1
|
Tran CS, Kersten J, Yan J, Breinig M, Huth T, Poth T, Colasanti O, Riedl T, Faure-Dupuy S, Diehl S, Verhoye L, Li TF, Lingemann M, Schult P, Ahlén G, Frelin L, Kühnel F, Vondran FWR, Breuhahn K, Meuleman P, Heikenwälder M, Schirmacher P, Bartenschlager R, Laketa V, Roessler S, Tschaharganeh DF, Sällberg M, Lohmann V. Phosphatidylinositol 4-Kinase III Alpha Governs Cytoskeletal Organization for Invasiveness of Liver Cancer Cells. Gastroenterology 2024; 167:522-537. [PMID: 38636680 DOI: 10.1053/j.gastro.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND & AIMS High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Julia Kersten
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Jingyi Yan
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thorben Huth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany; Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stefan Diehl
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Teng-Feng Li
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Marit Lingemann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Philipp Schult
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectiology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany; The M3 Research Institute, Medical Faculty Tübingen, Tübingen, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- DZIF, Partner Site Heidelberg, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Vibor Laketa
- DZIF, Partner Site Heidelberg, Heidelberg, Germany; Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Darjus Felix Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany; DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Ajiki M, Yoshikawa M, Miyazaki T, Kawasaki A, Aoki K, Nakatsu F, Tsukiji S. ORP9-PH domain-based fluorescent reporters for visualizing phosphatidylinositol 4-phosphate dynamics in living cells. RSC Chem Biol 2024; 5:544-555. [PMID: 38846081 PMCID: PMC11151866 DOI: 10.1039/d3cb00232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
Fluorescent reporters that visualize phosphatidylinositol 4-phosphate (PI4P) in living cells are indispensable to elucidate the roles of this fundamental lipid in cell physiology. However, currently available PI4P reporters have limitations, such as Golgi-biased localization and low detection sensitivity. Here, we present a series of fluorescent PI4P reporters based on the pleckstrin homology (PH) domain of oxysterol-binding protein-related protein 9 (ORP9). We show that the green fluorescent protein AcGFP1-tagged ORP9-PH domain can be used as a fluorescent PI4P reporter to detect cellular PI4P across its wide distribution at multiple cellular locations, including the plasma membrane (PM), Golgi, endosomes, and lysosomes with high specificity and contrast. We also developed blue, red, and near-infrared fluorescent PI4P reporters suitable for multicolor fluorescence imaging experiments. Finally, we demonstrate the utility of the ORP9-PH domain-based reporter to visualize dynamic changes in the PI4P distribution and level in living cells upon synthetic ER-PM membrane contact manipulation and GPCR stimulation. This work offers a new set of genetically encoded fluorescent PI4P reporters that are practically useful for the study of PI4P biology.
Collapse
Affiliation(s)
- Moeka Ajiki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masaru Yoshikawa
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomoki Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University 1-757 Asahimachi, Chuo-ku Niigata 951-8510 Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies) 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University 1-757 Asahimachi, Chuo-ku Niigata 951-8510 Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
3
|
Parmar JM, McNamara EL, Lamont PJ, Kumar KR, Rick A, Stoll M, Cheong PL, Ravenscroft G. Two Novel Variants in PI4KA in a Family Presenting With Hereditary Spastic Paraparesis: A Case Report. Neurol Genet 2024; 10:e200152. [PMID: 38685974 PMCID: PMC11057436 DOI: 10.1212/nxg.0000000000200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024]
Abstract
Objectives To report novel biallelic PI4KA variants in a family presenting with pure hereditary spastic paraparesis. Methods Two affected sisters presented with unsolved hereditary spastic paraparesis and underwent clinical and imaging assessments. This was followed by short-read next-generation sequencing. Results Analysis of next-generation sequencing data uncovered compound heterozygous variants in PI4KA (NM_058004.4: c.[3883C>A];[5785A>C]; p.[(His1295Asn);(Thr1929Pro)]. Using ACMG guidelines, both variants were classified as likely pathogenic. Discussion Here, next-generation sequencing revealed 2 novel compound heterozygous variants in the phosphatidylinositol 4-kinase alpha gene (PI4KA) in 2 sisters presenting with progressive pure hereditary spastic paraparesis. Pathogenic variants in PI4KA have previously been associated with a spectrum of disorders including autosomal recessive perisylvian polymicrogyria, with cerebellar hypoplasia, arthrogryposis, and pure spastic paraplegia. The cases presented in this study expand the phenotypic spectrum associated with PI4KA variants and contribute new likely pathogenic variants for testing in patients with otherwise unsolved hereditary spastic paraparesis.
Collapse
Affiliation(s)
- Jevin M Parmar
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Elyshia L McNamara
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Phillipa J Lamont
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Kishore R Kumar
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Audrey Rick
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Marion Stoll
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Pak Leng Cheong
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| | - Gianina Ravenscroft
- From the Rare Disease Genetics and Functional Genomics Group (J.M.P., E.L.M., A.R., G.R.), Centre for Medical Research, University of Western Australia; Harry Perkins Institute of Medical Research (J.M.P., E.L.M., A.R., G.R.), Nedlands; Royal Perth Hospital (P.J.L.); Sydney Medical School (K.R.K., P.L.C.), Faculty of Medicine and Health, University of Sydney, Camperdown; Garvan Institute of Medical Research (K.R.K.), Darlinghurst; Molecular Medicine Laboratory (K.R.K., M.S., P.L.C.), Concord Repatriation General Hospital, NSW Health Pathology; Department of Neurology (K.R.K.), Concord Repatriation General Hospital; and School of Medical Sciences (M.S.), University of Sydney, Camperdown, Australia
| |
Collapse
|
4
|
Fung SYS, Xǔ XJ, Wu M. Nonlinear dynamics in phosphoinositide metabolism. Curr Opin Cell Biol 2024; 88:102373. [PMID: 38797149 PMCID: PMC11186694 DOI: 10.1016/j.ceb.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Phosphoinositides broadly impact membrane dynamics, signal transduction and cellular physiology. The orchestration of signaling complexity by this seemingly simple metabolic pathway remains an open question. It is increasingly evident that comprehending the complexity of the phosphoinositides metabolic network requires a systems view based on nonlinear dynamics, where the products of metabolism can either positively or negatively modulate enzymatic function. These feedback and feedforward loops may be paradoxical, leading to counterintuitive effects. In this review, we introduce the framework of nonlinear dynamics, emphasizing distinct dynamical regimes such as the excitable state, oscillations, and mixed-mode oscillations-all of which have been experimentally observed in phosphoinositide metabolisms. We delve into how these dynamical behaviors arise from one or multiple network motifs, including positive and negative feedback loops, coherent and incoherent feedforward loops. We explore the current understanding of the molecular circuits responsible for these behaviors. While mapping these circuits presents both conceptual and experimental challenges, redefining cellular behavior based on dynamical state, lipid fluxes, time delay, and network topology is likely essential for a comprehensive understanding of this fundamental metabolic network.
Collapse
Affiliation(s)
- Suet Yin Sarah Fung
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA
| | - X J Xǔ
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| |
Collapse
|
5
|
Kim YJ, Pemberton JG, Eisenreichova A, Mandal A, Koukalova A, Rohilla P, Sohn M, Konradi AW, Tang TT, Boura E, Balla T. Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition. EMBO J 2024; 43:2035-2061. [PMID: 38627600 PMCID: PMC11099152 DOI: 10.1038/s44318-024-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Amrita Mandal
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alena Koukalova
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Li X, Sun S, Zhang W, Liang Z, Fang Y, Sun T, Wan Y, Ma X, Zhang S, Xu Y, Tian R. Identification of genetic modifiers enhancing B7-H3-targeting CAR T cell therapy against glioblastoma through large-scale CRISPRi screening. J Exp Clin Cancer Res 2024; 43:95. [PMID: 38561797 PMCID: PMC10986136 DOI: 10.1186/s13046-024-03027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.
Collapse
Affiliation(s)
- Xing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Shiyu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Wansong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Ziwei Liang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Yitong Fang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Tianhu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Yong Wan
- Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| | - Yang Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
| | - Ruilin Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
7
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
8
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
9
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
10
|
Doyle CP, Timple L, Hammond GRV. OSBP is a major determinant of Golgi phosphatidylinositol 4-phosphate homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572879. [PMID: 38187665 PMCID: PMC10769437 DOI: 10.1101/2023.12.21.572879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The lipid phosphatidylinositol 4-phosphate (PI4P) plays a master regulatory role at Golgi membranes, orchestrating membrane budding, non-vesicular lipid transport and membrane organization. It follows that harmonious Golgi function requires strictly maintained PI4P homeostasis. One of the most abundant PI4P effector proteins is the oxysterol binding protein (OSBP), a lipid transfer protein that exchanges trans Golgi PI4P for ER cholesterol. Although this protein consumes PI4P as part of its lipid anti-porter function, whether it actively contributes to Golgi PI4P homeostasis has been questioned. Here, we employed a series of acute and chronic genetic manipulations, together with orthogonal targeting of OSBP, to interrogate its control over Golgi PI4P abundance. Modulating OSBP levels at ER:Golgi membrane contact sites produces reciprocal changes in PI4P levels. Additionally, we observe that OSBP has a high capacity for PI4P turnover, even at orthogonal organelle membranes. However, despite also visiting the plasma membrane, endogenous OSBP makes no impact on PI4P levels in this compartment. We conclude that OSBP is a major determinant of Golgi PI4P homeostasis.
Collapse
Affiliation(s)
- Colleen P Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
11
|
Doyle CP, Rectenwald A, Timple L, Hammond GRV. Orthogonal targeting of SAC1 to mitochondria implicates ORP2 as a major player in PM PI4P turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555163. [PMID: 37693626 PMCID: PMC10491111 DOI: 10.1101/2023.08.28.555163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Oxysterol binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient. Alternatively, ORPs have been proposed to sequester PI4P, dependent on the concentration of their alternative lipid ligand. Here, we aimed to distinguish these possibilities in living cells by orthogonal targeting of PI4P transfer and degradation to PM-mitochondria contact sites. Surprisingly, we found that orthogonal targeting of SAC1 to mitochondria enhanced PM PI4P turnover independent of targeting to contact sites with the PM. This turnover could be slowed by knock-down of soluble ORP2, which also has a major impact on PM PI4P levels even without SAC1 over-expression. The data reveal a role for contact site-independent modulation of PM PI4P levels and lipid antiport.
Collapse
Affiliation(s)
- Colleen P Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Andrew Rectenwald
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
12
|
Tóth DJ, Tóth JT, Damouni A, Hunyady L, Várnai P. Effect of hormone-induced plasma membrane phosphatidylinositol 4,5-bisphosphate depletion on receptor endocytosis suggests the importance of local regulation in phosphoinositide signaling. Sci Rep 2024; 14:291. [PMID: 38168911 PMCID: PMC10761818 DOI: 10.1038/s41598-023-50732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the β2 adrenergic receptor (β2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on β2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of β2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, β2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of β2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease β2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - József T Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Semmelweis University, Budapest, Üllői út 78/B, 1082, Hungary
| | - Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Institute of Enzymology, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok körútja 2, 1117, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary.
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Doyle CP, Rectenwald A, Timple L, Hammond GRV. Orthogonal Targeting of SAC1 to Mitochondria Implicates ORP2 as a Major Player in PM PI4P Turnover. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229272. [PMID: 38327560 PMCID: PMC10848804 DOI: 10.1177/25152564241229272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient. Alternatively, ORPs have been proposed to sequester PI4P, dependent on the concentration of their alternative lipid ligand. Here, we aimed to distinguish these possibilities in living cells by orthogonal targeting of PI4P transfer and degradation to PM-mitochondria contact sites. Surprisingly, we found that orthogonal targeting of SAC1 to mitochondria enhanced PM PI4P turnover independent of targeting to contact sites with the PM. This turnover could be slowed by knock-down of soluble ORP2, which also has a major impact on PM PI4P levels even without SAC1 over-expression. The data reveal a role for contact site-independent modulation of PM PI4P levels and lipid antiport.
Collapse
Affiliation(s)
- Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew Rectenwald
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Doyle CP, Timple L, Hammond GRV. OSBP is a Major Determinant of Golgi Phosphatidylinositol 4-Phosphate Homeostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241232196. [PMID: 38405037 PMCID: PMC10893830 DOI: 10.1177/25152564241232196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
The lipid phosphatidylinositol 4-phosphate (PI4P) plays a master regulatory role at Golgi membranes, orchestrating membrane budding, non-vesicular lipid transport and membrane organization. It follows that harmonious Golgi function requires strictly maintained PI4P homeostasis. One of the most abundant PI4P effector proteins is the oxysterol binding protein (OSBP), a lipid transfer protein that exchanges trans-Golgi PI4P for ER cholesterol. Although this protein consumes PI4P as part of its lipid anti-porter function, whether it actively contributes to Golgi PI4P homeostasis has been questioned. Here, we employed a series of acute and chronic genetic manipulations, together with orthogonal targeting of OSBP, to interrogate its control over Golgi PI4P abundance. Modulating OSBP levels at ER:Golgi membrane contact sites produces reciprocal changes in PI4P levels. Additionally, we observe that OSBP has a high capacity for PI4P turnover, even at orthogonal organelle membranes. However, despite also visiting the plasma membrane, endogenous OSBP makes no impact on PI4P levels in this compartment. We conclude that OSBP is a major determinant of Golgi PI4P homeostasis.
Collapse
Affiliation(s)
- Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Suresh S, Burke JE. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease. Adv Biol Regul 2023; 90:100996. [PMID: 37979461 DOI: 10.1016/j.jbior.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
The type III Phosphatidylinositol 4-kinase alpha (PI4KA) is an essential lipid kinase that is a master regulator of phosphoinositide signalling at the plasma membrane (PM). It produces the predominant pool of phosphatidylinositol 4-phosphate (PI4P) at the PM, with this being essential in lipid transport and in regulating the PLC and PI3K signalling pathways. PI4KA is essential and is highly conserved in all eukaryotes. In yeast, the PI4KA ortholog stt4 predominantly exists as a heterodimer with its regulatory partner ypp1. In higher eukaryotes, PI4KA instead primarily forms a heterotrimer with a TTC7 subunit (ortholog of ypp1) and a FAM126 subunit. In all eukaryotes PI4KA is recruited to the plasma membrane by the protein EFR3, which does not directly bind PI4KA, but instead binds to the TTC7/ypp1 regulatory partner. Misregulation in PI4KA or its regulatory partners is involved in myriad human diseases, including loss of function mutations in neurodevelopmental and inflammatory intestinal disorders and gain of function in human cancers. This review describes an in-depth analysis of the structure function of PI4KA and its regulatory partners, with a major focus on comparing and contrasting the differences in regulation of PI4KA throughout evolution.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
16
|
Constantin S, Sokanovic SJ, Mochimaru Y, Smiljanic K, Sivcev S, Prévide RM, Wray S, Balla T, Stojilkovic SS. Postnatal Development and Maintenance of Functional Pituitary Gonadotrophs Is Dependent on PI4-Kinase A. Endocrinology 2023; 164:bqad168. [PMID: 37935042 PMCID: PMC10652335 DOI: 10.1210/endocr/bqad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Postnatal development of functional pituitary gonadotrophs is necessary for maturation of the hypothalamic-pituitary-gonadal axis, puberty, and reproduction. Here we examined the role of PI4-kinase A, which catalyzes the biosynthesis of PI4P in mouse reproduction by knocking out this enzyme in cells expressing the gonadotropin-releasing hormone (GnRH) receptor. Knockout (KO) mice were infertile, reflecting underdeveloped gonads and reproductive tracts and lack of puberty. The number and distribution of hypothalamic GnRH neurons and Gnrh1 expression in postnatal KOs were not affected, whereas Kiss1/kisspeptin expression was increased. KO of PI4-kinase A also did not alter embryonic establishment and neonatal development and function of the gonadotroph population. However, during the postnatal period, there was a progressive loss of expression of gonadotroph-specific genes, including Fshb, Lhb, and Gnrhr, accompanied by low gonadotropin synthesis. The postnatal gonadotroph population also progressively declined, reaching approximately one-third of that observed in controls at 3 months of age. In these residual gonadotrophs, GnRH-dependent calcium signaling and calcium-dependent membrane potential changes were lost, but intracellular administration of inositol-14,5-trisphosphate rescued this signaling. These results indicate a key role for PI4-kinase A in the postnatal development and maintenance of a functional gonadotroph population.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sonja Sivcev
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Rao SB, Brundu F, Chen Y, Sun Y, Zhu H, Shprintzen RJ, Tomer R, Rabadan R, Leong KW, Markx S, Xu B, Gogos JA. Aberrant pace of cortical neuron development in brain organoids from patients with 22q11.2 deletion syndrome and schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.557612. [PMID: 37873382 PMCID: PMC10592956 DOI: 10.1101/2023.10.04.557612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Adults and children afflicted with the 22q11.2 deletion syndrome (22q11.2DS) exhibit cognitive, social, and emotional impairments, and are at significantly heightened risk for schizophrenia (SCZ). The impact of this deletion on early human brain development, however, has remained unclear. Here we harness organoid models of the developing human cerebral cortex, cultivated from subjects with 22q11.2DS and SCZ, as well as unaffected control samples, to identify cell-type-specific developmental abnormalities arising from this genomic lesion. Leveraging single-cell RNA-sequencing in conjunction with experimental validation, we find that the loss of genes within the 22q11.2 locus leads to a delayed development of cortical neurons. This compromised development was reflected in an elevated proportion of actively proliferating neural progenitor cells, coupled with a decreased fraction of more mature neurons. Furthermore, we identify perturbed molecular imprints linked to neuronal maturation, observe the presence of sparser neurites, and note a blunted amplitude in glutamate-induced Ca2+ transients. The aberrant transcription program underlying impaired development contains molecular signatures significantly enriched in neuropsychiatric genetic liability. MicroRNA profiling and target gene investigation suggest that microRNA dysregulation may drive perturbations of genes governing the pace at which maturation unfolds. Using protein-protein interaction network analysis we define complementary effects stemming from additional genes residing within the deleted locus. Our study uncovers reproducible neurodevelopmental and molecular alterations due to 22q11.2 deletions. These findings have the potential to facilitate disease modeling and promote the pursuit of therapeutic interventions.
Collapse
|
18
|
Meng X, Wijaya CS, Shao Q, Xu S. Triggered Golgi membrane enrichment promotes PtdIns(4,5)P2 generation for plasma membrane repair. J Cell Biol 2023; 222:214098. [PMID: 37158801 PMCID: PMC10176212 DOI: 10.1083/jcb.202303017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
The maintenance of plasma membrane integrity and a capacity for efficiently repairing damaged membranes are essential for cell survival. Large-scale wounding depletes various membrane components at the wound sites, including phosphatidylinositols, yet little is known about how phosphatidylinositols are generated after depletion. Here, working with our in vivo C. elegans epidermal cell wounding model, we discovered phosphatidylinositol 4-phosphate (PtdIns4P) accumulation and local phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] generation at the wound site. We found that PtdIns(4,5)P2 generation depends on the delivery of PtdIns4P, PI4K, and PI4P 5-kinase PPK-1. In addition, we show that wounding triggers enrichment of the Golgi membrane to the wound site, and that is required for membrane repair. Moreover, genetic and pharmacological inhibitor experiments support that the Golgi membrane provides the PtdIns4P for PtdIns(4,5)P2 generation at the wounds. Our findings demonstrate how the Golgi apparatus facilitates membrane repair in response to wounding and offers a valuable perspective on cellular survival mechanisms upon mechanical stress in a physiological context.
Collapse
Affiliation(s)
- Xinan Meng
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
| | - Chandra Sugiarto Wijaya
- Department of Burn and Wound Repair of the Second Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine , Hangzhou Zhejiang, China
| | - Qingfang Shao
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
| | - Suhong Xu
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
- Department of Burn and Wound Repair of the Second Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine , Hangzhou Zhejiang, China
| |
Collapse
|
19
|
Thallmair V, Schultz L, Evers S, Jolie T, Goecke C, Leitner MG, Thallmair S, Oliver D. Localization of the tubby domain, a PI(4,5)P2 biosensor, to E-Syt3-rich endoplasmic reticulum-plasma membrane junctions. J Cell Sci 2023; 136:jcs260848. [PMID: 37401342 PMCID: PMC10445746 DOI: 10.1242/jcs.260848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] acts as a signaling lipid at the plasma membrane (PM) with pleiotropic regulatory actions on multiple cellular processes. Signaling specificity might result from spatiotemporal compartmentalization of the lipid and from combinatorial binding of PI(4,5)P2 effector proteins to additional membrane components. Here, we analyzed the spatial distribution of tubbyCT, a paradigmatic PI(4,5)P2-binding domain, in live mammalian cells by total internal reflection fluorescence (TIRF) microscopy and molecular dynamics simulations. We found that unlike other well-characterized PI(4,5)P2 recognition domains, tubbyCT segregates into distinct domains within the PM. TubbyCT enrichment occurred at contact sites between PM and endoplasmic reticulum (ER) (i.e. at ER-PM junctions) as shown by colocalization with ER-PM markers. Localization to these sites was mediated in a combinatorial manner by binding to PI(4,5)P2 and by interaction with a cytosolic domain of extended synaptotagmin 3 (E-Syt3), but not other E-Syt isoforms. Selective localization to these structures suggests that tubbyCT is a novel selective reporter for a ER-PM junctional pool of PI(4,5)P2. Finally, we found that association with ER-PM junctions is a conserved feature of tubby-like proteins (TULPs), suggesting an as-yet-unknown function of TULPs.
Collapse
Affiliation(s)
- Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
| | - Lea Schultz
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Theresa Jolie
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Christian Goecke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH&Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, 35032 Marburg, Germany
| |
Collapse
|
20
|
Barlow-Busch I, Shaw AL, Burke JE. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr Opin Cell Biol 2023; 83:102207. [PMID: 37453227 DOI: 10.1016/j.ceb.2023.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.
Collapse
Affiliation(s)
- Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
21
|
Radoiu C, Govindarajan B, Wang M, Sbrissa D, Cher ML, Chinni SR. A Novel Interaction between Chemokine and Phosphoinositide Signaling in Metastatic Prostate Cancer. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i7.1.4020. [PMID: 38239314 PMCID: PMC10795749 DOI: 10.18103/mra.v11i7.1.4020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Prostate cancer commonly metastasizes to bone due to its favorable microenvironment for cell growth and survival. Currently, the standard of care for metastatic prostate cancer is medical castration in conjunction with chemotherapeutic agents and newer anti-androgen/androgen receptor therapies. While these therapies aim to improve the quality of life in patients with advanced disease, resistance to these therapies is inevitable prompting the development of newer therapies to contain disease progression. The CXCL12/CXCR4 axis has previously been shown to be involved in prostate cancer cell homing to bone tissue, and new investigations found a novel interaction of Phosphatidyl Inositol 4 kinase IIIa (PI4KA) downstream of chemokine signaling. PI4KA phosphorylates at the 4th position on phosphatidylinositol (PI), to produce PI4P and is localized to the plasma membrane (PM). At the PM, PI4KA provides precursors for the generation of PI(4,5)P2, and PI(3,4,5)P3 and helps maintain PM identity through the recruitment of lipids and signaling proteins. PI4KA is recruited to the PM through evolutionarily conserved adaptor proteins, and in PC cells, CXCR4 binds with adaptor proteins to recruit PI4KA to the PM. The objective of this review is to summarize our understanding of the role that phosphatidyl inositol lipid messengers in cancer cells.
Collapse
Affiliation(s)
- Codrut Radoiu
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Barani Govindarajan
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael Wang
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Diego Sbrissa
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael L. Cher
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sreenivasa R. Chinni
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
23
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Ivanova A, Atakpa-Adaji P. Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions - Complex interplay of simple messengers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119475. [PMID: 37098393 DOI: 10.1016/j.bbamcr.2023.119475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Endoplasmic reticulum-plasma membrane contact sites (ER-PM MCS) are a specialised domain involved in the control of Ca2+ dynamics and various Ca2+-dependent cellular processes. Intracellular Ca2+ signals are broadly supported by Ca2+ release from intracellular Ca2+ channels such as inositol 1,4,5-trisphosphate receptors (IP3Rs) and subsequent store-operated Ca2+ entry (SOCE) across the PM to replenish store content. IP3Rs sit in close proximity to the PM where they can easily access newly synthesised IP3, interact with binding partners such as actin, and localise adjacent to ER-PM MCS populated by the SOCE machinery, STIM1-2 and Orai1-3, to possibly form a locally regulated unit of Ca2+ influx. PtdIns(4,5)P2 is a multiplex regulator of Ca2+ signalling at the ER-PM MCS interacting with multiple proteins at these junctions such as actin and STIM1, whilst also being consumed as a substrate for phospholipase C to produce IP3 in response to extracellular stimuli. In this review, we consider the mechanisms regulating the synthesis and turnover of PtdIns(4,5)P2 via the phosphoinositide cycle and its significance for sustained signalling at the ER-PM MCS. Furthermore, we highlight recent insights into the role of PtdIns(4,5)P2 in the spatiotemporal organization of signalling at ER-PM junctions and raise outstanding questions on how this multi-faceted regulation occurs.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
25
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Omar-Hmeadi M, Guček A, Barg S. Local PI(4,5)P 2 signaling inhibits fusion pore expansion during exocytosis. Cell Rep 2023; 42:112036. [PMID: 36701234 DOI: 10.1016/j.celrep.2023.112036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) is an important signaling phospholipid that is required for regulated exocytosis and some forms of endocytosis. The two processes share a topologically similar pore structure that connects the vesicle lumen with the outside. Widening of the fusion pore during exocytosis leads to cargo release, while its closure initiates kiss&run or cavicapture endocytosis. We show here, using live-cell total internal reflection fluorescence (TIRF) microscopy of insulin granule exocytosis, that transient accumulation of PI(4,5)P2 at the release site recruits components of the endocytic fission machinery and stalls the late fusion pore expansion that is required for peptide release. The absence of clathrin differentiates this mechanism from clathrin-mediated endocytosis. Knockdown of phosphatidylinositol-phosphate-5-kinase-1c or optogenetic recruitment of 5-phosphatase reduces PI(4,5)P2 transients and accelerates fusion pore expansion, suggesting that acute PI(4,5)P2 synthesis is involved. Thus, local phospholipid signaling inhibits fusion pore expansion and peptide release through an unconventional endocytic mechanism.
Collapse
Affiliation(s)
- Muhmmad Omar-Hmeadi
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden
| | - Alenka Guček
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 751 23 Uppsala, Sweden.
| |
Collapse
|
27
|
Sun M, Zhang C, Sui D, Yang C, Pyeon D, Huang X, Hu J. Rational Design and Synthesis of D-galactosyl Lysophospholipids as Selective Substrates and non-ATP-competitive Inhibitors of Phosphatidylinositol Phosphate Kinases. Chemistry 2023; 29:e202202083. [PMID: 36424188 PMCID: PMC10099810 DOI: 10.1002/chem.202202083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/27/2022]
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) produce lipid signaling molecules and have been attracting increasing attention as drug targets for cancer, neurodegenerative diseases, and viral infection. Given the potential cross-inhibition of kinases and other ATP-utilizing enzymes by ATP-competitive inhibitors, targeting the unique lipid substrate binding site represents a superior strategy for PIPK inhibition. Here, by taking advantage of the nearly identical stereochemistry between myo-inositol and D-galactose, we designed and synthesized a panel of D-galactosyl lysophospholipids, one of which was found to be a selective substrate of phosphatidylinositol 4-phosphate 5-kinase. Derivatization of this compound led to the discovery of a human PIKfyve inhibitor with an apparent IC50 of 6.2 μM, which significantly potentiated the inhibitory effect of Apilimod, an ATP-competitive PIKfyve inhibitor under clinical trials against SARS-CoV-2 infection and amyotrophic lateral sclerosis. Our results provide the proof of concept that D-galactose-based phosphoinositide mimetics can be developed into artificial substrates and new inhibitors of PIPKs.
Collapse
Affiliation(s)
- Mengxia Sun
- Department of Chemistry, Michigan State University, Michigan, MI 48824, USA
| | - Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, Michigan, MI 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, Michigan, MI 48824, USA
| | - Canchai Yang
- Department of Microbiology & Molecular Genetics, Michigan State University, Michigan, MI 48824, USA
| | - Dohun Pyeon
- Department of Microbiology & Molecular Genetics, Michigan State University, Michigan, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, Michigan, MI 48824, USA.,Department of Biomedical Engineering, Michigan State University, Michigan, MI 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan, MI 48824, USA
| | - Jian Hu
- Department of Chemistry, Michigan State University, Michigan, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, Michigan, MI 48824, USA
| |
Collapse
|
28
|
Montaño-Rendón F, Walpole GF, Krause M, Hammond GR, Grinstein S, Fairn GD. PtdIns(3,4)P2, Lamellipodin, and VASP coordinate actin dynamics during phagocytosis in macrophages. J Cell Biol 2022; 221:e202207042. [PMID: 36165850 PMCID: PMC9521245 DOI: 10.1083/jcb.202207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositides are pivotal regulators of vesicular traffic and signaling during phagocytosis. Phagosome formation, the initial step of the process, is characterized by local membrane remodeling and reorganization of the actin cytoskeleton that leads to formation of the pseudopods that drive particle engulfment. Using genetically encoded fluorescent probes, we found that upon particle engagement a localized pool of PtdIns(3,4)P2 is generated by the sequential activities of class I phosphoinositide 3-kinases and phosphoinositide 5-phosphatases. Depletion of this locally generated pool of PtdIns(3,4)P2 blocks pseudopod progression and ultimately phagocytosis. We show that the PtdIns(3,4)P2 effector Lamellipodin (Lpd) is recruited to nascent phagosomes by PtdIns(3,4)P2. Furthermore, we show that silencing of Lpd inhibits phagocytosis and produces aberrant pseudopodia with disorganized actin filaments. Finally, vasodilator-stimulated phosphoprotein (VASP) was identified as a key actin-regulatory protein mediating phagosome formation downstream of Lpd. Mechanistically, our findings imply that a pathway involving PtdIns(3,4)P2, Lpd, and VASP mediates phagocytosis at the stage of particle engulfment.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Glenn F.W. Walpole
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Gregory D. Fairn
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
29
|
Zhang K, Kang L, Zhang H, Bai L, Pang H, Liu Q, Zhang X, Chen D, Yu H, Lv Y, Gao M, Liu Y, Gai Z, Wang D, Li X. A synonymous mutation in PI4KA impacts the transcription and translation process of gene expression. Front Immunol 2022; 13:987666. [DOI: 10.3389/fimmu.2022.987666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol-4-kinase alpha (PI4KIIIα), encoded by the PI4KA gene, can synthesize phosphatidylinositol-4-phosphate (PI-4-P), which serves as a specific membrane marker and is instrumental in signal transduction. PI4KA mutations can cause autosomal recessive diseases involving neurological, intestinal, and immunological conditions (OMIM:619621, 616531, 619708). We detected sepsis, severe diarrhea, and decreased immunoglobulin levels in one neonate. Two novel compound heterozygous mutations, c.5846T>C (p.Leu1949Pro) and c.3453C>T (p.Gly1151=), were identified in the neonate from the father and the mother, respectively. Sanger sequencing and reverse transcription polymerase chain reaction (RT-PCR) for peripheral blood and minigene splicing assays showed a deletion of five bases (GTGAG) with the c.3453C>T variant at the mRNA level, which could result in a truncated protein (p.Gly1151GlyfsTer17). The missense mutation c.5846T>C (p.Leu1949Pro) kinase activity was measured, and little or no catalytic activity was detected. According to the clinical characteristics and gene mutations with functional verification, our pediatricians diagnosed the child with a combined immunodeficiency and intestinal disorder close to gastrointestinal defects and immunodeficiency syndrome 2 (GIDID2; OMIM: 619708). Medicines such as immunomodulators are prescribed to balance immune dysregulation. This study is the first report of a synonymous mutation in the PI4KA gene that influences alternative splicing. Our findings expand the mutation spectrum leading to PI4KIIIa deficiency-related diseases and provide exact information for genetic counseling.
Collapse
|
30
|
Jiang X, Huang X, Zheng G, Jia G, Li Z, Ding X, Lei L, Yuan L, Xu S, Gao N. Targeting PI4KA sensitizes refractory leukemia to chemotherapy by modulating the ERK/AMPK/OXPHOS axis. Am J Cancer Res 2022; 12:6972-6988. [PMID: 36276647 PMCID: PMC9576605 DOI: 10.7150/thno.76563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background: The emergence of chemoresistance in leukemia markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Recent evidence has revealed that phosphatidylinositol 4 kinase-IIIα (PI4KA) plays a critical role in tumorigenesis. However, the molecular mechanisms of PI4KA-regulated chemoresistance and leukemogenesis remain largely unknown. Methods: Liquid chromatography-mass spectrometry (LC-MS), patient samples and leukemia xenograft mouse models were used to investigate whether PI4KA was an effective target to overcome chemoresistance in leukemia. Enzyme-linked immunosorbent assay (ELISA) and molecular mechanics/generalized born surface area (MM/GBSA) method were employed to identify cepharanthine (CEP) as a novel PI4KA inhibitor. Results: High expression of PI4KA was observed in drug-resistant leukemia cells or in relapsed leukemia patients, which was correlated with poor overall survival. Depletion of PI4KA sensitized drug-resistant leukemia cells to chemotherapeutic drugs in vitro and in vivo by regulating ERK/AMPK/OXPHOS axis. We also identified cepharanthine (CEP) as a novel PI4KA inhibitor, which could undermine the stability of the PI4KA/TTC7/FAM126 complex, enhancing the sensitivity of drug-resistant leukemia cells to chemotherapeutic drugs in vitro and in vivo. Conclusions: Our study underscored the potential of therapeutic targeting of PI4KA to overcome chemoresistance in leukemia. A combination of the PI4KA inhibitor with classic chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of refractory leukemia.
Collapse
Affiliation(s)
- Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xiangtao Huang
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Guoxun Zheng
- Shanghai StoneWise AI Technology Co. Ltd. Shanghai 201210, China
| | - Guanfei Jia
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Zhiqiang Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xin Ding
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Ling Lei
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| |
Collapse
|
31
|
Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nat Chem Biol 2022; 18:1076-1086. [PMID: 35788180 DOI: 10.1038/s41589-022-01061-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The Hippo pathway plays a key role in development, organ size control and tissue homeostasis, and its dysregulation contributes to cancer. The LATS tumor suppressor kinases phosphorylate and inhibit the YAP/TAZ transcriptional co-activators to suppress gene expression and cell growth. Through a screen of marine natural products, we identified microcolin B (MCB) as a Hippo activator that preferentially kills YAP-dependent cancer cells. Structure-activity optimization yielded more potent MCB analogs, which led to the identification of phosphatidylinositol transfer proteins α and β (PITPα/β) as the direct molecular targets. We established a critical role of PITPα/β in regulating LATS and YAP. Moreover, we showed that PITPα/β influence the Hippo pathway via plasma membrane phosphatidylinositol-4-phosphate. This study uncovers a previously unrecognized role of PITPα/β in Hippo pathway regulation and as potential cancer therapeutic targets.
Collapse
|
32
|
Gulyas G, Korzeniowski MK, Eugenio CEB, Vaca L, Kim YJ, Balla T. LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell Calcium 2022; 106:102631. [PMID: 35853265 PMCID: PMC9444960 DOI: 10.1016/j.ceca.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The ER-resident proteins STIM1 together with the plasma membrane (PM)-localized Orai1 channels constitute the molecular components of the store-operated Ca2+ entry (SOCE) pathway. Prepositioning of STIM1 to the peripheral ER close to the PM ensures its efficient interaction with Orai1 upon a decrease in the ER luminal Ca2+ concentration. The C-terminal polybasic domain of STIM1 has been identified as mediating the interaction with PM phosphoinositides and hence positions the molecule to ER-PM contact sites. Here we show that STIM1 requires PM phosphatidylinositol 4-phosphate (PI4P) for efficient PM interaction. Accordingly, oxysterol binding protein related proteins (ORPs) that work at ER-PM junctions and consume PI4P gradients exert important control over the Ca2+ entry process. These studies reveal an important connection between non-vesicular lipid transport at ER-PM contact sites and regulation of ER Ca2+store refilling.
Collapse
Affiliation(s)
- Gergo Gulyas
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marek K Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Carlos Ernesto Bastián Eugenio
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Dafsari HS, Pemberton JG, Ferrer EA, Yammine T, Farra C, Mohammadi MH, Ghayoor Karimiani E, Hashemi N, Souaid M, Sabbagh S, Najarzadeh Torbati P, Khan S, Roze E, Moreno‐De‐Luca A, Bertoli‐Avella AM, Houlden H, Balla T, Maroofian R. PI4K2A deficiency causes innate error in intracellular trafficking with developmental and epileptic-dyskinetic encephalopathy. Ann Clin Transl Neurol 2022; 9:1345-1358. [PMID: 35880319 PMCID: PMC9463957 DOI: 10.1002/acn3.51634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Intracellular signaling networks rely on proper membrane organization to control an array of cellular processes such as metabolism, proliferation, apoptosis, and macroautophagy in eukaryotic cells and organisms. Phosphatidylinositol 4-phosphate (PI4P) emerged as an essential regulatory lipid within organelle membranes that defines their lipid composition and signaling properties. PI4P is generated by four distinct phosphatidylinositol 4-kinases (PI4K) in mammalian cells: PI4KA, PI4KB, PI4K2A, PI4K2B. Animal models and human genetic studies suggest vital roles of PI4K enzymes in development and function of various organs, including the nervous system. Bi-allelic variants in PI4KA were recently associated with neurodevelopmental disorders (NDD), brain malformations, leukodystrophy, primary immunodeficiency, and inflammatory bowel disease. Here, we describe patients from two unrelated consanguineous families with PI4K2A deficiency and functionally explored the pathogenic mechanism. METHODS Two patients with PI4K2A deficiency were identified by exome sequencing, presenting with developmental and epileptic-dyskinetic encephalopathy. Neuroimaging showed corpus callosum dysgenesis, diffuse white matter volume loss, and hypoplastic vermis. In addition to NDD, we observed recurrent infections and death at toddler age. We further explored identified variants with cellular assays. RESULTS This clinical presentation overlaps with what was previously reported in two affected siblings with homozygous nonsense PI4K2A variant. Cellular studies analyzing these human variants confirmed their deleterious effect on PI4K2A activity and, together with the central role of PI4K2A in Rab7-associated vesicular trafficking, establish a link between late endosome-lysosome defects and NDD. INTERPRETATION Our study establishes the genotype-phenotype spectrum of PI4K-associated NDD and highlights several commonalities with other innate errors of intracellular trafficking.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of PediatricsFaculty of Medicine and University Hospital Cologne, University of CologneKerpener Str. 6250937KölnGermany,Max‐Planck‐Institute for Biology of Ageing and CECADCologneGermany,Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation TrustLondonUK
| | - Joshua G. Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHDNational Institutes of HealthBethesdaMarylandUSA
| | - Elizabeth A. Ferrer
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHDNational Institutes of HealthBethesdaMarylandUSA
| | - Tony Yammine
- Medical Genetics UnitSaint Joseph UniversityBeirutLebanon
| | - Chantal Farra
- Medical Genetics UnitSaint Joseph UniversityBeirutLebanon,Department of GeneticsHotel Dieu de France Medical CenterBeirutLebanon
| | | | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences InstituteSt. George's, University of LondonCranmer TerraceLondonUK,Department of Medical GeneticsNext Generation Genetic PolyclinicMashhadIran
| | - Narges Hashemi
- Department of Pediatric Neurology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mirna Souaid
- Medical Genetics UnitSaint Joseph UniversityBeirutLebanon
| | - Sandra Sabbagh
- Department of GeneticsHotel Dieu de France Medical CenterBeirutLebanon
| | | | | | - Emmanuel Roze
- CNRS, INSERM, Institut du Cerveau (ICM)Sorbonne UniversitéParis75013France,DMU NeurosciencesHôpital de la Pitié‐Salpêtrière, Assistance Publique‐Hôpitaux de ParisParis75013France
| | - Andres Moreno‐De‐Luca
- Department of Radiology, Diagnostic Medicine InstituteAutism & Developmental Medicine Institute, Genomic Medicine Institute, GeisingerDanvillePennsylvaniaUSA
| | | | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHDNational Institutes of HealthBethesdaMarylandUSA
| | - Reza Maroofian
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyQueen SquareLondonUK
| |
Collapse
|
34
|
A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation. Cell Chem Biol 2022; 29:1446-1464.e10. [PMID: 35835118 DOI: 10.1016/j.chembiol.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022]
Abstract
Chemogenetic methods enabling the rapid translocation of specific proteins to the plasma membrane (PM) in a single protein-single ligand manner are useful tools in cell biology. We recently developed a technique, in which proteins fused to an Escherichia coli dihydrofolate reductase (eDHFR) variant carrying N-terminal hexalysine residues are recruited from the cytoplasm to the PM using the synthetic myristoyl-d-Cys-tethered trimethoprim (mDcTMP) ligand. However, this system achieved PM-specific translocation only when the eDHFR tag was fused to the N terminus of proteins, thereby limiting its application. In this report, we engineered a universal PM-targeting tag for mDcTMP-induced protein translocation by grafting the hexalysine motif into an intra-loop region of eDHFR. We demonstrate the broad applicability of the new loop-engineered eDHFR tag and mDcTMP pair for conditional PM recruitment and activation of various tag-fused signaling proteins with different fusion configurations and for reversibly and repeatedly controlling protein localization to generate synthetic signal oscillations.
Collapse
|
35
|
Mochizuki S, Miki H, Zhou R, Noda Y. The involvement of oxysterol-binding protein related protein (ORP) 6 in the counter-transport of phosphatidylinositol-4-phosphate (PI4P) and phosphatidylserine (PS) in neurons. Biochem Biophys Rep 2022; 30:101257. [PMID: 35518199 PMCID: PMC9061615 DOI: 10.1016/j.bbrep.2022.101257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oxysterol-binding protein (OSBP)-related protein (ORP) 6, a member of subfamily III in the ORP family, localizes to membrane contact sites between the endoplasmic reticulum (ER) and other organelles and functions in non-vesicular exchange of lipids including phosphatidylinositol-4-phosphate (PI4P) in neurons. In this study, we searched for the lipid counter-transported in exchange for PI4P by using molecular cell biology techniques. Deconvolution microscopy revealed that knockdown of ORP6 partially shifted localization of a phosphatidylserine (PS) marker but not filipin in primary cultured cerebellar neurons. Overexpression of ORP6 constructs lacking the OSBP-related ligand binding domain (ORD) resulted in the same shift of the PS marker. A PI4KⅢα inhibitor specifically inhibiting the synthesis and plasma membrane (PM) localization of PI4P, suppressed the localization of ORP6 and the PS marker at the PM. Overexpression of mutant PS synthase 1 (PSS1) inhibited transport of the PS marker to the PM and relocated the PI4P marker to the PM in Neuro-2A cells. Introduction of ORP6 but not the dominant negative ORP6 constructs, shifted the localization of PS back to the PM. These data collectively suggest the involvement of ORP6 in the counter-transport of PI4P and PS. Knockdown of ORP6 changed localization of PS marker. Localization of PS marker and ORP6 at the PM was suppressed by PI4K inhibitor. ORP6 restored PS from the ER to PM when mutant PSS1 is expressed.
Collapse
|
36
|
Smulders L, Altman R, Briseno C, Saatchi A, Wallace L, AlSebaye M, Stahelin RV, Nikolaidis N. Phosphatidylinositol Monophosphates Regulate the Membrane Localization of HSPA1A, a Stress-Inducible 70-kDa Heat Shock Protein. Biomolecules 2022; 12:biom12060856. [PMID: 35740982 PMCID: PMC9221345 DOI: 10.3390/biom12060856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/02/2023] Open
Abstract
HSPA1A is a molecular chaperone that regulates the survival of stressed and cancer cells. In addition to its cytosolic pro-survival functions, HSPA1A also localizes and embeds in the plasma membrane (PM) of stressed and tumor cells. Membrane-associated HSPA1A exerts immunomodulatory functions and renders tumors resistant to standard therapies. Therefore, understanding and manipulating HSPA1A's surface presentation is a promising therapeutic. However, HSPA1A's pathway to the cell surface remains enigmatic because this protein lacks known membrane localization signals. Considering that HSPA1A binds to lipids, like phosphatidylserine (PS) and monophosphorylated phosphoinositides (PIPs), we hypothesized that this interaction regulates HSPA1A's PM localization and anchorage. To test this hypothesis, we subjected human cell lines to heat shock, depleted specific lipid targets, and quantified HSPA1A's PM localization using confocal microscopy and cell surface biotinylation. These experiments revealed that co-transfection of HSPA1A with lipid-biosensors masking PI(4)P and PI(3)P significantly reduced HSPA1A's heat-induced surface presentation. Next, we manipulated the cellular lipid content using ionomycin, phenyl arsine oxide (PAO), GSK-A1, and wortmannin. These experiments revealed that HSPA1A's PM localization was unaffected by ionomycin but was significantly reduced by PAO, GSK-A1, and wortmannin, corroborating the findings obtained by the co-transfection experiments. We verified these results by selectively depleting PI(4)P and PI(4,5)P2 using a rapamycin-induced phosphatase system. Our findings strongly support the notion that HSPA1A's surface presentation is a multifaceted lipid-driven phenomenon controlled by the binding of the chaperone to specific endosomal and PM lipids.
Collapse
Affiliation(s)
- Larissa Smulders
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Carolina Briseno
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Alireza Saatchi
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Leslie Wallace
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Maha AlSebaye
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center, Purdue University, West Lafayette, IN 47907, USA;
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
- Correspondence: ; Tel.: +1-657-278-4526
| |
Collapse
|
37
|
Heuss C, Rothhaar P, Burm R, Lee JY, Ralfs P, Haselmann U, Ströh LJ, Colasanti O, Tran CS, Schäfer N, Schnitzler P, Merle U, Bartenschlager R, Patel AH, Graw F, Krey T, Laketa V, Meuleman P, Lohmann V. A Hepatitis C virus genotype 1b post-transplant isolate with high replication efficiency in cell culture and its adaptation to infectious virus production in vitro and in vivo. PLoS Pathog 2022; 18:e1010472. [PMID: 35763545 PMCID: PMC9273080 DOI: 10.1371/journal.ppat.1010472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Christian Heuss
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Paul Rothhaar
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Rani Burm
- Laboratory of Liver Infectious Diseases, Ghent University, Gent, Belgium
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Philipp Ralfs
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Noemi Schäfer
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frederik Graw
- BioQuant – Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Vibor Laketa
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Gent, Belgium
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
de la Cruz L, Kushmerick C, Sullivan JM, Kruse M, Vivas O. Hippocampal neurons maintain a large PtdIns(4)P pool that results in faster PtdIns(4,5)P2 synthesis. J Gen Physiol 2022; 154:e202113001. [PMID: 35179558 PMCID: PMC8906353 DOI: 10.1085/jgp.202113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/01/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
PtdIns(4,5)P2 is a signaling lipid central to the regulation of multiple cellular functions. It remains unknown how PtdIns(4,5)P2 fulfills various functions in different cell types, such as regulating neuronal excitability, synaptic release, and astrocytic function. Here, we compared the dynamics of PtdIns(4,5)P2 synthesis in hippocampal neurons and astrocytes with the kidney-derived tsA201 cell line. The experimental approach was to (1) measure the abundance and rate of PtdIns(4,5)P2 synthesis and precursors using specific biosensors, (2) measure the levels of PtdIns(4,5)P2 and its precursors using mass spectrometry, and (3) use a mathematical model to compare the metabolism of PtdIns(4,5)P2 in cell types with different proportions of phosphoinositides. The rate of PtdIns(4,5)P2 resynthesis in hippocampal neurons after depletion by cholinergic or glutamatergic stimulation was three times faster than for tsA201 cells. In tsA201 cells, resynthesis of PtdIns(4,5)P2 was dependent on the enzyme PI4K. In contrast, in hippocampal neurons, the resynthesis rate of PtdIns(4,5)P2 was insensitive to the inhibition of PI4K, indicating that it does not require de novo synthesis of the precursor PtdIns(4)P. Measurement of phosphoinositide abundance indicated a larger pool of PtdIns(4)P, suggesting that hippocampal neurons maintain sufficient precursor to restore PtdIns(4,5)P2 levels. Quantitative modeling indicates that the measured differences in PtdIns(4)P pool size and higher activity of PI4K can account for the experimental findings and indicates that high PI4K activity prevents depletion of PtdIns(4)P. We further show that the resynthesis of PtdIns(4,5)P2 is faster in neurons than astrocytes, providing context to the relevance of cell type-specific mechanisms to sustain PtdIns(4,5)P2 levels.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Christopher Kushmerick
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jane M. Sullivan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Guo Z, Jiang CH, Tong C, Yang Y, Wang Z, Lam SM, Wang D, Li R, Shui G, Shi YS, Liu JJ. Activity-dependent PI4P synthesis by PI4KIIIα regulates long-term synaptic potentiation. Cell Rep 2022; 38:110452. [PMID: 35235793 DOI: 10.1016/j.celrep.2022.110452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a low abundant phospholipid with important roles in lipid transport and membrane trafficking. However, little is known of its metabolism and function in neurons. Here, we investigate its subcellular distribution and functional roles in dendrites of rodent hippocampal neurons during resting state and long-term synaptic potentiation (LTP). We show that neural activity causes dynamic reversible changes in PI4P metabolism in dendrites. Upon LTP induction, PI4KIIIα, a type III phosphatidylinositol 4-kinase, localizes to the dendritic plasma membrane (PM) in a calcium-dependent manner and causes substantial increase in the levels of PI4P. Acute inhibition of PI4KIIIα activity abolishes trafficking of the AMPA-type glutamate receptor to the PM during LTP induction, and silencing of PI4KIIIα expression in the hippocampal CA1 region causes severe impairment of LTP and long-term memory. Collectively, our results identify an essential role for PI4KIIIα-dependent PI4P synthesis in synaptic plasticity of central nervous system neurons.
Collapse
Affiliation(s)
- Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao-Hua Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Chunfang Tong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
40
|
Batrouni AG, Bag N, Phan HT, Baird BA, Baskin JM. A palmitoylation code controls PI4KIIIα complex formation and PI(4,5)P2 homeostasis at the plasma membrane. J Cell Sci 2022; 135:272297. [PMID: 34569608 DOI: 10.1242/jcs.259365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry T Phan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
42
|
Components of the phosphatidylserine endoplasmic reticulum to plasma membrane transport mechanism as targets for KRAS inhibition in pancreatic cancer. Proc Natl Acad Sci U S A 2021; 118:2114126118. [PMID: 34903667 DOI: 10.1073/pnas.2114126118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
KRAS is mutated in 90% of human pancreatic ductal adenocarcinomas (PDACs). To function, KRAS must localize to the plasma membrane (PM) via a C-terminal membrane anchor that specifically engages phosphatidylserine (PtdSer). This anchor-binding specificity renders KRAS-PM localization and signaling capacity critically dependent on PM PtdSer content. We now show that the PtdSer lipid transport proteins, ORP5 and ORP8, which are essential for maintaining PM PtdSer levels and hence KRAS PM localization, are required for KRAS oncogenesis. Knockdown of either protein, separately or simultaneously, abrogated growth of KRAS-mutant but not KRAS-wild-type pancreatic cancer cell xenografts. ORP5 or ORP8 knockout also abrogated tumor growth in an immune-competent orthotopic pancreatic cancer mouse model. Analysis of human datasets revealed that all components of this PtdSer transport mechanism, including the PM-localized EFR3A-PI4KIIIα complex that generates phosphatidylinositol-4-phosphate (PI4P), and endoplasmic reticulum (ER)-localized SAC1 phosphatase that hydrolyzes counter transported PI4P, are significantly up-regulated in pancreatic tumors compared to normal tissue. Taken together, these results support targeting PI4KIIIα in KRAS-mutant cancers to deplete the PM-to-ER PI4P gradient, reducing PM PtdSer content. We therefore repurposed the US Food and Drug Administration-approved hepatitis C antiviral agent, simeprevir, as a PI4KIIIα inhibitor In a PDAC setting. Simeprevir potently mislocalized KRAS from the PM, reduced the clonogenic potential of pancreatic cancer cell lines in vitro, and abrogated the growth of KRAS-dependent tumors in vivo with enhanced efficacy when combined with MAPK and PI3K inhibitors. We conclude that the cellular ER-to-PM PtdSer transport mechanism is essential for KRAS PM localization and oncogenesis and is accessible to therapeutic intervention.
Collapse
|
43
|
Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo WT, Margaria JP, Chen A, De Santis MC, Cnudde SJ, Fogerty J, Yuan A, Massarotti A, Sarijalo NT, Vadas O, Williams RL, Thelen M, Powell DR, Schüler M, Wiesener MS, Balla T, Baris HN, Tiosano D, McDermott BM, Perkins BD, Ghigo A, Martini M, Haucke V, Boura E, Merlo GR, Buchner DA, Hirsch E. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 2021; 374:eabk0410. [PMID: 34882480 PMCID: PMC7612254 DOI: 10.1126/science.abk0410] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ilaria Corrado
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Sophie J. Cnudde
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alex Yuan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Nasrin Torabi Sarijalo
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Oscar Vadas
- Section des Sciences Pharmaceutiques, University of Geneva, 1211 Geneva, Switzerland
| | - Roger L. Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - David R. Powell
- Pharmaceutical Biology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hagit N. Baris
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
- Rappaport Family Faculty of Medicine, Technion - –Israel Institute of Technology, Haifa 30196, Israel
| | - Brian M. McDermott
- Department of Otolaryngology–Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brian D. Perkins
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| |
Collapse
|
44
|
Twu WI, Lee JY, Kim H, Prasad V, Cerikan B, Haselmann U, Tabata K, Bartenschlager R. Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Rep 2021; 37:110049. [PMID: 34788596 PMCID: PMC8577994 DOI: 10.1016/j.celrep.2021.110049] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 02/09/2023] Open
Abstract
Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.
Collapse
Affiliation(s)
- Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Vysotskiy M, Zhong X, Miller-Fleming TW, Zhou D, Cox NJ, Weiss LA. Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes. Genome Med 2021; 13:172. [PMID: 34715901 PMCID: PMC8557010 DOI: 10.1186/s13073-021-00972-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Deletions and duplications of the multigenic 16p11.2 and 22q11.2 copy number variant (CNV) regions are associated with brain-related disorders including schizophrenia, intellectual disability, obesity, bipolar disorder, and autism spectrum disorder (ASD). The contribution of individual CNV genes to each of these identified phenotypes is unknown, as well as the contribution of these CNV genes to other potentially subtler health implications for carriers. Hypothesizing that DNA copy number exerts most effects via impacts on RNA expression, we attempted a novel in silico fine-mapping approach in non-CNV carriers using both GWAS and biobank data. METHODS We first asked whether gene expression level in any individual gene in the CNV region alters risk for a known CNV-associated behavioral phenotype(s). Using transcriptomic imputation, we performed association testing for CNV genes within large genotyped cohorts for schizophrenia, IQ, BMI, bipolar disorder, and ASD. Second, we used a biobank containing electronic health data to compare the medical phenome of CNV carriers to controls within 700,000 individuals in order to investigate the full spectrum of health effects of the CNVs. Third, we used genotypes for over 48,000 individuals within the biobank to perform phenome-wide association studies between imputed expressions of individual 16p11.2 and 22q11.2 genes and over 1500 health traits. RESULTS Using large genotyped cohorts, we found individual genes within 16p11.2 associated with schizophrenia (TMEM219, INO80E, YPEL3), BMI (TMEM219, SPN, TAOK2, INO80E), and IQ (SPN), using conditional analysis to identify upregulation of INO80E as the driver of schizophrenia, and downregulation of SPN and INO80E as increasing BMI. We identified both novel and previously observed over-represented traits within the electronic health records of 16p11.2 and 22q11.2 CNV carriers. In the phenome-wide association study, we found seventeen significant gene-trait pairs, including psychosis (NPIPB11, SLX1B) and mood disorders (SCARF2), and overall enrichment of mental traits. CONCLUSIONS Our results demonstrate how integration of genetic and clinical data aids in understanding CNV gene function and implicates pleiotropy and multigenicity in CNV biology.
Collapse
Affiliation(s)
- Mikhail Vysotskiy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Lauren A Weiss
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
46
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
47
|
Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nat Commun 2021; 12:5248. [PMID: 34504076 PMCID: PMC8429657 DOI: 10.1038/s41467-021-25523-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/10/2021] [Indexed: 11/15/2022] Open
Abstract
The HRAS, NRAS, and KRAS genes are collectively mutated in a fifth of all human cancers. These mutations render RAS GTP-bound and active, constitutively binding effector proteins to promote signaling conducive to tumorigenic growth. To further elucidate how RAS oncoproteins signal, we mined RAS interactomes for potential vulnerabilities. Here we identify EFR3A, an adapter protein for the phosphatidylinositol kinase PI4KA, to preferentially bind oncogenic KRAS. Disrupting EFR3A or PI4KA reduces phosphatidylinositol-4-phosphate, phosphatidylserine, and KRAS levels at the plasma membrane, as well as oncogenic signaling and tumorigenesis, phenotypes rescued by tethering PI4KA to the plasma membrane. Finally, we show that a selective PI4KA inhibitor augments the antineoplastic activity of the KRASG12C inhibitor sotorasib, suggesting a clinical path to exploit this pathway. In sum, we have discovered a distinct KRAS signaling axis with actionable therapeutic potential for the treatment of KRAS-mutant cancers. The lipid composition of the plasma membrane defines the localisation of KRAS and its oncogenic function. Here the authors show that EFR3A binds to active KRAS to recruit PI4KA and alters the lipid composition of the plasma membrane to promote KRAS oncogenic signalling and tumorigenesis.
Collapse
|
48
|
Myeong J, de la Cruz L, Jung SR, Yeon JH, Suh BC, Koh DS, Hille B. Phosphatidylinositol 4,5-bisphosphate is regenerated by speeding of the PI 4-kinase pathway during long PLC activation. J Gen Physiol 2021; 152:211533. [PMID: 33186442 PMCID: PMC7671494 DOI: 10.1085/jgp.202012627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
The dynamic metabolism of membrane phosphoinositide lipids involves several cellular compartments including the ER, Golgi, and plasma membrane. There are cycles of phosphorylation and dephosphorylation and of synthesis, transfer, and breakdown. The simplified phosphoinositide cycle comprises synthesis of phosphatidylinositol in the ER, transport, and phosphorylation in the Golgi and plasma membranes to generate phosphatidylinositol 4,5-bisphosphate, followed by receptor-stimulated hydrolysis in the plasma membrane and return of the components to the ER for reassembly. Using probes for specific lipid species, we have followed and analyzed the kinetics of several of these events during stimulation of M1 muscarinic receptors coupled to the G-protein Gq. We show that during long continued agonist action, polyphosphorylated inositol lipids are initially depleted but then regenerate while agonist is still present. Experiments and kinetic modeling reveal that the regeneration results from gradual but massive up-regulation of PI 4-kinase pathways rather than from desensitization of receptors. Golgi pools of phosphatidylinositol 4-phosphate and the lipid kinase PI4KIIIα (PI4KA) contribute to this homeostatic regeneration. This powerful acceleration, which may be at the level of enzyme activity or of precursor and product delivery, reveals strong regulatory controls in the phosphoinositide cycle.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | | | - Jun-Hee Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
49
|
Salter CG, Cai Y, Lo B, Helman G, Taylor H, McCartney A, Leslie JS, Accogoli A, Zara F, Traverso M, Fasham J, Lees JA, Ferla M, Chioza BA, Wenger O, Scott E, Cross HE, Crawford J, Warshawsky I, Keisling M, Agamanolis D, Melver CW, Cox H, Elawad M, Marton T, Wakeling M, Holzinger D, Tippelt S, Munteanu M, Valcheva D, Deal C, Van Meerbeke S, Vockley CW, Butte MJ, Acar U, van der Knaap MS, Korenke GC, Kotzaeridou U, Balla T, Simons C, Uhlig HH, Crosby AH, De Camilli P, Wolf NI, Baple EL. Biallelic PI4KA variants cause neurological, intestinal and immunological disease. Brain 2021; 144:3597-3610. [PMID: 34415310 PMCID: PMC8719846 DOI: 10.1093/brain/awab313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα’s role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.
Collapse
Affiliation(s)
- Claire G Salter
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Yiying Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Henry Taylor
- Department of surgery and Cancer, Imperial College London, London, UK
| | - Amber McCartney
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | | | - James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Matteo Ferla
- Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joanna Crawford
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia
| | | | | | | | | | - Helen Cox
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, UK
| | - Mamoun Elawad
- Department of Gastroenterology, Sidra Medicine, Doha, Qatar
| | - Tamas Marton
- West Midlands Perinatal Pathology, Birmingham Women's Hospital, Edgbaston, Birmingham, UK
| | - Matthew Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Dirk Holzinger
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tippelt
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institute for Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Christin Deal
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Sara Van Meerbeke
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Catherine Walsh Vockley
- Children's Hospital of Pittsburgh, UPMC, Division of Genetic and Genomic Medicine, Pittsburgh, USA
| | - Manish J Butte
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Utkucan Acar
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, 26133 Oldenburg, Germany
| | - Urania Kotzaeridou
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxfordshire, UK.,Department of Paediatrics, University of Oxford, Oxfordshire, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| |
Collapse
|
50
|
Inhibition of PI4KIIIα as a Novel Potential Approach for Gaucher Disease Treatment. Neurosci Bull 2021; 37:1234-1239. [PMID: 34019252 DOI: 10.1007/s12264-021-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022] Open
|