1
|
Mohamed RH, Abdelrahim DS, Hay NHA, Fawzy NM, M DKM, Yehia DAY, AbdelMaksoud OM, Tamim YM. The role of protein prenylation inhibition through targeting FPPS by zoledronic acid in the prevention of renal fibrosis in rats. Sci Rep 2024; 14:18283. [PMID: 39112499 PMCID: PMC11306734 DOI: 10.1038/s41598-024-68303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Renal fibrosis (RF) represents the most widespread pathological condition in chronic kidney disease (CKD). Recently, protein prenylation has been implicated in the fibrosis's progression. The research examined the renoprotective effect of zoledronic acid (ZA) (50 µg/kg/week) in a rat model of carbon tetrachloride (CCl4)-induced RF through targeting protein prenylation. Forty Wistar male rats were split up into the control group, vehicle-treated group, model-RF group, and RF-ZA group. Mean arterial blood pressure (MBP), BUN, serum creatinine, and urine albumin-creatinine ratio (uACR), protein levels of farnesyl pyrophosphate (FPP), tumour necrosis factor-alpha (TNF-α), transforming growth factor-β (TGF-β), and malondialdehyde (MDA), and catalase and gene expression of farnesyl pyrophosphate synthase (FPPS) and nuclear factor-kB (NF-κB) were measured. Immunohistochemical staining for renal interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and caspase-3, as well as histopathological alterations, were assessed. ZA considerably ceased the reduction in MBP, markedly reduced uACR, serum creatinine, BUN, and expression of FPPS, FPP, NF-κB, TGF-β, TNF-α, and MDA, and significantly increased catalase levels compared to the model-RF rats. ZA ameliorated the CCl4-induced histopathological alterations and suppressed the expression of caspase-3, α-SMA, and IL-6. In conclusion, ZA preserved renal function and prevented renal fibrosis in a rat model. These were achieved through targeting protein prenylation mainly by inhibiting FPPS.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt.
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology & Information University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Karem M M
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M AbdelMaksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
2
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Cala-Garcia JD, Medina-Rincon GJ, Sierra-Salas PA, Rojano J, Romero F. The Role of Mitochondrial Dysfunction in Idiopathic Pulmonary Fibrosis: New Perspectives for a Challenging Disease. BIOLOGY 2023; 12:1237. [PMID: 37759636 PMCID: PMC10525741 DOI: 10.3390/biology12091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Mitochondrial biology has always been a relevant field in chronic diseases such as fibrosis or cancer in different organs of the human body, not to mention the strong association between mitochondrial dysfunction and aging. With the development of new technologies and the emergence of new methodologies in the last few years, the role of mitochondria in pulmonary chronic diseases such as idiopathic pulmonary fibrosis (IPF) has taken an important position in the field. With this review, we will highlight the latest advances in mitochondrial research on pulmonary fibrosis, focusing on the role of the mitochondria in the aging lung, new proposals for mechanisms that support mitochondrial dysfunction as an important cause for IPF, mitochondrial dysfunction in different cell populations of the lung, and new proposals for treatment of the disease.
Collapse
Affiliation(s)
- Juan David Cala-Garcia
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | | | - Julio Rojano
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92161, USA
| | - Freddy Romero
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
4
|
Simon KS, Coelho LC, Veloso PHDH, Melo-Silva CA, Morais JAV, Longo JPF, Figueiredo F, Viana L, Silva Pereira I, Amado VM, Mortari MR, Bocca AL. Innovative Pre-Clinical Data Using Peptides to Intervene in the Evolution of Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11049. [PMID: 37446227 DOI: 10.3390/ijms241311049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, relentless, and deadly disease. Little is known about its pathogenetic mechanisms; therefore, developing efficient pharmacological therapies is challenging. This work aimed to apply a therapeutic alternative using immunomodulatory peptides in a chronic pulmonary fibrosis murine model. BALB/c mice were intratracheally instilled with bleomycin (BLM) and followed for 30 days. The mice were treated with the immune modulatory peptides ToAP3 and ToAP4 every three days, starting on the 5th day post-BLM instillation. ELISA, qPCR, morphology, and respiratory function analyses were performed. The treatment with both peptides delayed the inflammatory process observed in the non-treated group, which showed a fibrotic process with alterations in the production of collagen I, III, and IV that were associated with significant alterations in their ventilatory mechanics. The ToAP3 and ToAP4 treatments, by lung gene modulation patterns, indicated that distinct mechanisms determine the action of peptides. Both peptides controlled the experimental IPF, maintaining the tissue characteristics and standard function properties and regulating fibrotic-associated cytokine production. Data obtained in this work show that the immune response regulation by ToAP3 and ToAP4 can control the alterations that cause the fibrotic process after BLM instillation, making both peptides potential therapeutic alternatives and/or adjuvants for IPF.
Collapse
Affiliation(s)
- Karina Smidt Simon
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Luísa Coutinho Coelho
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Cesar Augusto Melo-Silva
- Laboratory of Respiratory Physiology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
- Hospital of the University of Brasilia, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - João Paulo Figueiró Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Florencio Figueiredo
- Laboratory of Pathology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
| | - Leonora Viana
- Laboratory of Pathology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
| | - Ildinete Silva Pereira
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Veronica Moreira Amado
- Laboratory of Respiratory Physiology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
- Hospital of the University of Brasilia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcia Renata Mortari
- Department de Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Anamelia Lorenzetti Bocca
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
5
|
Pandey J, Larson-Casey JL, Patil MH, Joshi R, Jiang CS, Zhou Y, He C, Carter AB. NOX4-TIM23 interaction regulates NOX4 mitochondrial import and metabolic reprogramming. J Biol Chem 2023; 299:104695. [PMID: 37044213 PMCID: PMC10193017 DOI: 10.1016/j.jbc.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis is a progressive lung disease characterized by macrophage activation. Asbestos-induced expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) in lung macrophages mediates fibrotic progression by the generation of mitochondrial reactive oxygen species (ROS), modulating mitochondrial biogenesis, and promoting apoptosis resistance; however, the mechanism(s) by which NOX4 localizes to mitochondria during fibrosis is not known. Here, we show that NOX4 localized to the mitochondrial matrix following asbestos exposure in lung macrophages via direct interaction with TIM23. TIM23 and NOX4 interaction was found in lung macrophages from human subjects with asbestosis, while it was absent in mice harboring a conditional deletion of NOX4 in lung macrophages. This interaction was localized to the proximal transmembrane region of NOX4. Mechanistically, TIM23 augmented NOX4-induced mitochondrial ROS and metabolic reprogramming to oxidative phosphorylation. Silencing TIM23 decreased mitochondrial ROS and oxidative phosphorylation. These observations highlight the important role of the mitochondrial translocase TIM23 interaction with NOX4. Moreover, this interaction is required for mitochondrial redox signaling and metabolic reprogramming in lung macrophages.
Collapse
Affiliation(s)
- Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mallikarjun H Patil
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rutwij Joshi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Sun Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Medicine, Birmingham VAMC, Birmingham, Alabama, USA.
| |
Collapse
|
6
|
Farnesyl diphosphate synthase regulated endothelial proliferation and autophagy during rat pulmonary arterial hypertension induced by monocrotaline. Mol Med 2022; 28:94. [PMID: 35962329 PMCID: PMC9373289 DOI: 10.1186/s10020-022-00511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The proliferation ability and autophagy level of pulmonary artery endothelial cells (PAECs) play an important role in promoting the development of pulmonary artery hypertension (PAH), and there is still no effective treatment for PAH. Farnesyl diphosphate synthase (FDPS) is a key enzyme in the mevalonate pathway. The intermediate metabolites of this pathway are closely related to the activity of autophagy-associated small G proteins, including Ras-related C3 botulinum toxin substrate 1 (Rac1). Studies have shown that the mevalonate pathway affects the activation levels of different small G proteins, autophagy signaling pathways, vascular endothelial function, and so on. However, the exact relationship between them is still unclear in PAH. Method In vitro, western blotting and mRFP-GFP-LC3 puncta formation assays were used to observe the expression of FDPS and the level of autophagy in PAECs treated with monocrotaline pyrrole (MCTP). In addition, cell proliferation and migration assays were used to assess the effect of FDPS on endothelial function, and Rac1 activity assays were used to evaluate the effect of Rac1 activation on PAEC autophagy via the PI3K/AKT/mTOR signaling pathway. In vivo, the right heart catheterization method, hematoxylin and eosin (H&E) staining and western blotting were used to determine the effect of FDPS on PAEC autophagy and monocrotaline (MCT)-induced PAH. Results We show that the expression of FDPS is increased in the PAH module in vitro and in vivo, concomitant with the induction of autophagy and the activation of Rac1. Our data demonstrate that inhibition of FDPS ameliorates endothelial function and decreases MCT-induced autophagy levels. Mechanistically, we found that FDPS promotes autophagy, Rac1 activity and endothelial disfunction through the PI3K/AKT/mTOR signaling pathway. Conclusion Our study suggests that FDPS contributes to active small G protein-induced autophagy during MCT-induced PAH, which may serve as a potential therapeutic target against PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00511-7.
Collapse
|
7
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
8
|
Tanner L, Bergwik J, Single AB, Bhongir RKV, Erjefält JS, Egesten A. Zoledronic Acid Targeting of the Mevalonate Pathway Causes Reduced Cell Recruitment and Attenuates Pulmonary Fibrosis. Front Pharmacol 2022; 13:899469. [PMID: 35721132 PMCID: PMC9201219 DOI: 10.3389/fphar.2022.899469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aim: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing irreparable scarring of lung tissue, with most patients succumbing rapidly after diagnosis. The mevalonate pathway, which is involved in the regulation of cell proliferation, survival, and motility, is targeted by the bisphosphonate zoledronic acid (ZA). The aim of this study was to assess the antifibrotic effects of ZA and to elucidate the mechanisms by which potential IPF treatment occurs. Methods: A series of in vitro and in vivo models were employed to identify the therapeutic potential of ZA in treating IPF. In vitro transwell assays were used to assess the ability of ZA to reduce fibrotic-related immune cell recruitment. Farnesyl diphosphate synthase (FDPS) was screened as a potential antifibrotic target using a bleomycin mouse model. FDPS-targeting siRNA and ZA were administered to mice following the onset of experimentally-induced lung fibrosis. Downstream analyses were conducted on murine lung tissues and lung fluids including 23-plex cytokine array, flow cytometry, histology, Western blotting, immunofluorescent staining, and PCR analysis. Results:In vitro administration of ZA reduced myofibroblast transition and blocked NF-κB signaling in macrophages leading to impaired immune cell recruitment in a transwell assay. FDPS-targeting siRNA administration significantly attenuated profibrotic cytokine production and lung damage in a murine lung fibrosis model. Furthermore, ZA treatment of mice with bleomycin-induced lung damage displayed decreased cytokine levels in the BALF, plasma, and lung tissue, resulting in less histologically visible fibrotic scarring. Bleomycin-induced upregulation of the ZA target, FDPS, was reduced in lung tissue and fibroblasts upon ZA treatment. Confirmatory increases in FDPS immunoreactivity was seen in human IPF resected lung samples compared to control tissue indicating potential translational value of the approach. Additionally, ZA polarized macrophages towards a less profibrotic phenotype contributing to decreased IPF pathogenesis. Conclusion: This study highlights ZA as an expedient and efficacious treatment option against IPF in a clinical setting.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Andrew B Single
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Larson-Casey JL, Gu L, Davis D, Cai GQ, Ding Q, He C, Carter AB. Post-translational regulation of PGC-1α modulates fibrotic repair. FASEB J 2021; 35:e21675. [PMID: 34038004 PMCID: PMC8252570 DOI: 10.1096/fj.202100339r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-ɣ (PPARɣ) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Qiang Cai
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
10
|
Larson-Casey JL, Gu L, Kang J, Dhyani A, Carter AB. NOX4 regulates macrophage apoptosis resistance to induce fibrotic progression. J Biol Chem 2021; 297:100810. [PMID: 34023385 PMCID: PMC8214193 DOI: 10.1016/j.jbc.2021.100810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary fibrosis is a progressive lung disease often occurring secondary to environmental exposure. Asbestos exposure is an important environmental mediator of lung fibrosis and remains a significant cause of disease despite strict regulations to limit exposure. Lung macrophages play an integral role in the pathogenesis of fibrosis induced by asbestos (asbestosis), in part by generating reactive oxygen species (ROS) and promoting resistance to apoptosis. However, the mechanism by which macrophages acquire apoptosis resistance is not known. Here, we confirm that macrophages isolated from asbestosis subjects are resistant to apoptosis and show they are associated with enhanced mitochondrial content of NADPH oxidase 4 (NOX4), which generates mitochondrial ROS generation. Similar results were seen in chrysotile-exposed WT mice, while macrophages from Nox4-/- mice showed increased apoptosis. NOX4 regulated apoptosis resistance by activating Akt1-mediated Bcl-2-associated death phosphorylation. Demonstrating the importance of NOX4-mediated apoptosis resistance in fibrotic remodeling, mice harboring a conditional deletion of Nox4 in monocyte-derived macrophages exhibited increased apoptosis and were protected from pulmonary fibrosis. Moreover, resolution occurred when Nox4 was deleted in monocyte-derived macrophages in mice with established fibrosis. These observations suggest that NOX4 regulates apoptosis resistance in monocyte-derived macrophages and contributes to the pathogenesis of pulmonary fibrosis. Targeting NOX4-mediated apoptosis resistance in monocyte-derived macrophages may provide a novel therapeutic target to protect against the development and/or progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jungsoon Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashish Dhyani
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA.
| |
Collapse
|
11
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
12
|
PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways. Sci Rep 2020; 10:16112. [PMID: 32999298 PMCID: PMC7527517 DOI: 10.1038/s41598-020-72629-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient’s quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.
Collapse
|
13
|
Larson-Casey JL, Gu L, Fiehn O, Carter AB. Cadmium-mediated lung injury is exacerbated by the persistence of classically activated macrophages. J Biol Chem 2020; 295:15754-15766. [PMID: 32917723 DOI: 10.1074/jbc.ra120.013632] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Heavy metals released into the environment have a significant effect on respiratory health. Lung macrophages are important in mounting an inflammatory response to injury, but they are also involved in repair of injury. Macrophages develop mixed phenotypes in complex pathological conditions and polarize to a predominant phenotype depending on the duration and stage of injury and/or repair. Little is known about the reprogramming required for lung macrophages to switch between these divergent functions; therefore, understanding the mechanism(s) by which macrophages promote metabolic reprogramming to regulate lung injury is essential. Here, we show that lung macrophages polarize to a pro-inflammatory, classically activated phenotype after cadmium-mediated lung injury. Because metabolic adaptation provides energy for the diverse macrophage functions, these classically activated macrophages show metabolic reprogramming to glycolysis. RNA-Seq revealed up-regulation of glycolytic enzymes and transcription factors regulating glycolytic flux in lung macrophages from cadmium-exposed mice. Moreover, cadmium exposure promoted increased macrophage glycolytic function with enhanced extracellular acidification rate, glycolytic metabolites, and lactate excretion. These observations suggest that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Larson-Casey JL, Vaid M, Gu L, He C, Cai GQ, Ding Q, Davis D, Berryhill TF, Wilson LS, Barnes S, Neighbors JD, Hohl RJ, Zimmerman KA, Yoder BK, Longhini ALF, Hanumanthu VS, Surolia R, Antony VB, Carter AB. Increased flux through the mevalonate pathway mediates fibrotic repair without injury. J Clin Invest 2020; 129:4962-4978. [PMID: 31609245 DOI: 10.1172/jci127959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to β oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.
Collapse
Affiliation(s)
| | - Mudit Vaid
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Guo-Qiang Cai
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Landon S Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey D Neighbors
- Department of Medicine, and.,Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA.,Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Raymond J Hohl
- Department of Medicine, and.,Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA.,Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | | | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, and
| | - Ana Leda F Longhini
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Chen Q, Gao P, Song Y, Huang X, Xiao Q, Chen X, Lv X, Wang Z. Predicting the effect of 5-fluorouracil-based adjuvant chemotherapy on colorectal cancer recurrence: A model using gene expression profiles. Cancer Med 2020; 9:3043-3056. [PMID: 32150672 PMCID: PMC7196071 DOI: 10.1002/cam4.2952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
It is critical to identify patients with stage II and III colorectal cancer (CRC) who will benefit from adjuvant chemotherapy (ACT) after curative surgery, while the only use of clinical factors is insufficient to predict this beneficial effect. In this study, we performed genetic algorithm (GA) to select ACT candidate genes, and built a predictive model of support vector machine (SVM) using gene expression profiles from the Gene Expression Omnibus database. The model contained four ACT candidate genes (EDEM1, MVD, SEMA5B, and WWP2) and TNM stage (stage II or III). After using Subpopulation Treatment Effect Pattern Plot to determine the optimal cutoff value of predictive scores, the validated patients from The Cancer Genome Atlas database can be divided into the predictive ACT-benefit/-futile groups. Patients in the predictive ACT-benefit group with 5-fluorouracil (5-Fu)-based ACT had significantly longer relapse-free survival (RFS) compared to those without ACT (P = .015); However, the difference in RFS in the predictive ACT-futile group was insignificant (P = .596). The multivariable analysis found that the predictive groups were significantly associated with the effect of ACT (Pinteraction = .011). Consequently, we developed a predictive model based on the SVM and GA algorithm which was further validated to define patients who benefit from ACT on recurrence.
Collapse
Affiliation(s)
- Quan Chen
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Peng Gao
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Xuanzhang Huang
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Qiong Xiao
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Xiaowan Chen
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Xinger Lv
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal TumorsMinistry of EducationThe First Affiliated Hospital of China Medical UniversityShenyang CityChina
| |
Collapse
|
16
|
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol 2020; 33:101426. [PMID: 31928788 PMCID: PMC7251238 DOI: 10.1016/j.redox.2020.101426] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanisms underlying the pathogenesis of pulmonary fibrosis remain incompletely understood. Emerging evidence suggests changes in mitochondrial quality control are a critical determinant in many lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary hypertension, acute lung injury, lung cancer, and in the susceptibility to pulmonary fibrosis. Once thought of as the kidney-bean shaped powerhouses of the cell, mitochondria are now known to form interconnected networks that rapidly and continuously change their size to meet cellular metabolic demands. Mitochondrial quality control modulates cell fate and homeostasis, and diminished mitochondrial quality control results in mitochondrial dysfunction, increased reactive oxygen species (ROS) production, reduced ATP production, and often induces intrinsic apoptosis. Here, we review the role of the mitochondria in alveolar epithelial cells, lung macrophages, and fibroblasts within the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Birmingham VAMC, Birmingham, AL, 35294, United States.
| |
Collapse
|
17
|
Wu H, Chen G, Wang J, Deng M, Yuan F, Gong J. TIM-4 interference in Kupffer cells against CCL4-induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif 2019; 53:e12731. [PMID: 31755616 PMCID: PMC6985653 DOI: 10.1111/cpr.12731] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES T-cell immunoglobulin domain and mucin domain-4 (TIM-4) is selectively expressed on antigen-presenting cells (APCs) and modulates various immune responses. However, the role of TIM-4 expressed by Kupffer cells (KCs) in liver fibrosis remains unclear. The present study aimed to explore whether and how TIM-4 expressed by KCs is involved in liver fibrosis. MATERIALS AND METHODS Mice chronic liver fibrosis models were established and divided into the olive-induced control group, CCL4-induced control group, olive-induced TIM-4 interference group and CCL4-induced TIM-4 interference group. Different techniques were used to monitor the fibrotic effects of TIM-4, including histopathological assays, Western blotting, ELISA and transmission electron microscopy. Additionally, mice liver transplant models were established to determine the fibrotic effects of TIM-4 on fibrosis after liver transplantation (LT). RESULTS We found that the induction of liver fibrosis by CCL4 was associated with TIM-4 expression in KCs. TIM-4 interference essentially contributed to liver fibrosis resolution. KCs from the TIM-4 interference group had decreased levels of pro-fibrotic markers, reduced TGF-β1 secretion and inhibited hepatic stellate cell (HSC) differentiation into myofibroblast-like cells. In addition, we used GdCl3 to verify that KCs are the primary source of TGF-β1 during fibrosis progression. Moreover, KCs from CCL4-induced mice showed increased ROS production, mitophagy activation and TGF-β1 secretion. However, TIM-4 interference in the KCs inhibited Akt1-mediated ROS production, resulting in the suppression of PINK1, Parkin and LC3-II/I activation and the reduction of TGF-β1 secretion during liver fibrosis. Additionally, TIM-4 interference potentially attenuated development of fibrosis after LT. CONCLUSIONS Our findings revealed the underlying mechanisms of TIM-4 interference in KCs to mitigate liver fibrosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyong Chen
- Department of Hepatobiliary and pancreatic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jingyuan Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghua Deng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangchao Yuan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Di R, Yang Z, Xu P, Xu Y. Silencing PDK1 limits hypoxia-induced pulmonary arterial hypertension in mice via the Akt/p70S6K signaling pathway. Exp Ther Med 2019; 18:699-704. [PMID: 31281449 DOI: 10.3892/etm.2019.7627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the effect of phosphoinositide-dependent protein kinase-1 (PDK1) on hypoxia-induced pulmonary arterial hypertension (PAH). A mouse model of hypoxia-induced PAH was generated using normal or PDK1-knockout mice. Histological analysis and hemodynamic evaluations were performed to identify the progression of PAH. The expression and phosphorylation of PDK1/protein kinase B (Akt) signaling pathway associated proteins were detected by western blot analysis. Increased lung vessel thickness, right ventricular (RV) systolic pressure (RVSP), RV hypertrophy index (RVHI) values [the RV weight-to-left ventricular (LV) plus septum (S) weight ratio] and PDK1 expression were observed in the hypoxia-induced PAH model compared with the normal control. The phosphorylation of AktT308, proline-rich Akt1 substrate 1 (PRAS40) and S6KT229 was also notably increased in the PAH model compared with the control. The changes of proteins were not observed in the hypoxia treated PDK1flox/+ : Tie2-Cre mice. Similarly, the RVSP and RVHI values, and PDK1 expression were reduced in the hypoxia treated PDK1flox/+: Tie2-Cre mice to a level comparable with those in the control, suggesting that PDK1 partial knockout significantly limited hypoxia-induced PAH. The results of the present study indicate that PDK1 is essential for hypoxia-induced PAH through the PDK1/Akt/S6K signaling cascades.
Collapse
Affiliation(s)
- Ruomin Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Peng Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Yingjia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
19
|
A Central Bioactive Region of LTBP-2 Stimulates the Expression of TGF-β1 in Fibroblasts via Akt and p38 Signalling Pathways. Int J Mol Sci 2017; 18:ijms18102114. [PMID: 28991210 PMCID: PMC5666796 DOI: 10.3390/ijms18102114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
Collapse
|
20
|
Gruenbacher G, Thurnher M. Mevalonate metabolism governs cancer immune surveillance. Oncoimmunology 2017; 6:e1342917. [PMID: 29123952 PMCID: PMC5665080 DOI: 10.1080/2162402x.2017.1342917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
Abstract
The metabolic reprogramming that drives immunity engages the mevalonate pathway for cholesterol biosynthesis and protein prenylation. The importance of tight regulation of this metabolic route is reflected by the fact that too low activity impairs cellular function and survival, whereas hyperactivity can lead to malignant transformation. Here, we first address how mevalonate metabolism drives immunity and then highlight ways of the immune system to respond to both, limited and uncontrolled flux through the mevalonate pathway. Immune responses elicited by mevalonate pathway dysregulation may be harnessed to increase the clinical efficacy of current cancer therapy regimens.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Research Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Research Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Tang F, Wang Y, Hemmings BA, Rüegg C, Xue G. PKB/Akt-dependent regulation of inflammation in cancer. Semin Cancer Biol 2017; 48:62-69. [PMID: 28476657 DOI: 10.1016/j.semcancer.2017.04.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Chronic inflammation is a major cause of human cancer. Clinical cancer therapies against inflammatory risk factors are strategically determined. To rationally guide a novel drug development, an improved mechanistic understanding on the pathological connection between inflammation and carcinogenesis is essential. PI3K-PKB signaling axis has been extensively studied and shown to be one of the key oncogenic drivers in most types of cancer. Pharmacological inhibition of the components along this signaling axis is of great interest for developing novel therapies. Interestingly, emerging studies have shown a close association between PKB activation and inflammatory activity in the vicinity of the tumor, and either blockade of PKB or attenuation of para-tumoral inflammation reveals a mutual-interactive pattern through pathway crosstalk. In this review, we intend to discuss recent advances of PKB-regulated chronic inflammation and its potential impacts on tumor development.
Collapse
Affiliation(s)
- Fengyuan Tang
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| | - Yuhua Wang
- Novartis Pharma AG, 4057 Basel, Switzerland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Curzio Rüegg
- Pathology, Department of Medicine, Faculty of Sciences, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gongda Xue
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
22
|
Kim SJ, Cheresh P, Eren M, Jablonski RP, Yeldandi A, Ridge KM, Budinger GRS, Kim DH, Wolf M, Vaughan DE, Kamp DW. Klotho, an antiaging molecule, attenuates oxidant-induced alveolar epithelial cell mtDNA damage and apoptosis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L16-L26. [PMID: 28428174 DOI: 10.1152/ajplung.00063.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cell (AEC) apoptosis and inadequate repair resulting from "exaggerated" lung aging and mitochondrial dysfunction are critical determinants promoting lung fibrosis. α-Klotho, which is an antiaging molecule that is expressed predominantly in the kidney and secreted in the blood, can protect lung epithelial cells against hyperoxia-induced apoptosis. We reasoned that Klotho protects AEC exposed to oxidative stress in part by maintaining mitochondrial DNA (mtDNA) integrity and mitigating apoptosis. We find that Klotho levels are decreased in both serum and alveolar type II (AT2) cells from asbestos-exposed mice. We show that oxidative stress reduces AEC Klotho mRNA and protein expression, whereas Klotho overexpression is protective while Klotho silencing augments AEC mtDNA damage. Compared with wild-type, Klotho heterozygous hypomorphic allele (kl/+) mice have increased asbestos-induced lung fibrosis due in part to increased AT2 cell mtDNA damage. Notably, we demonstrate that serum Klotho levels are reduced in wild-type but not mitochondrial catalase overexpressing (MCAT) mice 3 wk following exposure to asbestos and that EUK-134, a MnSOD/catalase mimetic, mitigates oxidant-induced reductions in AEC Klotho expression. Using pharmacologic and genetic silencing studies, we show that Klotho attenuates oxidant-induced AEC mtDNA damage and apoptosis via mechanisms dependent on AKT activation arising from upstream fibroblast growth factor receptor 1 activation. Our findings suggest that Klotho preserves AEC mtDNA integrity in the setting of oxidative stress necessary for preventing apoptosis and asbestos-induced lung fibrosis. We reason that strategies aimed at augmenting AEC Klotho levels may be an innovative approach for mitigating age-related lung diseases.
Collapse
Affiliation(s)
- Seok-Jo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Paul Cheresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mesut Eren
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Renea P Jablonski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Anjana Yeldandi
- Department of Pathology, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Dong-Hyun Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Myles Wolf
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Douglas E Vaughan
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - David W Kamp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; .,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
23
|
Gu L, Larson-Casey JL, Carter AB. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization. FASEB J 2017; 31:3072-3083. [PMID: 28351840 DOI: 10.1096/fj.201601371r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/11/2022]
Abstract
Fibrosis in multiple organs, including the liver, kidney, and lung, often occurs secondary to environmental exposure. Asbestos exposure is one important environmental cause of lung fibrosis. The mechanisms that mediate fibrosis is not fully understood, although mitochondrial oxidative stress in alveolar macrophages is critical for fibrosis development. Mitochondrial Ca2+ levels can be associated with production of reactive oxygen species. Here, we show that patients with asbestosis have higher levels of mitochondrial Ca2+ compared with normal patients. The mitochondrial calcium uniporter (MCU) is a highly selective ion channel that transports Ca2+ into the mitochondrial matrix to modulate metabolism. Asbestos exposure increased mitochondrial Ca2+ influx in alveolar macrophages from wild-type, but not MCU+/-, mice. MCU expression polarized macrophages to a profibrotic phenotype after exposure to asbestos, and the profibrotic polarization was regulated by MCU-mediated ATP production. Profibrotic polarization was abrogated when MCU was absent or its activity was blocked. Of more importance, mice that were deficient in MCU were protected from pulmonary fibrosis. Regulation of mitochondrial Ca2+ suggests that MCU may play a pivotal role in the development of fibrosis and could potentially be a therapeutic target for pulmonary fibrosis.-Gu, L., Larson-Casey, J. L., Carter, A. B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization.
Collapse
Affiliation(s)
- Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; .,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Standardized Herbal Formula PM014 Inhibits Radiation-Induced Pulmonary Inflammation in Mice. Sci Rep 2017; 7:45001. [PMID: 28322297 PMCID: PMC5359558 DOI: 10.1038/srep45001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/17/2017] [Indexed: 12/27/2022] Open
Abstract
Radiation therapy is widely used for thoracic cancers. However, it occasionally causes radiation-induced lung injuries, including pneumonitis and fibrosis. Chung-Sang-Bo-Ha-Tang (CSBHT) has been traditionally used to treat chronic pulmonary disease in Korea. PM014, a modified herbal formula derived from CSBHT, contains medicinal herbs of seven species. In our previous studies, PM014 exhibited anti-inflammatory effects in a chronic obstructive pulmonary disease model. In this study, we have evaluated the effects of PM014 on radiation-induced lung inflammation. Mice in the treatment group were orally administered PM014 six times for 2 weeks. Effects of PM014 on radiation pneumonitis were evaluated based on histological findings and differential cell count in bronchoalveolar lavage fluid. PM014 treatment significantly inhibited immune cell recruitment and collagen deposition in lung tissue. Normal lung volume, evaluated by radiological analysis, in PM014-treated mice was higher compared to that in irradiated control mice. PM014-treated mice exhibited significant changes in inspiratory capacity, compliance and tissue damping and elastance. Additionally, PM014 treatment resulted in the downregulation of inflammatory cytokines, chemokines, and fibrosis-related genes and a reduction in the transforming growth factor-β1-positive cell population in lung tissue. Thus, PM014 is a potent therapeutic agent for radiation-induced lung fibrosis and inflammation.
Collapse
|
25
|
Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ, Carter AB. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity 2016; 44:582-596. [PMID: 26921108 DOI: 10.1016/j.immuni.2016.01.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/17/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-β1 (TGF-β1). Although Akt1 increased TGF-β1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-β1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alan J Ryan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35294, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Abstract
The production of reactive oxygen species, including H2O2, is a process that can be used in signaling, cell death, or immune response. To quantify oxidative stress in cells, a fluorescence technique has been modified from a previously described method to measure H2O2 release from cells (1-5). This assay takes advantage of H2O2-mediated oxidation of horseradish peroxidase (HRP) to Complex I, which, in turn, oxidizes p-hydroxyphenylacetic acid (pHPA) to a stable, fluorescent pHPA dimer (2,2'-dihydroxy-biphenyl-5,5' diacetate [(pHPA)2]). The H2O2-dependent HRP-mediated oxidation of pHPA is a sensitive and specific assay for quantifying H2O2 release from cells. This assay can measure H2O2 release from whole cells, mitochondria, or the NADPH oxidase.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35294; Birmingham Veterans Administration Medical Center, Birmingham, AL, USA 35294
| |
Collapse
|
27
|
Abstract
Macrophage plasticity is an important feature of these innate immune cells. Macrophage phenotypes are divided into two categories, the classically activated macrophages (CAM, M1 phenotype) and the alternatively activated macrophages (AAM, M2 phenotype). M1 macrophages are commonly associated with the generation of proinflammatory cytokines, whereas M2 macrophages are anti-inflammatory and often associated with tumor progression and fibrosis development. Macrophages produce high levels of reactive oxygen species (ROS). Recent evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages phenotypes are closely related to their metabolic patterns, particularly fatty acid/cholesterol metabolism. In this review, we briefly summarize recent advances in macrophage polarization with special attention to their relevance to specific disease conditions and metabolic regulation of polarization. Understanding these metabolic switches can facilitate the development of targeted therapies for various diseases.
Collapse
Affiliation(s)
- Chao He
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - A Brent Carter
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Alabama, USA; Birmingham VAMC, Birmingham, Alabama, USA
| |
Collapse
|
28
|
Osborn-Heaford HL, Murthy S, Gu L, Larson-Casey JL, Ryan AJ, Shi L, Glogauer M, Neighbors JD, Hohl R, Carter AB. Targeting the isoprenoid pathway to abrogate progression of pulmonary fibrosis. Free Radic Biol Med 2015; 86:47-56. [PMID: 25958207 PMCID: PMC4554879 DOI: 10.1016/j.freeradbiomed.2015.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022]
Abstract
Fibrotic remodeling in lung injury is a major cause of morbidity. The mechanism that mediates the ongoing fibrosis is unclear, and there is no available treatment to abate the aberrant repair. Reactive oxygen species (ROS) have a critical role in inducing fibrosis by modulating extracellular matrix deposition. Specifically, mitochondrial hydrogen peroxide (H2O2) production by alveolar macrophages is directly linked to pulmonary fibrosis as inhibition of mitochondrial H2O2 attenuates the fibrotic response in mice. Prior studies indicate that the small GTP-binding protein, Rac1, directly mediates H2O2 generation in the mitochondrial intermembrane space. Geranylgeranylation of the C-terminal cysteine residue (Cys(189)) is required for Rac1 activation and mitochondrial import. We hypothesized that impairment of geranylgeranylation would limit mitochondrial oxidative stress and, thus, abrogate progression of pulmonary fibrosis. By targeting the isoprenoid pathway with a novel agent, digeranyl bisphosphonate (DGBP), which impairs geranylgeranylation, we demonstrate that Rac1 mitochondrial import, mitochondrial oxidative stress, and progression of the fibrotic response to lung injury are significantly attenuated. These observations reveal that targeting the isoprenoid pathway to alter Rac1 geranylgeranylation halts the progression of pulmonary fibrosis after lung injury.
Collapse
Affiliation(s)
| | | | - Linlin Gu
- Deparment of Medicine, University of Alabama at Birmingham, AL
| | - Jennifer L Larson-Casey
- Free Radical and Radiation Biology Program, University of Iowa
- Deparment of Medicine, University of Alabama at Birmingham, AL
| | - Alan J Ryan
- Department of Internal Medicine, University of Iowa
| | - Lei Shi
- Human Toxicology Program, University of Iowa
| | - Michael Glogauer
- Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, Canada
| | | | - Raymond Hohl
- Department of Internal Medicine, University of Iowa
- Department of Pharmacology, University of Iowa
| | - A Brent Carter
- Department of Internal Medicine, University of Iowa
- Free Radical and Radiation Biology Program, University of Iowa
- Human Toxicology Program, University of Iowa
- Deparment of Medicine, University of Alabama at Birmingham, AL
- Iowa City VA Healthcare System, Iowa City, IA
- Birmingham VAMC, Birmingham, AL
| |
Collapse
|