex-specific factors, and highlight the need for sex-oriented pharmacological targeting of endothelial function.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Scapin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Rani Y, Kaur K, Sharma M, Kalia N. In silico analysis of SNPs in human phosphofructokinase, muscle (PFKM) gene: An apparent therapeutic target of aerobic glycolysis and cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Boscaro C, Carotti M, Albiero M, Trenti A, Fadini GP, Trevisi L, Sandonà D, Cignarella A, Bolego C. Non-genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells. FASEB J 2020; 34:12768-12784. [PMID: 32757462 DOI: 10.1096/fj.202001130r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Few studies have explored the mechanisms coupling estrogen signals to metabolic demand in endothelial cells. We recently showed that 17β-estradiol (E2) triggers angiogenesis via the membrane G-protein coupled estrogen receptor (GPER) and the key glycolytic protein PFKFB3 as a downstream effector. We herein investigated whether estrogenic agents regulate the stability and/or degradation of glycolytic proteins in human umbilical vein endothelial cells (HUVECs). Similarly to E2, the GPER selective agonist G1 rapidly increased PFKFB3 protein amounts, without affecting mRNA levels. In the presence of cycloheximide, E2 and G1 treatment counteracted PFKFB3 degradation over time, whereas E2-induced PFKFB3 stabilization was abolished by the GPER antagonist G15. Inhibitors of selective SCF E3 ubiquitin ligase (SMER-3) and proteasome (MG132) rapidly increased PFKFB3 protein levels. Accordingly, ubiquitin-bound PFKFB3 was lower in E2- or G1-treated HUVECs. Both agents increased deubiquitinase USP19 levels through GPER signaling. Notably, USP 19 siRNA decreased PFKFB3 levels and abolished E2- and G1-mediated HUVEC tubularization. Finally, E2 and G1 treatments rapidly enhanced glucose transporter GLUT1 levels via GPER independent of transcriptional activation. These findings provide new evidence on mechanisms coupling estrogen signals with the glycolytic program in endothelium and unravel the role of USP19 as a target of the pro-angiogenic effect of estrogenic agents.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
40
|
PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells. Mol Cell Biochem 2020; 470:115-129. [PMID: 32415418 DOI: 10.1007/s11010-020-03751-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/08/2020] [Indexed: 12/27/2022]
Abstract
Tumor cells increase glucose metabolism through glycolysis and pentose phosphate pathways to meet the bioenergetic and biosynthetic demands of rapid cell proliferation. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are key regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent activator of glycolysis. Previous studies have reported the co-expression of PFKFB isozymes, as well as the mRNA splice variants of particular PFKFB isozymes, suggesting non-redundant functions. Majority of the evidence demonstrating a requirement for PFKFB activity in increased glycolysis and oncogenic properties in tumor cells comes from studies on PFKFB3 and PFKFB4 isozymes. In this study, we show that the PFKFB2 isozyme is expressed in tumor cell lines of various origin, overexpressed and localizes to the nucleus in pancreatic adenocarcinoma, relative to normal pancreatic tissue. We then demonstrate the differential intracellular localization of two PFKFB2 mRNA splice variants and that, when ectopically expressed, cytoplasmically localized mRNA splice variant causes a greater increase in F2,6BP which coincides with an increased glucose uptake, as compared with the mRNA splice variant localizing to the nucleus. We then show that PFKFB2 expression is required for steady-state F2,6BP levels, glycolytic activity, and proliferation of pancreatic adenocarcinoma cells. In conclusion, this study may provide a rationale for detailed investigation of PFKFB2's requirement for the glycolytic and oncogenic phenotype of pancreatic adenocarcinoma cells.
Collapse
|
41
|
Abdi S, Montazeri V, Garjani A, Shayanfar A, Pirouzpanah S. Coenzyme Q10 in association with metabolism-related AMPK/PFKFB3 and angiogenic VEGF/VEGFR2 genes in breast cancer patients. Mol Biol Rep 2020; 47:2459-2473. [DOI: 10.1007/s11033-020-05310-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/07/2020] [Indexed: 11/28/2022]
|
42
|
The synergistic effect of PFK15 with metformin exerts anti-myeloma activity via PFKFB3. Biochem Biophys Res Commun 2019; 515:332-338. [DOI: 10.1016/j.bbrc.2019.05.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023]
|
43
|
Lypova N, Telang S, Chesney J, Imbert-Fernandez Y. Increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity in response to EGFR signaling contributes to non-small cell lung cancer cell survival. J Biol Chem 2019; 294:10530-10543. [PMID: 31126985 DOI: 10.1074/jbc.ra119.007784] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Indexed: 01/19/2023] Open
Abstract
Constitutive activation of the epidermal growth factor receptor (EGFR) because of somatic mutations of the EGFR gene is commonly observed in tumors of non-small cell lung cancer (NSCLC) patients. Consequently, tyrosine kinase inhibitors (TKI) targeting the EGFR are among the most effective therapies for patients with sensitizing EGFR mutations. Clinical responses to the EGFR-targeting TKIs are evaluated through 2-[18F]fluoro-2-deoxy-glucose (18FDG)-PET uptake, which is decreased in patients responding favorably to therapy and is positively correlated with survival. Recent studies have reported that EGFR signaling drives glucose metabolism in NSCLC cells; however, the precise downstream effectors required for this EGFR-driven metabolic effect are largely unknown. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is an essential glycolytic regulator that is consistently overexpressed in lung cancer. Here, we found that PFKFB3 is an essential target of EGFR signaling and that PFKFB3 activation is required for glycolysis stimulation upon EGFR activation. We demonstrate that exposing NSCLC cells harboring either WT or mutated EGFR to EGF rapidly increases PFKFB3 phosphorylation, expression, and activity and that PFKFB3 inhibition markedly reduces the EGF-mediated increase in glycolysis. Furthermore, we found that prolonged NSCLC cell exposure to the TKI erlotinib drives PFKFB3 expression and that chemical PFKFB3 inhibition synergizes with erlotinib in increasing erlotinib's anti-proliferative activity in NSCLC cells. We conclude that PFKFB3 has a key role in mediating glucose metabolism and survival of NSCLC cells in response to EGFR signaling. These results support the potential clinical utility of using PFKFB3 inhibitors in combination with EGFR-TKIs to manage NSCLC.
Collapse
Affiliation(s)
- Nadiia Lypova
- From the James Graham Brown Cancer Center, Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Sucheta Telang
- From the James Graham Brown Cancer Center, Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Jason Chesney
- From the James Graham Brown Cancer Center, Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202
| | - Yoannis Imbert-Fernandez
- From the James Graham Brown Cancer Center, Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
44
|
Li X, Wu L, Zopp M, Kopelov S, Du W. p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells. Stem Cells 2019; 37:937-947. [PMID: 30977208 PMCID: PMC6599562 DOI: 10.1002/stem.3015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 01/31/2023]
Abstract
Emerging evidence has shown that resting quiescent hematopoietic stem cells (HSCs) prefer to utilize anaerobic glycolysis rather than mitochondrial respiration for energy production. Compelling evidence has also revealed that altered metabolic energetics in HSCs underlies the onset of certain blood diseases; however, the mechanisms responsible for energetic reprogramming remain elusive. We recently found that Fanconi anemia (FA) HSCs in their resting state are more dependent on mitochondrial respiration for energy metabolism than on glycolysis. In the present study, we investigated the role of deficient glycolysis in FA HSC maintenance. We observed significantly reduced glucose consumption, lactate production, and ATP production in HSCs but not in the less primitive multipotent progenitors or restricted hematopoietic progenitors of Fanca−/− and Fancc−/− mice compared with that of wild‐type mice, which was associated with an overactivated p53 and TP53‐induced glycolysis regulator, the TIGAR‐mediated metabolic axis. We utilized Fanca−/− HSCs deficient for p53 to show that the p53‐TIGAR axis suppressed glycolysis in FA HSCs, leading to enhanced pentose phosphate pathway and cellular antioxidant function and, consequently, reduced DNA damage and attenuated HSC exhaustion. Furthermore, by using Fanca−/− HSCs carrying the separation‐of‐function mutant p53R172P transgene that selectively impairs the p53 function in apoptosis but not cell‐cycle control, we demonstrated that the cell‐cycle function of p53 was not required for glycolytic suppression in FA HSCs. Finally, ectopic expression of the glycolytic rate‐limiting enzyme PFKFB3 specifically antagonized p53‐TIGAR‐mediated metabolic reprogramming in FA HSCs. Together, our results suggest that p53‐TIGAR metabolic axis‐mediated glycolytic suppression may play a compensatory role in attenuating DNA damage and proliferative exhaustion in FA HSCs. stem cells2019;37:937–947
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Morgan Zopp
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Shaina Kopelov
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
45
|
Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T, Pasmanik-Chor M, Spitzer A, Rubinek T, Wolf I. Ligand-binding Domain–activating Mutations of ESR1 Rewire Cellular Metabolism of Breast Cancer Cells. Clin Cancer Res 2019; 25:2900-2914. [DOI: 10.1158/1078-0432.ccr-18-1505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/18/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
|
46
|
Gandhi N, Das GM. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 2019; 8:cells8020089. [PMID: 30691108 PMCID: PMC6406734 DOI: 10.3390/cells8020089] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming that also account for the tumors’ metabolic plasticity. For metabolic therapy to be efficacious there is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very interesting questions being tackled by researchers today as they pertain to altered metabolism in breast cancer. What are the metabolic differences between the different subtypes of breast cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis? How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect metabolic reprogramming and vice-versa? This review addresses these issues along with the latest updates in the field of breast cancer metabolism.
Collapse
Affiliation(s)
- Nishant Gandhi
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
47
|
Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. Trends Endocrinol Metab 2019; 30:25-38. [PMID: 30471920 DOI: 10.1016/j.tem.2018.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Estrogens and estrogen receptors (ERs) regulate metabolism in both normal physiology and in disease. The metabolic characteristics of intrinsic breast cancer subtypes change based on their ER expression. Crosstalk between estrogen signaling elements and several key metabolic regulators alters metabolism in breast cancer cells, and enables tumors to rewire their metabolism to adapt to poor perfusion, transient nutrient deprivation, and increased acidity. This leads to the selection of drug-resistant and metastatic clones. In this review we discuss studies revealing the role of estrogen signaling elements in drug resistance development and metabolic adaptation during breast cancer progression.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu-Cotul
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA. https://twitter.com/@eylemkul
| | - Alexandra Arca
- School of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
48
|
Yi M, Ban Y, Tan Y, Xiong W, Li G, Xiang B. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab 2018; 20:1-13. [PMID: 30553771 PMCID: PMC6358545 DOI: 10.1016/j.molmet.2018.11.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Cancer cells favor the use of less efficient glycolysis rather than mitochondrial oxidative phosphorylation to metabolize glucose, even in oxygen-rich conditions, a distinct metabolic alteration named the Warburg effect or aerobic glycolysis. In adult cells, bifunctional 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB) family members are responsible for controlling the steady-state cytoplasmic levels of fructose-2,6-bisphosphate, which allosterically activates 6-phosphofructo-1-kinase, the key enzyme catalyzing the rate-limiting reaction of glycolysis. PFKFB3 and PFKFB4 are the two main isoenzymes overexpressed in various human cancers. Scope of review In this review, we summarize recent findings on the glycolytic and extraglycolytic roles of PFKFB3 and PFKFB4 in cancer progression and discuss potential therapies for targeting of PFKFB3 and PFKFB4. Major conclusions PFKFB3 has the highest kinase activity to shunt glucose toward glycolysis, whereas PFKFB4 has more FBPase-2 activity, redirecting glucose toward the pentose phosphate pathway, providing reducing power for lipid biosynthesis and scavenging reactive oxygen species. Co-expression of PFKFB3 and PFKFB4 provides sufficient glucose metabolism to satisfy the bioenergetics demand and redox homeostasis requirements of cancer cells. Various reversible post-translational modifications of PFKFB3 enable cancer cells to flexibly adapt glucose metabolism in response to diverse stress conditions. In addition to playing important roles in tumor cell glucose metabolism, PFKFB3 and PFKFB4 are widely involved in multiple biological processes, such as cell cycle regulation, autophagy, and transcriptional regulation in a non-glycolysis-dependent manner.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, The Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, 410011, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
49
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|
50
|
Abu el Maaty MA, Dabiri Y, Almouhanna F, Blagojevic B, Theobald J, Büttner M, Wölfl S. Activation of pro-survival metabolic networks by 1,25(OH) 2D 3 does not hamper the sensitivity of breast cancer cells to chemotherapeutics. Cancer Metab 2018; 6:11. [PMID: 30181873 PMCID: PMC6116450 DOI: 10.1186/s40170-018-0183-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have previously identified 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the bioactive form of vitamin D3, as a potent regulator of energy-utilization and nutrient-sensing pathways in prostate cancer cells. In the current study, we investigated the effects of 1,25(OH)2D3 on breast cancer (BCa) cell metabolism using cell lines representing distinct molecular subtypes, luminal (MCF-7 and T-47D), and triple-negative BCa (MDA-MB-231, MDA-MB-468, and HCC-1143). METHODS 1,25(OH)2D3's effect on BCa cell metabolism was evaluated by employing a combination of real-time measurements of glycolysis/oxygen consumption rates using a biosensor chip system, GC/MS-based metabolomics, gene expression analysis, and assessment of overall energy levels. The influence of treatment on energy-related signaling molecules was investigated by immunoblotting. RESULTS We show that 1,25(OH)2D3 significantly induces the expression and activity of the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (G6PD) in all BCa cell lines, however differentially influences glycolytic and respiratory rates in the same cells. Although 1,25(OH)2D3 treatment was found to induce seemingly anti-oxidant responses in MCF-7 cells, such as increased intracellular serine levels, and reduce the expression of its putative target gene thioredoxin-interacting protein (TXNIP), intracellular reactive oxygen species levels were found to be elevated. Serine accumulation in 1,25(OH)2D3-treated cells was not found to hamper the efficacy of chemotherapeutics, including 5-fluorouracil. Detailed analyses of the nature of TXNIP's regulation by 1,25(OH)2D3 included genetic and pharmacological inhibition of signaling molecules and metabolic enzymes including AMP-activated protein kinase and G6PD, as well as by studying the ITCH (E3 ubiquitin ligase)-TXNIP interaction. While these investigations demonstrated minimal involvement of such pathways in the observed non-canonical regulation of TXNIP, inhibition of estrogen receptor (ER) signaling by tamoxifen mirrored the reduction of TXNIP levels by 1,25(OH)2D3, demonstrating that the latter's negative regulation of ER expression is a potential mechanism of TXNIP modulation. CONCLUSIONS Altogether, we propose that regulation of energy metabolism contributes to 1,25(OH)2D3's anti-cancer effects and that combining 1,25(OH)2D3 with drugs targeting metabolic networks in tumor cells may lead to synergistic effects.
Collapse
Affiliation(s)
- Mohamed A. Abu el Maaty
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Center for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|