1
|
Barberi L, Porcu C, Boccia C, Cosentino M, Nicoletti C, Peruzzi B, Iosi F, Forconi F, Bagnato G, Dobrowolny G, Di Cola S, Lapenna L, Cera G, Merli M, Musarò A. Circulating Extracellular Vesicles in Alcoholic Liver Disease Affect Skeletal Muscle Homeostasis and Differentiation. J Cachexia Sarcopenia Muscle 2025; 16:e13675. [PMID: 39921321 PMCID: PMC11806195 DOI: 10.1002/jcsm.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The mechanisms underlying muscle alteration associated to alcoholic liver disease (ALD) are not fully understood and the physiopathologic mediators of the liver-muscle interplay remains elusive. We investigated the role of circulating extracellular vesicles (EVs) in ALD as potential mediators of muscle atrophy. METHODS We established a mouse model of sarcopenia associated to ALD, by feeding mice with an alcoholic diet for 8 weeks. We investigated the effects of hepatic and circulating EVs isolated from these mice (EtOH mice; n = 7 females) on muscle cell cultures, comparing them with EVs from mice fed with a standard diet (CD mice; n = 6 females). Additionally, we examined the impact of circulating EVs from patients with alcohol-related cirrhosis (7 males and 2 females, mean age 55.4 years) on primary human muscle cells, comparing them with EVs from age-matched healthy subjects (6 males and 3 females). We analysed the miRNA profile of the EVs to identify potential mediators of ALD-associated sarcopenia. RESULTS We demonstrated that circulating EVs were internalized by muscle cells and that EVs from ALD mice and cirrhotic patients caused alteration in the myogenic program. Molecular analysis revealed that serum EVs from ALD mice reduced protein synthesis in C2C12 cells, decreasing levels of p-AKT/AKT (-54.6%; p < 0.05), p-mTOR/mTOR (-54.5%; p < 0.05) and p-GSK3(Ser9)/GSK3 (-30.63%). Similarly, hepatic EVs induced defects in muscle differentiation, with reduced levels of p-AKT/AKT (-39.1%; p < 0.05), p-mTOR/mTOR (-30.1%; p < 0.05) and p-GSK3(Ser9)/GSK3 (-40%). C2C12 cells treated with either serum or hepatic EtOH-EVs exhibited upregulated expression of muscle-specific atrophy markers Atrogin-1 (+61.2% and +189.5%, respectively; p < 0.05) and MuRF1 (+260.4% and +112.5%, respectively; p < 0.05), along with an increased LC3-II/-I ratio (+131.5% and +40.2%, respectively; p < 0.05), indicating enhanced autophagy. MiRNA analysis revealed that both circulating and hepatic EVs from ALD mice showed elevated expression of miR-21, miR-155, miR-223 and miR-122 (+230% and +292%, respectively; p < 0.01) suggesting their potential role in sarcopenia. Human muscle cells exposed to EVs from cirrhotic patients exhibited reduced protein synthesis and upregulated Atrogin-1 (+113%; p < 0.05) and MuRF1 (+86.3%; p < 0.05), indicating proteasome activation. Circulating EVs of alcoholic patients showed upregulation of the same miRNAs observed in EtOH mice, including the liver-specific miR-122 (+260%; p < 0.05) suggesting, also in human liver disease, a hepatic origin of circulating EVs. CONCLUSIONS Our study highlights the critical role of ALD-derived circulating EVs in affecting muscle homeostasis and myogenic program, suggesting potential therapeutic targets for mitigating muscle loss in ALD.
Collapse
Affiliation(s)
- Laura Barberi
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Cristiana Porcu
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Caterina Boccia
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Marianna Cosentino
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Carmine Nicoletti
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Barbara Peruzzi
- Bone Pathophysiology Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Iosi
- Core Facilities, Microscopy AreaIstituto Superiore di SanitàRomeItaly
| | - Flavia Forconi
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Giulia Bagnato
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Bone Pathophysiology Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Gabriella Dobrowolny
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Simone Di Cola
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Lucia Lapenna
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Gianluca Cera
- Department of Orthopaedics and TraumatologyPoliclinico Umberto IRomeItaly
| | - Manuela Merli
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Scuola Superiore di Studi Avanzati Sapienza (SSAS)Sapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Genchi VA, Cignarelli A, Sansone A, Yannas D, Dalla Valentina L, Renda Livraghi D, Spaggiari G, Santi D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024; 14:626. [PMID: 39590862 PMCID: PMC11596383 DOI: 10.3390/metabo14110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Purpose: Over the past 40-50 years, demographic shifts and the obesity epidemic have coincided with significant changes in lifestyle habits, including a rise in excessive alcohol consumption. This increase in alcohol intake is a major public health concern due to its far-reaching effects on human health, particularly on metabolic processes and male reproductive function. This narrative review focuses on the role of alcohol consumption in altering metabolism and impairing testicular function, emphasizing the potential damage associated with both acute and chronic alcohol intake. Conclusion: Chronic alcohol consumption has been shown to disrupt liver function, impair lipid metabolism, and dysregulate blood glucose levels, contributing to the development of obesity, metabolic syndrome, and related systemic diseases. In terms of male reproductive health, alcohol can significantly affect testicular function by lowering testosterone levels, reducing sperm quality, and impairing overall fertility. The extent of these effects varies, depending on the frequency, duration, and intensity of alcohol use, with chronic and abusive consumption posing greater risks. The complexity of alcohol's impact is further compounded by individual variability and the interaction with other lifestyle factors such as diet, stress, and physical activity. Despite growing concern, research on alcohol's effects remains inconclusive, with significant discrepancies across studies regarding the definition and reporting of alcohol consumption. These inconsistencies highlight the need for more rigorous, methodologically sound research to better understand how alcohol consumption influences metabolic and reproductive health. Ultimately, a clearer understanding is essential for developing targeted public health interventions, particularly in light of rising alcohol use, demographic changes, and the ongoing obesity crisis.
Collapse
Affiliation(s)
- Valentina Annamaria Genchi
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Angelo Cignarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitri Yannas
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Leonardo Dalla Valentina
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Renda Livraghi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
3
|
Cheng Z, Yang L, Chu H. The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD. J Adv Res 2024:S2090-1232(24)00268-6. [PMID: 38969094 DOI: 10.1016/j.jare.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The liver disorders caused by alcohol abuse are termed alcoholic-related liver disease (ALD), including alcoholic steatosis, alcoholic steatohepatitis, alcoholic hepatitis, and alcoholic cirrhosis, posing a significant threat to human health. Currently, ALD pathogenesis has not been completely clarified, which is likely to be related to the direct damage caused by alcohol and its metabolic products, oxidative stress, gut dysbiosis, and exosomes. AIMS The existing studies suggest that both the gut microbiota and exosomes contribute to the development of ALD. Moreover, there exists an interaction between the gut microbiota and exosomes. We discuss whether this interaction plays a role in the pathogenesis of ALD and whether it can be a potential therapeutic target for ALD treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW Chronic alcohol intake alters the diversity and composition of gut microbiota, which greatly contributes to ALD's progression. Some approaches targeting the gut microbiota, including probiotics, fecal microbiota transplantation, and phage therapy, have been confirmed to effectively ameliorate ALD in many animal experiments and/or several clinical trials. In ALD, the levels of exosomes and the expression profile of microRNA have also changed, which affects the pathogenesis of ALD. Moreover, there is an interplay between exosomes and the gut microbiota, which also putatively acts as a pathogenic factor of ALD.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
4
|
Zeng H, Zhou Y, Liu Z, Liu W. MiR-21-5p modulates LPS-induced acute injury in alveolar epithelial cells by targeting SLC16A10. Sci Rep 2024; 14:11160. [PMID: 38750066 PMCID: PMC11096310 DOI: 10.1038/s41598-024-61777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1β), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1β and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1β and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1β and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1β and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1β and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1β and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1β and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huanan Zeng
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Yuqing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Zhi Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Nelaturi P, Kademani SP, Nallagangula KS, Ravikumar S. Role of MicroRNAs in Alcohol-Related Liver Disease. ALCOHOLISM TREATMENT QUARTERLY 2024; 42:115-137. [DOI: 10.1080/07347324.2023.2256756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Prabhudas Nelaturi
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| | - Sangeetha P Kademani
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| | | | - Sambandam Ravikumar
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
6
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
7
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Seitz HK, Moreira B, Neuman MG. Pathogenesis of Alcoholic Fatty Liver a Narrative Review. Life (Basel) 2023; 13:1662. [PMID: 37629519 PMCID: PMC10455719 DOI: 10.3390/life13081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alcohol effect hepatic lipid metabolism through various mechanisms, leading synergistically to an accumulation of fatty acids (FA) and triglycerides. Obesity, as well as dietary fat (saturated fatty acids (FA) versus poly-unsaturated fatty acids (PUFA)) may modulate the hepatic fat. Alcohol inhibits adenosine monophosphate activated kinase (AMPK). AMPK activates peroxisome proliferator activated receptor a (PPARα) and leads to a decreased activation of sterol regulatory element binding protein 1c (SRABP1c). The inhibition of AMPK, and thus of PPARα, results in an inhibition of FA oxidation. This ß-oxidation is further reduced due to mitochondrial damage induced through cytochrome P4502E1 (CYP2E1)-driven oxidative stress. Furthermore, the synthesis of FAs is stimulated through an activation of SHREP1. In addition, alcohol consumption leads to a reduced production of adiponectin in adipocytes due to oxidative stress and to an increased mobilization of FAs from adipose tissue and from the gut as chylomicrons. On the other side, the secretion of FAs via very-low-density lipoproteins (VLDL) from the liver is inhibited by alcohol. Alcohol also affects signal pathways such as early growth response 1 (Egr-1) associated with the expression of tumour necrosis factor α (TNF α), and the mammalian target of rapamycin (mTOR) a key regulator of autophagy. Both have influence the pathogenesis of alcoholic fatty liver. Alcohol-induced gut dysbiosis contributes to the severity of ALD by increasing the metabolism of ethanol in the gut and promoting intestinal dysfunction. Moreover, pathogen-associated molecular patterns (PAMPS) via specific Toll-like receptor (TLR) bacterial overgrowth leads to the translocation of bacteria. Endotoxins and toxic ethanol metabolites enter the enterohepatic circulation, reaching the liver and inducing the activation of the nuclear factor kappa-B (NFκB) pathway. Pro-inflammatory cytokines released in the process contribute to inflammation and fibrosis. In addition, cellular apoptosis is inhibited in favour of necrosis.
Collapse
Affiliation(s)
- Helmut K. Seitz
- Centre of Liver and Alcohol Associated Diseases, Ethianum Clinic, Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Bernardo Moreira
- Centre of Liver and Alcohol Associated Diseases, Ethianum Clinic, Faculty of Medicine, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Banting Institute, Toronto, ON M5G 1L5, Canada;
| |
Collapse
|
9
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
10
|
Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, Huang E, Taiwo M, Arya R, Wu J, Nagy LE. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. ANNUAL REVIEW OF PATHOLOGY 2023; 18:411-438. [PMID: 36270295 PMCID: PMC10060166 DOI: 10.1146/annurev-pathmechdis-031521-030435] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Semanti Ray
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Moyinoluwa Taiwo
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Rakesh Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Ji N, Yu Z. IL-6/Stat3 suppresses osteogenic differentiation in ossification of the posterior longitudinal ligament via miR-135b-mediated BMPER reduction. Cell Tissue Res 2023; 391:145-157. [PMID: 36305971 DOI: 10.1007/s00441-022-03694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
Interleukin-6 (IL-6) has been reported to induce osteogenic differentiation of mesenchymal stem cells for increasing bone regeneration, while the role of IL-6 in osteogenic differentiation during ossification of the posterior longitudinal ligament (OPLL) remains to be determined. The current study aims to explore the downstream mechanism of IL-6 in cyclic tensile strain (CTS)-stimulated OPLL, which involves bioinformatically identified microRNA-135b (miR-135b). Initially, we clinically collected posterior longitudinal ligament (PLL) and ossified PLL tissues, from which ossified PLL cells were isolated, respectively. The obtained data revealed a greater osteogenic property of ossified PLL than non-ossified PLL cells. The effect of regulatory axis comprising IL-6, Stat3, miR-135b, and BMPER on osteogenic differentiation of CTS-stimulated ossified PLL cells was examined with gain- and loss-of-function experiments. BMPER was confirmed as a target gene to miR-135b. Knockdown of BMPER or overexpression of miR-135b inhibited the osteogenic differentiation of CTS-induced ossification in PLL cells. Besides, IL-6 promoted the post-transcriptional process to mature miR-135b via Stat3 phosphorylation. In conclusion, IL-6 inhibited CTS-induced osteogenic differentiation by inducing miR-135b-mediated inhibition of BMPER through Stat3 activation.
Collapse
Affiliation(s)
- Nan Ji
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China
| | - Zhuoli Yu
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
12
|
Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: Small molecules with big impacts in liver injury. J Cell Physiol 2023; 238:32-69. [PMID: 36317692 DOI: 10.1002/jcp.30908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Poly(rC) binding protein 1 benefits coxsackievirus B3 infection via suppressing the translation of p62/SQSTM1. Virus Res 2022; 318:198851. [PMID: 35764193 DOI: 10.1016/j.virusres.2022.198851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Coxsackievirus B3 (CVB3) is a positive single-strand RNA virus causing myocarditis, pancreatitis and meningitis. During CVB3 infection, various host cellular components, including proteins and non-coding RNAs, interact with the virus and affect viral infection. Poly(rC) binding protein 1 (PCBP1) is a multifunctional RNA binding protein regulating transcription, translation and mRNA stability of a variety of genes. In this study, we observed a significant reduction of PCBP1 protein during CVB3 infection. By bioinformatic prediction and luciferase-assay verification, we confirmed that the expression of PCBP1 was directly inhibited by miR-21, a microRNA upregulated during CVB3 infection. Furthermore, we found that overexpression of PCBP1 promoted CVB3 infection and knocking down of PCBP1 inhibited it. In the subsequent mechanism study, our results revealed that PCBP1 blocked the translation of p62/SQSTM1 (sequestosome 1), an autophagy-receptor protein suppressing CVB3 replication, by interacting with the cis-element in the 5' untranslational region (5' UTR) of p62/SQSTM1. In summary, our studies have identified PCBP1 as a beneficial factor for CVB3 infection. These findings may deepen the understanding of host-virus interactions and provide a potential target for intervention of CVB3 infection.
Collapse
|
14
|
miRNA-432 and SLC38A1 as Predictors of Hepatocellular Carcinoma Complicated with Alcoholic Steatohepatitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4832611. [PMID: 35663198 PMCID: PMC9159866 DOI: 10.1155/2022/4832611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Alcoholic steatohepatitis (ASH) is asymptomatic in the early stages and is typically advanced at the time of diagnosis. With the global rise in alcohol abuse, ASH is currently among the most detrimental diseases around the world. Hepatocellular carcinoma (HCC) is one of the final outcomes of numerous liver diseases. However, at present, HCC screening is mostly focused on liver cancer development. Moreover, there is no effective biomarker to predict the prognosis and recurrence of liver cancer. Meanwhile, there are limited studies on the prognosis and recurrence of HCC patients complicated with ASH. In this study, using bioinformatic analysis as well as cellular and animal models, we screened the differentially expressed (DE) miRNA-432 and SLC38A1 gene in ASH. Based on our analysis, miRNA-432 targeted SLC38A1, and the levels of miRNA-432 and SLC38A1 could accurately predict the overall survival (OS) and relapse free survival (RFS) in patients with liver cancer. Hence, these two genetic elements have the potential to synergistically predict the prognosis and recurrence of HCC complicated with ASH.
Collapse
|
15
|
Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100466. [PMID: 35462859 PMCID: PMC9018389 DOI: 10.1016/j.jhepr.2022.100466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.
Collapse
Key Words
- 3C, chromosome conformation capture
- 4C, chromosome conformation capture-on-chip
- AH, alcohol-related hepatitis
- ARLD, alcohol-related liver disease
- ASH, alcohol-related steatohepatitis
- ATAC, assay for transposase-accessible chromatin
- Acetylation
- Alcohol liver disease
- BET, bromodomain and extraterminal motif
- BETi, BET inhibitor
- BRD, bromodomain
- CCL2, C-C motif chemokine ligand 2
- CTCF, CCCTC-binding factor
- CXCL, C-X-C motif chemokine ligand
- Chromatin architecture
- Computational biology
- DNA methylation
- DNMT, DNA methyltransferase
- E-P, enhancer-promoter
- Epidrugs
- Epigenetics
- FKBP5, FK506-binding protein 5
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HIF1α, hypoxia inducible factor-1α
- HMGB1, high-mobility group box protein 1
- HNF4α, hepatocyte nuclear factor 4α
- HSC, hepatic stellate cell
- Hi-C, chromosome capture followed by high-throughput sequencing
- Histones
- IL, interleukin
- LPS, lipopolysaccharide
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MECP2, methyl-CpG binding protein 2
- NAFLD, non-alcohol-related fatty liver disease
- PPARG, peroxisome proliferator activated receptor-γ
- SAA, salvianolic acid A
- SIRT, sirtuin
- SREBPs, sterol regulatory element-binding proteins
- Single cell epigenome
- TAD, topologically associating domain
- TEAD, TEA domain transcription factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- YAP, Yes-associated protein
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
| | | | - Vijay H. Shah
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| | - Sheng Cao
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| |
Collapse
|
16
|
Feng L, Chen J, Yan W, Ye Z, Yu J, Yao G, Wu Y, Zhang J, Yang D. Preparation of Active Peptides from Camellia vietnamensis and Their Metabolic Effects in Alcohol-Induced Liver Injury Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061790. [PMID: 35335153 PMCID: PMC8951368 DOI: 10.3390/molecules27061790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research.
Collapse
Affiliation(s)
- Lu Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China; (L.F.); (J.C.)
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China; (L.F.); (J.C.)
| | - Wuping Yan
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
- Correspondence: (G.Y.); (Y.W.); Tel./Fax: +86-153-4886-9654 (G.Y.); +86-136-3769-0969 (Y.W.)
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
- Correspondence: (G.Y.); (Y.W.); Tel./Fax: +86-153-4886-9654 (G.Y.); +86-136-3769-0969 (Y.W.)
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| |
Collapse
|
17
|
Parrish A, Srivastava A, Juskeviciute E, Hoek JB, Vadigepalli R. Dysregulation of miR-21-associated miRNA regulatory networks by chronic ethanol consumption impairs liver regeneration. Physiol Genomics 2021; 53:546-555. [PMID: 34796728 PMCID: PMC8820682 DOI: 10.1152/physiolgenomics.00113.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Impaired liver regeneration has been considered as a hallmark of progression of alcohol-associated liver disease. Our previous studies demonstrated that in vivo inhibition of the microRNA (miRNA) miR21 can restore regenerative capacity of the liver in chronic ethanol-fed animals. The present study focuses on the role of microRNA regulatory networks that are likely to mediate the miR-21 action. Rats were chronically fed an ethanol-enriched diet along with pair-fed control animals and treated with AM21 (anti-miR-21), a locked nucleic acid antisense to miR-21. Partial hepatectomy (PHx) was performed and miRNA expression profiling over the course of liver regeneration was assessed. Our results showed dynamic expression changes in several miRNAs after PHx, notably with altered miRNA expression profiles between ethanol and control groups. We found that in vivo inhibition of miR-21 led to correlated differential expression of miR-340-5p and anticorrelated expression of miR-365, let-7a, miR-1224, and miR-146a across all sample groups after PHx. Gene set enrichment analysis identified a miRNA signature significantly associated with hepatic stellate cell activation within whole liver tissue data. We hypothesized that at least part of the PHx-induced miRNA network changes responsive to miR-21 inhibition is localized to hepatic stellate cells. We validated this hypothesis using AM21 and TGF-β treatments in LX-2 human hepatic stellate cells in culture and measured expression levels of select miRNAs by quantitative RT-PCR. Based on the in vivo and in vitro results, we propose a hepatic stellate cell miRNA regulatory network as contributing to the restoration of liver regenerative capacity by miR-21 inhibition.
Collapse
Affiliation(s)
- Austin Parrish
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Egle Juskeviciute
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
19
|
Circular RNA as An Epigenetic Regulator in Chronic Liver Diseases. Cells 2021; 10:cells10081945. [PMID: 34440714 PMCID: PMC8392363 DOI: 10.3390/cells10081945] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA characterized by a covalently closed continuous loop. CircRNA is generated by pre-mRNA through back-splicing and is probably cleared up by extracellular vesicles. CircRNAs play a pivotal role in the epigenetic regulation of gene expression at transcriptional and post-transcriptional levels. Recently, circRNAs have been demonstrated to be involved in the regulation of liver homeostasis and diseases. However, the epigenetic role and underlying mechanisms of circRNAs in chronic liver diseases remain unclear. This review discussed the role of circRNAs in non-neoplastic chronic liver diseases, including alcoholic liver disease (ALD), metabolic-associated fatty liver disease (MAFLD), viral hepatitis, liver injury and regeneration, liver cirrhosis, and autoimmune liver disease. The review also highlighted that further efforts are urgently needed to develop circRNAs as novel diagnostics and therapeutics for chronic liver diseases.
Collapse
|
20
|
Liu SY, Tsai IT, Hsu YC. Alcohol-Related Liver Disease: Basic Mechanisms and Clinical Perspectives. Int J Mol Sci 2021; 22:5170. [PMID: 34068269 PMCID: PMC8153142 DOI: 10.3390/ijms22105170] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver disease (ALD) refers to the liver damage occurring due to excessive alcohol consumption and involves a broad spectrum of diseases that includes liver steatosis, steatohepatitis, hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The progression of ALD is mainly associated with the amount and duration of alcohol usage; however, it is also influenced by genetic, epigenetic, and environmental factors. The definite diagnosis of ALD is based on a liver biopsy, although several non-invasive diagnostic tools and serum biomarkers have emerging roles in the early detection of ALD. While alcohol abstinence and nutritional support remain the cornerstone of ALD treatment, growing evidence has revealed that the therapeutic agents that target oxidative stress or gut-liver axis, inflammatory response inhibition, and liver regeneration enhancement also play a role in ALD management. Furthermore, microRNAs modulation and mesenchymal stem cell-based therapy have emerging potential as ALD therapeutic options. This review summarizes the updated understanding of the pathophysiology, diagnosis, and novel therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Szu-Yi Liu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
| | - I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
- School of Medicine for International Student, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yin-Chou Hsu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
- School of Medicine for International Student, I-Shou University, Kaohsiung 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
21
|
Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021; 70:784-795. [PMID: 33127832 DOI: 10.1136/gutjnl-2020-322526] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to specific mRNA targets and promoting their degradation and/or translational inhibition. miRNAs regulate both physiological and pathological liver functions. Altered expression of miRNAs is associated with liver metabolism dysregulation, liver injury, liver fibrosis and tumour development, making miRNAs attractive therapeutic strategies for the diagnosis and treatment of liver diseases. Here, we review recent advances regarding the regulation and function of miRNAs in liver diseases with a major focus on miRNAs that are specifically expressed or enriched in hepatocytes (miR-122, miR-194/192), neutrophils (miR-223), hepatic stellate cells (miR-29), immune cells (miR-155) and in circulation (miR-21). The functions and target genes of these miRNAs are emphasised in alcohol-associated liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis and hepatocellular carcinoma, as well liver fibrosis and liver failure. We touch on the roles of miRNAs in intercellular communication between hepatocytes and other types of cells via extracellular vesicles in the pathogenesis of liver diseases. We provide perspective on the application of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases and discuss the challenges in miRNA-based therapy for liver diseases. Further investigation of miRNAs in the liver will help us better understand the pathogeneses of liver diseases and may identify biomarkers and therapeutic targets for liver diseases in the future.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Hu M, Wang Y, Liu Z, Yu Z, Guan K, Liu M, Wang M, Tan J, Huang L. Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. NATURE NANOTECHNOLOGY 2021; 16:466-477. [PMID: 33495618 DOI: 10.1038/s41565-020-00836-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Relaxin is an antifibrotic peptide hormone previously assumed to directly reverse the activation of hepatic stellate cells for liver fibrosis resolution. Using nanoparticle-mediated delivery, here we show that, although relaxin gene therapy reduces liver fibrosis in vivo, in vitro treatment fails to induce quiescence of the activated hepatic stellate cells. We show that hepatic macrophages express the primary relaxin receptor, and that, on relaxin binding, they switch from the profibrogenic to the pro-resolution phenotype. The latter releases exosomes that promote the relaxin-mediated quiescence of activated hepatic stellate cells through miR-30a-5p. Building on these results, we developed lipid nanoparticles that preferentially target activated hepatic stellate cells in the fibrotic liver and encapsulate the relaxin gene and miR-30a-5p mimic. The combinatorial gene therapy achieves synergistic antifibrosis effects in models of mouse liver fibrosis. Collectively, our findings highlight the key role that macrophages play in the relaxin-primed alleviation of liver fibrosis and demonstrate a proof-of-concept approach to devise antifibrotic strategies through the complementary application of nanotechnology and basic science.
Collapse
Affiliation(s)
- Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zhengsheng Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kaiyun Guan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Mengrui Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jun Tan
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, P.R. China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol 2020; 18:73-91. [PMID: 33268887 PMCID: PMC7852578 DOI: 10.1038/s41423-020-00579-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the two major types of chronic liver disease worldwide. Inflammatory processes play key roles in the pathogeneses of fatty liver diseases, and continuous inflammation promotes the progression of alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH). Although both ALD and NAFLD are closely related to inflammation, their respective developmental mechanisms differ to some extent. Here, we review the roles of multiple immunological mechanisms and therapeutic targets related to the inflammation associated with fatty liver diseases and the differences in the progression of ASH and NASH. Multiple cell types in the liver, including macrophages, neutrophils, other immune cell types and hepatocytes, are involved in fatty liver disease inflammation. In addition, microRNAs (miRNAs), extracellular vesicles (EVs), and complement also contribute to the inflammatory process, as does intertissue crosstalk between the liver and the intestine, adipose tissue, and the nervous system. We point out that inflammation also plays important roles in promoting liver repair and controlling bacterial infections. Understanding the complex regulatory process of disrupted homeostasis during the development of fatty liver diseases may lead to the development of improved targeted therapeutic intervention strategies.
Collapse
|
24
|
Du B, Tan XH, Cheng L, Wang F, Zhang HF. MiR-451a ameliorates alcoholic hepatitis via repressing HDAC8-mediated proinflammatory response. Kaohsiung J Med Sci 2020; 36:904-910. [PMID: 32643864 DOI: 10.1002/kjm2.12272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Alcoholic hepatitis (AH) is identified as an inflammatory syndrome with high morbidity and mortality as a result of severe hepatocellular dysfunction and liver injury. Accumulated studies indicated that miRNAs are involved in AH. The potential effect of miR-451a in AH mice was examined in the current study. A mice AH model was established and the miR-451a expression in AH mice compared with the sham group was tested by real-time polymerase chain reaction (qRT-PCR). AH mice were injected with pre-miR-451a lentivirus for miR-451a overexpression and histone deacetylase (HDAC8) lentivirus for HDAC8 overexpression in AH mice. The underlying mechanisms were explored by searching the potential target genes of miR-451a in miRanda database and then we confirmed this. We found that miR-451a expression was significantly decreased in AH mice compared with the sham group. Moreover, miR-451a overexpression alleviated alcohol-induced liver inflammation and injuries of AH mice. Additionally, further mechanism exploration disclosed that HDAC8 was a target of miR-451a. The protective effect of miR-451a on AH in AH mice was abolished by HDAC8 overexpression. In summary, miR-451a ameliorates AH via repressing HDAC8-mediated proinflammatory response.
Collapse
Affiliation(s)
- Bo Du
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, China
| | - Xiao-Hong Tan
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, China
| | - Ling Cheng
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, China
| | - Feng Wang
- Department of Physiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hai-Feng Zhang
- Department of Physiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
25
|
miR-135a Alleviates Silica-Induced Pulmonary Fibrosis by Targeting NF- κB/Inflammatory Signaling Pathway. Mediators Inflamm 2020; 2020:1231243. [PMID: 32617074 PMCID: PMC7317310 DOI: 10.1155/2020/1231243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Silica exposure triggers inflammatory response and pulmonary fibrosis that is a severe occupational or environmental lung disease with no effective therapies. The complicated biological and molecular mechanisms underlying silica-induced lung damages have not yet been fully understood. miR-135a inhibits inflammation, apoptosis, and cancer cell proliferation. But the roles of miRNA135a involved in the silica-induced lung damages remain largely unexplored. We investigated the roles and mechanisms of miR-135a underlying silica-induced pulmonary fibrosis. The present study showed silica exposure caused the decrease in miR-135a level but the increase in inflammatory mediators. Transduction of lentivirus expressing miR-135a reduced the level of inflammatory mediators in lung tissues from silica-treated mice and improved pulmonary fibrosis which was consistent with the downregulated α-SMA but enhanced E-cadherin. Moreover, miR-135a overexpression inhibited p-p65 level in lung tissues. Overexpression of miR-135a inhibitor strengthened TLR4 protein level and NF-κB activation in BEAS-2B cells. Injection of PDTC, an inhibitor of NF-κB, further reinforced miR-135a-mediated amelioration of inflammation and pulmonary fibrosis induced by silica. The collective data indicate miR-135a restrains NF-κB activation probably through targeting TLR4 to alleviate silica-induced inflammatory response and pulmonary fibrosis.
Collapse
|
26
|
Pan JH, Kim H, Tang J, Beane KE, Park JW, Kong S, Kong BC, Kim YJ, Shin EC, Kim JH, Zhao J, Lee JH, Kim JK. Acute alcohol consumption-induced let-7a inhibition exacerbates hepatic apoptosis by regulating Rb1 in mice. Alcohol 2020; 85:13-20. [PMID: 31734308 DOI: 10.1016/j.alcohol.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Alcohol consumption is a critical risk factor for hepatic pathogenesis, including alcoholic liver diseases (ALD), but implications of alcohol-induced dysregulation of microRNA (miRNA) in ALD pathogenesis are not completely understood. In the present study, C57BL/6J male mice were treated with saline (CON; oral gavage; n = 8) or alcohol (EtOH; 3 g/kg body weight; oral gavage; n = 8) for 7 days. A total of 599 miRNAs and 158 key mRNAs related to fatty liver and hepatotoxicity pathways were assessed in mice liver tissues. The mRNA expression datasets were then utilized to predict interactions with miRNAs that were changed by alcohol consumption. Predicted miRNA-mRNA interactions were validated using in vitro miRNA transfection experiments. The results showed that let-7a was significantly decreased in the EtOH group and Rb1 mRNA was predicted as a target gene. This was further supported by an inverse correlation of RB1 and let-7a expression in mice liver tissue. Additionally, key protein expressions involved in RB1-apoptosis axis [i.e., p73, cleaved CASP-3 (cCASP-3), and cCASP-7] showed a trend of increase in the EtOH mice; this was also confirmed by capase-3 enzyme activity and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay in livers of mice that had consumed alcohol. In line with our in vivo observations, alcohol treatment suppressed the let-7a expression and subsequently upregulated p73, cCASP-3, and cCASP-7 protein expressions in mice hepatocytes. Additional proteins in the apoptosis regulatory pathway (i.e., MDM2-p53 axis) were significantly changed in response to let-7a suppression in the cells. Taken together, the current study provides mechanistic evidence that alcohol consumption-induced let-7a suppression results in the upregulation of RB1, thereby promoting hepatic apoptosis through induction of pro-apoptotic proteins (e.g., p73), and by, at least in part, preventing MDM2-mediated p53 degradation.
Collapse
|
27
|
Up-regulation of MicroRNAs-21 and -223 in a Sprague-Dawley Rat Model of Traumatic Spinal Cord Injury. Brain Sci 2020; 10:brainsci10030141. [PMID: 32121653 PMCID: PMC7139624 DOI: 10.3390/brainsci10030141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this experimental animal study, we examined alterations in the degree of transcription of two microRNAs (miRs)—miR-21 and -223—in a Sprague-Dawley (SD) rat model of traumatic spinal cord injury (TSCI). Depending on the volume of the balloon catheter (V), a total of 75 male SD rats were divided into the three experimental groups: the sham group (n = 25; V = 0 μL), the mild group (n = 25; V = 20 μL), and the severe group (n = 25; V = 50 μL). Successful induction of TSCI was confirmed on both locomotor rating scale at 4 h and 1, 3 and 7 days post-lesion and histopathologic examinations. Then, RNA isolation and quantitative polymerase chain reaction (PCR) were performed. No differences in the level of miR-21 expression were found at the first time point studied (4 h post-lesion) between the three experimental groups, whereas such differences were significant at all the other time points (p < 0.05). Moreover, there were significant alterations in the level of miR-223 expression at all time points studied through all the experimental groups (p < 0.05). Furthermore, locomotor rating scale scores had a linear relationship with the level of miR-21 expression (R2 = 0.4363, Y = 1.661X + 3.096) and that of miR-223 one (R2 = 0.9104, Y = 0.8385X + 2.328). Taken together, we conclude that up-regulation of miR-21 and -223 might be closely associated with progression and the early course of TSCI, respectively.
Collapse
|
28
|
Davis HM, Deosthale PJ, Pacheco-Costa R, Essex AL, Atkinson EG, Aref MW, Dilley JE, Bellido T, Ivan M, Allen M, Plotkin LI. Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS J 2020; 287:941-963. [PMID: 31532878 PMCID: PMC7396683 DOI: 10.1111/febs.15066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Osteocytes play a critical role in mediating cell-cell communication and regulating bone homeostasis, and osteocyte apoptosis is associated with increased bone resorption. miR21, an oncogenic microRNA, regulates bone metabolism by acting directly on osteoblasts and osteoclasts, but its role in osteocytes is not clear. Here, we show that osteocytic miR21 deletion has sex-divergent effects in bone. In females, miR21 deletion reduces osteocyte viability, but suppresses bone turnover. Conversely, in males, miR21 deletion increases osteocyte viability, but stimulates bone turnover and enhances bone structure. Further, miR21 deletion differentially alters osteocyte cytokine production in the two sexes. Interestingly, despite these changes, miR21 deletion increases bone mechanical properties in both sexes, albeit to a greater extent in males. Collectively, our findings suggest that miR21 exerts both sex-divergent and sex-equivalent roles in osteocytes, regulating osteocyte viability and altering bone metabolism through paracrine actions on osteoblasts and osteoclasts differentially in males vs females, whereas, influencing bone mechanical properties independent of sex.
Collapse
Affiliation(s)
- Hannah M. Davis
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | | | | | - Alyson L. Essex
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Emily G. Atkinson
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Mohammad W. Aref
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Julian E. Dilley
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Division of Endocrinology Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Mircea Ivan
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Allen
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Lilian I. Plotkin
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| |
Collapse
|
29
|
Zhang T, Yang Z, Kusumanchi P, Han S, Liangpunsakul S. Critical Role of microRNA-21 in the Pathogenesis of Liver Diseases. Front Med (Lausanne) 2020; 7:7. [PMID: 32083086 PMCID: PMC7005070 DOI: 10.3389/fmed.2020.00007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that range in length from 18 to 24 nucleotides. As one of the most extensively studied microRNAs, microRNA-21 (miR-21) is highly expressed in many mammalian cell types. It regulates multiple biological functions such as proliferation, differentiation, migration, and apoptosis. In this review, we summarized the mechanism of miR-21 in the pathogenesis of various liver diseases. While it is clear that miR-21 plays an important role in different types of liver diseases, its use as a diagnostic marker for specific liver disease or its therapeutic implication are not ready for prime time due to significant variability and heterogeneity in the expression of miR-21 in different types of liver diseases depending on the studies. Additional studies to further define miR-21 functions and its mechanism in association with each type of chronic liver diseases are needed before we can translate the bedside observations into clinical settings.
Collapse
Affiliation(s)
- Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana Center for Liver Research, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
30
|
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019; 21:E132. [PMID: 31878193 PMCID: PMC6981965 DOI: 10.3390/ijms21010132] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins. Further, miRNAs control diverse biological and pathological processes via the silencing of target mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA strand selection, and modifications of miRNA pathway components, as well as the roles of RNA modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA networks, as well as the improvement of RNAi performance for both gene-specific targeting and genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and function have been applied to the design of synthetic gene circuits. In addition, the relationships between miRNA genes and super-enhancers provide the molecular basis for the highly biased cell type-specific expression patterns of miRNAs and the evolution of miRNA-target connections, while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of human diseases.
Collapse
Affiliation(s)
- Hironori Matsuyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., 1-11-1 Karasaki, Otsu-shi, Shiga 520-0106, Japan;
| | - Hiroshi I. Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Saif-Elnasr M, Abdel Fattah SM, Swailam HM. Treatment of hepatotoxicity induced by γ-radiation using platelet-rich plasma and/or low molecular weight chitosan in experimental rats. Int J Radiat Biol 2019; 95:1517-1528. [PMID: 31290709 DOI: 10.1080/09553002.2019.1642538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Background and aim: Platelet-rich plasma (PRP) is rich in growth factors and plays an important role in tissue healing and cytoprotection. Also, it has been proved that low molecular weight chitosan (LMC) possesses many outstanding health benefits. The aim of this study was to assess the possibility of using PRP and/or fungal LMC to treat hepatotoxicity induced by γ-radiation in albino rats.Materials and methods: Forty-eight adult male albino rats were randomly divided into eight groups. Group I (control), Group II (PRP alone), Group III (LMC alone), Group IV (PRP + LMC), Group V (γ-irradiated alone), Group VI (γ-irradiated + PRP), Group VII (γ-irradiated + LMC), and Group VIII (γ-irradiated + PRP + LMC). The irradiated rats were whole body exposed to γ-radiation (8 Gy) as fractionated doses (2 Gy) twice a week for 2 consecutive weeks. The treated groups received PRP (0.5 mL/kg body weight, s.c.) and/or LMC (10 mg/kg body weight, s.c.) 2 days a week 1 h after every dose of γ-radiation and continued for another week after the last dose of radiation. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, as well as reduced glutathione (GSH) content, malondialdehyde (MDA), total antioxidant capacity (TAC), and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in the liver tissue and relative expression of microRNA-21 (miR-21) in serum were measured, in addition to histopathological examination.Results: Exposure of rats to γ-radiation resulted in a significant increase in serum ALT and AST activities, hepatic MDA levels, and serum miR-21 relative expression, along with a significant decrease in hepatic GSH content, TAC, and Nrf2 levels. Treatment with PRP and/or fungal LMC after exposure to γ-radiation ameliorated these parameters and improved the histopathological changes induced by γ-radiation.Conclusions: The results demonstrated that PRP and/or LMC inhibited γ-radiation-induced hepatotoxicity and using both of them together seems more effective. They can be a candidate to be studied toward the development of a therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Salma M Abdel Fattah
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hesham M Swailam
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
32
|
Martinez M, Rossetto IMU, Arantes RMS, Lizarte FSN, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Martinez FE. Serum miRNAs are differentially altered by ethanol and caffeine consumption in rats. Toxicol Res (Camb) 2019; 8:842-849. [PMID: 32055392 PMCID: PMC7003974 DOI: 10.1039/c9tx00069k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is a multifactorial disease with high risk for dependence determined by genetic background, environmental factors and neuroadaptations. The excessive consumption of this substance is related to psychiatric problems, epilepsy, cardiovascular disease, cirrhosis and cancers. Caffeine is one of the most popular psychostimulants currently consumed in the world. The combination of ethanol and caffeine ingested by consuming "energy drinks" is becoming increasingly popular among young people. We analyzed the effect of simultaneous consumption of ethanol and caffeine on the serum profile of miRNAs differentially expressed in the ethanol-drinking rat model (UChB strain). Adult rats were divided into three groups (n = 5 per group): UChB group (rats fed with 1 : 10 (v/v) ethanol ad libitum); UChB + caffeine group (rats fed with 1 : 10 (v/v) ethanol ad libitum + 3 g L-1 of caffeine); control group (rats drinking water used as the control for UChB). The treatment with caffeine occurred from day 95 to 150 days old, totalizing 55 days of ethanol + caffeine ingestion. The expressions of microRNAs (miR) -9-3p, -15b-5p, -16-5p, -21-5p, -200a-3p and -222-3p were detected by Real Time-PCR (RT-PCR). The expressions of miR-9-3p, -15b-5p, -16-5p and -222-3p were upregulated in the UChB group. Conversely, simultaneous ingestion of ethanol and caffeine significantly reversed these expressions to similar levels to control animals, thus emphasizing that caffeine had a protective effect in the presence of ethanol. In addition, miR-21-5p was downregulated with ethanol consumption whereas miR-222-3p was unchanged. Ethanol and caffeine consumption was capable of altering serum miRNAs, which are potential biomarkers for the systemic effects of these addictive substances.
Collapse
Affiliation(s)
- M Martinez
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - I M U Rossetto
- Department Structural and Functional Biology , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - R M S Arantes
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - F S N Lizarte
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L F Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - D P C Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L G A Chuffa
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| | - F E Martinez
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| |
Collapse
|
33
|
Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, Ocker M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci 2019; 20:ijms20215266. [PMID: 31652839 PMCID: PMC6862076 DOI: 10.3390/ijms20215266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is the central metabolic organ of mammals. In humans, most diseases of the liver are primarily caused by an unhealthy lifestyle-high fat diet, drug and alcohol consumption- or due to infections and exposure to toxic substances like aflatoxin or other environmental factors. All these noxae cause changes in the metabolism of functional cells in the liver. In this literature review we focus on the changes at the miRNA level, the formation and impact of reactive oxygen species and the crosstalk between those factors. Both, miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic liver diseases, as well as in viral hepatitis and carcinogenesis, by influencing numerous signaling and metabolic pathways. Furthermore, expression patterns of miRNAs and antioxidants can be used for biomonitoring the course of disease and show potential to serve as possible therapeutic targets.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Till Wissniowski
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, 35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, 13353 Berlin, Germany.
- Department of Gastroenterology CBF, Charité University Medicine Berlin, 12200 Berlin, Germany.
| |
Collapse
|
34
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
35
|
Li HD, Du XS, Huang HM, Chen X, Yang Y, Huang C, Meng XM, Li J. Noncoding RNAs in alcoholic liver disease. J Cell Physiol 2019; 234:14709-14720. [PMID: 30701547 DOI: 10.1002/jcp.28229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Alcoholic liver disease (ALD) is a complex process with high morbitity and can cause liver dysfunction, which contains a wide spectrum of hepatic lesions, including steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. To date, the molecular mechanisms for ALD have not been fully explored and an effective therapy is still missing. Overwhelming evidence shows dysregulation of noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), is correlated with etiopathogenesis and progress of ALD including hepatocyte damage, disrupted lipid metabolism, aggressive inflammatory responses, oxidative stress, programmed cell death, fibrosis, and epigenetic changes induced by alcohol. For example, circulating miRNA-122 is a marker of hepatocyte damage, and miRNA-155 is a potential marker of inflammation, indicating their diagnosis therapeutic potential in ALD. In addition, roles for long noncoding RNAs (lncRNAs) and circular RNAs in ALD are being uncovered. Further, circulating ncRNAs and exosome-derived ncRNAs have attracted more attention lately, suggesting a role in the prevention and treatment of ALD. This review covers the roles of ncRNAs in ALD, and the potential uses as markers for diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui-Min Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Pinson MR, Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Res 2019; 111:1308-1319. [PMID: 31356004 DOI: 10.1002/bdr2.1559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Completion of the Human Genome Project has led to the identification of a large number of transcription start sites that are not paired with protein-coding genes, supporting the growing recognition of the abundance of encoded nonprotein-coding RNAs (ncRNAs) and their importance for speciation and species-specific development. Present in both plants and animals, ncRNAs vary in size, function, primary sequence, and secondary structure. While microRNAs (miRNAs) are the best known, there are a number of other ncRNAs (long[er] nonprotein-coding RNA, pseudogenes, circular RNAs, and so on) that have been shown to play an important role in the development either directly or via networks of proteins and other ncRNAs, including modulating the impact of miRNAs. Furthermore, these ncRNAs and their developmental regulatory networks are sensitive to teratogens such as ethanol, cannabis, cocaine, and nicotine. A better understanding of the developmental role of ncRNAs and their capacity to mediate teratogenesis is a necessary step in efforts to minimize the long-term consequences of developmental exposures to drugs-of-abuse. Moreover, with increasing awareness of the prevalence of polydrug use, experimental models will need to incorporate more complex drug exposure paradigms into meaningful assessments of developmental ncRNA function.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| |
Collapse
|
37
|
Clément S, Sobolewski C, Gomes D, Rojas A, Goossens N, Conzelmann S, Calo N, Negro F, Foti M. Activation of the oncogenic miR-21-5p promotes HCV replication and steatosis induced by the viral core 3a protein. Liver Int 2019; 39:1226-1236. [PMID: 30938910 DOI: 10.1111/liv.14112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS miR-21-5p is a potent oncogenic microRNA targeting many key tumour suppressors including phosphatase and tensin homolog (PTEN). We recently identified PTEN as a key factor modulated by hepatitis C virus (HCV) to promote virion egress. In hepatocytes, expression of HCV-3a core protein was sufficient to downregulate PTEN and to trigger lipid droplet accumulation. Here, we investigated whether HCV controls PTEN expression through miR-21-5p-dependent mechanisms to trigger steatosis in hepatocytes and to promote HCV life cycle. METHODS MiR-21-5p expression in HCV-infected patients was evaluated by transcriptome meta-analysis. HCV replication and viral particle production were investigated in Jc1-infected Huh-7 cells after miR-21-5p inhibition. PTEN expression and steatosis were assessed in HCV-3a core protein-expressing Huh-7 cells and in mouse primary hepatocytes having miR-21-5p inhibited or genetically deleted respectively. HCV-3a core-induced steatosis was assessed in vivo in Mir21a knockout mice. RESULTS MiR-21-5p expression was significantly increased in hepatic tissues from HCV-infected patients. Infection by HCV-Jc1, or transduction with HCV-3a core, upregulated miR-21-5p expression and/or activity in Huh-7 cells. miR-21-5p inhibition decreased HCV replication and release of infectious virions by Huh-7 cells. HCV-3a core-induced PTEN downregulation and steatosis were further prevented in Huh-7 cells following miR-21-5p inhibition or in Mir21a knockout mouse primary hepatocytes. Finally, steatosis induction by AAV8-mediated HCV-3a core expression was reduced in vivo in Mir21a knockout mice. CONCLUSION MiR-21-5p activation by HCV is a key molecular step, promoting both HCV life cycle and HCV-3a core-induced steatosis and may be among the molecular changes induced by HCV-3a to promote carcinogenesis.
Collapse
Affiliation(s)
- Sophie Clément
- Division of Clinical Pathology, University Hospital, Geneva, Switzerland
| | - Cyril Sobolewski
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Diana Gomes
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Angela Rojas
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, University Hospital, Geneva, Switzerland
| | - Stéphanie Conzelmann
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Calo
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, University Hospital, Geneva, Switzerland.,Division of Gastroenterology and Hepatology, University Hospital, Geneva, Switzerland.,Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Faculty of Medicine, Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Meroni M, Longo M, Rametta R, Dongiovanni P. Genetic and Epigenetic Modifiers of Alcoholic Liver Disease. Int J Mol Sci 2018; 19:E3857. [PMID: 30513996 PMCID: PMC6320903 DOI: 10.3390/ijms19123857] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), a disorder caused by excessive alcohol consumption is a global health issue. More than two billion people consume alcohol in the world and about 75 million are classified as having alcohol disorders. ALD embraces a wide spectrum of hepatic lesions including steatosis, alcoholic steatohepatitis (ASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). ALD is a complex disease where environmental, genetic, and epigenetic factors contribute to its pathogenesis and progression. The severity of alcohol-induced liver disease depends on the amount, method of usage and duration of alcohol consumption as well as on age, gender, presence of obesity, and genetic susceptibility. Genome-wide association studies and candidate gene studies have identified genetic modifiers of ALD that can be exploited as non-invasive biomarkers, but which do not completely explain the phenotypic variability. Indeed, ALD development and progression is also modulated by epigenetic factors. The premise of this review is to discuss the role of genetic variants and epigenetic modifications, with particular attention being paid to microRNAs, as pathogenic markers, risk predictors, and therapeutic targets in ALD.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| | - Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
39
|
Lin XX, Lian GH, Peng SF, Zhao Q, Xu Y, Ou-Yang DS, Zhang W, Chen Y. Reversing Epigenetic Alterations Caused by Alcohol: A Promising Therapeutic Direction for Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1863-1873. [PMID: 30080257 DOI: 10.1111/acer.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/28/2018] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD), a liver function disorder caused by excessive alcohol intake, is a serious threat to global public health and social development. Toxic metabolites and reactive oxygen species produced during the metabolism of alcohol can alter the epigenetic state including DNA methylation, histone modifications, and expression of microRNAs. Epigenetic alterations can conversely involve various signaling pathways, which could contribute to the initiation and progression of ALD. To elucidate the relationship between epigenetic alterations and alcohol damage not only reinforces our understanding on pathogenesis of ALD, but also provides novel targets for clinical diagnosis, treatment, and drug research of ALD. In this review, we have summarized the research progress of epigenetic alterations and related mechanisms caused by alcohol in the pathogenesis of ALD. Considering the invertibility of epigenetic alterations, treatment of ALD through epigenetic modification with common less harmful compounds is also related.
Collapse
Affiliation(s)
- Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Guang-Hui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suárez L, Macías R, Laso FJ, Marcos M. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24:4104-4118. [PMID: 30271077 PMCID: PMC6158486 DOI: 10.3748/wjg.v24.i36.4104] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple physiological and pathological functions through the modulation of gene expression at the post-transcriptional level. Accumulating evidence has established a role for miRNAs in the development and pathogenesis of liver disease. Specifically, a large number of studies have assessed the role of miRNAs in alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), two diseases that share common underlying mechanisms and pathological characteristics. The purpose of the current review is to summarize and update the body of literature investigating the role of miRNAs in liver disease. In addition, the potential use of miRNAs as biomarkers and/or therapeutic targets is discussed. Among all miRNAs analyzed, miR-34a, miR-122 and miR-155 are most involved in the pathogenesis of NAFLD. Of note, these three miRNAs have also been implicated in ALD, reinforcing a common disease mechanism between these two entities and the pleiotropic effects of specific miRNAs. Currently, no single miRNA or panel of miRNAs has been identified for the detection of, or staging of ALD or NAFLD. While promising results have been shown in murine models, no therapeutic based-miRNA agents have been developed for use in humans with liver disease.
Collapse
Affiliation(s)
- Jorge-Luis Torres
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Ignacio Novo-Veleiro
- Department of Internal Medicine, University Hospital of Santiago de Compostela, A Coruña 15706, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Laura Manzanedo
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
| | - Lucía Alvela-Suárez
- Department of Internal Medicine, HM Rosaleda Hospital, Santiago de Compostela, A Coruña 15701, Spain
| | - Ronald Macías
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
| | - Francisco-Javier Laso
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| |
Collapse
|
41
|
Liang X, Zheng S, Cui J, Yu D, Yang G, Zhou L, Wang B, Cai L, Li W. Alterations of MicroRNA Expression in the Liver, Heart, and Testis of Mice Upon Exposure to Repeated Low-Dose Radiation. Dose Response 2018; 16:1559325818799561. [PMID: 30263020 PMCID: PMC6153535 DOI: 10.1177/1559325818799561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRs), which regulate target gene expression at the
post-transcriptional level, play a crucial role in inducing biological effects
upon high-dose ionizing radiation. Yet, the miR expression profiles in response
to repeated low-dose radiation (LDR) in vivo have not been elucidated. This
study investigated the response profiles of 11 miRs with functions involved in
metabolism, DNA damage and repair, inflammation, and fibrosis in mouse liver,
heart, and testis upon repeated LDR exposure for 4 months. The expression
profiles were evaluated using stem-loop quantitative reverse transcription
polymerase chain reaction immediately and at 2 months after LDR exposure. The
expression profiles varied significantly at both time points. At the organ
level, the heart was the most affected, followed by the liver and testis, in
which significant miR upregulation related to DNA damage response was found.
Metabolism-related miRs decreased in the liver and increased in the testis. The
current results showed immediate and long-lasting alterations in the miR
expression profiles in response to repeated LDR in different organs.
Collapse
Affiliation(s)
- Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA
| | - Shirong Zheng
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Brain Wang
- Department of Radiation Oncology, The University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA.,Department of Radiation Oncology, The University of Louisville, Louisville, KY, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Wu N, McDaniel K, Zhou T, Ramos-Lorenzo S, Wu C, Huang L, Chen D, Annable T, Francis H, Glaser S, Alpini G, Meng F. Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2018; 315:G385-G398. [PMID: 29848019 PMCID: PMC6415712 DOI: 10.1152/ajpgi.00111.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 01/31/2023]
Abstract
microRNA-21 (miRNA) is one of the most abundant miRNAs in chronic liver injuries including alcoholic liver injury. Previous studies have demonstrated that miR-21 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the perisinusoidal space between sinusoidal endothelial cells and hepatocytes and regulate sinusoidal circulation. HSCs integrate cytokine-mediated inflammatory responses in the sinusoids and relay them to the liver parenchyma. Here, we showed that the activation of Von Hippel-Lindau (VHL) expression, by miR-21 knockout in vivo and anti-miR-21 or VHL overexpression in vitro, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1, and IL-1β, in human HSCs during alcoholic liver injury. Sequence and functional analyses confirmed that miR-21 directly targeted the 3'-untranslated region of VHL. Immunofluorescence and real-time PCR analysis revealed that miR-21 depletion blocked NF-κB activation in human HSCs both in cultured HSCs as well as HSCs isolated from alcohol-related liver disease mice liver by laser capture microdissection. We also showed that conditioned medium from anti-miR-21-transfected HSCs suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that depletion of miR-21 may downregulate cytokine production in HSCs and macrophage chemotaxis during alcoholic liver injury and that the targeting of miR-21 may have therapeutic potential for preventing the progression of alcoholic liver diseases. NEW & NOTEWORTHY This study demonstrates that silencing microRNA-21 can inhibit cytokine production and inflammatory responses in human hepatic stellate cells during alcoholic liver injury and that the targeting of microR-21 in hepatic stellate cells may have therapeutic potential for prevention and treatment of alcoholic liver diseases.
Collapse
Affiliation(s)
- Nan Wu
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Sugeily Ramos-Lorenzo
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University , College Station, Texas
| | - Li Huang
- Department of Hepatobiliary Surgery and Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | - Demeng Chen
- Department of Hepatobiliary Surgery and Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | - Tami Annable
- Research Institute, Baylor Scott & White Health, Temple, Texas
- Texas Bioscience District, Temple, Texas
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
43
|
Xu T, Li L, Hu HQ, Meng XM, Huang C, Zhang L, Qin J, Li J. MicroRNAs in alcoholic liver disease: Recent advances and future applications. J Cell Physiol 2018; 234:382-394. [PMID: 30076710 DOI: 10.1002/jcp.26938] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation, and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs (miRNAs) are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that miRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Li Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Qing Hu
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jian Qin
- Anhui Joyfar Pharmaceutical Institute Co., Ltd., Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Zhang Y, Ren J. MicroRNA-21: Bridging Binge Drinking and Cardiovascular Health. Alcohol Clin Exp Res 2018; 42:678-681. [PMID: 29315646 DOI: 10.1111/acer.13596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology; Fudan University Zhongshan Hospital; Shanghai China
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming; Laramie Wyoming
| | - Jun Ren
- Department of Cardiology; Fudan University Zhongshan Hospital; Shanghai China
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming; Laramie Wyoming
| |
Collapse
|
45
|
Bian JT, Piano MR, Kotlo KU, Mahmoud AM, Phillips SA. MicroRNA-21 Contributes to Reduced Microvascular Function in Binge Drinking Young Adults. Alcohol Clin Exp Res 2018; 42:278-285. [PMID: 29178290 PMCID: PMC7286284 DOI: 10.1111/acer.13565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Binge drinking is associated with increased risk for cardiovascular (CV) disease. MicroRNA-21 (miR21) is up-regulated in the setting of excessive alcohol consumption and CV disease. Therefore, the goal of this study was to examine the vasodilatory responses to flow and acetylcholine (ACh) in the absence and presence of an anti-miR21 inhibitor in the microcirculation of young adult repeated binge drinkers (BDs). METHODS Gluteal subcutaneous adipose tissue biopsies were obtained from young adults (18 to 30 years, n = 35 vessels from BDs and n = 28 vessels from abstainers). Resistance arteries (RAs) were isolated, incubated with anti-miR21 or a negative control (NC) to miR21 (12 hours; 50 nM), and lumen diameters measured with video microscopy. miR21 of adipose tissues was determined by quantitative polymerase chain reaction. RESULTS Flow-induced dilation and ACh-induced dilation (AChID) were reduced in BDs as compared to abstainers. The miR21 inhibitor but not the NC abrogated these effects in BDs, but did not affect vasodilation in abstainers. Nitric oxide synthase inhibition with L-NAME reduced vasodilation in abstainers but not in BDs. In BDs, vasodilation was reduced by L-NAME in the presence of anti-miR21 but not the NC. Scavenging the reactive oxygen species, hydrogen peroxide with polyethylene glycol catalase reduced dilation in BDs but did not affect the restored dilation by the miR21 inhibitor. Maximum dilation to papaverine (endothelium independent) was similar between groups and unaffected by pharmacological inhibition. Finally, vascular endogenous miR21 was increased in BDs compared to abstainers. CONCLUSIONS Endogenous miR21 is increased in RAs of young BDs, leading to reduced flow and AChID in the microcirculation.
Collapse
Affiliation(s)
- Jing-Tan Bian
- Department of Biobehavioral Health Science, University of
Illinois at Chicago, Chicago, Illinois
| | - Mariann R. Piano
- Department of Biobehavioral Health Science, University of
Illinois at Chicago, Chicago, Illinois
- School of Nursing, Vanderbilt University, Nashville,
TN
| | - Kumar U. Kotlo
- Division of Cardiology, Department of Medicine, University
of Illinois at Chicago, Chicago, IL
| | - Abeer M. Mahmoud
- Department of Physical Therapy, University of Illinois at
Chicago, Chicago, IL
- Department of Kinesiology and Nutrition, University of
Illinois at Chicago, Chicago, IL
| | - Shane A. Phillips
- Department of Physical Therapy, University of Illinois at
Chicago, Chicago, IL
- Integrative Physiology Laboratory, University of Illinois
at Chicago, Chicago, IL
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
46
|
Rossi M, Jahanzaib Anwar M, Usman A, Keshavarzian A, Bishehsari F. Colorectal Cancer and Alcohol Consumption-Populations to Molecules. Cancers (Basel) 2018; 10:E38. [PMID: 29385712 PMCID: PMC5836070 DOI: 10.3390/cancers10020038] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the third most common cancer diagnosed in both men and women in the world. Several environmental and habitual factors have been associated with the CRC risk. Alcohol intake, a common and rising habit of modern society, is one of the major risk factors for development of CRC. Here, we will summarize the evidence linking alcohol with colon carcinogenesis and possible underlying mechanisms. Some epidemiologic studies suggest that even moderate drinking increases the CRC risk. Metabolism of alcohol involves ethanol conversion to its metabolites that could exert carcinogenic effects in the colon. Production of ethanol metabolites can be affected by the colon microbiota, another recently recognized mediating factor to colon carcinogenesis. The generation of acetaldehyde and alcohol's other metabolites leads to activation of cancer promoting cascades, such as DNA-adduct formation, oxidative stress and lipid peroxidation, epigenetic alterations, epithelial barrier dysfunction, and immune modulatory effects. Not only does alcohol induce its toxic effect through carcinogenic metabolites, but alcoholics themselves are predisposed to a poor diet, low in folate and fiber, and circadian disruption, which could further augment alcohol-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Marco Rossi
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Muhammad Jahanzaib Anwar
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ahmad Usman
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ali Keshavarzian
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Faraz Bishehsari
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
47
|
Zhao YX, Sun YY, Huang AL, Li XF, Huang C, Ma TT, Li J. MicroRNA-200a induces apoptosis by targeting ZEB2 in alcoholic liver disease. Cell Cycle 2018; 17:250-262. [PMID: 29251244 DOI: 10.1080/15384101.2017.1417708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRAT Alcoholic liver disease (ALD) and its complication continued to be a major health problem throughout the world. Increasing evidence suggests that microRNA (miRNA) that regulate apoptosis, inflammation and lipid metabolism are affected by alcohol in ALD. MiR-200a has emerged as a major regulator in several liver diseases, but its role in ALD has not been elucidated. The aim of this study is to figure out the biological function of miR-200a in ALD and to explore its underlying mechanism. The expression pattern of miR-200a were analyzed in vitro and in vivo, we showed that miR-200a was up-regulated in ALD in AML-12 and primary hepatocyte. We then examined it's effect on cell apoptosis and identified zinc finger E-box binding homeobox 2 (ZEB2; also known as SIP1) as a direct target gene of miR-200a. Furthermore, reintroduction of ZEB2 could reverse the pro-apoptosis of miR-200a on AML-12. Taken together, our study demonstrated that miR-200a regulates the apoptosis of hepatocyte in ALD by directly target ZEB2, both of which could serve as new therapeutic targets for ALD.
Collapse
Affiliation(s)
- Yu-Xin Zhao
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Ying-Yin Sun
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Ai-Ling Huang
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Xiao-Feng Li
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Cheng Huang
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Tao-Tao Ma
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Jun Li
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| |
Collapse
|
48
|
Kennedy L, Hargrove L, Demieville J, Francis N, Seils R, Villamaria S, Francis H. Recent Advances in Understanding Cholangiocarcinoma. F1000Res 2017; 6:1818. [PMID: 29067165 PMCID: PMC5635438 DOI: 10.12688/f1000research.12118.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy that arises from damaged epithelial cells, cholangiocytes, and possibly de-differentiated hepatocytes. CCA has a poor overall survival rate and limited therapeutic options. Based on this data, it is imperative that new diagnostic and therapeutic interventions be developed. Recent work has attempted to understand the pathological mechanisms driving CCA progression. Specifically, recent publications have delved into the role of cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and microRNAs (miRNAs) during CCA pathology. CSCs are a specific subset of cells within the tumor environment that are derived from a cell with stem-like properties and have been shown to influence recurrence and chemoresistance during CCA. MSCs are known for their anti-inflammatory activity and have been postulated to influence malignancy during CCA, but little is known about their exact functions. miRNAs exert various functions via gene regulation at both the transcriptional and the translational levels, giving miRNAs diverse roles in CCA progression. Additionally, current miRNA-based therapeutic approaches are in clinical trials for various liver diseases, giving hope for similar approaches for CCA. However, the interactions among these three factors in the context of CCA are unknown. In this review, we focus on recently published data (within the last 3 years) that discuss the role of CSCs, MSCs, and miRNAs and their possible interactions during CCA pathogenesis.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Laura Hargrove
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | | | - Nicole Francis
- Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Rowan Seils
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | - Sara Villamaria
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | - Heather Francis
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.,Research, Central Texas Veterans Health Care System, Temple, TX, USA.,Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| |
Collapse
|
49
|
Ramadori P, Cubero FJ, Liedtke C, Trautwein C, Nevzorova YA. Alcohol and Hepatocellular Carcinoma: Adding Fuel to the Flame. Cancers (Basel) 2017; 9:cancers9100130. [PMID: 28946672 PMCID: PMC5664069 DOI: 10.3390/cancers9100130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Primary tumors of the liver represent the fifth most common type of cancer in the world and the third leading cause of cancer-related death. Case-control studies from different countries report that chronic ethanol consumption is associated with an approximately 2-fold increased odds ratio for hepatocellular carcinoma (HCC). Despite the substantial epidemiologic data in humans demonstrating that chronic alcohol consumption is a major risk factor for HCC development, the pathways causing alcohol-induced liver cancer are poorly understood. In this overview, we summarize the epidemiological evidence for the association between alcohol and liver cancer, review the genetic, oncogenic, and epigenetic factors that drive HCC development synergistically with ethanol intake and discuss the essential molecular and metabolic pathways involved in alcohol-induced liver tumorigenesis.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Francisco Javier Cubero
- Department of Immunology, Complutense University School of Medicine, Madrid 28040, Spain.
- 13 de Octubre Health Research Institute (imas12), Madrid 28041, Spain.
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Yulia A Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid 28040, Spain.
| |
Collapse
|
50
|
Mandal C, Halder D, Jung KH, Chai YG. Maternal alcohol consumption and altered miRNAs in the developing fetus: Context and future perspectives. J Appl Toxicol 2017; 38:100-107. [PMID: 28677831 DOI: 10.1002/jat.3504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022]
Abstract
Alcohol is a teratogenic agent that can cause a wide range of developmental disorders, and sometimes, the effects persist throughout an individual's lifetime. Researchers have shown the involvement of epigenetic mechanisms in alcohol-mediated disorders. Non-coding RNAs are one of the major sources of epigenetic modifications, especially microRNAs. The association of microRNAs with alcohol consumption leads to a new focus on finding the molecular mechanisms of alcohol toxicity. It has been suggested that alcohol alters the relative expression of microRNAs and regulates target mRNA expression in both in vitro and in vivo models. Currently, we lack information regarding the relationship between altered microRNA expression and disease phenotypes in alcohol-mediated disorders. In this review, we tried to gather all of the available information about the alcohol-mediated dysregulation of microRNA expression in utero. We hope that our efforts will help future researchers identify major microRNAs in the field of prenatal alcohol toxicity and related therapeutics.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|