1
|
K AK, Mahesh Y, Panwar J, Gupta S. Remediation of multifarious metal ions and molecular docking assessment for pathogenic microbe disinfection in aqueous solution by waste-derived Ca-MOF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21545-21567. [PMID: 38393560 DOI: 10.1007/s11356-024-32311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The present study demonstrates an eco-friendly and cost-effective synthesis of calcium terephthalate metal-organic frameworks (Ca-MOF). The Ca-MOF were composed of metal ions (Ca2+) and organic ligands (terephthalic acid; TPA); the former was obtained from egg shells, and the latter was obtained from processing waste plastic bottles. Detailed characterization using standard techniques confirmed the synthesis of Ca-MOF with an average particle size of 461.9 ± 15 nm. The synthesized Ca-MOF was screened for its ability to remove multiple metal ions from an aqueous solution. Based on the maximum sorption capacity, Pb2+, Cd2+, and Cu2+ ions were selected for individual parametric batch studies. The obtained results were interpreted using standard isotherms and kinetic models. The maximum sorption capacity (qm) obtained from the Langmuir model was found to be 644.07 ± 47, 391.4 ± 26, and 260.5 ± 14 mg g-1 for Pb2+, Cd2+, and Cu2+, respectively. Moreover, Ca-MOF also showed an excellent ability to remove all three metal ions simultaneously from a mixed solution. The metal nodes and bonded TPA from Ca-MOF were dissociated by the acid dissolution method, which protonated and isolated TPA for reuse. Further, the crystal structure of Ca-MOF was prepared and docked with protein targets of selected pathogenic water-borne microbes, which showed its disinfection potential. Overall, multiple metal sorption capability, regeneration studies, and broad-spectrum antimicrobial activity confirmed the versatility of synthesized Ca-MOF for industrial wastewater treatment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Yeshwanth Mahesh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
2
|
Shor SM, Schweig SK. The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses. Microorganisms 2023; 11:1759. [PMID: 37512931 PMCID: PMC10384908 DOI: 10.3390/microorganisms11071759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The primary objective of this paper is to provide an evidence-based update of the literature on the use of bioactive phytochemicals, nutraceuticals, and micronutrients (dietary supplements that provide health benefits beyond their nutritional value) in the management of persistent cases of Borrelia burgdorferi infection (Lyme disease) and two other tick-borne pathogens, Babesia and Bartonella species. Recent studies have advanced our understanding of the pathophysiology and mechanisms of persistent infections. These advances have increasingly enabled clinicians and patients to utilize a wider set of options to manage these frequently disabling conditions. This broader toolkit holds the promise of simultaneously improving treatment outcomes and helping to decrease our reliance on the long-term use of pharmaceutical antimicrobials and antibiotics in the treatment of tick-borne pathogens such as Borrelia burgdorferi, Babesia, and Bartonella.
Collapse
Affiliation(s)
- Samuel M Shor
- Internal Medicine of Northern Virginia, George Washington University Health Care Sciences, Reston, VA 20190, USA
| | - Sunjya K Schweig
- California Center for Functional Medicine, Oakland, CA 94619, USA
| |
Collapse
|
3
|
Wen X, Zhou Y, Liang X, Li J, Huang Y, Li Q. A novel carbon-nitrogen coupled metabolic pathway promotes the recyclability of nitrogen in composting habitats. BIORESOURCE TECHNOLOGY 2023; 381:129134. [PMID: 37164230 DOI: 10.1016/j.biortech.2023.129134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
This study revealed a novel carbon-nitrogen coupled metabolic pathway. Results showed that the addition of inorganic carbon sources slowed down the decomposition of urea and conserved more nutrients in composting. Metagenomic analysis showed that the main bacteria involved in this new pathway were Actinobacteria, Proteobacteria and Firmicutes. During the late composting period, the dominant genus Microbacteium involved in denitrification accounted for 22.18% in control (CP) and only 0.12% in treatment group (T). Moreover, ureC, rocF, argF, argI, argG were key genes involved in urea cycle. The abundance of functional gene ureC and denitrification genes decreased in thermophilic and cooling phases, respectively. The genes hao, nosZ, ureA and nifH were more closely associated with Chloroflexi_bacterium and Bacillus_paralichenformis. In conclusion, composting habitats with additional inorganic carbon sources could not only weaken denitrification but also allow more nitrogen to be conserved through slow-release urea to improve resource utilization and decrease the environmental risk.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xueling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Disulfiram: Mechanisms, Applications, and Challenges. Antibiotics (Basel) 2023; 12:antibiotics12030524. [PMID: 36978391 PMCID: PMC10044060 DOI: 10.3390/antibiotics12030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Since disulfiram’s discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were “disulfiram” and “Antabuse”. Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948–2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a “repurposed” agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.
Collapse
|
5
|
Stevens AJ, Abraham R, Young KA, Russell CC, McCluskey SN, Baker JR, Rusdi B, Page SW, O'Handley R, O'Dea M, Abraham S, McCluskey A. Antigiardial Activity of Novel Guanidine Compounds. ChemMedChem 2022; 17:e202200341. [PMID: 36085254 PMCID: PMC9828538 DOI: 10.1002/cmdc.202200341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/31/2022] [Indexed: 01/12/2023]
Abstract
From four focused compound libraries based on the known anticoccidial agent robenidine, 44 compounds total were synthesised and screened for antigiardial activity. All active compounds were counter-screened for antibiotic and cytotoxic action. Of the analogues examined, 21 displayed IC50 <5 μM, seven with IC50 <1.0 μM. Most active were 2,2'-bis{[4-(trifluoromethoxy)phenyl]methylene}carbonimidic dihydrazide hydrochloride (30), 2,2'-bis{[4-(trifluoromethylsulfanyl)phenyl]methylene}carbonimidic dihydrazide hydrochloride (32), and 2,2'-bis[(2-bromo-4,5-dimethoxyphenyl)methylene]carbonimidic dihydrazide hydrochloride (41) with IC50 =0.2 μM. The maximal observed activity was a 5 h IC50 value of 0.2 μM for 41. The clinically used metronidazole was inactive at this timepoint at a concentration of 25 μM. Robenidine off-target effects at bacteria and cell line toxicity were removed. Analogue 41 was well tolerated in mice treated orally (100 mg/kg). Following 5 h treatment with 41, no Giardia regrowth was noted after 48 h.
Collapse
Affiliation(s)
- Andrew J. Stevens
- School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| | - Rebecca Abraham
- Antimicrobial resistance and Infectious Diseases Laboratory, Harry butler InstituteMurdoch University90 South StreetMurdochWA 6150Australia,School of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthySA 5371Australia
| | - Kelly A. Young
- School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| | - Cecilia C. Russell
- School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| | - Siobhann N. McCluskey
- School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| | - Jennifer R. Baker
- School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| | - Bertha Rusdi
- Antimicrobial resistance and Infectious Diseases Laboratory, Harry butler InstituteMurdoch University90 South StreetMurdochWA 6150Australia
| | | | - Ryan O'Handley
- School of Animal and Veterinary SciencesUniversity of Adelaide, Roseworthy CampusMudla Wirra RoadRoseworthySA 5371Australia
| | - Mark O'Dea
- Antimicrobial resistance and Infectious Diseases Laboratory, Harry butler InstituteMurdoch University90 South StreetMurdochWA 6150Australia
| | - Sam Abraham
- Antimicrobial resistance and Infectious Diseases Laboratory, Harry butler InstituteMurdoch University90 South StreetMurdochWA 6150Australia
| | - Adam McCluskey
- School of Environmental & Life SciencesThe University of NewcastleUniversity DriveCallaghanNSW 2308Australia
| |
Collapse
|
6
|
Nogara PA, Omage FB, Bolzan GR, Delgado CP, Orian L, Rocha JBT. Reactivity and binding mode of disulfiram, its metabolites, and derivatives in SARS-CoV-2 PL pro: insights from computational chemistry studies. J Mol Model 2022; 28:354. [PMID: 36222962 PMCID: PMC9554863 DOI: 10.1007/s00894-022-05341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/28/2022] [Indexed: 10/25/2022]
Abstract
The papain-like protease (PLpro) from SARS-CoV-2 is an important target for the development of antivirals against COVID-19. The safe drug disulfiram (DSF) presents antiviral activity inhibiting PLpro in vitro, and it is under clinical trial studies, indicating to be a promising anti-COVID-19 drug. In this work, we aimed to understand the mechanism of PLpro inhibition by DSF and verify if DSF metabolites and derivatives could be potential inhibitors too. Molecular docking, DFT, and ADMET techniques were applied. The carbamoylation of the active site cysteine residue by DSF metabolite (DETC-MeSO) is kinetically and thermodynamically favorable (ΔG‡ = 3.15 and ΔG = - 12.10 kcal mol-1, respectively). Our results strongly suggest that the sulfoxide metabolites from DSF are promising covalent inhibitors of PLpro and should be tested in in vitro and in vivo assays to confirm their antiviral action.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
- Instituto Federal de Educação Ciência E Tecnologia Farroupilha (IFFar), Rua Fabio João Andolhe 1100, Santo Augusto, RS, 98590-000, Brazil.
| | - Folorunsho Bright Omage
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Gustavo Roni Bolzan
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Cássia Pereira Delgado
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Laura Orian
- Dipartimento Di Scienze Chimiche, Università Degli Studi Di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
7
|
Rennar GA, Gallinger TL, Mäder P, Lange-Grünweller K, Haeberlein S, Grünweller A, Grevelding CG, Schlitzer M. Disulfiram and dithiocarbamate analogues demonstrate promising antischistosomal effects. Eur J Med Chem 2022; 242:114641. [PMID: 36027862 DOI: 10.1016/j.ejmech.2022.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 μm we improved antischistosomal activity down to 25 μm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 μm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 μm, and importantly five of them have antischistosomal activity also at 10 μm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 μm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.
Collapse
Affiliation(s)
- Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Patrick Mäder
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Kerstin Lange-Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Arnold Grünweller
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany
| | - Christoph G Grevelding
- BFS, Institute of Parasitology, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany.
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher, Weg 6, 35032, Marburg, Germany.
| |
Collapse
|
8
|
Chen HF, Hsueh PR, Liu YY, Chen Y, Chang SY, Wang WJ, Wu CS, Tsai YM, Liu YS, Su WC, Chou YC, Hung MC. Disulfiram blocked cell entry of SARS-CoV-2 via inhibiting the interaction of spike protein and ACE2. Am J Cancer Res 2022; 12:3333-3346. [PMID: 35968340 PMCID: PMC9360250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023] Open
Abstract
Disulfiram is an FDA-approved drug that has been used to treat alcoholism and has demonstrated a wide range of anti-cancer, anti-bacterial, and anti-viral effects. In the global COVID-19 pandemic, there is an urgent need for effective therapeutics and vaccine development. According to recent studies, disulfiram can act as a potent SARS-CoV-2 replication inhibitor by targeting multiple SARS-CoV-2 non-structural proteins to inhibit viral polyprotein cleavage and RNA replication. Currently, disulfiram is under evaluation in phase II clinical trials to treat COVID-19. With more and more variants of the SARS-CoV-2 worldwide, it becomes critical to know whether disulfiram can also inhibit viral entry into host cells for various variants and replication inhibition. Here, molecular and cellular biology assays demonstrated that disulfiram could interrupt viral spike protein binding with its receptor ACE2. By using the viral pseudo-particles (Vpps) of SARS-CoV-2, disulfiram also showed the potent activity to block viral entry in a cell-based assay against Vpps of different SARS-CoV-2 variants. We further established a live virus model system to support the anti-viral entry activity of disulfiram with the SARS-CoV-2 virus. Molecular docking revealed how disulfiram hindered the binding between the ACE2 and wild-type or mutated spike proteins. Thus, our results indicate that disulfiram has the capability to block viral entry activity of different SARS-CoV-2 variants. Together with its known anti-replication of SARS-CoV-2, disulfiram may serve as an effective therapy against different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical UniversityTaichung 404333, Taiwan
| | - Yen-Yi Liu
- Department of Public Health, College of Public Health, China Medical UniversityTaichung 406040, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical UniversityTaichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical UniversityTaichung 406040, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of MedicineTaipei 100225, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of MedicineTaipei 100225, Taiwan
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical UniversityTaichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
| | - Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of MedicineTaipei 100225, Taiwan
| | - Yu-Shu Liu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of MedicineTaipei 100225, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 404327, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia SinicaTaipei 115024, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
9
|
Custodio MM, Sparks J, Long TE. Disulfiram: A Repurposed Drug in Preclinical and Clinical Development for the Treatment of Infectious Diseases. ANTI-INFECTIVE AGENTS 2022; 20:e040122199856. [PMID: 35782673 PMCID: PMC9245773 DOI: 10.2174/2211352520666220104104747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/01/2023]
Abstract
This article reviews preclinical and clinical studies on the repurposed use of disulfiram (Antabuse) as an antimicrobial agent. Preclinical research covered on the alcohol sobriety aid includes uses as an anti-MRSA agent, a carbapenamase inhibitor, antifungal drug for candidiasis, and treatment for parasitic diseases due to protozoa (e.g., giardiasis, leishmaniasis, malaria) and helminthes (e.g., schistosomiasis, trichuriasis). Past, current, and pending clinical studies on disulfiram as a post-Lyme disease syndrome (PTLDS) therapy, an HIV latency reversal agent, and intervention for COVID-19 infections are also reviewed..
Collapse
Affiliation(s)
- Marco M. Custodio
- Chesapeake Regional Medical Center, 736 Battlefield Blvd. N Chesapeake, VA 23320, USA
| | - Jennifer Sparks
- Department of Pharmacy Practice, Administration and Research, Marshall University School of Pharmacy, One John Marshall Drive, Huntington WV 24755-0001, USA
| | - Timothy E. Long
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, One John Marshall, Drive Huntington WV 24755-0001, USA
| |
Collapse
|
10
|
Ma C, Tan H, Choza J, Wang Y, Wang J. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm Sin B 2022; 12:1636-1651. [PMID: 34745850 PMCID: PMC8558150 DOI: 10.1016/j.apsb.2021.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 main protease (Mpro) is one of the most extensively exploited drug targets for COVID-19. Structurally disparate compounds have been reported as Mpro inhibitors, raising the question of their target specificity. To elucidate the target specificity and the cellular target engagement of the claimed Mpro inhibitors, we systematically characterize their mechanism of action using the cell-free FRET assay, the thermal shift-binding assay, the cell lysate Protease-Glo luciferase assay, and the cell-based FlipGFP assay. Collectively, our results have shown that majority of the Mpro inhibitors identified from drug repurposing including ebselen, carmofur, disulfiram, and shikonin are promiscuous cysteine inhibitors that are not specific to Mpro, while chloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole do not inhibit Mpro in any of the assays tested. Overall, our study highlights the need of stringent hit validation at the early stage of drug discovery.
Collapse
|
11
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
12
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
13
|
Abstract
Purpose of review Here, we review recent progress made on the genetic characterization of Giardia duodenalis assemblages and their relationship with virulence. We also discuss the implications of virulence factors in the pathogenesis of giardiasis, and advances in the development of vaccines and drugs based on knowledge of virulence markers. Recent findings The use of transcriptomic and proteomic technologies as well as whole genome sequencing (WGS) from single cysts has allowed the assembly of the draft genome sequences for assemblages C and D of G. duodenalis. These findings, along with the published genomes for assemblages A, B, and E, have allowed comparative genomic investigations. In addition, the use of these methodologies for the characterization of the secretomes of trophozoite-epithelial cell interactions for assemblages A/B has led to the identification of virulence markers including energy metabolism enzymes, proteinases, high-cysteine membrane proteins (HCMPs), and variant surface proteins (VSPs). Recently, some drugs and vaccines, targeting virulence factors have been developed, offering possible alternatives to current treatment and prevention options against giardiasis. Summary Among the nine recognized species of Giardia, G. duodenalis stands out because of its broad spectrum of hosts and its socio-economic importance. This species comprises eight genetic assemblages (A to H), of which A and B are zoonotic, and the other assemblages have narrow host specificities. Assemblages A and B may be considered as the most virulent ones, but the existence of asymptomatic carriers and considerable genetic variability within and among these assemblages hampers the definition of common virulence factors. The attachment of Giardia trophozoites to epithelial cells and structural cytoskeleton components of the adhesive disk, such as giardins or tubulins, is proposed to play key roles, but toxins have not yet been precisely defined. However, recent transcriptomic and proteomic analyses of the secretomes of trophozoites representing assemblages A and B and interacting with particular epithelial cell lines have defined a series of virulence factors, including glycolytic (e.g., enolase) and arginolytic (e.g., arginine deiminase) enzymes, cysteine proteases (e.g., giardipain-1) and VSPs (e.g., VSP9B10A). Other factors, such as HCMPs and tenascins, have been consistently found to be excreted/secreted, but their role(s) in the pathogenesis of giardiasis has not yet been elucidated. Interestingly, recent investigations of single cysts representing assemblages C and D using advanced sequencing and informatic methods have suggested that the transcription/expression profiles of virulence factors vary both within and between assemblages, thus assemblage-specific molecules might allow adaptation to the microenvironment within the host. Importantly, some drugs active against cysteine-rich proteins of Giardia, including giardipain-1, VSPs and arginine deiminase, have been shown to be targeted by cysteine-modifying compounds as disulfiram, L-canavanin and allicin. On the other hand, VSPs are presently considered as key vaccine candidates because they induce protection against Giardia in rodents and dogs. Overall, this review reveals that much more work is needed to identify, characterize, and understand the roles of virulence factors in Giardia and to assess their validity as drug and vaccine targets. Clear, advanced omics and informatic tools should assist in this future endeavor, with a focus on targeting virulence factors that are common and/or unique to distinct assemblages to develop new and effective interventions against Giardia.
Collapse
|
14
|
Vázquez-Jiménez LK, Moreno-Herrera A, Juárez-Saldivar A, González-González A, Ortiz-Pérez E, Paz-González AD, Palos-Pizarro I, Ramírez-Moreno E, Rivera G. Recent Advances in the Development of Triose Phosphate Isomerase Inhibitors as Antiprotozoal Agents. Curr Med Chem 2021; 29:2504-2529. [PMID: 34517794 DOI: 10.2174/0929867328666210913090928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parasitic diseases caused by protozoa such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amebiasis, trichomoniasis, and giardiasis are considered serious public health problems in developing countries. Drug-resistance among parasites justifies the search for new therapeutic drugs and the identification of new targets becomes a valuable approach. In this scenario, glycolysis pathway which consists of the conversion of glucose into pyruvate plays an important role in the protozoa energy supply and it is therefore considered as a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM show structural differences with human enzyme counterparts suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. OBJECTIVE In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. RESULTS TIM inhibitors showed mainly aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region were the main pathways that disabled the catalytic activity of the enzyme. CONCLUSION Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies demonstrate that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.
Collapse
Affiliation(s)
- Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alma D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Isidro Palos-Pizarro
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, 88779 Reynosa. Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320 Ciudad de México. Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
15
|
High-Throughput Fluorescent Assay for Inhibitor Screening of Proteases from RNA Viruses. Molecules 2021; 26:molecules26133792. [PMID: 34206406 PMCID: PMC8270262 DOI: 10.3390/molecules26133792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.
Collapse
|
16
|
Lobo-Galo N, Terrazas-López M, Martínez-Martínez A, Díaz-Sánchez ÁG. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. J Biomol Struct Dyn 2021; 39:3419-3427. [PMID: 32364011 PMCID: PMC7232886 DOI: 10.1080/07391102.2020.1764393] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
Emergent novel SARS-CoV-2 is responsible for the current pandemic outbreak of severe acute respiratory syndrome with high mortality among the symptomatic population worldwide. Given the absence of a current vaccine or specific antiviral treatment, it is urgent to search for FDA-approved drugs that can potentially inhibit essential viral enzymes. The inhibition of 3CLpro has potential medical application, due to the fact that it is required for processing of the first translated replicase polyproteins into a series of native proteins, which are essential for viral replication in the host cell. We employed an in silico approach to test if disulfiram, as well as its metabolites, and captopril could be used as potential antiviral drugs against COVID-19. We provide data on the potential covalent interaction of disulfiram and its metabolites with the substrate binding subsite of 3CLpro and propose a possible mechanism for the irreversible protease inactivation thought the reaction of the aforementioned compounds with the Cys145. Although, captopril is shown to be a potential ligand of 3CLpro, it is not recommended anti-COVID-19 therapy, due to the fact that it can induce the expression of the viral cellular receptor such as, angiotensin-converting enzyme ACE-2, and thus, making the patient potentially more susceptible to infection. On the other hand, disulfiram, an alcoholism-averting drug, has been previously proposed as an antimicrobial and anti-SARS and MERS agent, safe to use even at higher doses with low side effects, it is recommended to be tested for control of SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naún Lobo-Galo
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Manuel Terrazas-López
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ángel Gabriel Díaz-Sánchez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| |
Collapse
|
17
|
Shirley DA, Sharma I, Warren CA, Moonah S. Drug Repurposing of the Alcohol Abuse Medication Disulfiram as an Anti-Parasitic Agent. Front Cell Infect Microbiol 2021; 11:633194. [PMID: 33777846 PMCID: PMC7991622 DOI: 10.3389/fcimb.2021.633194] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Parasitic infections contribute significantly to worldwide morbidity and mortality. Antibiotic treatment is essential for managing patients infected with these parasites since control is otherwise challenging and there are no vaccines available for prevention. However, new antimicrobial therapies are urgently needed as significant problems exist with current treatments such as drug resistance, limited options, poor efficacy, as well as toxicity. This situation is made worse by the challenges of drug discovery and development which is costly especially for non-profitable infectious diseases, time-consuming, and risky with a high failure rate. Drug repurposing which involves finding new use for existing drugs may help to more rapidly identify therapeutic candidates while drastically cutting costs of drug research and development. In this perspective article, we discuss the importance of drug repurposing, review disulfiram pharmacology, and highlight emerging data that supports repurposing disulfiram as an anti-parasitic, exemplified by the major diarrhea-causing parasite Entamoeba histolytica.
Collapse
Affiliation(s)
- Debbie-Ann Shirley
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Virginia, Charlottesville, VA, United States
| | - Ishrya Sharma
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Cirle A Warren
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shannon Moonah
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Lin HC, Kuan Y, Chu HF, Cheng SC, Pan HC, Chen WY, Sun CY, Lin TH. Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21. Int J Biol Macromol 2021; 176:490-497. [PMID: 33582217 DOI: 10.1016/j.ijbiomac.2021.02.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Disulfiram is a promising repurposed drug that, combining with radiation and chemotherapy, exhibits effective anticancer activities in several preclinical models. The cellular metabolites of disulfiram have been established, however, the intracellular targets of disulfiram remain largely unexplored. We have previously reported that disulfiram suppresses the coronaviral papain-like proteases through attacking their zinc-finger domains, suggesting an inhibitory function potentially on other proteases with similar catalytic structures. Ubiquitin-specific proteases (USPs) share a highly-conserved zinc-finger subdomain that structurally similar to the papain-like proteases and are attractive anticancer targets as upregulated USPs levels are found in a variety of tumors. Here, we report that disulfiram functions as a competitive inhibitor for both USP2 and USP21, two tumor-related deubiquitinases. In addition, we also observed a synergistic inhibition of USP2 and USP21 by disulfiram and 6-Thioguanine (6TG), a clinical drug for acute myeloid leukemia. Kinetic analyses revealed that both drugs exhibited a slow-binding mechanism, moderate inhibitory parameters, and a synergistically inhibitory effect on USP2 and USP21, suggesting the potential combinatory use of these two drugs for USPs-related tumors. Taken together, our study provides biochemical evidence for repurposing disulfiram and 6TG as a combinatory treatment in clinical applications.
Collapse
Affiliation(s)
- Hsin-Cheng Lin
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ying Kuan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Acedemia Sinica, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsu-Feng Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Chun Cheng
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Yi Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Acedemia Sinica, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Ta-Hsien Lin
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
19
|
Servidio C, Stellacci F. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacol Res Perspect 2021; 9:e00691. [PMID: 33378565 PMCID: PMC7773137 DOI: 10.1002/prp2.691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses represent global health threat. In this century, they have already caused two epidemics and one serious pandemic. Although, at present, there are no approved drugs and therapies for the treatment and prevention of human coronaviruses, several agents, FDA-approved, and preclinical, have shown in vitro and/or in vivo antiviral activity. An in-depth analysis of the current situation leads to the identification of several potential drugs that could have an impact on the fight against coronaviruses infections. In this review, we discuss the virology of human coronaviruses highlighting the main biological targets and summarize the current state-of-the-art of possible therapeutic options to inhibit coronaviruses infections. We mostly focus on FDA-approved and preclinical drugs targeting viral conserved elements.
Collapse
Affiliation(s)
- Camilla Servidio
- Department of Pharmacy, Health and Nutrition SciencesUniversity of CalabriaRendeItaly
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Francesco Stellacci
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
20
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Bustos-Jaimes I, Marcos-Víquez JÁ, González-Segura L, Díaz-Sánchez ÁG. Interaction of N-succinyl diaminopimelate desuccinylase with orphenadrine and disulfiram. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, da Silva Ferreira CJ, Dos Santos JC, de Oliveira JF, de Carvalho Junior LB, de Lima MDCA. COVID-19 therapy: What weapons do we bring into battle? Bioorg Med Chem 2020; 28:115757. [PMID: 32992245 PMCID: PMC7481143 DOI: 10.1016/j.bmc.2020.115757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Biologia Molecular, Universidade de Pernambuco, Garanhuns, PE, Brazil; Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - José Cleberson Santos Soares
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Keriolaine Lima Dos Santos
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Íris Trindade Tenório Jacob
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
22
|
Ma C, Hu Y, Townsend JA, Lagarias PI, Marty MT, Kolocouris A, Wang J. Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacol Transl Sci 2020; 3:1265-1277. [PMID: 33330841 PMCID: PMC7571300 DOI: 10.1021/acsptsci.0c00130] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 12/19/2022]
Abstract
![]()
Among the drug targets being investigated
for SARS-CoV-2, the viral
main protease (Mpro) is one of the most extensively studied.
Mpro is a cysteine protease that hydrolyzes the viral polyprotein
at more than 11 sites. It is highly conserved and has a unique substrate
preference for glutamine in the P1 position. Therefore, Mpro inhibitors are expected to have broad-spectrum antiviral activity
and a high selectivity index. Structurally diverse compounds have
been reported as Mpro inhibitors. In this study, we investigated
the mechanism of action of six previously reported Mpro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin,
and PX-12, using a consortium of techniques including FRET-based enzymatic
assay, thermal shift assay, native mass spectrometry, cellular antiviral
assays, and molecular dynamics simulations. Collectively, the results
showed that the inhibition of Mpro by these six compounds
is nonspecific and that the inhibition is abolished or greatly reduced
with the addition of reducing reagent 1,4-dithiothreitol (DTT). Without
DTT, these six compounds inhibit not only Mpro but also
a panel of viral cysteine proteases including SARS-CoV-2 papain-like
protease and 2Apro and 3Cpro from enterovirus
A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the
viral replication of EV-A71 or EV-D68, suggesting that the enzymatic
inhibition potency IC50 values obtained in the absence
of DTT cannot be used to faithfully predict their cellular antiviral
activity. Overall, we provide compelling evidence suggesting that
these six compounds are nonspecific SARS-CoV-2 Mpro inhibitors
and urge the scientific community to be stringent with hit validation.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Julia Alma Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Panagiotis I Lagarias
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Michael Thomas Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics (Basel) 2020; 9:antibiotics9090633. [PMID: 32971817 PMCID: PMC7557442 DOI: 10.3390/antibiotics9090633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Lyme disease caused by the Borrelia burgdorferi (Bb or B. burgdorferi) is the most common vector-borne, multi-systemic disease in the USA. Although most Lyme disease patients can be cured with a course of the first line of antibiotic treatment, some patients are intolerant to currently available antibiotics, necessitating the development of more effective therapeutics. We previously found several drugs, including disulfiram, that exhibited effective activity against B. burgdorferi. In the current study, we evaluated the potential of repurposing the FDA-approved drug, disulfiram for its borreliacidal activity. Our results indicate disulfiram has excellent borreliacidal activity against both the log and stationary phase B. burgdorferi sensu stricto B31 MI. Treatment of mice with disulfiram eliminated the B. burgdorferi sensu stricto B31 MI completely from the hearts and urinary bladder by day 28 post infection. Moreover, disulfiram-treated mice showed reduced expressions of inflammatory markers, and thus they were protected from histopathology and cardiac organ damage. Furthermore, disulfiram-treated mice showed significantly lower amounts of total antibody titers (IgM and IgG) at day 21 and total IgG2b at day 28 post infection. FACS analysis of lymph nodes revealed a decrease in the percentage of CD19+ B cells and an increase in total percentage of CD3+ T cells, CD3+ CD4+ T helpers, and naive and effector memory cells in disulfiram-treated mice. Together, our findings suggest that disulfiram has the potential to be repurposed as an effective antibiotic for treating Lyme disease.
Collapse
|
24
|
Discovery and Preclinical Development of Antigiardiasis Fumagillol Derivatives. Antimicrob Agents Chemother 2020; 64:AAC.00582-20. [PMID: 32778548 PMCID: PMC7508583 DOI: 10.1128/aac.00582-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
Giardiasis, caused by the intestinal parasite Giardia lamblia, is a severe diarrheal disease, endemic in poverty-stricken regions of the world, and also a common infection in developed countries. The available therapeutic options are associated with adverse effects, and G. lamblia resistance to the standard-of-care drugs is spreading. Fumagillin, an antimicrosporidiosis drug, is a therapeutic agent with potential for the treatment of giardiasis. However, it exhibits considerable, albeit reversible, toxicity when used to treat immunocompromised microsporidiosis patients. Giardiasis, caused by the intestinal parasite Giardia lamblia, is a severe diarrheal disease, endemic in poverty-stricken regions of the world, and also a common infection in developed countries. The available therapeutic options are associated with adverse effects, and G. lamblia resistance to the standard-of-care drugs is spreading. Fumagillin, an antimicrosporidiosis drug, is a therapeutic agent with potential for the treatment of giardiasis. However, it exhibits considerable, albeit reversible, toxicity when used to treat immunocompromised microsporidiosis patients. Fumagillin is also a highly unstable compound. To address these liabilities, we designed and synthesized stable fumagillol derivatives with lower levels of permeation across polarized epithelial Caco-2 cells and better potency against G. lamblia trophozoites than fumagillin. Metronidazole-resistant G. lamblia strains were also susceptible to the new fumagillol derivatives. In addition, these compounds were more potent against the amebiasis-causing parasite Entamoeba histolytica than fumagillin. Two compounds exhibited better thermal and acid stability than fumagillin, which should prolong the drug shelf life and reduce compound degradation in the stomach. Studies with a mouse model of giardiasis with the most stable compound, 4-(((((3R,4S,5S,6R)-5-methoxy-4-((2R,3R)-2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl)-1-oxaspiro[2.5]octan-6-yl)oxy)carbonyl)amino)benzoic acid (compound 9), revealed that it had better efficacy (effective dose [ED]) than fumagillin at both the fully curative dose (the 100% ED) of 6.6 mg/kg of body weight and a 50% ED of 0.064 mg/kg. Plasma pharmacokinetics revealed the slow absorption of compound 9 through the gut, consistent with the in vitro characterization in Caco-2 cells. An acute-dose study yielded a maximum tolerated dose (MTD) of 1,500 mg/kg, 227-fold higher than the fully curative dose. Thus, along with improved stability, compound 9 also exhibited an excellent therapeutic window.
Collapse
|
25
|
Ma C, Hu Y, Townsend JA, Lagarias PI, Marty MT, Kolocouris A, Wang J. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are non-specific promiscuous SARS-CoV-2 main protease inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.15.299164. [PMID: 32995786 PMCID: PMC7523112 DOI: 10.1101/2020.09.15.299164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is an urgent need for vaccines and antiviral drugs to combat the COVID-19 pandemic. Encouraging progress has been made in developing antivirals targeting SARS-CoV-2, the etiological agent of COVID-19. Among the drug targets being investigated, the viral main protease (M pro ) is one of the most extensively studied drug targets. M pro is a cysteine protease that hydrolyzes the viral polyprotein at more than 11 sites and it is highly conserved among coronaviruses. In addition, M pro has a unique substrate preference for glutamine in the P1 position. Taken together, it appears that M pro inhibitors can achieve both broad-spectrum antiviral activity and a high selectivity index. Structurally diverse compounds have been reported as M pro inhibitors, with several of which also showed antiviral activity in cell culture. In this study, we investigated the mechanism of action of six previously reported M pro inhibitors, ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12 using a consortium of techniques including FRET-based enzymatic assay, thermal shift assay, native mass spectrometry, cellular antiviral assays, and molecular dynamics simulations. Collectively, the results showed that the inhibition of M pro by these six compounds is non-specific and the inhibition is abolished or greatly reduced with the addition of reducing reagent DTT. In the absence of DTT, these six compounds not only inhibit M pro , but also a panel of viral cysteine proteases including SARS-CoV-2 papain-like protease, the 2A pro and 3C pro from enterovirus A71 (EV-A71) and EV-D68. However, none of the compounds inhibits the viral replication of EV-A71 or EV-D68, suggesting that the enzymatic inhibition potency IC 50 values obtained in the absence of DTT cannot be used to faithfully predict their cellular antiviral activity. Overall, we provide compelling evidence suggesting that ebselen, disulfiram, tideglusib, carmofur, shikonin, and PX-12 are non-specific SARS-CoV-2 M pro inhibitors, and urge the scientific community to be stringent with hit validation.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Julia Alma Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Panagiotis I. Lagarias
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Michael Thomas Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
26
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
27
|
Li L, Chen Q, Xu HH, Zhang XH, Zhang XG. DBU-Promoted Demethoxylative Thioannulation of Alkynyl Oxime Ethers with Sulfur for the Synthesis of Bisisothiazole-4-yl Disulfides. J Org Chem 2020; 85:10083-10090. [DOI: 10.1021/acs.joc.0c01334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ling Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qian Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hong-Hui Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
28
|
Lauwaet T, Miyamoto Y, Ihara S, Le C, Kalisiak J, Korthals KA, Ghassemian M, Smith DK, Sharpless KB, Fokin VV, Eckmann L. Click chemistry-facilitated comprehensive identification of proteins adducted by antimicrobial 5-nitroimidazoles for discovery of alternative drug targets against giardiasis. PLoS Negl Trop Dis 2020; 14:e0008224. [PMID: 32302296 PMCID: PMC7190177 DOI: 10.1371/journal.pntd.0008224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/29/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Giardiasis and other protozoan infections are major worldwide causes of morbidity and mortality, yet development of new antimicrobial agents with improved efficacy and ability to override increasingly common drug resistance remains a major challenge. Antimicrobial drug development typically proceeds by broad functional screens of large chemical libraries or hypothesis-driven exploration of single microbial targets, but both strategies have challenges that have limited the introduction of new antimicrobials. Here, we describe an alternative drug development strategy that identifies a sufficient but manageable number of promising targets, while reducing the risk of pursuing targets of unproven value. The strategy is based on defining and exploiting the incompletely understood adduction targets of 5-nitroimidazoles, which are proven antimicrobials against a wide range of anaerobic protozoan and bacterial pathogens. Comprehensive adductome analysis by modified click chemistry and multi-dimensional proteomics were applied to the model pathogen Giardia lamblia to identify dozens of adducted protein targets common to both 5'-nitroimidazole-sensitive and -resistant cells. The list was highly enriched for known targets in G. lamblia, including arginine deiminase, α-tubulin, carbamate kinase, and heat shock protein 90, demonstrating the utility of the approach. Importantly, over twenty potential novel drug targets were identified. Inhibitors of two representative new targets, NADP-specific glutamate dehydrogenase and peroxiredoxin, were found to have significant antigiardial activity. Furthermore, all the identified targets remained available in resistant cells, since giardicidal activity of the respective inhibitors was not impacted by resistance to 5'-nitroimidazoles. These results demonstrate that the combined use of click chemistry and proteomics has the potential to reveal alternative drug targets for overcoming antimicrobial drug resistance in protozoan parasites.
Collapse
Affiliation(s)
- Tineke Lauwaet
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Sozaburo Ihara
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America.,Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Christine Le
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Jarosław Kalisiak
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Keith A Korthals
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Valery V Fokin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
29
|
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25:668-688. [PMID: 32006468 PMCID: PMC7102522 DOI: 10.1016/j.drudis.2020.01.015] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 11/25/2022]
Abstract
Human coronaviruses (CoVs) are enveloped viruses with a positive-sense single-stranded RNA genome. Currently, six human CoVs have been reported including human coronavirus 229E (HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-NL63), HKU1 (HCoV-HKU1), severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and MiddleEast respiratory syndrome (MERS) coronavirus (MERS-CoV). They cause moderate to severe respiratory and intestinal infections in humans. In this review, we focus on recent advances in the research and development of small-molecule anti-human coronavirus therapies targeting different stages of the CoV life cycle.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | | | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
30
|
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. ADVANCES IN PARASITOLOGY 2020; 107:201-282. [PMID: 32122530 DOI: 10.1016/bs.apar.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of chemotherapeutic drugs is the main resource against clinical giardiasis due to the lack of approved vaccines. Resistance of G. duodenalis to the most used drugs to treat giardiasis, metronidazole and albendazole, is a clinical issue of growing concern and yet unknown impact, respectively. In the search of new drugs, the completion of the Giardia genome project and the use of biochemical, molecular and bioinformatics tools allowed the identification of ligands/inhibitors for about one tenth of ≈150 potential drug targets in this parasite. Further, the synthesis of second generation nitroimidazoles and benzimidazoles along with high-throughput technologies have allowed not only to define overall mechanisms of resistance to metronidazole but to screen libraries of repurposed drugs and new pharmacophores, thereby increasing the known arsenal of anti-giardial compounds to some hundreds, with most demonstrating activity against metronidazole or albendazole-resistant Giardia. In particular, cysteine-modifying agents which include omeprazole, disulfiram, allicin and auranofin outstand due to their pleiotropic activity based on the extensive repertoire of thiol-containing proteins and the microaerophilic metabolism of this parasite. Other promising agents derived from higher organisms including phytochemicals, lactoferrin and propolis as well as probiotic bacteria/fungi have also demonstrated significant potential for therapeutic and prophylactic purposes in giardiasis. In this context the present chapter offers a comprehensive review of the current knowledge, including commonly prescribed drugs, causes of therapeutic failures, drug resistance mechanisms, strategies for the discovery of new agents and alternative drug therapies.
Collapse
|
31
|
The Repurposed Drug Disulfiram Inhibits Urease and Aldehyde Dehydrogenase and Prevents In Vitro Growth of the Oomycete Pythium insidiosum. Antimicrob Agents Chemother 2019; 63:AAC.00609-19. [PMID: 31138572 DOI: 10.1128/aac.00609-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/18/2019] [Indexed: 11/20/2022] Open
Abstract
Pythium insidiosum is an oomycete microorganism that causes a life-threatening infectious disease, called pythiosis, in humans and animals. The disease has been increasingly reported worldwide. Conventional antifungal drugs are ineffective against P. insidiosum Treatment of pythiosis requires the extensive removal of infected tissue (i.e., eye and leg), but inadequate surgery and recurrent infection often occur. A more effective treatment is needed for pythiosis patients. Drug repurposing is a promising strategy for the identification of a U.S. Food and Drug Administration-approved drug for the control of P. insidiosum Disulfiram has been approved to treat alcoholism, but it exhibits antimicrobial activity against various pathogens. In this study, we explored whether disulfiram possesses an anti-P. insidiosum activity. A total of 27 P. insidiosum strains, isolated from various hosts and geographic areas, were susceptible to disulfiram in a dose-dependent manner. The MIC range of disulfiram against P. insidiosum (8 to 32 mg/liter) was in line with that of other pathogens. Proteogenomic analysis indicated that several potential targets of disulfiram (i.e., aldehyde dehydrogenase and urease) were present in P. insidiosum By homology modeling and molecular docking, disulfiram can bind the putative aldehyde dehydrogenase and urease of P. insidiosum at low energies (i.e., -6.1 and -4.0 Kcal/mol, respectively). Disulfiram diminished the biochemical activities of these enzymes. In conclusion, disulfiram can inhibit the growth of many pathogenic microorganisms, including P. insidiosum The drug can bind and inactivate multiple proteins of P. insidiosum, which may contribute to its broad antimicrobial property. Drug repurposing of disulfiram could be a new treatment option for pythiosis.
Collapse
|
32
|
Liegner KB. Disulfiram (Tetraethylthiuram Disulfide) in the Treatment of Lyme Disease and Babesiosis: Report of Experience in Three Cases. Antibiotics (Basel) 2019; 8:antibiotics8020072. [PMID: 31151194 PMCID: PMC6627205 DOI: 10.3390/antibiotics8020072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022] Open
Abstract
Three patients, each of whom had required intensive open-ended antimicrobial therapy for control of the symptoms of chronic relapsing neurological Lyme disease and relapsing babesiosis, were able to discontinue treatment and remain clinically well for periods of observation of 6–23 months following the completion of a finite course of treatment solely with disulfiram. One patient relapsed at six months and is being re-treated with disulfiram.
Collapse
Affiliation(s)
- Kenneth B Liegner
- 592 Route 22-Suite 1B, Pawling, NY 12564, USA.
- Northwell System, Northern Westchester Hospital, Mount Kisco, NY 10549, USA.
- Health Quest System, Sharon Hospital, Sharon, CT 06069, USA.
| |
Collapse
|
33
|
Ortega-Pierres MG, Argüello-García R. Giardia duodenalis: Role of secreted molecules as virulent factors in the cytotoxic effect on epithelial cells. ADVANCES IN PARASITOLOGY 2019; 106:129-169. [PMID: 31630757 DOI: 10.1016/bs.apar.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the course of giardiasis in humans and experimental models, G. duodenalis trophozoites express and secrete several proteins (ESPs) affecting structural, cellular and soluble components of the host intestinal milieu. These include the toxin-like molecules CRP136 and ESP58 that induce intestinal hyper-peristalsis. After the completion of the Giardia genome database and using up-to date transcriptomic and proteomic approaches, secreted 'virulence factors' have also been identified and experimentally characterized. This repertoire includes arginine deiminase (ADI) that competes for arginine, an important energy source for trophozoites, some high-cysteine membrane proteins (HCMPs) and VSP88, a versatile variant surface protein (VSP) that functions as an extracellular protease. Another giardial protein, enolase, moonlights as a metabolic enzyme that interacts with the fibrinolytic system and damages host epithelial cells. Other putative Giardia virulence factors are cysteine proteases that degrade multiple host components including mucin, villin, tight junction proteins, immunoglobulins, defensins and cytokines. One of these proteases, named giardipain-1, decreases transepithelial electrical resistance and induces apoptosis in epithelial cells. A putative role for tenascins, present in the Giardia's secretome, is interfering with the host epidermal growth factor. Based on the roles that these molecules play, drugs may be designed to interfere with their functions. This review presents a comprehensive description of secreted Giardia virulence factors. It further describes their cytotoxic mechanisms and roles in the pathophysiology of giardiasis, and then assesses their potential as targets for drug development.
Collapse
Affiliation(s)
- M Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico City, Mexico.
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico City, Mexico
| |
Collapse
|
34
|
Liang R, Wang L, Zhang N, Deng X, Su M, Su Y, Hu L, He C, Ying T, Jiang S, Yu F. Development of Small-Molecule MERS-CoV Inhibitors. Viruses 2018; 10:v10120721. [PMID: 30562987 PMCID: PMC6316138 DOI: 10.3390/v10120721] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/27/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) with potential to cause global pandemics remains a threat to the public health, security, and economy. In this review, we focus on advances in the research and development of small-molecule MERS-CoV inhibitors targeting different stages of the MERS-CoV life cycle, aiming to prevent or treat MERS-CoV infection.
Collapse
Affiliation(s)
- Ruiying Liang
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China.
| | - Naru Zhang
- Department of Clinical Medicine, Faculty of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Xiaoqian Deng
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| | - Meng Su
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yudan Su
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| | - Lanfang Hu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chen He
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
35
|
Abstract
Giardia is the commonest parasitic diarrheal pathogen affecting humans and a frequent cause of waterborne/foodborne parasitic diseases worldwide. Prevalence of giardiasis is higher in children, living in poor, low hygiene settings in developing countries, and in travelers returning from highly endemic areas. The clinical picture of giardiasis is heterogeneous, with high variability in severity of clinical disease. It can become chronic or be followed by post-infectious sequelae. An alarming increase in cases refractory to the conventional treatment with nitroimidazoles (ie, metronidazole) has been reported in low prevalence settings, such as European Union countries, especially in patients returning from Asia. In view of its relevance, we aim in this review to recapitulate present clinical knowledge about Giardia, with a special focus on the challenge of treatment-refractory giardiasis. We propose a working definition of clinically drug-resistant giardiasis, summarize knowledge regarding resistance mechanisms, and discuss its clinical management according to research-based evidence and medical practice. Advances in development and identification of novel drugs and potential non-pharmacological alternatives are also reviewed with the overall aim to define knowledge gaps and suggest future directions for research.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy,
| | - Kurt Hanevik
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
37
|
Hyperthermophilic Carbamate Kinase Stability and Anabolic In Vitro Activity at Alkaline pH. Appl Environ Microbiol 2018; 84:AEM.02250-17. [PMID: 29150502 DOI: 10.1128/aem.02250-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
Abstract
Carbamate kinases catalyze the conversion of carbamate to carbamoyl phosphate, which is readily transformed into other compounds. Carbamate forms spontaneously from ammonia and carbon dioxide in aqueous solutions, so the kinases have potential for sequestrative utilization of the latter compounds. Here, we compare seven carbamate kinases from mesophilic, thermophilic, and hyperthermophilic sources. In addition to the known enzymes from Enterococcus faecalis and Pyrococcus furiosus, the previously unreported enzymes from the hyperthermophiles Thermococcus sibiricus and Thermococcus barophilus, the thermophiles Fervidobacterium nodosum and Thermosipho melanesiensis, and the mesophile Clostridium tetani were all expressed recombinantly, each in high yield. Only the clostridial enzyme did not show catalysis. In direct assays of carbamate kinase activity, the three hyperthermophilic enzymes display higher specific activities at elevated temperatures, greater stability, and remarkable substrate turnover at alkaline pH (9.9 to 11.4). Thermococcus barophilus and Thermococcus sibiricus carbamate kinases were found to be the most active when the enzymes were tested at 80°C, and maintained activity over broad temperature and pH ranges. These robust thermococcal enzymes therefore represent ideal candidates for biotechnological applications involving aqueous ammonia solutions, since nonbuffered 0.0001 to 1.0 M solutions have pH values of approximately 9.8 to 11.8. As proof of concept, here we also show that carbamoyl phosphate produced by the Thermococcus barophilus kinase is efficiently converted in situ to carbamoyl aspartate by aspartate transcarbamoylase from the same source organism. Using acetyl phosphate to simultaneously recycle the kinase cofactor ATP, at pH 9.9 carbamoyl aspartate is produced in high yield and directly from solutions of ammonia, carbon dioxide, and aspartate.IMPORTANCE Much of the nitrogen in animal wastes and used in fertilizers is commonly lost as ammonia in water runoff, from which it must be removed to prevent downstream pollution and evolution of nitrogenous greenhouse gases. Since carbamate kinases transform ammonia and carbon dioxide to carbamoyl phosphate via carbamate, and carbamoyl phosphate may be converted into other valuable compounds, the kinases provide a route for useful sequestration of ammonia, as well as of carbon dioxide, another greenhouse gas. At the same time, recycling the ammonia in chemical synthesis reduces the need for its energy-intensive production. However, robust catalysts are required for such biotransformations. Here we show that carbamate kinases from hyperthermophilic archaea display remarkable stability and high catalytic activity across broad ranges of pH and temperature, making them promising candidates for biotechnological applications. We also show that carbamoyl phosphate produced by the kinases may be efficiently used to produce carbamoyl aspartate.
Collapse
|
38
|
Lin MH, Moses DC, Hsieh CH, Cheng SC, Chen YH, Sun CY, Chou CY. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 2017; 150:155-163. [PMID: 29289665 PMCID: PMC7113793 DOI: 10.1016/j.antiviral.2017.12.015] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/11/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in southern China in late 2002 and caused a global outbreak with a fatality rate around 10% in 2003. Ten years later, a second highly pathogenic human CoV, MERS-CoV, emerged in the Middle East and has spread to other countries in Europe, North Africa, North America and Asia. As of November 2017, MERS-CoV had infected at least 2102 people with a fatality rate of about 35% globally, and hence there is an urgent need to identify antiviral drugs that are active against MERS-CoV. Here we show that a clinically available alcohol-aversive drug, disulfiram, can inhibit the papain-like proteases (PLpros) of MERS-CoV and SARS-CoV. Our findings suggest that disulfiram acts as an allosteric inhibitor of MERS-CoV PLpro but as a competitive (or mixed) inhibitor of SARS-CoV PLpro. The phenomenon of slow-binding inhibition and the irrecoverability of enzyme activity after removing unbound disulfiram indicate covalent inactivation of SARS-CoV PLpro by disulfiram, while synergistic inhibition of MERS-CoV PLpro by disulfiram and 6-thioguanine or mycophenolic acid implies the potential for combination treatments using these three clinically available drugs.
Collapse
Affiliation(s)
- Min-Han Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - David C Moses
- Department of Chemistry, Tamkang University, Tamsui 251, Taiwan
| | - Chih-Hua Hsieh
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Shu-Chun Cheng
- Department of Nephrology, Chang-Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui 251, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
39
|
Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:425-432. [PMID: 29197728 PMCID: PMC5727346 DOI: 10.1016/j.ijpddr.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM) has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222) by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Disulfiram inactivates efficiently the triosephosphate isomerase of Giardia lamblia. Inactivation is species-specific; the human enzyme is insusceptible to disulfiram. Recombinant and GlTIM extracted from trophozoites inactivates similarly. Disulfiram inhibits endogenous GlTIM and trophozoite viability simultaneously. Disulfiram is a promissory option for drug repurposing against giardiasis.
Collapse
|
40
|
Proteomic and functional analyses reveal pleiotropic action of the anti-tumoral compound NBDHEX in Giardia duodenalis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:147-158. [PMID: 28366863 PMCID: PMC5377010 DOI: 10.1016/j.ijpddr.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
Abstract
Giardiasis, a parasitic diarrheal disease caused by Giardia duodenalis, affects one billion people worldwide. Treatment relies only on a restricted armamentarium of drugs. The disease burden and the increase in treatment failure highlight the need for novel, safe and well characterized drug options. The antitumoral compound NBDHEX is effective in vitro against Giardia trophozoites and inhibits glycerol-3-phosphate dehydrogenase. Aim of this work was to search for additional NBDHEX protein targets. The intrinsic NBDHEX fluorescence was exploited in a proteomic analysis to select and detect modified proteins in drug treated Giardia. In silico structural analysis, intracellular localization and functional assays were further performed to evaluate drug effects on the identified targets. A small subset of Giardia proteins was covalently bound to the drug at specific cysteine residues. These proteins include metabolic enzymes, e.g. thioredoxin reductase (gTrxR), as well as elongation factor 1B-γ (gEF1Bγ), and structural proteins, e.g. α-tubulin. We showed that NBDHEX in vitro binds to recombinant gEF1Bγ and gTrxR, but only the last one could nitroreduce NBDHEX leading to drug modification of gTrxR catalytic cysteines, with concomitant disulphide reductase activity inhibition and NADPH oxidase activity upsurge. Our results indicate that NBDHEX reacts with multiple targets whose roles and/or functions are specifically hampered. In addition, NBDHEX is in turn converted to reactive intermediates extending its toxicity. The described NBDHEX pleiotropic action accounts for its antigiardial activity and encourages the use of this drug as a promising alternative for the future treatment of giardiasis.
Collapse
|
41
|
Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans. Molecules 2016; 21:molecules21121628. [PMID: 27898047 PMCID: PMC6274061 DOI: 10.3390/molecules21121628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU), following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol) and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2'-dipyridyl disulphide, DPS), suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a "hinge" located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.
Collapse
|
42
|
Hennessey KM, Smith TR, Xu JW, Alas GCM, Ojo KK, Merritt EA, Paredez AR. Identification and Validation of Small-Gatekeeper Kinases as Drug Targets in Giardia lamblia. PLoS Negl Trop Dis 2016; 10:e0005107. [PMID: 27806042 PMCID: PMC5091913 DOI: 10.1371/journal.pntd.0005107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Giardiasis is widely acknowledged to be a neglected disease in need of new therapeutics to address toxicity and resistance issues associated with the limited available treatment options. We examined seven protein kinases in the Giardia lamblia genome that are predicted to share an unusual structural feature in their active site. This feature, an expanded active site pocket resulting from an atypically small gatekeeper residue, confers sensitivity to "bumped" kinase inhibitors (BKIs), a class of compounds that has previously shown good pharmacological properties and minimal toxicity. An initial phenotypic screen for biological activity using a subset of an in-house BKI library found that 5 of the 36 compounds tested reduced trophozoite growth by at least 50% at a concentration of 5 μM. The cellular localization and the relative expression levels of the seven protein kinases of interest were determined after endogenously tagging the kinases. Essentiality of these kinases for parasite growth and infectivity were evaluated genetically using morpholino knockdown of protein expression to establish those that could be attractive targets for drug design. Two of the kinases were critical for trophozoite growth and attachment. Therefore, recombinant enzymes were expressed, purified and screened against a BKI library of >400 compounds in thermal stability assays in order to identify high affinity compounds. Compounds with substantial thermal stabilization effects on recombinant protein were shown to have good inhibition of cell growth in wild-type G. lamblia and metronidazole-resistant strains of G. lamblia. Our data suggest that BKIs are a promising starting point for the development of new anti-giardiasis therapeutics that do not overlap in mechanism with current drugs.
Collapse
Affiliation(s)
- Kelly M. Hennessey
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Tess R. Smith
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington, United States of America
| | - Jennifer W. Xu
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kayode K. Ojo
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Disease (CERID), University of Washington, Seattle, Washington, United States of America
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ARP); (EAM)
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ARP); (EAM)
| |
Collapse
|
43
|
Tysnes KR, Robertson LJ. Establishment of Canine-DerivedGiardia duodenalisIsolates in Culture. J Parasitol 2016; 102:342-8. [DOI: 10.1645/15-910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Lee YM, Duh Y, Wang ST, Lai MMC, Yuan HS, Lim C. Using an Old Drug to Target a New Drug Site: Application of Disulfiram to Target the Zn-Site in HCV NS5A Protein. J Am Chem Soc 2016; 138:3856-62. [PMID: 26928525 DOI: 10.1021/jacs.6b00299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In viral proteins, labile Zn-sites, where Zn(2+) is crucial for maintaining the native protein structure but the Zn-bound cysteines are reactive, are promising drug targets. Here, we aim to (i) identify labile Zn-sites in viral proteins using guidelines established from our previous work and (ii) assess if clinically safe Zn-ejecting agents could eject Zn(2+) from the predicted target site and thus inhibit viral replication. As proof-of-concept, we identified a labile Zn-site in the hepatitis C virus (HCV) NS5A protein and showed that the antialcoholism drug, disulfiram, could inhibit HCV replication to a similar extent as the clinically used antiviral agent, ribavirin. The discovery of a novel viral target and a new role for disulfiram in inhibiting HCV replication will enhance the therapeutic armamentarium against HCV. The strategy presented can also be applied to identify labile sites in other bacterial or viral proteins that can be targeted by disulfiram or other clinically safe Zn-ejectors.
Collapse
Affiliation(s)
- Yu-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan
| | - Yulander Duh
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Shih-Ting Wang
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Michael M C Lai
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| |
Collapse
|
45
|
Giustarini D, Galvagni F, Tesei A, Farolfi A, Zanoni M, Pignatta S, Milzani A, Marone IM, Dalle-Donne I, Nassini R, Rossi R. Glutathione, glutathione disulfide, and S-glutathionylated proteins in cell cultures. Free Radic Biol Med 2015; 89:972-81. [PMID: 26476010 DOI: 10.1016/j.freeradbiomed.2015.10.410] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/15/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022]
Abstract
The analysis of the global thiol-disulfide redox status in tissues and cells is a challenging task since thiols and disulfides can undergo artificial oxido-reductions during sample manipulation. Because of this, the measured values, in particular for disulfides, can have a significant bias. Whereas this methodological problem has already been addressed in samples of red blood cells and solid tissues, a reliable method to measure thiols and disulfides in cell cultures has not been previously reported. Here, we demonstrate that the major artifact occurring during thiol and disulfide analysis in cultured cells is represented by glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG) overestimation, due to artificial oxidation of glutathione (GSH) during sample manipulation, and that this methodological problem can be solved by the addition of N-ethylmaleimide (NEM) immediately after culture medium removal. Basal levels of GSSG and PSSG in different lines of cultured cells were 3-5 and 10-20 folds higher, respectively, when the cells were processed without NEM. NEM pre-treatment also prevented the artificial reduction of disulfides that occurs during the pre-analytical phase when cells are exposed to an oxidant stimulus. In fact, in the absence of NEM, after medium removal, GSH, GSSG and PSSG levels restored their initial values within 15-30 min, due to the activity of reductases and the lack of the oxidant. The newly developed protocol was used to measure the thiol-disulfide redox status in 16 different line cells routinely used for biomedical research both under basal conditions and after treatment with disulfiram, a thiol-specific oxidant (0-200 μM concentration range). Our data indicate that, in most cell lines, treatment with disulfiram affected the levels of GSH and GSSG only at the highest concentration. On the other hand, PSSG levels increased significantly also at the lower concentrations of the drug, and the rise was remarkable (from 100 to 1000 folds at 200 μM concentration) and dose-dependent for almost all the cell lines. These data support the suitability of the analysis of PSSG in cultured cells as a biomarker of oxidative stress.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Anna Tesei
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Michele Zanoni
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Sara Pignatta
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Ilaria M Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
46
|
Azam A, Peerzada MN, Ahmad K. Parasitic diarrheal disease: drug development and targets. Front Microbiol 2015; 6:1183. [PMID: 26617574 PMCID: PMC4621754 DOI: 10.3389/fmicb.2015.01183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrhea is the manifestation of gastrointestinal infection and is one of the major causes of mortality and morbidity specifically among the children of less than 5 years age worldwide. Moreover, in recent years there has been a rise in the number of reports of intestinal infections continuously in the industrialized world. These are largely related to waterborne and food borne outbreaks. These occur by the pathogenesis of both prokaryotic and eukaryotic organisms like bacteria and parasites. The parasitic intestinal infection has remained mostly unexplored and under assessed in terms of therapeutic development. The lack of new drugs and the risk of resistance have led us to carry out this review on drug development for parasitic diarrheal diseases. The major focus has been depicted on commercially available drugs, currently synthesized active heterocyclic compounds and unique drug targets, that are vital for the existence and growth of the parasites and can be further exploited for the search of therapeutically active anti-parasitic agents.
Collapse
Affiliation(s)
- Amir Azam
- Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi, India
| | - Mudasir N. Peerzada
- Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi, India
| | - Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia IslamiaNew Delhi, India
| |
Collapse
|
47
|
Inhibitors of methionyl-tRNA synthetase have potent activity against Giardia intestinalis trophozoites. Antimicrob Agents Chemother 2015; 59:7128-31. [PMID: 26324270 DOI: 10.1128/aac.01573-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
The methionyl-tRNA synthetase (MetRS) is a novel drug target for the protozoan pathogen Giardia intestinalis. This protist contains a single MetRS that is distinct from the human cytoplasmic MetRS. A panel of MetRS inhibitors was tested against recombinant Giardia MetRS, Giardia trophozoites, and mammalian cell lines. The best compounds inhibited trophozoite growth at 500 nM (metronidazole did so at ∼5,000 nM) and had low cytotoxicity against mammalian cells, indicating excellent potential for further development as anti-Giardia drugs.
Collapse
|
48
|
Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner. Antimicrob Agents Chemother 2015. [PMID: 26033731 DOI: 10.1128/aac.00692‐15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tuberculosis is a severe disease affecting millions worldwide. Unfortunately, treatment strategies are hampered both by the prohibitively long treatment regimen and the rise of drug-resistant strains. Significant effort has been expended in the search for new treatments, but few options have successfully emerged, and new treatment modalities are desperately needed. Recently, there has been growing interest in the synergistic antibacterial effects of copper ions (Cu(II/I)) in combination with certain small molecular compounds, and we have previously reported development of a drug screening strategy to harness the intrinsic bactericidal properties of Cu(II/I). Here, we describe the copper-dependent antimycobacterial properties of disulfiram, an FDA-approved and well-tolerated sobriety aid. Disulfiram was inhibitory to mycobacteria only in the presence of Cu(II/I) and exerted its bactericidal activity well below the active concentration of Cu(II/I) or disulfiram alone. No other physiologically relevant bivalent transition metals (e.g., Fe(II), Ni(II), Mn(II), and Co(II)) exhibited this effect. We demonstrate that the movement of the disulfiram-copper complex across the cell envelope is porin independent and can inhibit intracellular protein functions. Additionally, the complex is able to synergistically induce intracellular copper stress responses significantly more than Cu(II/I) alone. Our data suggest that by complexing with disulfiram, Cu(II/I) is likely allowed unfettered access to vulnerable intracellular components, bypassing the normally sufficient copper homeostatic machinery. Overall, the synergistic antibacterial activity of Cu(II/I) and disulfiram reveals the susceptibility of the copper homeostasis system of Mycobacterium tuberculosis to chemical attacks and establishes compounds that act in concert with copper as a new class of bacterial inhibitors.
Collapse
|
49
|
Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner. Antimicrob Agents Chemother 2015; 59:4835-44. [PMID: 26033731 DOI: 10.1128/aac.00692-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is a severe disease affecting millions worldwide. Unfortunately, treatment strategies are hampered both by the prohibitively long treatment regimen and the rise of drug-resistant strains. Significant effort has been expended in the search for new treatments, but few options have successfully emerged, and new treatment modalities are desperately needed. Recently, there has been growing interest in the synergistic antibacterial effects of copper ions (Cu(II/I)) in combination with certain small molecular compounds, and we have previously reported development of a drug screening strategy to harness the intrinsic bactericidal properties of Cu(II/I). Here, we describe the copper-dependent antimycobacterial properties of disulfiram, an FDA-approved and well-tolerated sobriety aid. Disulfiram was inhibitory to mycobacteria only in the presence of Cu(II/I) and exerted its bactericidal activity well below the active concentration of Cu(II/I) or disulfiram alone. No other physiologically relevant bivalent transition metals (e.g., Fe(II), Ni(II), Mn(II), and Co(II)) exhibited this effect. We demonstrate that the movement of the disulfiram-copper complex across the cell envelope is porin independent and can inhibit intracellular protein functions. Additionally, the complex is able to synergistically induce intracellular copper stress responses significantly more than Cu(II/I) alone. Our data suggest that by complexing with disulfiram, Cu(II/I) is likely allowed unfettered access to vulnerable intracellular components, bypassing the normally sufficient copper homeostatic machinery. Overall, the synergistic antibacterial activity of Cu(II/I) and disulfiram reveals the susceptibility of the copper homeostasis system of Mycobacterium tuberculosis to chemical attacks and establishes compounds that act in concert with copper as a new class of bacterial inhibitors.
Collapse
|
50
|
Abstract
Giardiasis is a severe intestinal parasitic disease caused by Giardia lamblia, which inflicts many people in poor regions and is the most common parasitic infection in the United States. Current standard care drugs are associated with undesirable side effects, treatment failures, and an increasing incidence of drug resistance. As follow-up to a high-throughput screening of an approved drug library, which identified compounds lethal to G. lamblia trophozoites, we have determined the minimum lethal concentrations of 28 drugs and advanced 10 of them to in vivo studies in mice. The results were compared to treatment with the standard care drug, metronidazole, in order to identify drugs with equal or better anti-Giardia activities. Three drugs, fumagillin, carbadox, and tioxidazole, were identified. These compounds were also potent against metronidazole-resistant human G. lamblia isolates (assemblages A and B), as determined in in vitro assays. Of these three compounds, fumagillin is currently an orphan drug used within the European Union to treat microsporidiosis in immunocompromised individuals, whereas carbadox and tioxidazole are used in veterinary medicine. A dose-dependent study of fumagillin in a giardiasis mouse model revealed that the effective dose of fumagillin was ∼ 100-fold lower than the metronidazole dose. Therefore, fumagillin may be advanced to further studies as an alternative treatment for giardiasis when metronidazole fails.
Collapse
|