1
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
2
|
Sagun E, Akyol A, Kaymak C. Chrononutrition in Critical Illness. Nutr Rev 2024:nuae078. [PMID: 38904422 DOI: 10.1093/nutrit/nuae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Circadian rhythms in humans are biological rhythms that regulate various physiological processes within a 24-hour time frame. Critical illness can disrupt the circadian rhythm, as can environmental and clinical factors, including altered light exposure, organ replacement therapies, disrupted sleep-wake cycles, noise, continuous enteral feeding, immobility, and therapeutic interventions. Nonpharmacological interventions, controlling the ICU environment, and pharmacological treatments are among the treatment strategies for circadian disruption. Nutrition establishes biological rhythms in metabolically active peripheral tissues and organs through appropriate synchronization with endocrine signals. Therefore, adhering to a feeding schedule based on the biological clock, a concept known as "chrononutrition," appears to be vitally important for regulating peripheral clocks. Chrononutritional approaches, such as intermittent enteral feeding that includes overnight fasting and consideration of macronutrient composition in enteral solutions, could potentially restore circadian health by resetting peripheral clocks. However, due to the lack of evidence, further studies on the effect of chrononutrition on clinical outcomes in critical illness are needed. The purpose of this review was to discuss the role of chrononutrition in regulating biological rhythms in critical illness, and its impact on clinical outcomes.
Collapse
Affiliation(s)
- Eylul Sagun
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Asli Akyol
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Cetin Kaymak
- Gülhane Faculty of Medicine, Department of Anesthesiology and Reanimation, University of Health Sciences, Ankara Training and Research Hospital, Intensive Care Unit, Ankara, 06230, Turkey
| |
Collapse
|
3
|
Zhou Q, Hu H, Yang Y, Kang Y, Lan X, Wu X, Guo Z, Pan C. Insertion/deletion (Indel) variant of the goat RORA gene is associated with growth traits. Anim Biotechnol 2023; 34:2175-2182. [PMID: 35622416 DOI: 10.1080/10495398.2022.2078980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
RAR related orphan receptor A (RORA), which encodes the retinoid-acid-related orphan receptor alpha (RORα), is a clock gene found in skeletal muscle. Several studies have shown that RORα plays an important role in bone formation, suggesting that RORA gene may take part in the regulation of growth and development. The purpose of this research is to study the insertion/deletion (indel) variations of the RORA gene and investigate the relationship with the growth traits of Shaanbei white cashmere (SBWC) goats. Herein, the current study identified that the P4-11-bp and P11-28-bp deletion sites are polymorphic among 12 pairs of primers within the RORA gene in the SBWC goats (n = 641). Moreover, the P11-28-bp deletion locus was significantly related to the body height (p = 0.046), height at hip cross (p = 0.012), and body length (p = 0.003). Both of P4-11-bp and P11-28-bp indels showed the moderate genetic diversity (0.25
Collapse
Affiliation(s)
- Qian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Animal Husbandry and Veterinary Science Institute of Bijie city, Bijie, Guizhou, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251:108531. [PMID: 37717739 PMCID: PMC10841922 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
5
|
Alcántara-Alonso V, Dallmann R, Lehnert H, de Gortari P, Grammatopoulos DK. CRH-R2 signalling modulates feeding and circadian gene expression in hypothalamic mHypoA-2/30 neurons. Front Endocrinol (Lausanne) 2023; 14:1266081. [PMID: 37900150 PMCID: PMC10600019 DOI: 10.3389/fendo.2023.1266081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
The hypothalamic type 2 corticotropin releasing hormone receptor (CRH-R2) plays critical roles in homeostatic regulation, particularly in fine tuning stress recovery. During acute stress, the CRH-R2 ligands CRH and urocortins promote adaptive responses and feeding inhibition. However, in rodent models of chronic stress, over-exposure of hypothalamic CRH-R2 to its cognate agonists is associated with urocortin 2 (Ucn2) resistance; attenuated cAMP-response element binding protein (CREB) phosphorylation and increased food intake. The molecular mechanisms involved in these altered CRH-R2 signalling responses are not well described. In the present study, we used the adult mouse hypothalamus-derived cell line mHypoA-2/30 to investigate CRH-R2 signalling characteristics focusing on gene expression of molecules involved in feeding and circadian regulation given the role of clock genes in metabolic control. We identified functional CRH-R2 receptors expressed in mHypoA-2/30 cells that differentially regulate CREB and AMP-activated protein kinase (AMPK) phosphorylation and downstream expression of the appetite-regulatory genes proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in accordance with an anorexigenic effect. We studied for the first time the effects of Ucn2 on clock genes in native and in a circadian bioluminescence reporter expressing mHypoA-2/30 cells, detecting enhancing effects of Ucn2 on mRNA levels and rhythm amplitude of the circadian regulator Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), which could facilitate anorexic responses in the activity circadian phase. These data uncover novel aspects of CRH-R2 hypothalamic signalling that might be important in regulation of circadian feeding during stress responses.
Collapse
Affiliation(s)
- Viridiana Alcántara-Alonso
- Translational Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Laboratorio de Neurofisiología Molecular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Robert Dallmann
- Translational Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hendrik Lehnert
- Rectorate, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Dimitris K. Grammatopoulos
- Translational Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Institute of Precision Diagnostics and Translational Medicine, Pathology, University Hospital Coventry and Warwickshire (UHCW), National Health Service (NHS) Trust, Coventry, United Kingdom
| |
Collapse
|
6
|
Wang L, Zhou L, Liu S, Liu Y, Zhao J, Chen Y, Liu Y. Artepillin C Time−Dependently Alleviates Metabolic Syndrome in Obese Mice by Regulating CREB/CRTC2−BMAL1 Signaling. Nutrients 2023; 15:nu15071644. [PMID: 37049484 PMCID: PMC10096790 DOI: 10.3390/nu15071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Artepillin C (APC), a cAMP-response element−binding (CREB)/CREB regulated transcription coactivator 2 (CRTC2) inhibitor isolated from Brazilian green propolis, can ameliorate metabolic syndrome in obese mice. Because the sensitivity and responsiveness of the body to the drug depend on the time of day and the circadian clock alignment, the optimal administration time of APC for desired efficacy in treating metabolic syndrome remains unclear. In this study, APC (20 mg/kg) or the vehicle was intraperitoneally injected into obese mice once daily for one or three weeks. The results of the insulin tolerance test, pyruvate tolerance test, and histological and biochemical assays showed that APC could improve whole−body glucose homeostasis and decrease hepatic lipid synthesis following a circadian rhythm. Further exploration of the underlying mechanism revealed that APC may disturb the diurnal oscillations of the expression of brain and muscle ARNT−like protein (BMAL1) in primary hepatocytes and the livers of the study subjects. Moreover, APC could inhibit hepatic BMAL1 expression by blocking the CREB/CRTC2 transcription complex. BMAL1 overexpression in primary hepatocytes or the livers of db/db mice antagonized the inhibitory effect of APC on hepatic lipid metabolism. In conclusion, the chronotherapy of APC may relieve metabolic syndrome in obese mice, and the mechanism behind APC−mediated time−of−day effects on metabolic syndrome were unveiled, thereby providing a foundation for optimized APC treatment from a mechanistic perspective.
Collapse
|
7
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
8
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
9
|
Miao L, Batty KR, Jackson AN, Pieno HA, Rhoades MW, Kojima S. Genetic and environmental perturbations alter the rhythmic expression pattern of a circadian long non-coding RNA, Per2AS, in mouse liver. F1000Res 2022; 11:1073. [PMID: 36250003 PMCID: PMC9551389 DOI: 10.12688/f1000research.125628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play a wide variety of biological roles without encoding a protein. Although the functions of many lncRNAs have been uncovered in recent years, the regulatory mechanism of lncRNA expression is still poorly understood despite that the expression patterns of lncRNAs are much more specific compared to mRNAs. Here, we investigated the rhythmic expression of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that Per2AS expression is antiphasic to Period2 ( Per2), a core circadian clock gene, and transcribed from the antisense strand of Per2, we hypothesized that the rhythmic Per2AS expression is driven either by its own promoter or by the rhythmic Per2 transcription via transcriptional interference. Methods: We leveraged existing circadian RNA-seq datasets and analyzed the expression patterns of Per2AS and Per2 in response to the genetic or environmental disruption of the circadian rhythm in mouse liver. We tested our hypotheses by comparing the changes in the expression patterns of Per2AS and Per2. Conclusions: We found that, in some cases, Per2AS expression is independently controlled by other circadian transcription factors. In other cases, the pattern of expression change is consistent with both transcriptional interference and independent regulation hypotheses. Although additional experiments will be necessary to distinguish these possibilities, findings from this work contribute to a deeper understanding of the mechanism of how the expression of lncRNA is regulated.
Collapse
Affiliation(s)
- Lin Miao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kyle R. Batty
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ayana N. Jackson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather A. Pieno
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maisy W. Rhoades
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA,
| |
Collapse
|
10
|
Xiao F, Deng J, Jiao F, Hu X, Jiang H, Yuan F, Chen S, Niu Y, Jiang X, Guo F. Hepatic cytokine-inducible SH2-containing protein (CISH) regulates gluconeogenesis via cAMP-responsive element binding protein (CREB). FASEB J 2022; 36:e22541. [PMID: 36083102 DOI: 10.1096/fj.202200870r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Impairment of gluconeogenesis is a key factor responsible for hyperglycemia in patients with type 2 diabetes. As an important member of the suppressors of cytokine signaling (SOCS) protein family, many physiological functions of cytokine-inducible SH2-containing protein (CISH) have been described; however, the role of hepatic CISH in gluconeogenesis is poorly understood. In the present study, we observed that hepatic CISH expression was reduced in fasted wild-type (WT) mice. Overexpression of CISH decreased glucose production in mouse primary hepatocytes, while silencing of CISH had the opposite effects. In addition, adenovirus-mediated hepatic CISH overexpression resulted in improved glucose tolerance and decreased gluconeogenesis in WT and leptin receptor-deficient diabetic (db/db) mice. In contrast, adenovirus-mediated hepatic CISH knockdown impaired glucose tolerance and increased gluconeogenesis in WT mice. We also generated liver-specific CISH knockout (LV-CISH KO) mice and discovered that these mice had a similar phenotype in glucose tolerance and gluconeogenesis as mice injected with adenoviruses that knockdown CISH expression. Mechanistically, we found that CISH overexpression decreased and CISH knockdown increased the mRNA and protein levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 1 (PEPCK), two key enzymes involved in gluconeogenesis, in vitro, and in vivo. Moreover, we discovered that the phosphorylation of cAMP-responsive element binding protein 1 (CREB), a transcription factor of G6pase and Pepck, was required for regulating gluconeogenesis by CISH. Taken together, this study identifies hepatic CISH as an important regulator of gluconeogenesis. Our results also provide important insights into the metabolic functions of the SOCS protein family and the potential targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Fei Xiao
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiali Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Hu
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shanghai Chen
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuguo Niu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Jinshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Pickel L, Lee JH, Maughan H, Shi IQ, Verma N, Yeung C, Guttman D, Sung H. Circadian rhythms in metabolic organs and the microbiota during acute fasting in mice. Physiol Rep 2022; 10:e15393. [PMID: 35851583 PMCID: PMC9295129 DOI: 10.14814/phy2.15393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 04/16/2023] Open
Abstract
The circadian clock regulates metabolism in anticipation of regular changes in the environment. It is found throughout the body, including in key metabolic organs such as the liver, adipose tissues, and intestine, where the timing of the clock is set largely by nutrient signaling. However, the circadian clocks of these tissues during the fasted state have not been completely characterized. Moreover, the sufficiency of a functioning host clock to produce diurnal rhythms in the composition of the microbiome in fasted animals has not been explored. To this end, mice were fasted 24 h prior to collection of key metabolic tissues and fecal samples for the analysis of circadian clock gene expression and microbiome composition. Rhythm characteristics were determined using CircaCompare software. We identify tissue-specific changes to circadian clock rhythms upon fasting, particularly in the brown adipose tissue, and for the first time demonstrate the rhythmicity of the microbiome in fasted animals.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | | | - Irisa Qianwen Shi
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Navkiran Verma
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - Christy Yeung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - David Guttman
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoOntarioUSA
| | - Hoon‐Ki Sung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| |
Collapse
|
12
|
Smith HA, Betts JA. Nutrient timing and metabolic regulation symposium review from "Novel dietary approaches to appetite regulation, health and performance (2021)". J Physiol 2022; 600:1299-1312. [PMID: 35038774 PMCID: PMC9305539 DOI: 10.1113/jp280756] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Daily (circadian) rhythms coordinate our physiology and behaviour with regular environmental changes. Molecular clocks in peripheral tissues (e.g. liver, skeletal muscle and adipose) give rise to rhythms in macronutrient metabolism, appetite regulation and the components of energy balance such that our bodies can align the periodic delivery of nutrients with ongoing metabolic requirements. The timing of meals both in absolute terms (i.e. relative to clock time) and in relative terms (i.e. relative to other daily events) is therefore relevant to metabolism and health. Experimental manipulation of feeding–fasting cycles can advance understanding of the effect of absolute and relative timing of meals on metabolism and health. Such studies have extended the overnight fast by regular breakfast omission and revealed that morning fasting can alter the metabolic response to subsequent meals later in the day, whilst also eliciting compensatory behavioural responses (i.e. reduced physical activity). Similarly, restricting energy intake via alternate‐day fasting also has the potential to elicit a compensatory reduction in physical activity, and so can undermine weight‐loss efforts (i.e. to preserve body fat stores). Interrupting the usual overnight fast (and therefore also the usual sleep cycle) by nocturnal feeding has also been examined and further research is needed to understand the importance of this period for either nutritional intervention or nutritional withdrawal. In summary, it is important for dietary guidelines for human health to consider nutrient timing (i.e. when we eat) alongside the conventional focus on nutrient quantity and nutrient quality (i.e. how much we eat and what we eat).
![]()
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| | - James A Betts
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
13
|
Chen WH, Huang QY, Wang ZY, Zhuang XX, Lin S, Shi QY. Therapeutic potential of exosomes/miRNAs in polycystic ovary syndrome induced by the alteration of circadian rhythms. Front Endocrinol (Lausanne) 2022; 13:918805. [PMID: 36465652 PMCID: PMC9709483 DOI: 10.3389/fendo.2022.918805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive dysfunction associated with endocrine disorders and is most common in women of reproductive age. Clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, polycystic ovary, insulin resistance, and obesity. Presently, the aetiology and pathogenesis of PCOS remain unclear. In recent years, the role of circadian rhythm changes in PCOS has garnered considerable attention. Changes in circadian rhythm can trigger PCOS through mechanisms such as oxidative stress and inflammation; however, the specific mechanisms are unclear. Exosomes are vesicles with sizes ranging from 30-120nm that mediate intercellular communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells and are widely involved in the regulation of various physiological and pathological processes. Circadian rhythm can alter circulating exosomes, leading to a series of related changes and physiological dysfunctions. Therefore, we speculate that circadian rhythm-induced changes in circulating exosomes may be involved in PCOS pathogenesis. In this review, we summarize the possible roles of exosomes and their derived microRNAs in the occurrence and development of PCOS and discuss their possible mechanisms, providing insights into the potential role of exosomes for PCOS treatment.
Collapse
Affiliation(s)
- Wei-hong Chen
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiao-yi Huang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhi-yi Wang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuan-xuan Zhuang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| | - Qi-yang Shi
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| |
Collapse
|
14
|
Desmet L, Thijs T, Segers A, Verbeke K, Depoortere I. Chronodisruption by chronic jetlag impacts metabolic and gastrointestinal homeostasis in male mice. Acta Physiol (Oxf) 2021; 233:e13703. [PMID: 34107165 DOI: 10.1111/apha.13703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023]
Abstract
AIM Chronodisruption desynchronizes peripheral clocks and leads to metabolic diseases. Feeding cues are important synchronizers of peripheral clocks and influence rhythmic oscillations in intestinal microbiota and their metabolites. We investigated whether chronic jetlag, mimicking frequent time zone travelling, affected the diurnal fluctuations in faecal short-chain fatty acid (SCFA) levels, that feed back to the gut clock to regulate rhythmicity in gut function. METHODS Rhythms in faecal SCFAs levels and in the expression of clock genes and epithelial markers were measured in the colonic mucosa of control and jetlagged mice. The entraining effect of SCFAs on the rhythm in clock gene mRNA expression was studied in primary colonic crypts. The role of the circadian clock in epithelial marker expression was studied in Arntl-/- mice. RESULTS Chronic jetlag increased body weight gain and abolished the day/night food intake pattern which resulted in a phase-delay in the rhythm of faecal SCFAs that paralleled the shift in the expression of mucosal clock genes. This effect was mimicked by stimulation of primary colonic crypts from control mice with SCFAs. Jetlag abolished the rhythm in Tnfα, proglucagon and ghrelin expression but not in the expression of tight junction markers. Only a dampening in plasma glucagon-like peptide-1 but not in ghrelin levels was observed. Rhythms in ghrelin but not proglucagon mRNA expression were abolished in Arntl-/- mice. CONCLUSION The altered food intake pattern during chronodisruption corresponds with the changes in rhythmicity of SCFA levels that entrain clock genes to affect rhythms in mRNA expression of gut epithelial markers.
Collapse
Affiliation(s)
- Louis Desmet
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Theo Thijs
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Anneleen Segers
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| |
Collapse
|
15
|
Mechanisms of Dangua Recipe in Improving Glycolipid Metabolic Disorders Based on Transcriptomics. Chin J Integr Med 2021; 28:130-137. [PMID: 34755288 DOI: 10.1007/s11655-021-3337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To explore the mechanisms of Dangua Recipe (DGR) in improving glycolipid metabolism based on transcriptomics. METHODS Sprague-Dawley rats with normal glucose level were divided into 3 groups according to a random number table, including a conventional diet group (Group A), a DGR group (Group B, high-calorie diet + 20.5 g DGR), and a high-calorie fodder model group (Group C). After 12 weeks of intervention, the liver tissue of rats was taken. Gene sequence and transcriptional analysis were performed to identify the key genes related to glycolipid metabolism reflecting DGR efficacy, and then gene or protein validation of liver tissue were performed. Nicotinamide phosphoribosyl transferase (Nampt) and phosphoenolpyruvate carboxykinase (PEPCK) proteins in liver tissues were detected by enzyme linked immunosorbent assay, fatty acid synthase (FASN) protein was detected by Western blot, and fatty acid binding protein 5 (FABP5)-mRNA was detected by quantitative real-time polymerase chain reaction. Furthermore, the functional verification was performed on the diabetic model rats by Nampt blocker (GEN-617) injected in vivo. Hemoglobin A1c (HbA1c), plasma total cholesterol and triglycerides were detected. RESULTS Totally, 257 differential-dominant genes of Group A vs. Group C and 392 differential-dominant genes of Group B vs. Group C were found. Moreover, 11 Gene Ontology molecular function terms and 7 Kyoto Encyclopedia of Genes and Genomes enrichment pathways owned by both Group A vs. Group C and Group C vs. Group B were confirmed. The liver tissue target validation showed that Nampt, FASN, PEPCK protein and FABP5-mRNA had the same changes consistent with transcriptome. The in vivo functional tests showed that GEN-617 increased body weight, HbA1c, triglyceride and total cholesterol levels in the diabetic rats (P<;0.05 or P<;0.01); while all the above-mentioned levels (except triglyceride) were decreased significantly by GEN-617 combined with DGR intervention (P<;0.05 or P<;0.01). CONCLUSION Nampt activation was one of the mechanisms about DGR regulating glycolipid metabolism.
Collapse
|
16
|
Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021; 13:nu13113846. [PMID: 34836101 PMCID: PMC8622682 DOI: 10.3390/nu13113846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/17/2023] Open
Abstract
We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.
Collapse
|
17
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
18
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Abstract
Many molecular, physiological and behavioural processes display distinct 24-hour rhythms that are directed by the circadian system. The master clock, located in the suprachiasmatic nucleus region of the hypothalamus, is synchronized or entrained by the light-dark cycle and, in turn, synchronizes clocks present in peripheral tissues and organs. Other environmental cues, most importantly feeding time, also synchronize peripheral clocks. In this way, the circadian system can prepare the body for predictable environmental changes such as the availability of nutrients during the normal feeding period. This Review summarizes existing knowledge about the diurnal regulation of gastrointestinal processes by circadian clocks present in the digestive tract and its accessory organs. The circadian control of gastrointestinal digestion, motility, hormones and barrier function as well as of the gut microbiota are discussed. An overview is given of the interplay between different circadian clocks in the digestive system that regulate glucose homeostasis and lipid and bile acid metabolism. Additionally, the bidirectional interaction between the master clock and peripheral clocks in the digestive system, encompassing different entraining factors, is described. Finally, the possible behavioural adjustments or pharmacological strategies for the prevention and treatment of the adverse effects of chronodisruption are outlined.
Collapse
|
20
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
21
|
Cheng H, Liu Z, Wu G, Ho CT, Li D, Xie Z. Dietary compounds regulating the mammal peripheral circadian rhythms and modulating metabolic outcomes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Abstract
The liver is a "front line" in the homeostatic defenses against variation in nutrient intake. It orchestrates metabolic responses to feeding by secreting factors essential for maintaining metabolic homeostasis, converting carbohydrates to triglycerides for storage, and releasing lipids packaged as lipoproteins for distribution to other tissues. Between meals, it provides fuel to the body by releasing glucose produced from glucogenic precursors and ketones from fatty acids and ketogenic amino acids. Modern diets enriched in sugars and saturated fats increase lipid accumulation in hepatocytes (nonalcoholic fatty liver disease). If untreated, this can progress to liver inflammation (nonalcoholic steatohepatitis), fibrosis, cirrhosis, and hepatocellular carcinoma. Dysregulation of liver metabolism is also relatively common in modern societies. Increased hepatic glucose production underlies fasting hyperglycemia that defines type 2 diabetes, while increased production of atherogenic, large, triglyceride-rich, very low-density lipoproteins raises the risk of cardiovascular disease. Evidence has accrued of a strong connection between meal timing, the liver clock, and metabolic homeostasis. Metabolic programming of the liver transcriptome and posttranslation modifications of proteins is strongly influenced by the daily rhythms in nutrient intake governed by the circadian clock. Importantly, whereas cell-autonomous clocks have been identified in the liver, the complete circadian programing of the liver transcriptome and posttranslational modifications of essential metabolic proteins is strongly dependent on nutrient flux and circadian signals from outside the liver. The purpose of this review is to provide a basic understanding of liver circadian physiology, drawing attention to recent research on the relationships between circadian biology and liver function.
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Center for Cardiovascular Research, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Center for Cardiovascular Research, The Henry and Amelia Nasrallah Center for Neuroscience, School of Medicine and the Henry and Amelia Nasrallah Center for Neuroscience, St Louis University, St Louis, Missouri, USA
- Correspondence: Andrew A. Butler, PhD, Department of Pharmacology and Physiology, Center for Cardiovascular Research, The Henry and Amelia Nasrallah Center for Neuroscience, School of Medicine and the Henry and Amelia Nasrallah Center for Neuroscience, St Louis University, 1402 S Grand Blvd, St Louis, MO 63104, USA.
| |
Collapse
|
23
|
Pácha J, Balounová K, Soták M. Circadian regulation of transporter expression and implications for drug disposition. Expert Opin Drug Metab Toxicol 2020; 17:425-439. [PMID: 33353445 DOI: 10.1080/17425255.2021.1868438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Solute Carrier (SLC) and ATP-binding cassette (ABC) transporters expressed in the intestine, liver, and kidney determine the absorption, distribution, and excretion of drugs. In addition, most molecular and cellular processes show circadian rhythmicity controlled by circadian clocks that leads to diurnal variations in the pharmacokinetics and pharmacodynamics of many drugs and affects their therapeutic efficacy and toxicity.Area covered: This review provides an overview of the current knowledge on the circadian rhythmicity of drug transporters and the molecular mechanisms of their circadian control. Evidence for coupling drug transporters to circadian oscillators and the plausible candidates conveying circadian clock signals to target drug transporters, particularly transcription factors operating as the output of clock genes, is discussed.Expert opinion: The circadian machinery has been demonstrated to interact with the uptake and efflux of various drug transporters. The evidence supports the concept that diurnal changes that affect drug transporters may influence the pharmacokinetics of the drugs. However, more systematic studies are required to better define the timing of pharmacologically important drug transporter regulation and determine tissue- and sex-dependent differences. Finally, the transfer of knowledge based on the results and conclusions obtained primarily from animal models will require careful validation before it is applied to humans.
Collapse
Affiliation(s)
- Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Balounová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matúš Soták
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Flanagan A, Bechtold DA, Pot GK, Johnston JD. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J Neurochem 2020; 157:53-72. [PMID: 33222161 DOI: 10.1111/jnc.15246] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light-dark cycle and timing of food intake, provide daily signals for entrainment of the central, master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN), and of metabolic rhythms in peripheral tissues, respectively. Chrono-nutrition is an emerging field building on the relationship between temporal eating patterns, circadian rhythms, and metabolic health. Evidence from both animal and human research demonstrates adverse metabolic consequences of circadian disruption. Conversely, a growing body of evidence indicates that aligning food intake to periods of the day when circadian rhythms in metabolic processes are optimised for nutrition may be effective for improving metabolic health. Circadian rhythms in glucose and lipid homeostasis, insulin responsiveness and sensitivity, energy expenditure, and postprandial metabolism, may favour eating patterns characterised by earlier temporal distribution of energy. This review details the molecular basis for metabolic clocks, the regulation of feeding behaviour, and the evidence for meal timing as an entraining signal for the circadian system in animal models. The epidemiology of temporal eating patterns in humans is examined, together with evidence from human intervention studies investigating the metabolic effects of morning compared to evening energy intake, and emerging chrono-nutrition interventions such as time-restricted feeding. Chrono-nutrition may have therapeutic application for individuals with and at-risk of metabolic disease and convey health benefits within the general population.
Collapse
Affiliation(s)
- Alan Flanagan
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - David A Bechtold
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gerda K Pot
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Nutrition and Health Department, Louis Bolk Instituut, Bunnik, the Netherlands
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
25
|
Ruddick-Collins LC, Morgan PJ, Johnstone AM. Mealtime: A circadian disruptor and determinant of energy balance? J Neuroendocrinol 2020; 32:e12886. [PMID: 32662577 DOI: 10.1111/jne.12886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Circadian rhythms play a critical role in the physiological processes involved in energy metabolism and energy balance (EB). A large array of metabolic processes, including the expression of many energy-regulating endocrine hormones, display temporal rhythms that are driven by both the circadian clock and food intake. Mealtime has been shown to be a compelling zeitgeber in peripheral tissue rhythms. Inconsistent signalling to the periphery, because of mismatched input from the central clock vs time of eating, results in circadian disruption in which central and/or peripheral rhythms are asynchronously time shifted or their amplitudes reduced. A growing body of evidence supports the negative health effects of circadian disruption, with strong evidence in murine models that mealtime-induced circadian disruption results in various metabolic consequences, including energy imbalance and weight gain. Increased weight gain has been reported to occur even without differences in energy intake, indicating an effect of circadian disruption on energy expenditure. However, the translation of these findings to humans is not well established because the ability to undertake rigorously controlled dietary studies that explore the chronic effects on energy regulation is challenging. Establishing the neuroendocrine changes in response to both acute and chronic variations in mealtime, along with observations in populations with routinely abnormal mealtimes, may provide greater insight into underlying mechanisms that influence long-term weight management under different meal patterns. Human studies should explore mechanisms through relevant biomarkers; for example, cortisol, leptin, ghrelin and other energy-regulating neuroendocrine factors. Mistiming between aggregate hormonal signals, or between hormones with their receptors, may cause reduced signalling intensity and hormonal resistance. Understanding how mealtimes may impact on the coordination of endocrine factors is essential for untangling the complex regulation of EB. Here a review is provided on current evidence of the impacts of mealtime on energy metabolism and the underlying neuroendocrine mechanisms, with a specific focus on human research.
Collapse
Affiliation(s)
| | - Peter J Morgan
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
26
|
Yamamuro D, Takahashi M, Nagashima S, Wakabayashi T, Yamazaki H, Takei A, Takei S, Sakai K, Ebihara K, Iwasaki Y, Yada T, Ishibashi S. Peripheral circadian rhythms in the liver and white adipose tissue of mice are attenuated by constant light and restored by time-restricted feeding. PLoS One 2020; 15:e0234439. [PMID: 32530967 PMCID: PMC7292356 DOI: 10.1371/journal.pone.0234439] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Disturbance of circadian rhythms underlies various metabolic diseases. Constant light exposure (LL) is known to disrupt both central and peripheral circadian rhythms. Here, we attempted to determine whether the effects of LL are different between various peripheral tissues and whether time-restricted feeding restores the circadian rhythms especially in white adipose tissue (WAT). Six-week-old mice were subjected to three feeding regimes: ad libitum feeding under light/dark phase (LD), ad libitum feeding under LL cycle, and restricted feeding at night-time under LL cycle with a normal chow. After 3 weeks, we compared body weight, food intake, plasma levels of lipids and glucose, and the expression patterns of the clock genes and the genes involved in lipid metabolism in the liver and WAT. The mice kept under LL with or without time-restricted feeding were 5.2% heavier (p<0.001, n = 16) than the mice kept under LD even though the food intakes of the two groups were the same. Food intake occurred mostly in the dark phase. LL disrupted this pattern, causing disruptions in circadian rhythms of plasma levels of triglycerides (TG) and glucose. Time-restricted feeding partially restored the rhythms. LL eliminated the circadian rhythms of the expression of the clock genes as well as most of the genes involved in lipid metabolism in both liver and WAT. More notably, LL markedly decreased not only the amplitude but also the average levels of the expression of the genes in the liver, but not in the WAT, suggesting that transcription in the liver is sensitive to constant light exposure. Time-restricted feeding restored the circadian rhythms of most of the genes to various degrees in both liver and WAT. In conclusion, LL disrupted the peripheral circadian rhythms more severely in liver than in WAT. Time-restricted feeding restored the circadian rhythms in both tissues.
Collapse
Affiliation(s)
- Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hisataka Yamazaki
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Akihito Takei
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shoko Takei
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
- * E-mail:
| |
Collapse
|
27
|
Saran AR, Dave S, Zarrinpar A. Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology 2020; 158:1948-1966.e1. [PMID: 32061597 PMCID: PMC7279714 DOI: 10.1053/j.gastro.2020.01.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Circadian clock proteins are endogenous timing mechanisms that control the transcription of hundreds of genes. Their integral role in coordinating metabolism has led to their scrutiny in a number of diseases, including nonalcoholic fatty liver disease (NAFLD). Discoordination between central and peripheral circadian rhythms is a core feature of nearly every genetic, dietary, or environmental model of metabolic syndrome and NAFLD. Restricting feeding to a defined daily interval (time-restricted feeding) can synchronize the central and peripheral circadian rhythms, which in turn can prevent or even treat the metabolic syndrome and hepatic steatosis. Importantly, a number of proteins currently under study as drug targets in NAFLD (sterol regulatory element-binding protein [SREBP], acetyl-CoA carboxylase [ACC], peroxisome proliferator-activator receptors [PPARs], and incretins) are modulated by circadian proteins. Thus, the clock can be used to maximize the benefits and minimize the adverse effects of pharmaceutical agents for NAFLD. The circadian clock itself has the potential for use as a target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anand R. Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Shravan Dave
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California; Veterans Affairs Health Sciences San Diego, La Jolla, California; Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, California; Center for Microbiome Innovation, University of California, San Diego, La Jolla, California.
| |
Collapse
|
28
|
Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, Sassone-Corsi P. Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Rep 2019; 25:3299-3314.e6. [PMID: 30566858 DOI: 10.1016/j.celrep.2018.11.077] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/08/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The circadian clock operates as intrinsic time-keeping machinery to preserve homeostasis in response to the changing environment. While food is a known zeitgeber for clocks in peripheral tissues, it remains unclear how lack of food influences clock function. We demonstrate that the transcriptional response to fasting operates through molecular mechanisms that are distinct from time-restricted feeding regimens. First, fasting affects core clock genes and proteins, resulting in blunted rhythmicity of BMAL1 and REV-ERBα both in liver and skeletal muscle. Second, fasting induces a switch in temporal gene expression through dedicated fasting-sensitive transcription factors such as GR, CREB, FOXO, TFEB, and PPARs. Third, the rhythmic genomic response to fasting is sustainable by prolonged fasting and reversible by refeeding. Thus, fasting imposes specialized dynamics of transcriptional coordination between the clock and nutrient-sensitive pathways, thereby achieving a switch to fasting-specific temporal gene regulation.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Christophe Magnan
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas Ceglia
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Yu Liu
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Nunzia Pastore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Angptl8 mediates food-driven resetting of hepatic circadian clock in mice. Nat Commun 2019; 10:3518. [PMID: 31388006 PMCID: PMC6684615 DOI: 10.1038/s41467-019-11513-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Diurnal light-dark cycle resets the master clock, while timed food intake is another potent synchronizer of peripheral clocks in mammals. As the largest metabolic organ, the liver sensitively responds to the food signals and secretes hepatokines, leading to the robust regulation of metabolic and clock processes. However, it remains unknown which hepatokine mediates the food-driven resetting of the liver clock independent of the master clock. Here, we identify Angptl8 as a hepatokine that resets diurnal rhythms of hepatic clock and metabolic genes in mice. Mechanistically, the resetting function of Angptl8 is dependent on the signal relay of the membrane receptor PirB, phosphorylation of kinases and transcriptional factors, and consequently transient activation of the central clock gene Per1. Importantly, inhibition of Angptl8 signaling partially blocks food-entrained resetting of liver clock in mice. We have thus identified Angptl8 as a key regulator of the liver clock in response to food.
Collapse
|
30
|
Abstract
Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as opposed to the negative metabolic consequences of mistimed eating.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian clocks and metabolism team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
31
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
32
|
Yasuda S, Iwami S, Tamura K, Ikeda Y, Kamagata M, Sasaki H, Haraguchi A, Miyamatsu M, Hanashi S, Takato Y, Shibata S. Phase resetting of circadian peripheral clocks using human and rodent diets in mouse models of type 2 diabetes and chronic kidney disease. Chronobiol Int 2019; 36:851-869. [PMID: 30990101 DOI: 10.1080/07420528.2019.1594245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression rhythms of clock genes, such as Per1, Per2, Bmal1, and Rev-erb α, in mouse peripheral clocks, are entrained by a scheduled feeding paradigm. In terms of food composition, a carbohydrate-containing diet is reported to cause strong entrainment through insulin secretion. However, it is unknown whether human diets entrain peripheral circadian clocks. In this study, we used freeze-dried diets for type 2 diabetes (DB) and chronic kidney disease (CKD), as well as low-carbohydrate diets. After 24 h of fasting, PER2::LUC knock-in mice were given access to food for 2 days during inactive periods, and bioluminescence rhythm was then measured using an in vivo imaging system. AIN-93M, the control mouse diet with a protein:fat:carbohydrate (PFC) ratio of 14.7:9.5:75.8, caused a significant phase advance (7.3 h) in the liver clock compared with that in 24 h fasted mice, whereas human diets caused significant but smaller phase advances (4.7-6.2 h). Compared with healthy and high fat/sucrose-induced DB mice, adenine-induced CKD mice showed attenuation of a phase-advance with a normal diet. There were no significant differences in phase-advance values between human diets (normal, DB, and CKD). In addition, a normal-carbohydrate diet (PFC ratio of 20.3:23.3:56.4) and a low-carbohydrate diet (PFC ratio of 36.4:42.9:20.7) caused similar phase advances in peripheral clocks. The present results strongly suggest that scheduled feeding with human diets can cause phase advances in the peripheral clocks of not only healthy, but also DB and CKD mice. This discovery provides support to the food-induced entrainment of peripheral clocks in human clinical trials.
Collapse
Affiliation(s)
- Shinnosuke Yasuda
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Shiho Iwami
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Konomi Tamura
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Yuko Ikeda
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Mayo Kamagata
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Hiroyuki Sasaki
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan.,b National Institute of Advanced Industrial Science and Technology , AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , Tokyo , Japan
| | - Atsushi Haraguchi
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Masako Miyamatsu
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Shizuka Hanashi
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Yoshiyuki Takato
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Shigenobu Shibata
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| |
Collapse
|
33
|
The Circadian Protein Period2 Suppresses mTORC1 Activity via Recruiting Tsc1 to mTORC1 Complex. Cell Metab 2019; 29:653-667.e6. [PMID: 30527742 DOI: 10.1016/j.cmet.2018.11.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/30/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022]
Abstract
Although emerging evidence indicates an important role of the circadian clock in modulating the diurnal oscillation of mammalian target of rapamycin complex 1 (mTORC1) signaling, the underlying molecular mechanism remains elusive. Here we show that Period2 (Per2), a core clock protein, functions as a scaffold protein to tether tuberous sclerosis complex 1 (Tsc1), Raptor, and mTOR together to specifically suppress the activity of mTORC1 complex. Due to the loss of its inhibition of mTORC1, Per2 deficiency significantly enhances protein synthesis and cell proliferation but reduces autophagy. Furthermore, we find that the glucagon-Creb/Crtc2 signaling cascade induces Per2 expression, which mediates the suppression of mTORC1 in mouse liver during fasting. Our study not only uncovers a novel role of Per2 in regulating the mTORC1 pathway, but also sheds new light on the mechanism of fasting inhibition on mTORC1 in the liver.
Collapse
|
34
|
Mechanisms of Communication in the Mammalian Circadian Timing System. Int J Mol Sci 2019; 20:ijms20020343. [PMID: 30650649 PMCID: PMC6359556 DOI: 10.3390/ijms20020343] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
24-h rhythms in physiology and behaviour are organized by a body-wide network of endogenous circadian clocks. In mammals, a central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) integrates external light information to adapt cellular clocks in all tissues and organs to the external light-dark cycle. Together, central and peripheral clocks co-regulate physiological rhythms and functions. In this review, we outline the current knowledge about the routes of communication between the environment, the main pacemakers and the downstream clocks in the body, focusing on what we currently know and what we still need to understand about the communication mechanisms by which centrally and peripherally controlled timing signals coordinate physiological functions and behaviour. We highlight recent findings that shed new light on the internal organization and function of the SCN and neuroendocrine mechanisms mediating clock-to-clock coupling. These findings have implications for our understanding of circadian network entrainment and for potential manipulations of the circadian clock system in therapeutic settings.
Collapse
|
35
|
Bai J, Jiang X, He M, Chan BCB, Wong AOL. Novel Mechanisms for IGF-I Regulation by Glucagon in Carp Hepatocytes: Up-Regulation of HNF1α and CREB Expression via Signaling Crosstalk for IGF-I Gene Transcription. Front Endocrinol (Lausanne) 2019; 10:605. [PMID: 31551932 PMCID: PMC6734168 DOI: 10.3389/fendo.2019.00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucagon, a key hormone for glucose homeostasis, can exert functional crosstalk with somatotropic axis via modification of IGF-I expression. However, its effect on IGF-I regulation is highly variable in different studies and the mechanisms involved are largely unknown. Using grass carp as a model, the signal transduction and transcriptional mechanisms for IGF-I regulation by glucagon were examined in Cyprinid species. As a first step, the carp HNF1α, a liver-enriched transcription factor, was cloned and confirmed to be a single-copy gene expressed in the liver. In grass carp hepatocytes, glucagon treatment could elevate IGF-I, HNF1α, and CREB mRNA levels, induce CREB phosphorylation, and up-regulate HNF1α and CREB protein expression. The effects on IGF-I, HNF1α, and CREB gene expression were mediated by cAMP/PKA and PLC/IP3/PKC pathways with differential coupling with the MAPK and PI3K/Akt cascades. During the process, protein:protein interaction between HNF1α and CREB and recruitment of RNA Pol-II to IGF-I promoter also occurred with a rise in IGF-I primary transcript level. In parallel study to examine grass carp IGF-I promoter activity expressed in αT3 cells, similar pathways for post-receptor signaling were also confirmed in glucagon-induced IGF-I promoter activation and the trans-activating effect by glucagon was mediated by the binding sites for HNF1α and CREB located in the proximal region of IGF-I promoter. Our findings, as a whole, shed light on a previously undescribed mechanism for glucagon-induced IGF-I gene expression by increasing HNF1α and CREB production via functional crosstalk of post-receptor signaling. Probably, by protein:protein interaction between the two transcription factors and subsequent transactivation via their respective cis-acting elements in the IGF-I promoter, IGF-I gene transcription can be initiated by glucagon at the hepatic level.
Collapse
|
36
|
Rennert C, Vlaic S, Marbach-Breitrück E, Thiel C, Sales S, Shevchenko A, Gebhardt R, Matz-Soja M. The Diurnal Timing of Starvation Differently Impacts Murine Hepatic Gene Expression and Lipid Metabolism - A Systems Biology Analysis Using Self-Organizing Maps. Front Physiol 2018; 9:1180. [PMID: 30271348 PMCID: PMC6146234 DOI: 10.3389/fphys.2018.01180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Organisms adapt their metabolism and draw on reserves as a consequence of food deprivation. The central role of the liver in starvation response is to coordinate a sufficient energy supply for the entire organism, which has frequently been investigated. However, knowledge of how circadian rhythms impact on and alter this response is scarce. Therefore, we investigated the influence of different timings of starvation on global hepatic gene expression. Mice (n = 3 each) were challenged with 24-h food deprivation started in the morning or evening, coupled with refeeding for different lengths and compared with ad libitum fed control groups. Alterations in hepatocyte gene expression were quantified using microarrays and confirmed or complemented with qPCR, especially for lowly detectable transcription factors. Analysis was performed using self-organizing maps (SOMs), which bases on clustering genes with similar expression profiles. This provides an intuitive overview of expression trends and allows easier global comparisons between complex conditions. Transcriptome analysis revealed a strong circadian-driven response to fasting based on the diurnal expression of transcription factors (e.g., Ppara, Pparg). Starvation initiated in the morning produced known metabolic adaptations in the liver; e.g., switching from glucose storage to consumption and gluconeogenesis. However, starvation initiated in the evening produced a different expression signature that was controlled by yet unknown regulatory mechanisms. For example, the expression of genes involved in gluconeogenesis decreased and fatty acid and cholesterol synthesis genes were induced. The differential regulation after morning and evening starvation were also reflected at the lipidome level. The accumulation of hepatocellular storage lipids (triacylglycerides, cholesteryl esters) was significantly higher after the initiation of starvation in the morning compared to the evening. Concerning refeeding, the gene expression pattern after a 12 h refeeding period largely resembled that of the corresponding starvation state but approached the ad libitum control state after refeeding for 21 h. Some components of these regulatory circuits are discussed. Collectively, these data illustrate a highly time-dependent starvation response in the liver and suggest that a circadian influence cannot be neglected when starvation is the focus of research or medicine, e.g., in the case of treating victims of sudden starvation events.
Collapse
Affiliation(s)
- Christiane Rennert
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Eugenia Marbach-Breitrück
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.,Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlo Thiel
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Susanne Sales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rolf Gebhardt
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
37
|
Tahara Y, Shibata S. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free Radic Biol Med 2018; 119:129-138. [PMID: 29277444 DOI: 10.1016/j.freeradbiomed.2017.12.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
Abstract
The circadian clock system in mammals plays a fundamental role in maintaining homeostasis. Entrainment is an important characteristic of the internal clock, by which appropriate timing is maintained according to external daily stimuli, such as light, stress, exercise, and/or food. Disorganized entrainment or a misaligned clock time, such as jet lag, increases health disturbances. The central clock in the suprachiasmatic nuclei, located in the hypothalamus, receives information about arousal stimuli, such as physical stress or exercise, and changes the clock time by modifying neural activity or the expression of circadian clock genes. Although feeding stimuli cannot entrain the central clock in a normal light-dark cycle, the central clock can partially detect the metabolic status. Local clocks in the peripheral tissues, including liver and kidney, have a strong direct response to the external stimuli of stress, exercise, and/or food that is independent of the central clock. The mechanism underlying entrainment by stress/exercise is mediated by glucocorticoids, sympathetic nerves, oxidative stress, hypoxia, pH, cytokines, and temperature. Food/nutrition-induced entrainment is mediated by fasting-induced hormonal or metabolic changes and re-feeding-induced insulin or oxyntomodulin secretion. Chrono-nutrition is a clinical application based on chronobiology research. Future studies are required to elucidate the effects of eating and nutrient composition on the human circadian clock. Here, we focus on the central and peripheral clocks mostly in rodents' studies and review the findings of recent investigations of the effects of stress, exercise, and food on the entrainment system.
Collapse
Affiliation(s)
- Yu Tahara
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
38
|
Petrenko V, Dibner C. Cell-specific resetting of mouse islet cellular clocks by glucagon, glucagon-like peptide 1 and somatostatin. Acta Physiol (Oxf) 2018; 222:e13021. [PMID: 29271578 DOI: 10.1111/apha.13021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Abstract
AIM Molecular clocks, operative in pancreatic islet cells, represent an intrinsic mechanism regulating intracellular metabolism and hormone secretion. Glucagon, somatostatin and glucagon-like peptide 1 (GLP-1) are essential coordinators of islet physiology. Here, we assess the synchronizing capacity of glucagon, somatostatin and GLP-1 on pancreatic α- and β-cell circadian clocks. METHODS Triple transgenic mice, expressing a circadian PER2::luciferase (luc) reporter combined with α- and β-cell-specific fluorescent reporters, were employed. Isolated pancreatic islets and fluorescence-activated cell sorting-separated α- and β-cells were synchronized with glucagon, somatostatin analogue or GLP-1 mimetics, with subsequent real-time PER2::luc bioluminescence recording. Gene expression of Gcgr, Sstr2, Sstr3 and Glp1r in islet cells was assessed by RNA sequencing and RT-qPCR. RESULTS Glucagon and GLP-1 mimetics (liraglutide and exenatide) induced high-amplitude rhythmic expression of the PER2::luc reporter in β-cells, but not in α-cells, while the somatostatin analogue octreotide generated a significant phase shift between α- and β-cells. Enrichment of Gcgr and Glp1r transcripts was detected in β-cells compared to their α-cell counterparts. The synchronizing effect of glucagon was dose-dependent and mediated by the adenylate cyclase signalling cascade, as it was diminished by adenylate cyclase inhibitor. CONCLUSION We conclude that proglucagon-derived peptides and somatostatin exhibit receptor-mediated cell-specific synchronizing effects for mouse α- and β-cell oscillators. Differential islet cell clock modulation by glucagon and somatostatin may represent a physiological mechanism underlying paracrine regulation of rhythmic glucagon and insulin secretion. The reported here strong synchronizing properties of GLP-1 mimetics, widely used for treatment of type 2 diabetes, are of high clinical relevance.
Collapse
Affiliation(s)
- V. Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition; Department of Internal Medicine Specialties; University Hospital of Geneva; Geneva Switzerland
- Department of Cell Physiology and Metabolism; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Diabetes Center; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3); Geneva Switzerland
| | - C. Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition; Department of Internal Medicine Specialties; University Hospital of Geneva; Geneva Switzerland
- Department of Cell Physiology and Metabolism; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Diabetes Center; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3); Geneva Switzerland
| |
Collapse
|
39
|
Mazzoccoli G, De Cosmo S, Mazza T. The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis. Front Physiol 2018; 9:193. [PMID: 29662454 PMCID: PMC5890189 DOI: 10.3389/fphys.2018.00193] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic pathology in the Western world and may evolve into steatohepatitis (NASH), increasing the risk of cirrhosis, portal hypertension and hepatocellular carcinoma. NAFLD derives from the accumulation of hepatic fat due to discrepant free fatty acid metabolism. Other factors contributing to this are deranged nutrients and bile acids fluxes as well as alterations in nuclear receptors, hormones, and intermediary metabolites, which impact on signaling pathways involved in metabolism and inflammation. Autophagy and host gut-microbiota interplay are also relevant to NAFLD pathogenesis. Notably, liver metabolic pathways and bile acid synthesis as well as autophagic and immune/inflammatory processes all show circadian patterns driven by the biological clock. Gut microbiota impacts on the biological clock, at the same time as the appropriate timing of metabolic fluxes, hormone secretion, bile acid turnover, autophagy and inflammation with behavioural cycles of fasting/feeding and sleeping/waking is required to circumvent hepatosteatosis, indicating significant interactions of the gut and circadian processes in NAFLD pathophysiology. Several time-related factors and processes interplay in NAFLD development, with the biological clock proposed to act as a network level hub. Deranged physiological rhythms (chronodisruption) may also play a role in liver steatosis pathogenesis. The current article reviews how the circadian clock circuitry intimately interacts with several mechanisms involved in the onset of hepatosteatosis and its progression to NASH, thereby contributing to the global NAFLD epidemic.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Salvatore De Cosmo
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| |
Collapse
|
40
|
Ikeda Y, Kamagata M, Hirao M, Yasuda S, Iwami S, Sasaki H, Tsubosaka M, Hattori Y, Todoh A, Tamura K, Shiga K, Ohtsu T, Shibata S. Glucagon and/or IGF-1 Production Regulates Resetting of the Liver Circadian Clock in Response to a Protein or Amino Acid-only Diet. EBioMedicine 2018; 28:210-224. [PMID: 29396301 PMCID: PMC5835556 DOI: 10.1016/j.ebiom.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The circadian system controls the behavior and multiple physiological functions. In mammals, the suprachiasmatic nucleus (SCN) acts as the master pacemaker and regulates the circadian clocks of peripheral tissues. The SCN receives information regarding the light-dark cycle and is thus synchronized to the external 24-hour environment. In contrast, peripheral clocks, such as the liver clock, receive information from the SCN and other factors; in particular, food intake which leads to insulin secretion induces strong entrainment of the liver clock. On the other hand, the liver clock of insulin-depleted mice treated with streptozotocin (STZ) has been shown to be entrained by scheduled feeding, suggesting that insulin is not necessary for entrainment of the liver clock by feeding. In this study, we aimed to elucidate additional mechanism on entraining liver clock by feeding a protein-only diet and/or amino-acid administration which does not increase insulin levels. We demonstrated that protein-only diet and cysteine administration elicit entrainment of the liver clock via glucagon secretion and/or insulin-like growth factors (IGF-1) production. Our findings suggest that glucagon and/or IGF-1 production are additional key factors in food-induced entrainment. Dietary protein or cysteine increase serum glucagon and hepatic IGF-1 levels, and entrain liver circadian rhythm. Increasing IGF-1 levels is an additional entrainment factor of liver circadian rhythm. Hepatic IGF-1 production is found to be a key factor in the entrainment of liver circadian rhythm in STZ-treated mice.
Disruption of the circadian rhythm leads to multiple disorders; thus the maintenance of circadian oscillation is necessary for maintaining normalized physiological functions. Postprandial insulin secretion is known as an entraining factor of peripheral circadian rhythm; however, this pathway is not appropriate for diabetes patients in whom insulin signaling is disrupted. Here we report that both dietary protein and cysteine alone entrain liver circadian rhythm by increasing glucagon and/or IGF-1 levels independently of insulin. Findings indicate an additional entrainment factor that can be applied to chronotherapy by controlling food content or by supplementation in peoples with diabetes, circadian rhythm disorders.
Collapse
Affiliation(s)
- Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Hirao
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shinnosuke Yasuda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miku Tsubosaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ai Todoh
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Konomi Tamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kazuto Shiga
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Teiji Ohtsu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
41
|
The sweet tooth of the circadian clock. Biochem Soc Trans 2017; 45:871-884. [PMID: 28673939 DOI: 10.1042/bst20160183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
Abstract
The endogenous circadian clock is a key regulator of daily metabolic processes. On the other hand, circadian clocks in a broad range of tissues can be tuned by extrinsic and intrinsic metabolic cues. The bidirectional interaction between circadian clocks and metabolism involves both transcriptional and post-translational mechanisms. Nuclear receptors exemplify the transcriptional programs that couple molecular clocks to metabolism. The post-translational modifications of the core clock machinery are known to play a key role in metabolic entrainment of circadian clocks. O-linked N-acetylglucosamine modification (O-GlcNAcylation) of intracellular proteins is a key mediator of metabolic response to nutrient availability. This review highlights our current understanding of the role of protein O-GlcNAcylation in mediating metabolic input and output of the circadian clock.
Collapse
|
42
|
Genzer Y, Chapnik N, Froy O. Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism. Int J Biochem Cell Biol 2017; 88:69-74. [PMID: 28483667 DOI: 10.1016/j.biocel.2017.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/28/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores.
Collapse
Affiliation(s)
- Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
43
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
44
|
Fasting and Feeding Signals Control the Oscillatory Expression of Angptl8 to Modulate Lipid Metabolism. Sci Rep 2016; 6:36926. [PMID: 27845381 PMCID: PMC5109406 DOI: 10.1038/srep36926] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence implies a key role of angiopoietin-like protein 8 (Angptl8) in the metabolic transition between fasting and feeding, whereas much less is known about the mechanism of its own expression. Here we show that hepatic Angptl8 is rhythmically expressed, which involving the liver X receptor alpha (LXRα) and glucocorticoid receptor (GR) modulation during feeding and fasting periods, respectively. In addition, Angptl8 mRNA is very unstable, which contributes to the nature of its daily rhythmicity by rapidly responding to fasting/feeding transition. To explore its pathological function in dexamethasone (DEX)-induced fatty liver, we reversed its suppression by glucocorticoids through adenoviral delivery of Angptl8 gene in mouse liver. Surprisingly, hepatic overexpression of Angptl8 dramatically elevated plasma triglyceride (TG) and non-esterified fatty acid (NEFA) levels in DEX-treated mice, suggesting a metabolic interaction between Angptl8 and glucocorticoid signaling. Moreover, intracellular hepatic Angptl8 is implicated in the regulation of lipid homeostasis by the experiments with ectopic expression of a nonsecreted Angptl8 mutant (Δ25-Angptl8). Altogether, our data demonstrate the molecular mechanism of the diurnal rhythm of Angptl8 expression regulated by glucocorticoid signaling and LXRα pathway, and provide new evidence to understand the role of Angptl8 in maintaining plasma TG homeostasis.
Collapse
|
45
|
TFEB regulates PER3 expression via glucose-dependent effects on CLOCK/BMAL1. Int J Biochem Cell Biol 2016; 78:31-42. [DOI: 10.1016/j.biocel.2016.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022]
|
46
|
Dang F, Sun X, Ma X, Wu R, Zhang D, Chen Y, Xu Q, Wu Y, Liu Y. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun 2016; 7:12696. [PMID: 27576939 PMCID: PMC5013695 DOI: 10.1038/ncomms12696] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms.
Collapse
Affiliation(s)
- Fabin Dang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiujie Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Ma
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Deyi Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaqiong Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qian Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, NanGang District, Harbin 150001, China
| | - Yuting Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
47
|
Kim M, Lee H, Hur JH, Choe J, Lim C. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila. Sci Rep 2016; 6:32113. [PMID: 27577611 PMCID: PMC5005998 DOI: 10.1038/srep32113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center (UOBC), UNIST, Ulsan 44919, Republic of Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
48
|
Tsang AH, Astiz M, Friedrichs M, Oster H. Endocrine regulation of circadian physiology. J Endocrinol 2016; 230:R1-R11. [PMID: 27106109 DOI: 10.1530/joe-16-0051] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock-hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis.
Collapse
Affiliation(s)
| | - Mariana Astiz
- Medical Department IUniversity of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Medical Department IUniversity of Lübeck, Lübeck, Germany
| |
Collapse
|
49
|
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handb Exp Pharmacol 2016; 233:29-49. [PMID: 26721678 DOI: 10.1007/164_2015_32] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.
Collapse
|
50
|
Zhang W, Wang P, Chen S, Zhang Z, Liang T, Liu C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. FASEB J 2016; 30:2151-60. [PMID: 26919869 DOI: 10.1096/fj.201500120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2023]
Abstract
Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Siyu Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|