1
|
Phromchaloem C, Na Nakorn N, Muensritharam L, Boonyarat W. Absorption study of fat-soluble vitamins into dipalmitoylphosphatidylcholine (DPPC) bilayer by MD simulations. J Mol Graph Model 2025; 135:108929. [PMID: 39709775 DOI: 10.1016/j.jmgm.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Retinol, α-tocopherol and phylloquinone (vitamins A, E, and K) are presented in high concentrations within the chloroplast and leaves of most plants. They are fat-soluble vitamins and absorb similarly to other dietary lipids. Because the molecular mechanism of retinol, α-tocopherol, and phylloquinone absorption is still unknown, this work aims to investigate the distribution of these vitamins at the water/membrane interface using molecular dynamics (MD) simulations. Structures and variations of the hydroxyl group in vitamins are the keys to the investigation of the absorption process. Binding orientations, favorable binding sites, interactions, and diffusion of vitamins were identified. All vitamins spontaneously penetrate the lipid bilayer. According to simulations, the formation of the hydrogen bonding interaction with the phosphate group of DPPC during absorption requires a hydroxyl group of retinol and tocopherol. Therefore, retinol has -OH group at the tail of the structure and shows the highest structural flexibility of retinol, broadest tilt angle toward the lipid membrane, and highest diffusion coefficient. Finally, retinol plugs its head group into the hydrocarbon core of the lipid bilayer. In the case of α-tocopherol, the hydroxyl at the head group produces α-tocopherol, which moves through one leaflet of the lipid membrane and is stabilized in the opposite leaflet. Interestingly, phylloquinone, a molecule without a hydroxyl group, stabilizes close to a phosphate group without hydrogen bond formation. The head group of phylloquinone penetrates at a precise tilting angle of 120°. High retention of phylloquinone inside gel-phase DPPC is suggested by its low diffusion coefficient. MD simulations reveal the characteristics of three fat-soluble vitamins during absorption through the phospholipid membrane. This information is useful as a guideline to improve the absorption of drugs along the membrane.
Collapse
Affiliation(s)
- Chanya Phromchaloem
- Department of Chemistry, Faculty of Science and Technology, Muban ChomBueng Rajabhat University, Chom Bueng, Ratchaburi, 70150, Thailand
| | - Narissara Na Nakorn
- Department of Chemistry, Faculty of Science and Technology, Muban ChomBueng Rajabhat University, Chom Bueng, Ratchaburi, 70150, Thailand
| | - Laksamee Muensritharam
- Department of Food Processing, Faculty of Science and Technology, Muban ChomBueng Rajabhat University, Chom Bueng, Ratchaburi, 70150, Thailand
| | - Warabhorn Boonyarat
- Department of Chemistry, Faculty of Science and Technology, Muban ChomBueng Rajabhat University, Chom Bueng, Ratchaburi, 70150, Thailand.
| |
Collapse
|
2
|
DeLoid GM, Yang Z, Bazina L, Kharaghani D, Sadrieh F, Demokritou P. Mechanisms of ingested polystyrene micro-nanoplastics (MNPs) uptake and translocation in an in vitro tri-culture small intestinal epithelium. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134706. [PMID: 38795489 DOI: 10.1016/j.jhazmat.2024.134706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Micro and nanoplastics (MNPs) are now ubiquitous contaminants of food and water. Many cellular and animal studies have shown that ingested MNPs can breach the intestinal barrier to reach the circulation. To date however, the cellular mechanisms involved in intestinal absorption of MNPs have not been investigated with physiologically relevant models, and thus remain unknown. We employed in vitro simulated digestion, a tri-culture small intestinal epithelium model, and a panel of inhibitors to assess the contributions of the possible mechanisms to absorption of 26 nm carboxylated polystyrene (PS26C) MNPs. Inhibition of ATP synthesis reduced translocation by only 35 %, suggesting uptake by both active endocytic pathways and passive diffusion. Translocation was also decreased by inhibition of dynamin and clathrin, suggesting involvement of clathrin mediated endocytosis (CME) and fast endophilin-mediated endocytosis (FEME). Inhibition of actin polymerization also significantly reduced translocation, suggesting involvement of macropinocytosis or phagocytosis. However, inhibition of the Na+-H+ exchanger had no effect on translocation, thus ruling out macropinocytosis. Together these results suggest uptake by passive diffusion as well as by active phagocytosis, CME, and FEME pathways. Further studies are needed to assess uptake mechanisms for other environmentally relevant MNPs as a function of polymer, surface chemistry, and size.
Collapse
Affiliation(s)
- Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA.
| | - Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Lila Bazina
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Davood Kharaghani
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Faranguisse Sadrieh
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Paulus MC, Drent M, Kouw IWK, Balvers MGJ, Bast A, van Zanten ARH. Vitamin K: a potential missing link in critical illness-a scoping review. Crit Care 2024; 28:212. [PMID: 38956732 PMCID: PMC11218309 DOI: 10.1186/s13054-024-05001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Vitamin K is essential for numerous physiological processes, including coagulation, bone metabolism, tissue calcification, and antioxidant activity. Deficiency, prevalent in critically ill ICU patients, impacts coagulation and increases the risk of bleeding and other complications. This review aims to elucidate the metabolism of vitamin K in the context of critical illness and identify a potential therapeutic approach. METHODS In December 2023, a scoping review was conducted using the PRISMA Extension for Scoping Reviews. Literature was searched in PubMed, Embase, and Cochrane databases without restrictions. Inclusion criteria were studies on adult ICU patients discussing vitamin K deficiency and/or supplementation. RESULTS A total of 1712 articles were screened, and 13 met the inclusion criteria. Vitamin K deficiency in ICU patients is linked to malnutrition, impaired absorption, antibiotic use, increased turnover, and genetic factors. Observational studies show higher PIVKA-II levels in ICU patients, indicating reduced vitamin K status. Risk factors include inadequate intake, disrupted absorption, and increased physiological demands. Supplementation studies suggest vitamin K can improve status but not normalize it completely. Vitamin K deficiency may correlate with prolonged ICU stays, mechanical ventilation, and increased mortality. Factors such as genetic polymorphisms and disrupted microbiomes also contribute to deficiency, underscoring the need for individualized nutritional strategies and further research on optimal supplementation dosages and administration routes. CONCLUSIONS Addressing vitamin K deficiency in ICU patients is crucial for mitigating risks associated with critical illness, yet optimal management strategies require further investigation. IMPACT RESEARCH To the best of our knowledge, this review is the first to address the prevalence and progression of vitamin K deficiency in critically ill patients. It guides clinicians in diagnosing and managing vitamin K deficiency in intensive care and suggests practical strategies for supplementing vitamin K in critically ill patients. This review provides a comprehensive overview of the existing literature, and serves as a valuable resource for clinicians, researchers, and policymakers in critical care medicine.
Collapse
Affiliation(s)
- Michelle Carmen Paulus
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marjolein Drent
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- Interstitial Lung Diseases (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
- ILD Care Foundation Research Team, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| | - Imre Willemijn Kehinde Kouw
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michiel Gerard Juliaan Balvers
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- ILD Care Foundation Research Team, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| | - Arthur Raymond Hubert van Zanten
- Department of Intensive Care Medicine & Research, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands.
- Division of Human Nutrition and Health, Nutritional Biology, Wageningen University & Research, HELIX (Building 124), Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
5
|
Tan J, Li Y. Revisiting the interconnection between lipids and vitamin K metabolism: insights from recent research and potential therapeutic implications: a review. Nutr Metab (Lond) 2024; 21:6. [PMID: 38172964 PMCID: PMC10763176 DOI: 10.1186/s12986-023-00779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Vitamin K is a lipophilic vitamin, whose absorption, transportation, and distribution are influenced by lipids. The plasma vitamin K level after supplementation is predominantly a lipid-driven effect and independent of existing vitamin K status. However, previous studies examining the efficacy of vitamin K supplementation often overlooked the influence of lipid levels on vitamin K absorption, resulting in inconsistent outcomes. Recent research discovered that impaired transportation of vitamin K2 within uremic high-density lipoproteins (HDL) in individuals with uremia might elucidate the lack of beneficial effects in preventing calcification observed in multiple trials involving menaquinone-7 (MK-7) supplementation among patients with chronic kidney disease. Clinical findings have shown that drugs used to regulate hyperlipidemia interact with the vitamin K antagonist warfarin, because cholesterol and vitamin K share common transport receptors, such as Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette protein G5/G8 (ABCG5/ABCG8), in enterocytes and hepatocytes. Additionally, cholesterol and vitamin K share a common biosynthetic intermediate called geranylgeranyl pyrophosphate (GGPP). It is important to note that statins, which hinder cholesterol synthesis, can also impede vitamin K conversion, ultimately impacting the functionality of vitamin K-dependent proteins. Furthermore, certain studies have indicated that vitamin K supplementation holds potential in managing hyperlipidemia, potentially opening a novel avenue for controlling hyperlipidemia using dietary vitamin K supplements. Therefore, attaining a more comprehensive understanding of the intricate interplay between vitamin K and lipids will yield valuable insights concerning the utilization of vitamin K and lipid regulation.
Collapse
Affiliation(s)
- Jing Tan
- Department of Hematology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
| | - Ying Li
- School of Medicine, North Scihuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Wang H, Ma Y. The Potential of Vitamin K as a Regulatory Factor of Bone Metabolism-A Review. Nutrients 2023; 15:4935. [PMID: 38068793 PMCID: PMC10708186 DOI: 10.3390/nu15234935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin K (VK), a fat-soluble vitamin, is essential for the clotting of blood because of its role in the production of clotting factors in the liver. Moreover, researchers continue to explore the role of VK as an emerging novel bioactive molecule with the potential function of improving bone health. This review focuses on the effects of VK on bone health and related mechanisms, covering VK research history, homologous analogs, dietary sources, bioavailability, recommended intake, and deficiency. The information summarized here could contribute to the basic and clinical research on VK as a natural dietary additive and drug candidate for bone health. Future research is needed to extend the dietary VK database and explore the pharmacological safety of VK and factors affecting VK bioavailability to provide more support for the bone health benefits of VK through more clinical trials.
Collapse
Affiliation(s)
- Huakai Wang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Nongkenan Road No. 40, Hefei 230031, China
| | - Yongxi Ma
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
7
|
Liu X, Zhang J, Chen Z, Xiao J, Zhou A, Fu Y, Cao Y. Cluster-determinant 36 (CD36) mediates intestinal absorption of dietary astaxanthin and affects its secretion. Food Res Int 2023; 173:113328. [PMID: 37803639 DOI: 10.1016/j.foodres.2023.113328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The functional activity of dietary astaxanthin is closely related to its absorption, and the absorption of dietary carotenoids mainly mediated by transmembrane transport protein (TTP) has become the mainstream research direction in recent years. However, the main TTP mediating astaxanthin absorption and its potential mechanisms are still unclear. Hence, based on the preliminary screening results, this study aims to elucidate the role of cluster-determinant 36 (CD36) mediating astaxanthin absorption from the perspective of expression levels through in vitro cell model, in situ single-pass intestinal perfusion model and in vivo mice model. The results showed that astaxanthin uptake was significantly increased by 45.13% in CD36 overexpressing cells and decreased by 20.92% in the case of sulfo-N-succinimidyl oleate (SSO) inhibition. A similar trend also appeared in the duodenum and jejunum by in situ model. Moreover, astaxanthin uptake in the small intestine of CD36 knockout mice was significantly reduced by 88.22%. Furthermore, the inhibition or knockout of CD36 suppressed the expression of other transporters (SR-BI and NPC1L1). Interestingly, CD36 was also involved in the downstream secretion pathway, which is manifested by interfering with the expression of related proteins (ERK1/2, MTP, ApoB48, and ApoAI). Therefore, these results indicate the important role of CD36 in astaxanthin transmembrane transport for the first time, providing vital exploration way for the absorption of dietary fat-soluble substances.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yongshui Fu
- Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510095, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Mishima E, Wahida A, Seibt T, Conrad M. Diverse biological functions of vitamin K: from coagulation to ferroptosis. Nat Metab 2023:10.1038/s42255-023-00821-y. [PMID: 37337123 DOI: 10.1038/s42255-023-00821-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023]
Abstract
Vitamin K is essential for several physiological processes, such as blood coagulation, in which it serves as a cofactor for the conversion of peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent proteins. This process is driven by the vitamin K cycle facilitated by γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and ferroptosis suppressor protein-1, the latter of which was recently identified as the long-sought-after warfarin-resistant vitamin K reductase. In addition, vitamin K has carboxylation-independent functions. Akin to ubiquinone, vitamin K acts as an electron carrier for ATP production in some organisms and prevents ferroptosis, a type of cell death hallmarked by lipid peroxidation. In this Perspective, we provide an overview of the diverse functions of vitamin K in physiology and metabolism and, at the same time, offer a perspective on its role in ferroptosis together with ferroptosis suppressor protein-1. A comparison between vitamin K and ubiquinone, from an evolutionary perspective, may offer further insights into the manifold roles of vitamin K in biology.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
9
|
Matsuo M, Ogata Y, Yamanashi Y, Takada T. ABCG5 and ABCG8 Are Involved in Vitamin K Transport. Nutrients 2023; 15:nu15040998. [PMID: 36839356 PMCID: PMC9966996 DOI: 10.3390/nu15040998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
ATP-binding cassette protein G5 (ABCG5)/ABCG8 heterodimer exports cholesterol from cells, while Niemann-Pick C1-like 1 (NPC1L1) imports cholesterol and vitamin K. We examined whether ABCG5/ABCG8 transports vitamin K similar to NPC1L1. Since high concentrations of vitamin K3 show cytotoxicity, the cytoprotective effects of ABCG5/ABCG8 were examined. BHK cells expressing ABCG5/ABCG8 were more resistant to vitamin K3 cytotoxicity than control cells, suggesting that ABCG5/ABCG8 transports vitamin K3 out of cells. The addition of vitamin K1 reversed the effects of ABCG5/ABCG8, suggesting that vitamin K1 competitively inhibits the transport of vitamin K3. To examine the transport of vitamin K1 by ABCG5/ABCG8, vitamin K1 levels in the medium and cells were measured. Vitamin K1 levels in cells expressing ABCG5/ABCG8 were lower than those in control cells, while vitamin K1 efflux increased in cells expressing ABCG5/ABCG8. Furthermore, the biliary vitamin K1 concentration in Abcg5/Abcg8-deficient mice was lower than that in wild-type mice, although serum vitamin K1 levels were not affected by the presence of Abcg5/Abcg8. These findings suggest that ABCG5 and ABCG8 are involved in the transport of sterols and vitamin K. ABCG5/ABCG8 and NPC1L1 might play important roles in the regulation of vitamin K absorption and excretion.
Collapse
Affiliation(s)
- Michinori Matsuo
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan
- Correspondence:
| | - Yutaka Ogata
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
10
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
12
|
Jensen MB, Rød KE, Švarc PL, Oveland E, Jakobsen J. Vitamin K (phylloquinone and menaquinones) in foods – Cost-effective quantification by LC-ESI-MS/MS. Food Chem 2022; 385:132672. [DOI: 10.1016/j.foodchem.2022.132672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
|
13
|
Antoine T, El Aoud A, Alvarado-Ramos K, Halimi C, Vairo D, Georgé S, Reboul E. Impact of pulses, starches and meat on vitamin D and K postprandial responses in mice. Food Chem 2022; 402:133922. [DOI: 10.1016/j.foodchem.2022.133922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
|
14
|
Yan H, Chen Y, Zhu H, Huang WH, Cai XH, Li D, Lv YJ, Si-Zhao, Zhou HH, Luo FY, Zhang W, Li X. The Relationship Among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front Med (Lausanne) 2022; 9:829304. [PMID: 35510250 PMCID: PMC9058076 DOI: 10.3389/fmed.2022.829304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a narrow therapeutic range, and the dose requirements for different patients varied greatly. In recent years, studies on human intestinal microbiome have provided many valuable insights into disease development and drug reactions. A lot of studies indicated the potential relationship between microbiome and the vitamin K antagonist. Vitamin K is absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in human body. A combined use of the vitamin K antagonist and antibiotics may result in an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently, how intestinal bacteria affect the response of the vitamin K antagonist remains unclear. In this review, we reviewed the research, focusing on the physiology of vitamin K in the anticoagulation treatment, and investigated the potential pathways of intestinal bacteria affecting the reaction of the vitamin K antagonist.
Collapse
|
15
|
Ellis JL, Fu X, Karl JP, Hernandez CJ, Mason JB, DeBose-Boyd RA, Booth SL. Multiple Dietary Vitamin K Forms Are Converted to Tissue Menaquinone-4 in Mice. J Nutr 2022; 152:981-993. [PMID: 34550377 PMCID: PMC8971004 DOI: 10.1093/jn/nxab332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vitamin K is a term that comprises a family of structurally related quinones, phylloquinone (PK) and the menaquinones (MKn), that share a common naphthoquinone ring but vary in sidechain length (n) and saturation. Dietary PK is a biosynthetic precursor to tissue menaquinone-4 (MK4), but little is known about the absorption and metabolism of dietary MKn. OBJECTIVE To characterize the absorption and metabolism of dietary MKn relative to PK. METHODS In the 4-week diet study, 10-week-old male and female C57BL/6 mice were pair-fed a vitamin K deficient diet (control) or a diet supplemented with 5.0 μmol/kg total PK, MK4, and/or MK9 (separately and in combination). In the 1-week stable isotope study, 12-week-old mice were pair-fed diets containing 2.2 μmol/kg PK (unlabeled control), 2H7PK, 13C11MK4, 2H7MK7, or 2H7MK9. Vitamin K tissue content was quantified by HPLC and/or LC-MS, and concentrations were compared by sex and diet group using 2-factor ANOVA. RESULTS Regardless of the form(s) of vitamin K provided in the diet, tissue MK4 concentrations did not differ across equimolar supplemented groups in the kidney, adipose, reproductive organ, bone, or pancreas in either males or females in the diet study (all P values > 0.05). Isotopic labeling confirmed the naphthoquinone ring of MK4 in tissues originated from the administered dietary PK or MKn. Despite equimolar supplementation, accumulation of the administered dietary form differed across diet groups in small intestinal segments (all P values < 0.002) and the liver (P < 0.001). Female mice had greater total vitamin K than males in every tissue examined (P < 0.05). CONCLUSIONS Dietary PK, MK4, MK7, and MK9 all served as precursors to tissue MK4 in mice. This study expands our understanding of vitamin K metabolism and supports a common conversion mechanism of all dietary vitamin K forms to MK4. Further investigation of the metabolism and physiological roles of MK4 that may be independent of classical vitamin K function is warranted.
Collapse
Affiliation(s)
- Jessie L Ellis
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- The Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - J Philip Karl
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Christopher J Hernandez
- Schools of Mechanical and Aerospace Engineering & Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
16
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
17
|
Zhang Y, Lu X, Tang LV. Prophylaxis use of vitamin K1 improves coagulation function in hematopoietic stem cell transplantation patients: a retrospective cohort study. Am J Transl Res 2022; 14:1729-1736. [PMID: 35422932 PMCID: PMC8991140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES This study aimed to investigate the efficacy of vitamin K1 in patients undergoing HSCT and find a feasible and safe option for HSCT patients to prevent bleeding. METHODS A retrospective analysis was performed on 96 HSCT patients admitted to the Department of Hematology of Wuhan Union Hospital from January 2018 to July 2019. Patients were divided into two groups (the vitamin K1 group and the control group) based on the administration of vitamin K1. All patients were reexamined for coagulation function during their hospitalization. The prothrombin time (PT), activated partial thromboplastin time (APTT), and plasma fibrinogen (FIB) were measured. The relationship between plasma infusion volumes were also analyzed. RESULTS In the independent sample T-test analysis, PT and APTT of the vitamin K1 group were significantly shorter than that of the control group after transplantation. There was no obvious difference in plasma FIB levels between the two groups. Total plasma infused volume in the vitamin K1 group was significantly lower than that in the control group. CONCLUSIONS Prophylactic intravenous drip of vitamin K1 has a good therapeutic effect on improving the coagulation function in HSCT patients without significant side effects and decreases the plasma transfusion.
Collapse
|
18
|
Antoine T, Georgé S, Leca A, Desmarchelier C, Halimi C, Gervais S, Aupy F, Marconot G, Reboul E. Reduction of pulse "antinutritional" content by optimizing pulse canning process is insufficient to improve fat-soluble vitamin bioavailability. Food Chem 2022; 370:131021. [PMID: 34536784 DOI: 10.1016/j.foodchem.2021.131021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/31/2022]
Abstract
Some bioactive compounds found in pulses (phytates, saponins, tannins) display antinutritional properties and interfere with fat-soluble vitamin bioavailability (i.e., bioaccessibility and intestinal uptake). As canned chickpeas are consumed widely, our aim was to optimize the chickpea canning process and assess whether this optimization influences fat-soluble vitamin bioavailability. Different conditions during soaking and blanching were studied, as was a step involving prior germination. Proteins, lipids, fibers, vitamin E, lutein, 5-methyl-tetrahydro-folate, magnesium, iron, phytates, saponins and tannins were quantified. Bioaccessibility and intestinal uptake of vitamin D and K were assessed using in vitro digestion and Caco-2 cells, respectively. Significant reductions of phytate, saponin and tannin contents (-16 to -44%), but also of folate content (up to -97%) were observed under optimized canning conditions compared with the control. However, bioaccessibility and cellular uptake of vitamin D and K remained unaffected after in vitro digestion of test meals containing control or optimized canned chickpeas.
Collapse
Affiliation(s)
| | - Stéphane Georgé
- Centre Technique de Conservation des Produits Agricoles, Avignon, France
| | - Alexandre Leca
- INRAE, Avignon Université, UMR SQPOV, Avignon 84000, France
| | | | | | - Sarah Gervais
- Centre Technique de Conservation des Produits Agricoles, Avignon, France
| | - Fabien Aupy
- Centre Technique de Conservation des Produits Agricoles, Avignon, France
| | | | | |
Collapse
|
19
|
Chetot T, Benoit E, Lambert V, Lattard V. Overexpression of protein disulfide isomerase enhances vitamin K epoxide reductase activity. Biochem Cell Biol 2022; 100:152-161. [PMID: 35007172 DOI: 10.1139/bcb-2021-0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is the target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and have been suspected to confer resistance to VKA and/or affect its velocity. Nevertheless, the results between studies have been conflicting, the functional characterization of these mutations in a cell system being complex due to the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to globally evaluate the vitamin K cycle in the HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when the VKORC1/VKORC1L1 were knocked out, the K/KO balance decreased significantly due to an accumulation of vitamin KO. On the contrary, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating a limitation of the VKOR activity. This limitation was shown to be due to an insufficient expression of the activation partner of VKORC1, as overexpressing the protein disulfide isomerase (PDI) overcomes the limitation. This study is the first to demonstrate a functional interaction between VKORC1 and the PDI enzyme.
Collapse
Affiliation(s)
| | | | | | - Virginie Lattard
- VetAgro Sup, 88622, USC1233 INRAe-VetAgroSup, Marcy-l'Etoile, France, 69280;
| |
Collapse
|
20
|
Bus K, Szterk A. Relationship between Structure and Biological Activity of Various Vitamin K Forms. Foods 2021; 10:foods10123136. [PMID: 34945687 PMCID: PMC8701896 DOI: 10.3390/foods10123136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023] Open
Abstract
Vitamin K is involved many biological processes, such as the regulation of blood coagulation, prevention of vascular calcification, bone metabolism and modulation of cell proliferation. Menaquinones (MK) and phylloquinone vary in biological activity, showing different bioavailability, half-life and transport mechanisms. Vitamin K1 and MK-4 remain present in the plasma for 8–24 h, whereas long-chain menaquinones can be detected up to 96 h after administration. Geometric structure is also an important factor that conditions their properties. Cis-phylloquinone shows nearly no biological activity. An equivalent study for menaquinone is not available. The effective dose to decrease uncarboxylated osteocalcin was six times lower for MK-7 than for MK-4. Similarly, MK-7 affected blood coagulation system at dose three to four times lower than vitamin K1. Both vitamin K1 and MK-7 inhibited the decline in bone mineral density, however benefits for the occurrence of cardiovascular diseases have been observed only for long-chain menaquinones. There are currently no guidelines for the recommended doses and forms of vitamin K in the prevention of osteoporosis, atherosclerosis and other cardiovascular disorders. Due to the presence of isomers with unknown biological properties in some dietary supplements, quality and safety of that products may be questioned.
Collapse
Affiliation(s)
- Katarzyna Bus
- Department of Spectrometric Methods, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
- Correspondence:
| | - Arkadiusz Szterk
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
- Transfer of Science Sp. z o.o., Strzygłowska 15, 04-866 Warsaw, Poland
| |
Collapse
|
21
|
Long T, Liu Y, Qin Y, DeBose-Boyd RA, Li X. Structures of dimeric human NPC1L1 provide insight into mechanisms for cholesterol absorption. SCIENCE ADVANCES 2021; 7:7/34/eabh3997. [PMID: 34407950 PMCID: PMC8373123 DOI: 10.1126/sciadv.abh3997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 05/05/2023]
Abstract
Polytopic Niemann-Pick C1-like 1 (NPC1L1) plays a major role in intestinal absorption of biliary cholesterol, vitamin E (VE), and vitamin K (VK). The drug ezetimibe inhibits NPC1L1-mediated absorption of cholesterol, lowering of circulating levels of low-density lipoprotein cholesterol. Here, we report cryo-electron microscopy structures of human NPC1L1 (hNPC1L1) bound to either cholesterol or a lipid resembling VE. These findings, together with functional assays, reveal that the same intramolecular channel in hNPC1L1 mediates transport of VE and cholesterol. hNPC1L1 exists primarily as a homodimer; dimerization is mediated by aromatic residues within a region of transmembrane helix 2 that exhibits a horizonal orientation in the membrane. Mutation of tryptophan-347 lies in this region disrupts dimerization and the resultant monomeric NPC1L1 exhibits reduced efficiency of cholesterol uptake. These findings identify the oligomeric state of hNPC1L1 as a target for therapies that inhibit uptake of dietary cholesterol and reduce the incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Liu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Qin
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Margier M, Le May C, Antoine T, Halimi C, Nowicki M, Lespine A, Reboul E. P-glycoprotein (ABCB1) is involved in vitamin K efflux. Food Chem 2021; 343:128510. [PMID: 33172753 DOI: 10.1016/j.foodchem.2020.128510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022]
Abstract
ABCB1 (P-glycoprotein/MDR1) is a multidrug efflux transporter that has previously been involved in cholesterol and vitamin D metabolism. Our aim was to explore whether ABCB1 is also involved in vitamin K efflux. Vitamin K apical efflux was significantly decreased in presence of ABCB1 inhibitor in Caco-2 cells (-20.4%; p < 0.05) and increased in Griptite cells overexpressing ABCB1 (+40.7%; p < 0.05). In vivo, the vitamin K postprandial response was higher in male Abcb1-/- mice after gavage compared to control animals (+115%; p < 0.05), but was unchanged in female mice. Finally, a vitamin K transintestinal efflux and a biliary vitamin K efflux were observed, but the specific involvement of ABCB1 could not be confirmed in these pathways. Overall, we showed for the first time that ABCB1 is involved in enterocyte vitamin K efflux in both cell and mouse models and regulates vitamin K absorption in mice.
Collapse
Affiliation(s)
| | - Cédric Le May
- Université de Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.
| | | | | | - Marion Nowicki
- INRAE, INSERM, Aix Marseille Univ, C2VN, Marseille, France.
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | |
Collapse
|
23
|
Vitamin K Analogs Influence the Growth and Virulence Potential of Enterohemorrhagic Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.00583-20. [PMID: 32769190 DOI: 10.1128/aem.00583-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes serious foodborne disease worldwide. It produces the very potent Shiga toxin 2 (Stx2). The Stx2-encoding genes are located on a prophage, and production of the toxin is linked to the synthesis of Stx phages. There is, currently, no good treatment for EHEC infections, as antibiotics may trigger lytic cycle activation of the phages and increased Stx production. This study addresses how four analogs of vitamin K, phylloquinone (K1), menaquinone (K2), menadione (K3), and menadione sodium bisulfite (MSB), influence growth, Stx2-converting phage synthesis, and Stx2 production by the EHEC O157:H7 strain EDL933. Menadione and MSB conferred a concentration-dependent negative effect on bacterial growth, while phylloquinone or menaquinone had little and no effect on bacterial growth, respectively. All four vitamin K analogs affected Stx2 phage production negatively in uninduced cultures and in cultures induced with either hydrogen peroxide (H2O2), ciprofloxacin, or mitomycin C. Menadione and MSB reduced Stx2 production in cultures induced with either H2O2 or ciprofloxacin. MSB also had a negative effect on Stx2 production in two other EHEC isolates tested. Phylloquinone and menaquinone had, on the other hand, variable and concentration-dependent effects on Stx2 production. MSB, which conferred the strongest inhibitory effect on both Stx2 phage and Stx2 production, improved the growth of EHEC in the presence of H2O2 and ciprofloxacin, which could be explained by the reduced uptake of ciprofloxacin into the bacterial cell. Together, the data suggest that vitamin K analogs have a growth- and potential virulence-reducing effect on EHEC, which could be of therapeutic interest.IMPORTANCE Enterohemorrhagic E. coli (EHEC) can cause serious illness and deaths in humans by producing toxins that can severely damage our intestines and kidneys. There is currently no optimal treatment for EHEC infections, as antibiotics can worsen disease development. Consequently, the need for new treatment options is urgent. Environmental factors in our intestines can affect the virulence of EHEC and help our bodies fight EHEC infections. The ruminant intestine, the main reservoir for EHEC, contains high levels of vitamin K, but the levels are variable in humans. This study shows that vitamin K analogs can inhibit the growth of EHEC and/or production of its main virulence factor, the Shiga toxin. They may also inhibit the spreading of the Shiga toxin encoding bacteriophage. Our findings indicate that vitamin K analogs have the potential to suppress the development of serious disease caused by EHEC.
Collapse
|
24
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
25
|
Li D, Zhu H, Luo ZY, Chen Y, Song GB, Zhou XM, Yan H, Zhou HH, Zhang W, Li X. LRP1 polymorphisms associated with warfarin stable dose in Chinese patients: a stepwise conditional analysis. Pharmacogenomics 2020; 21:1169-1178. [PMID: 33094665 DOI: 10.2217/pgs-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to investigate whether variability in warfarin stable dose (WSD) could be influenced by vitamin K-related polymorphisms in patients with heart valve replacement. Patients & methods: Twenty-nine vitamin K-related SNPs in 208 patients who initially took warfarin and achieved WSD were genotyped. Results: After conducting conditional analysis for both VKORC1 -1639G>A and CYP2C9*3, LRP1 rs1800139 and LRP1 rs1800154 were significantly associated with WSD (p = 0.007 and p = 0.015, respectively). Multivariate analysis showed that LRP1 rs1800139 accounted for 5.9% WSD variability. Conclusion: Our results suggest that a novel vitamin K-related gene, LRP1, exerts a relevant influence on WSD, independent of VKORC1 -1639G>A and CYP2C9*3.
Collapse
Affiliation(s)
- Dan Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China
| | - Hong Zhu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Zhi-Ying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Yi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China
| | - Guo-Bao Song
- Department of Cardio-Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Xin-Ming Zhou
- Department of Cardio-Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, PR China.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China
| |
Collapse
|
26
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
LRP1 and APOA1 Polymorphisms: Impact on Warfarin International Normalized Ratio-Related Phenotypes. J Cardiovasc Pharmacol 2020; 76:71-76. [PMID: 32282500 DOI: 10.1097/fjc.0000000000000834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Warfarin international normalized ratio (INR)-related phenotypes such as the percentage of INR time in the therapeutic range (PTTR) and INR variability are associated with warfarin adverse reactions. However, INR-related phenotypes greatly vary among patients, and the underlying mechanism remains unclear. As a key cofactor for coagulation proteins, vitamin K can affect warfarin INR values. The aim of this study was to address the influence of vitamin K-related single-nucleotide polymorphisms (SNPs) on warfarin INR-related phenotypes. A total of 262 patients who were new recipients of warfarin therapy and followed up for 3 months were enrolled. Twenty-nine SNPs were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass array. Sixteen warfarin INR-related phenotypes were observed. After association analysis, 11 SNPs were significantly associated with at least one INR-related phenotype, and 6 SNPs were associated with at least 2 INR-related phenotypes (P < 0.05). In these SNPs, rs1800139, rs1800154, rs1800141, and rs486020 were the most representative. rs1800139, rs1800154, and rs1800141 locate in LRP1 and were found to be correlated with 1-month and 2-month INR variability (P < 0.05). Besides, the APOA1 rs486020 was significantly associated with the first month PTTR (P = 0.009), and patients with C-allele had higher PTTR than those with G-alleles almost during the entire monitoring period. In conclusion, the study revealed that the polymorphisms of LRP1 and APOA1 gene may play important roles in the variation of warfarin INR-related phenotypes. Our results provide new information for improving warfarin anticoagulation management.
Collapse
|
28
|
Abstract
Vitamin K is essential for the synthesis of few coagulation factors. Infants can easily develop vitamin K deficiency owing to poor placental transfer, low vitamin K content in breast milk, and poor intestinal absorption due to immature gut flora and malabsorption. Vitamin K deficiency bleeding (VKDB) in infancy is classified according to the time of presentation: early (within 24 h), classic (within 1 week after birth), and late (between 2 week and 6 months of age). VKDB in infancy, particularly late-onset VKDB, can be life-threatening. Therefore, all infants, including newborn infants, should receive vitamin K prophylaxis. Exclusive breastfeeding and cholestasis are closely associated with this deficiency and result in late-onset VKDB. Intramuscular prophylactic injections reduce the incidence of early-onset, classic, and late-onset VKDB. However, the prophylaxis strategy has recently been inclined toward oral administration because it is easier, safer, and cheaper to administer than intramuscular injection. Several epidemiological studies have shown that vitamin K oral administration is effective in the prevention of VKDB in infancy; however, the success of oral prophylaxis depends on the protocol regimen and parent compliance. Further national surveillance and studies are warranted to reveal the optimal prophylaxis regimen in term and preterm infants.
Collapse
|
29
|
Jay AG, Simard JR, Huang N, Hamilton JA. SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. J Lipid Res 2020; 61:790-807. [PMID: 32102800 DOI: 10.1194/jlr.ra120000648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.
Collapse
Affiliation(s)
- Anthony G Jay
- Department of Physiology and Biomedical Engineering,Mayo Clinic, Rochester, MN 55905; Departments of Biochemistry,Boston University School of Medicine, Boston, MA 02118. mailto:
| | - Jeffrey R Simard
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118; Pharmacology and Experimental Therapeutics,Boston University School of Medicine, Boston, MA 02118
| | - Nasi Huang
- Section of Infectious Diseases Department of Medicine,Boston University School of Medicine, Boston, MA 02118
| | - James A Hamilton
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
30
|
Engevik AC, Kaji I, Postema MM, Faust JJ, Meyer AR, Williams JA, Fitz GN, Tyska MJ, Wilson JM, Goldenring JR. Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes. J Cell Biol 2019; 218:3647-3662. [PMID: 31562230 PMCID: PMC6829668 DOI: 10.1083/jcb.201902063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In patients with inactivating mutations in myosin Vb (Myo5B), enterocytes show large inclusions lined by microvilli. The origin of inclusions in small-intestinal enterocytes in microvillus inclusion disease is currently unclear. We postulated that inclusions in Myo5b KO mouse enterocytes form through invagination of the apical brush border membrane. 70-kD FITC-dextran added apically to Myo5b KO intestinal explants accumulated in intracellular inclusions. Live imaging of Myo5b KO-derived enteroids confirmed the formation of inclusions from the apical membrane. Treatment of intestinal explants and enteroids with Dyngo resulted in accumulation of inclusions at the apical membrane. Inclusions in Myo5b KO enterocytes contained VAMP4 and Pacsin 2 (Syndapin 2). Myo5b;Pacsin 2 double-KO mice showed a significant decrease in inclusion formation. Our results suggest that apical bulk endocytosis in Myo5b KO enterocytes resembles activity-dependent bulk endocytosis, the primary mechanism for synaptic vesicle uptake during intense neuronal stimulation. Thus, apical bulk endocytosis mediates the formation of inclusions in neonatal Myo5b KO enterocytes.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anne R Meyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, Bio5 Institute, University of Arizona, Tucson, AZ
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN.,The Nashville VA Medical Center, Nashville, TN
| |
Collapse
|
31
|
Mapelli-Brahm P, Margier M, Desmarchelier C, Halimi C, Nowicki M, Borel P, Meléndez-Martínez AJ, Reboul E. Comparison of the bioavailability and intestinal absorption sites of phytoene, phytofluene, lycopene and β-carotene. Food Chem 2019; 300:125232. [PMID: 31352286 DOI: 10.1016/j.foodchem.2019.125232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
The mechanisms of main tomato carotenes (phytoene, phytofluene, lycopene and β-carotene) intestinal absorption are still only partly understood. We thus compared carotene bioavailability in mice after gavage with carotene-rich oil-in-water emulsions. We also determined each carotene absorption profile along the duodenal-ileal axis of the intestine to identify their respective absorption sites and compared these profiles with the gene expression sites of their identified transporters, i.e. SR-BI and CD36. Our data show that phytofluene presented a significantly higher bioavailability compared to lycopene and β-carotene (areas under the curve of 0.76 ± 0.09 vs. 0.30 ± 0.05, 0.09 ± 0.05 and 0.08 ± 0.01 μmol/L·h for phytofluene, phytoene, lycopene and β-carotene, respectively). β-Carotene was mostly converted in the proximal and median intestine. Phytoene and phytofluene accumulation tended to be more important in the distal intestine, which did not correlate with the proximal expression of both Scarb1 and CD36. Overall, these results highlight the high bioavailability of phytofluene.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour & Quality Lab, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | | | - Marion Nowicki
- Aix Marseille Univ, INRA, INSERM, C2VN, Marseille, France
| | - Patrick Borel
- Aix Marseille Univ, INRA, INSERM, C2VN, Marseille, France
| | | | | |
Collapse
|
32
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
33
|
New Aspects of Vitamin K Research with Synthetic Ligands: Transcriptional Activity via SXR and Neural Differentiation Activity. Int J Mol Sci 2019; 20:ijms20123006. [PMID: 31226734 PMCID: PMC6627468 DOI: 10.3390/ijms20123006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Vitamin K is classified into three homologs depending on the side-chain structure, with 2-methyl-1,4-naphthoqumone as the basic skeleton. These homologs are vitamin K1 (phylloquinone: PK), derived from plants with a phythyl side chain; vitamin K2 (menaquinone-n: MK-n), derived from intestinal bacteria with an isoprene side chain; and vitamin K3 (menadione: MD), a synthetic product without a side chain. Vitamin K homologs have physiological effects, including in blood coagulation and in osteogenic activity via γ-glutamyl carboxylase and are used clinically. Recent studies have revealed that vitamin K homologs are converted to MK-4 by the UbiA prenyltransferase domain-containing protein 1 (UBIAD1) in vivo and accumulate in all tissues. Although vitamin K is considered to have important physiological effects, its precise activities and mechanisms largely remain unclear. Recent research on vitamin K has suggested various new roles, such as transcriptional activity as an agonist of steroid and xenobiotic nuclear receptor and differentiation-inducing activity in neural stem cells. In this review, we describe synthetic ligands based on vitamin K and exhibit that the strength of biological activity can be controlled by modification of the side chain part.
Collapse
|
34
|
Margier M, Antoine T, Siriaco A, Nowicki M, Halimi C, Maillot M, Georgé S, Reboul E. The Presence of Pulses within a Meal can Alter Fat-Soluble Vitamin Bioavailability. Mol Nutr Food Res 2019; 63:e1801323. [PMID: 30920145 DOI: 10.1002/mnfr.201801323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/08/2019] [Indexed: 11/11/2022]
Abstract
SCOPE It is widely advised to increase pulse consumption. However, pulses are rich in molecules displaying lipid-lowering properties, including fibers, phytates, saponins, and tannins. The effects of pulses on fat-soluble vitamin bioavailability were thus explored. METHODS Vitamin A (β-carotene and retinyl palmitate), vitamin E (α-tocopherol), vitamin D (cholecalciferol), and vitamin K (phylloquinone) bioaccessibility was evaluated by assessing micellarization after in vitro digestion of meals containing either potatoes (control), household-cooked, or canned pulses. The obtained mixed micelles were delivered to Caco-2 cells to evaluate vitamin uptake. The impact of fibers, phytates, saponins, and tannins on both phylloquinone (used as a model vitamin) bioaccessibility and uptake were then specifically assessed. RESULTS The presence of pulses significantly decreased both vitamin bioaccessibility (up to -65% for β-carotene, -69% for retinyl-palmitate, -45% for cholecalciferol, -53% for α-tocopherol and -67% for phylloquinone) and uptake (-40% for retinyl-palmitate, -67% for cholecalciferol, -50% for α-tocopherol and -57% for phylloquinone). Effects on bioaccessibility, but not on uptake, are dependent on pulse cooking method. Phylloquinone bioaccessibility is specifically impacted by saponins, tannins, and fibers while its uptake is impacted by saponins, fibers, and phytates. CONCLUSION Pulses can alter fat-soluble micronutrient bioavailability. Pulses should thus be cooked appropriately and consumed within micronutrient-rich meals.
Collapse
Affiliation(s)
| | - Tiffany Antoine
- Aix-Marseille University, INRA, INSERM, C2VN, Marseille, France
| | - Aurélie Siriaco
- Aix-Marseille University, INRA, INSERM, C2VN, Marseille, France
| | - Marion Nowicki
- Aix-Marseille University, INRA, INSERM, C2VN, Marseille, France
| | | | | | - Stéphane Georgé
- Centre Technique de Conservation des Produits Agricoles (CTCPA), site Agroparc, 84911, Avignon, France
| | | |
Collapse
|
35
|
Reboul E. Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand? Nutrients 2019; 11:nu11040838. [PMID: 31013870 PMCID: PMC6520933 DOI: 10.3390/nu11040838] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
A growing literature is dedicated to the understanding of carotenoid beneficial health effects. However, the absorption process of this broad family of molecules is still poorly understood. These highly lipophilic plant metabolites are usually weakly absorbed. It was long believed that β-carotene absorption (the principal provitamin A carotenoid in the human diet), and thus all other carotenoid absorption, was driven by passive diffusion through the brush border of the enterocytes. The identification of transporters able to facilitate carotenoid uptake by the enterocytes has challenged established statements. After a brief overview of carotenoid metabolism in the human upper gastrointestinal tract, a focus will be put on the identified proteins participating in the transport and the metabolism of carotenoids in intestinal cells and the regulation of these processes. Further progress in the understanding of the molecular mechanisms regulating carotenoid intestinal absorption is still required to optimize their bioavailability and, thus, their health effects.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- Aix-Marseille University, INRA, INSERM, C2VN, 13005 Marseille, France.
| |
Collapse
|
36
|
Margier M, Georgé S, Hafnaoui N, Remond D, Nowicki M, Du Chaffaut L, Amiot MJ, Reboul E. Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients 2018; 10:nu10111668. [PMID: 30400385 PMCID: PMC6266829 DOI: 10.3390/nu10111668] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Pulses display nutritional benefits and are recommended in sustainable diets. Indeed, they are rich in proteins and fibers, and can contain variable amounts of micronutrients. However, pulses also contain bioactive compounds such as phytates, saponins, or polyphenols/tannins that can exhibit ambivalent nutritional properties depending on their amount in the diet. We characterized the nutritional composition and bioactive compound content of five types of prepared pulses frequently consumed in France (kidney beans, white beans, chickpeas, brown and green lentils, flageolets), and specifically compared the effects of household cooking vs. canning on the composition of pulses that can be consumed one way or the other. The contents in macro-, micronutrients, and bioactive compounds highly varied from one pulse to another (i.e., 6.9 to 9.7 g/100 g of cooked product for proteins, 4.6 to 818.9 µg/100 g for lutein or 15.0 to 284.3 mg/100 g for polyphenols). The preparation method was a key factor governing pulse final nutritional composition in hydrophilic compounds, depending on pulse species. Canning led to a greater decrease in proteins, total dietary fibers, magnesium or phytate contents compared to household cooking (i.e., −30%, −44%, −33% and −38%, p < 0.05, respectively, in kidney beans). As canned pulses are easy to use for consumers, additional research is needed to improve their transformation process to further optimize their nutritional quality.
Collapse
Affiliation(s)
- Marielle Margier
- C2VN, INSERM, INRA, Aix-Marseille Univ, 13385 Marseille, France.
| | - Stéphane Georgé
- Biochemistry Department, Centre Technique de Conservation des Produits Agricoles (CTCPA), site Agroparc, 84911 Avignon, France.
| | - Noureddine Hafnaoui
- UNH, INRA, CRNH Auvergne, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France.
| | - Didier Remond
- UNH, INRA, CRNH Auvergne, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France.
| | - Marion Nowicki
- C2VN, INSERM, INRA, Aix-Marseille Univ, 13385 Marseille, France.
| | | | - Marie-Josèphe Amiot
- MOISA, Univ Montpellier, CIRAD, CIHEAM-IAMM, INRA, Montpellier SupAgro, 34000 Montpellier, France.
| | | |
Collapse
|
37
|
Reboul E. Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life 2018; 71:416-423. [PMID: 30308094 DOI: 10.1002/iub.1955] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
Vitamin E is an essential molecule for our development and health. It has long been thought that it was absorbed and transported through cellular membranes by a passive diffusion process. However, data obtained during the past 15 years showed that its absorption is actually mediated, at least in part, by cholesterol membrane transporters including the scavenger receptor class B type I (SR-BI), CD36 molecule (CD36), NPC1-like transporter 1 (NPC1L1), and ATP-binding cassettes A1 and G1 (ABCA1 and ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. A special attention is given to the regulation of this process, including the possible competition with other fat-soluble micronutrients, and the modulation of transporter expressions. Overall, recent results noticeably increased the comprehension of vitamin E intestinal transport, but additional investigations are still required to fully appreciate the mechanisms governing vitamin E bioavailability. © 2018 IUBMB Life, 71(4):416-423, 2019.
Collapse
|
38
|
Mapelli-Brahm P, Desmarchelier C, Margier M, Reboul E, Meléndez Martínez AJ, Borel P. Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Caco-2 Cells, as Compared to Lycopene, and SR-BI is Involved in their Cellular Uptake. Mol Nutr Food Res 2018; 62:e1800703. [PMID: 30192047 DOI: 10.1002/mnfr.201800703] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Indexed: 11/09/2022]
Abstract
SCOPE Absorption mechanisms of phytoene (PT) and phytofluene (PTF) are poorly known. The main objectives of the study are to measure their micellization and intestinal cell uptake efficiencies and to compare them to those of commonly consumed carotenoids. Other objectives are to assess the involvement of protein(s) in their cellular uptake and whether they compete with other carotenoids for micellization and cellular uptake. METHODS AND RESULTS Tomato-extract-purified PT and PTF, mainly present as cis-isomers, are much better incorporated in synthetic mixed micelles than pure all-trans lycopene. PT impairs lycopene micellization (-56%, P < 0.05) while PT and PTF do not significantly affect the micellization of other carotenoids, and vice versa. At low concentration, Caco-2 PTF uptake is higher (P < 0.05) than that of PT and lycopene (29%, 21%, and not detectable). SR-BI, but not CD36 neither NPC1L1, is involved in PT and PTF uptake. PT and PTF impair (p < 0.05) β-carotene uptake (-13 and -22%, respectively). CONCLUSIONS The high bioaccessibility of PT and PTF can be partly explained by their high micellization efficiency, which is likely due to their natural cis isomerization and/or to their high molecular flexibility. SR-BI is involved in their cellular uptake, which can explain competitions with other carotenoids.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour & Quality Lab., Area of Nutrition & Food Science, Universidad de Sevilla, 41012, Seville, Spain
| | | | | | | | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRA, INSERM, Marseille, France
| |
Collapse
|
39
|
Margier M, Collet X, le May C, Desmarchelier C, André F, Lebrun C, Defoort C, Bluteau A, Borel P, Lespine A, Reboul E. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB J 2018; 33:2084-2094. [PMID: 30222077 DOI: 10.1096/fj.201800956r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Efficient intestinal absorption of dietary vitamin D is required in most people to ensure an adequate status. Thus, we investigated the involvement of ATP binding cassette subfamily B member 1 (ABCB1) in vitamin D intestinal efflux. Both cholecalciferol (D3) and 25-hydroxycholecalciferol [25(OH)D3] apical effluxes were decreased by chemical inhibition of ABCB1 in Caco-2 cells and increased by ABCB1 overexpression in Griptites or Madin-Darby canine kidney type II cells. Mice deficient for the 2 murine ABCB1s encoded by Abcb1a and Abcb1b genes ( Abcb1-/-) displayed an accumulation of 25(OH)D3 in plasma, intestine, brain, liver, and kidneys, together with an increased D3 postprandial response after gavage compared with controls. 25(OH)D3 efflux through Abcb1-/- intestinal explants was markedly decreased compared with controls. This reduction of 25(OH)D3 transfer from plasma to lumen was further confirmed in vivo in intestine-perfused mice. Docking experiments established that both D3 and 25(OH)D3 could bind with high affinity to Caenorhabditis elegans P-glycoprotein, used as an ABCB1 model. Finally, in a group of 39 healthy male adults, a single-nucleotide polymorphism (SNP) in ABCB1 (rs17064) was significantly associated with the fasting plasma 25(OH)D3 concentration. Thus, we showed here for the first time that ABCB1 is involved in neo-absorbed vitamin D efflux by the enterocytes and that it also contributes to vitamin D transintestinal excretion and likely impacts vitamin D status.-Margier, M., Collet, X., le May, C., Desmarchelier, C., André, F., Lebrun, C., Defoort, C., Bluteau, A., Borel, P., Lespine, A., Reboul, E. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux.
Collapse
Affiliation(s)
- Marielle Margier
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Xavier Collet
- INSERM, Unité Mixte de Recherche (UMR) 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse III, Toulouse, France
| | - Cédric le May
- Institut du Thorax, INSERM, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Charles Desmarchelier
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - François André
- Institut de Biologie Intégrative de la Cellule (I2BC), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 9198, Commissariat à l'Energie Atomique et aux Energies Alternatives/Institut de Biologie Frédéric Joliot, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chantal Lebrun
- Innovations Thérapeutiques et Résistances (InTheRes), UMR 1436, Université de Toulouse, INRA, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Catherine Defoort
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France.,Criblage Biologique Marseille (CriBioM), Faculté de Médecine de la Timone, Marseille, France
| | - Alice Bluteau
- Innovations Thérapeutiques et Résistances (InTheRes), UMR 1436, Université de Toulouse, INRA, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Patrick Borel
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Anne Lespine
- Innovations Thérapeutiques et Résistances (InTheRes), UMR 1436, Université de Toulouse, INRA, École Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Emmanuelle Reboul
- Aix Marseille Université, INSERM, Institut National de la Recherche Agronomique (INRA), Centre de Recherche on Cardiovasculaire et Nutrition (C2VN), Marseille, France
| |
Collapse
|
40
|
Sun F, Adrian M, Beztsinna N, van den Dikkenberg JB, Maas-Bakker RF, van Hasselt PM, van Steenbergen MJ, Su X, Kapitein LC, Hennink WE, van Nostrum CF. Influence of PEGylation of Vitamin-K-Loaded Mixed Micelles on the Uptake by and Transport through Caco-2 Cells. Mol Pharm 2018; 15:3786-3795. [PMID: 30063364 PMCID: PMC6150738 DOI: 10.1021/acs.molpharmaceut.8b00258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the study is to investigate the uptake by and transport through Caco-2 cells of two mixed micelle formulations (based on egg phosphatidylcholine and glycocholic acid) of vitamin K, i.e., with and without DSPE-PEG2000. The uptake of vitamin K and fluorescently labeled mixed micelles with and without PEG coating showed similar kinetics and their uptake ratio remained constant over time. Together with the fact that an inhibitor of scavenger receptor B1 (BLT-1) decreased cellular uptake of vitamin K by ∼80% compared to the uptake in the absence of this inhibitor, we conclude that both types of micelles loaded with vitamin K can be taken up intactly by Caco-2 cells via this scavenger receptor. The amount of vitamin K in chylomicrons fraction from Caco-2 cell monolayers further indicates that mixed micelles (with or without PEGylation) are likely packed into chylomicrons after internalization by Caco-2 cells. Uptake of vitamin K from PEGylated mixed micelles increased four- to five-fold at simulated gastrointestinal conditions. In conclusion, PEGylated mixed micelles are stable upon exposure to simulated gastric conditions, and as a result, they do show overall a higher cellular uptake efficiency of vitamin K as compared to mixed micelles without PEG coating.
Collapse
Affiliation(s)
- Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Max Adrian
- Cell Biology, Department of Biology, Faculty of Science , Utrecht University , 3584 CH Utrecht , The Netherlands
| | - Nataliia Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Roel F Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Peter M van Hasselt
- Department of Pediatrics, Wilhelmina Children's Hospital , University Medical Center Utrecht , Lundlaan 6 , 3584 EA Utrecht , The Netherlands
| | - Mies J van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Xiangjie Su
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science , Utrecht University , 3584 CH Utrecht , The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
41
|
Ikeda S, Nomura S, Hanzawa F, Takahashi S, Oda H, Fujiwara Y, Uchida T. α-Tocopherol Intake Decreases Phylloquinone Concentration in Bone but Does Not Affect Bone Metabolism in Rats. J Nutr Sci Vitaminol (Tokyo) 2018; 64:243-250. [PMID: 30175786 DOI: 10.3177/jnsv.64.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown that α-tocopherol intake lowers phylloquinone (PK) concentration in some extrahepatic tissues in rats. The study's aim was to clarify the effect of α-tocopherol intake on vitamin K concentration in bone, as well as the physiological action of vitamin K. Male Wistar rats were divided into 4 groups. Over a 3-mo period, the K-free group was fed a vitamin K-free diet with 50 mg RRR-α-tocopherol/kg, the E-free group was fed a diet containing 0.75 mg PK/kg without vitamin E, the control group was fed a diet containing 0.75 mg PK/kg with 50 mg RRR-α-tocopherol/kg, and the E-excess group was fed a diet containing 0.75 mg PK/kg with 500 mg RRR-α-tocopherol/kg. PK concentration in the liver was higher in E-excess rats than in E-free rats, was lower in the tibias of control rats than in those of E-free rats, and was lower in E-excess rats than in control rats. Menaquinone-4 (MK-4) concentration in the liver was higher in E-excess rats than in E-free and control rats. However, MK-4 concentrations in the tibias of E-free, control, and E-excess rats were almost the same. Blood coagulation activity was lower in K-free rats than in the other rats but was not affected by the level of α-tocopherol intake. Additionally, dietary intake of PK and α-tocopherol did not affect uncarboxylated-osteocalcin concentration in the serum, femur density, or expression of the genes related to bone resorption and formation in the femur. These results suggest that α-tocopherol intake decreases PK concentration in bone but does not affect bone metabolism in rats.
Collapse
Affiliation(s)
- Saiko Ikeda
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Saki Nomura
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Fumiaki Hanzawa
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Saki Takahashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Hiroaki Oda
- Department of Applied Molecular Biosciences, Nagoya University
| | - Yoko Fujiwara
- Department of Nutrition and Food Science, Ochanomizu University
| | - Tomono Uchida
- Department of Home Economics, Aichi Gakusen University
| |
Collapse
|
42
|
Abstract
Vitamin K (VK) is an essential cofactor for the post-translational conversion of peptide-bound glutamate to γ-carboxyglutamate. The resultant vitamin K-dependent proteins are known or postulated to possess a variety of biological functions, chiefly in the maintenance of hemostasis. The vitamin K cycle is a cellular pathway that drives γ-carboxylation and recycling of VK via γ-carboxyglutamyl carboxylase (GGCX) and vitamin K epoxide reductase (VKOR), respectively. In this review, we show how novel molecular biological approaches are providing new insights into the pathophysiological mechanisms caused by rare mutations of both GGCX and VKOR. We also discuss how other protein regulators influence the intermediary metabolism of VK, first through intestinal absorption and second through a pathway that converts some dietary phylloquinone to menadione, which is prenylated to menaquinone-4 (MK-4) in target tissues by UBIAD1. The contribution of MK-4 synthesis to VK functions is yet to be revealed.
Collapse
Affiliation(s)
- Martin J Shearer
- Centre for Haemostasis and Thrombosis, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom;
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe 658-8558 Japan;
| |
Collapse
|
43
|
Margier M, Buffière C, Goupy P, Remond D, Halimi C, Caris-Veyrat C, Borel P, Reboul E. Opposite Effects of the Spinach Food Matrix on Lutein Bioaccessibility and Intestinal Uptake Lead to Unchanged Bioavailability Compared to Pure Lutein. Mol Nutr Food Res 2018; 62:e1800185. [DOI: 10.1002/mnfr.201800185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/05/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Marielle Margier
- INRA, INSERM, Aix-Marseille Université C2VN; F-13005 Marseille France
| | - Caroline Buffière
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne; F-63000 Clermont-Ferrand France
| | - Pascale Goupy
- UMR408 SQPOV Sécurité et Qualité des Produits d'Origine Végétale Domaine Saint Paul, INRA, Avignon University; F-84000 Avignon France
| | - Didier Remond
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne; F-63000 Clermont-Ferrand France
| | - Charlotte Halimi
- INRA, INSERM, Aix-Marseille Université C2VN; F-13005 Marseille France
| | - Catherine Caris-Veyrat
- UMR408 SQPOV Sécurité et Qualité des Produits d'Origine Végétale Domaine Saint Paul, INRA, Avignon University; F-84000 Avignon France
| | - Patrick Borel
- INRA, INSERM, Aix-Marseille Université C2VN; F-13005 Marseille France
| | - Emmanuelle Reboul
- INRA, INSERM, Aix-Marseille Université C2VN; F-13005 Marseille France
| |
Collapse
|
44
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
45
|
Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants (Basel) 2017; 6:antiox6040095. [PMID: 29165370 PMCID: PMC5745505 DOI: 10.3390/antiox6040095] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023] Open
Abstract
Vitamin E is an essential fat-soluble micronutrient whose effects on human health can be attributed to both antioxidant and non-antioxidant properties. A growing number of studies aim to promote vitamin E bioavailability in foods. It is thus of major interest to gain deeper insight into the mechanisms of vitamin E absorption, which remain only partly understood. It was long assumed that vitamin E was absorbed by passive diffusion, but recent data has shown that this process is actually far more complex than previously thought. This review describes the fate of vitamin E in the human gastrointestinal lumen during digestion and focuses on the proteins involved in the intestinal membrane and cellular transport of vitamin E across the enterocyte. Special attention is also given to the factors modulating both vitamin E micellarization and absorption. Although these latest results significantly improve our understanding of vitamin E intestinal absorption, further studies are still needed to decipher the molecular mechanisms driving this multifaceted process.
Collapse
|
46
|
Comparison of the Micellar Incorporation and the Intestinal Cell Uptake of Cholecalciferol, 25-Hydroxycholecalciferol and 1-α-Hydroxycholecalciferol. Nutrients 2017; 9:nu9101152. [PMID: 29065536 PMCID: PMC5691768 DOI: 10.3390/nu9101152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
In the context of the global prevalence of vitamin D insufficiency, we compared two key determinants of the bioavailability of 3 vitamin D forms with significant biopotencies: cholecalciferol, 25-hydroxycholecalciferol and 1-α-hydroxycholecalciferol. To this aim, we studied their incorporation into synthetic mixed micelles and their uptake by intestinal cells in culture. Our results show that 1-α-hydroxycholecalciferol was significantly more solubilized into mixed micelles compared to the other forms (1.6-fold and 2.9-fold improvement compared to cholecalciferol and 25-hydroxycholecalciferol, respectively). In Caco-2 TC7 cells, the hydroxylated forms were taken up more efficiently than cholecalciferol (p < 0.05), and conversely to cholecalciferol, their uptake was neither SR-BI(Scavenger-Receptor class B type I)- nor NPC1L1 (NPC1 like intracellular cholesterol transporter 1)-dependent. Besides, the apical membrane sodium–bile acid transporter ASBT (Apical Sodium-dependent Bile acid Transporter) was not involved, at least in vitro, in the uptake of any of the three vitamin D forms. Further investigations are needed to identify the uptake pathways of both 1-α-hydroxycholecalciferol and 25-hydroxycholecalciferol. However, considering its high bioavailability, our results suggest the potential interest of using 1-α-hydroxycholecalciferol in the treatment of severe vitamin D deficiency.
Collapse
|
47
|
Abstract
Vitamin K is a cofactor for γ-glutamyl carboxylase, which catalyzes the posttranslational conversion of specific glutamyl residues to γ-carboxyglutamyl residues in a variety of vitamin K-dependent proteins (VKDPs) involved in blood coagulation, bone and cartilage metabolism, signal transduction, and cell proliferation. Despite the great advances in the genetic, structural, and functional studies of VKDPs as well as the enzymes identified as part of the vitamin K cycle which enable it to be repeatedly recycled within the cells, little is known of the identity and roles of key regulators of vitamin K metabolism in mammals and humans. This review focuses on new insights into the molecular mechanisms underlying the intestinal absorption and in vivo tissue conversion of vitamin K1 to menaquinone-4 (MK-4) with special emphasis on two major advances in the studies of intestinal vitamin K transporters in enterocytes and a tissue MK-4 biosynthetic enzyme UbiA prenyltransferase domain-containing protein 1 (UBIAD1), which participates in the in vivo conversion of a fraction of dietary vitamin K1 to MK-4 in mammals and humans, although it remains uncertain whether UBIAD1 functions as a key regulator of intracellular cholesterol metabolism, bladder and prostate tumor cell progression, vascular integrity, and protection from oxidative stress.
Collapse
|
48
|
Borel P, Desmarchelier C. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability. Nutrients 2017; 9:E246. [PMID: 28282870 PMCID: PMC5372909 DOI: 10.3390/nu9030246] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/11/2023] Open
Abstract
Blood concentration of vitamin A (VA), which is present as different molecules, i.e., mainly retinol and provitamin A carotenoids, plus retinyl esters in the postprandial period after a VA-containing meal, is affected by numerous factors: dietary VA intake, VA absorption efficiency, efficiency of provitamin A carotenoid conversion to VA, VA tissue uptake, etc. Most of these factors are in turn modulated by genetic variations in genes encoding proteins involved in VA metabolism. Genome-wide association studies (GWAS) and candidate gene association studies have identified single nucleotide polymorphisms (SNPs) associated with blood concentrations of retinol and β-carotene, as well as with β-carotene bioavailability. These genetic variations likely explain, at least in part, interindividual variability in VA status and in VA bioavailability. However, much work remains to be done to identify all of the SNPs involved in VA status and bioavailability and to assess the possible involvement of other kinds of genetic variations, e.g., copy number variants and insertions/deletions, in these phenotypes. Yet, the potential usefulness of this area of research is exciting regarding the proposition of more personalized dietary recommendations in VA, particularly in populations at risk of VA deficiency.
Collapse
Affiliation(s)
- Patrick Borel
- NORT, Aix-Marseille Université, INRA, INSERM, 13005 Marseille, France.
| | | |
Collapse
|
49
|
Yamanashi Y, Takada T, Kurauchi R, Tanaka Y, Komine T, Suzuki H. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K. J Atheroscler Thromb 2017; 24:347-359. [PMID: 28100881 PMCID: PMC5392472 DOI: 10.5551/jat.rv16007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.
Collapse
Affiliation(s)
- Yoshihide Yamanashi
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | | | | | | | | | | |
Collapse
|
50
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|