1
|
Fouad BM, Abdel-Ghany AA, Kandeil MA, Ibrahim IT. Protective effects of Silibinin and cinnamic acid against paraquat-induced lung toxicity in rats: impact on oxidative stress, PI3K/AKT pathway, and miR-193a signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03511-y. [PMID: 39453500 DOI: 10.1007/s00210-024-03511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Levels of reactive oxygen species (ROS) are the primary determinants of pulmonary fibrosis. It was discovered that antioxidants can ameliorate pulmonary fibrosis caused by prolonged paraquat (PQ) exposure. However, research on the precise mechanisms by which antioxidants influence the signaling pathways implicated in pulmonary fibrosis induced by paraquat is still insufficient. This research utilized a rat model of pulmonary fibrosis induced by PQ to examine the impacts of Silibinin (Sil) and cinnamic acid (CA) on pulmonary fibrosis, with a specific focus on pro-fibrotic signaling pathways and ROS-related autophagy. Lung injury induced by paraquat was demonstrated to be associated with oxidative stress and inflammation of the lungs, downregulated (miR-193a), and upregulated PI3K/AKT/mTOR signaling lung tissues. Expression levels of miR-193a were determined with quantitative real-time PCR, protein level of protein kinase B (Akt), and phosphoinositide 3-Kinase (PI3K) which were determined by western blot analysis. Hydroxyproline levels (HYP) and transforming growth factor-β1 (TGF-β1) were measured by ELISA, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GSH), and catalase and were measured in lung tissue homogenates colorimetrically using spectrophotometer. Long-term exposure to paraquat resulted in decreased PI3K/AKT signaling, decreased cell autophagy, increased oxidative stress, and increased pulmonary fibrosis formation. Silibinin and cinnamic acid also decreased oxidative stress by increasing autophagy and miR-193a expression, which in turn decreased pulmonary fibrosis. These effects were associated by low TGF-β1. Silibinin and cinnamic acid inhibited PQ-induced PI3K/AKT by stimulating miR-193-a expression, thus attenuating PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Basma M Fouad
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt.
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
- Biochemistry Department, Faculty of Pharmacy, Al-Azher University, Assiut, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ibrahim T Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
2
|
Huang J, Shen Q, Wang Z, Ni S, Sun F, Hua Y, Huang J. The influence of the NRG1/ERBB4 signaling pathway on pulmonary artery endothelial cells. Pulm Circ 2024; 14:e12439. [PMID: 39411231 PMCID: PMC11475022 DOI: 10.1002/pul2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
This study aimed to examine the influence of the Neuregulin-1 (NRG1)/ERBB4 signaling pathway on the function of human pulmonary artery endothelial cells (HPAECs) and investigate the underlying mechanisms. Enzyme-linked immunosorbent assay indicated that ERBB4 levels in the serum of patients with pulmonary embolism (PE) were significantly higher than those of healthy controls (p < 0.05). In cellular studies, thrombin stimulation for 6 h led to a significant decrease in cell viability and overexpression of ERBB4 compared to control (p < 0.05). In the NRG1 group, apoptosis of HPAECs was reduced (p < 0.05), accompanied by a decrease in ERBB4 expression and an increase in p-ERBB4, phosphorylated serine/threonine kinase proteins (Akt) (p-Akt), and p-phosphoinositide 3-kinase (PI3K) expression (p < 0.05). In the AG1478 group, there was a significant increase in HPAEC apoptosis and a significant decrease in p-ERBB4 and ERBB4 expression compared to the Con group (p < 0.05). In the AG1478 + NRG1 group, there was an increase in the apoptosis rate and a significant decrease in the expression of p-ERBB4, ERBB4, p-Akt, and phosphorylated PI3K compared to the NRG1 group (p < 0.05). In animal studies, the PE group showed an increase in the expression of ERBB4 and p-ERBB4 compared to the Con group (p < 0.05). NRG1 treatment led to a significant reduction in embolism severity with decreased ERBB4 expression and increased p-ERBB4 expression (p < 0.05). Gene set enrichment analysis identified five pathways that were significantly associated with high ERBB4 expression, including CHOLESTEROL HOMEOSTASIS, OXIDATIVE PHOSPHORYLATION, and FATTY ACID METABOLISM (p < 0.05). Therefore, NRG1 inhibits apoptosis of HPAECs, accompanied by a decrease in ERBB4 and an increase in p-ERBB4. NRG1 inhibition in HPAECs apoptosis can be partially reversed by inhibiting ERBB4 expression with AG1478. ERBB4 has the potential to be a novel biological marker of PE.
Collapse
Affiliation(s)
- Jin‐Bo Huang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Qin Shen
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhi‐Qi Wang
- Jiangnan University Affiliated Wuxi Fifth People's HospitalWuxiJiangsuChina
| | - Song‐Shi Ni
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Fei Sun
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yun Hua
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Jian‐An Huang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Zhong W, Zhao X, Zhang X, Xu Y, Liu M, Yang X, Jiang Y, Shen X. Advancements and trends in exosome research in lung cancer from a bibliometric analysis (2004-2023). Front Oncol 2024; 14:1358101. [PMID: 38690166 PMCID: PMC11058220 DOI: 10.3389/fonc.2024.1358101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Background Lung cancer, characterized by its high morbidity and lethality, necessitates thorough research to enhance our understanding of its pathogenesis and discover novel therapeutic approaches. Recent studies increasingly demonstrate that lung cancer cells can modulate the tumor microenvironment, promoting tumor growth, and metastasis through the release of exosomes. Exosomes are small vesicles secreted by cells and contain a variety of bioactive molecules such as proteins, nucleic acids, and metabolites. This paper presents a comprehensive review of exosome research in lung cancer and its progress through bibliometric analysis. Methods Publications related to exosomes in lung cancer patients were systematically searched on the Web of Science Core Collection (WoSCC) database. Bibliometric analysis was performed using VOSviwers, CiteSpace, and the R package "Bibliometrics". Publications were quantitatively analyzed using Microsoft Office Excel 2019. The language of publication was restricted to "English" and the search strategy employed TS=(exosomes or exosomes or exosomes) and TS=(lung cancer). The search period commenced on January 1, 2004, and concluded on November 12, 2023, at noon. The selected literature types included Articles and Reviews. Results The study encompassed 1699 papers from 521 journals across 71 countries and 2105 institutions. Analysis revealed a consistent upward trend in lung cancer exosome research over the years, with a notable surge in recent times. This surge indicates a growing interest and depth of inquiry into lung cancer exosomes. Major research institutions in China and the United States, including Nanjing Medical University, Shanghai Jiao Tong University, Chinese Academy Of Sciences, and Utmd Anderson Cancer Center, emerged as crucial research hubs. The annual publication count in this field witnessed a continuous rise, particularly in recent years. Key terms such as lung cancer, non-small cell lung cancer (NSCLC), microvesicles, intercellular communication, exosomal miRNAs, and oncology dominated the research landscape. Fields like cell biology, biochemistry, biotechnology, and oncology exhibited close relation with this research. Clotilde Théry emerged as the most cited author in the field, underlining her significant contributions. These results demonstrate the broad impact of exosome research in lung cancer, with key terms covering not only disease-specific aspects such as lung cancer and NSCLC but also basic biological concepts like microvesicles and intercellular communication. Explorations into exosomal microRNAs and oncology have opened new avenues for lung cancer exosome research. In summary, lung cancer exosome research is poised to continue receiving attention, potentially leading to breakthroughs in treatment and prevention. Conclusion Publications on lung cancer exosomes show a rising trend year by year, with China and the United States ranking first and second in terms of the number of publications. However, there is insufficient academic learning cooperation and exchanges between the two sides, and Chinese universities account for a large proportion of research institutions in this field. Jing Li is the most productive author, Clotilde Théry is the most co-cited author, and Cancers is the journal with the highest number of publications. The current focus in the field of lung cancer exosomes is on biomarkers, liquid biopsies, immunotherapy, and tumor microenvironment.
Collapse
Affiliation(s)
- Wen Zhong
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Xiaofei Zhao
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Xiabiao Zhang
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yiwen Xu
- Department of Infectious Disease, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Mengqian Liu
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Xiaoyun Yang
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Yi Jiang
- Department of Geriatrics, Lianyungang Hospital Affiliated to Bengbu Medical College, Lianyungang, China
| | - Xiaozhu Shen
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
4
|
Bhattacharjee R, Prabhakar N, Kumar L, Bhattacharjee A, Kar S, Malik S, Kumar D, Ruokolainen J, Negi A, Jha NK, Kesari KK. Crosstalk between long noncoding RNA and microRNA in Cancer. Cell Oncol (Dordr) 2023; 46:885-908. [PMID: 37245177 PMCID: PMC10356678 DOI: 10.1007/s13402-023-00806-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 05/29/2023] Open
Abstract
miRNAs and lncRNAs play a central role in cancer-associated gene regulations. The dysregulated expression of lncRNAs has been reported as a hallmark of cancer progression, acting as an independent prediction marker for an individual cancer patient. The interplay of miRNA and lncRNA decides the variation of tumorigenesis that could be mediated by acting as sponges for endogenous RNAs, regulating miRNA decay, mediating intra-chromosomal interactions, and modulating epigenetic components. This paper focuses on the influence of crosstalk between lncRNA and miRNA on cancer hallmarks such as epithelial-mesenchymal transition, hijacking cell death, metastasis, and invasion. Other cellular roles of crosstalks, such as neovascularization, vascular mimicry, and angiogenesis were also discussed. Additionally, we reviewed crosstalk mechanism with specific host immune responses and targeting interplay (between lncRNA and miRNA) in cancer diagnosis and management.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Neeraj Prabhakar
- Centre for Structural System Biology, Department of Physics, University of Hamburg, c/o DESY, Building 15, Notkestr. 852267, Hamburg, Germany
- Pharmacy, Abo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Arkadyuti Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, 834001, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 00076, Finland.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Biocentre 3, Helsinki, Finland.
| |
Collapse
|
5
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
6
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
7
|
Tumolo MR, Panico A, De Donno A, Mincarone P, Leo CG, Guarino R, Bagordo F, Serio F, Idolo A, Grassi T, Sabina S. The expression of microRNAs and exposure to environmental contaminants related to human health: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:332-354. [PMID: 32393046 DOI: 10.1080/09603123.2020.1757043] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental contaminants exposure may lead to detrimental changes to the microRNAs (miRNAs) expression resulting in several health effects. miRNAs, small non-coding RNAs that regulate gene expression, have multiple transcript targets and thereby regulate several signalling molecules. Even a minor alteration in the abundance of one miRNA can have deep effects on global gene expression. Altered patterns of miRNAs can be responsible for changes linked to various health outcomes, suggesting that specific miRNAs are activated in pathophysiological processes. In this review, we provide an overview of studies investigating the impact of air pollution, organic chemicals, and heavy metals on miRNA expression and the potential biologic effects on humans.Abbreviations: AHRR, aryl-hydrocarbon receptor repressor; AHR, aryl-hydrocarbon receptor; As, arsenic; BCL2, B-cell lymphoma 2; BCL2L11, B-cell lymphoma 2 like 11; BCL6, B-cell lymphoma 6; BPA, bisphenol A; CVD, cardiovascular diseases; CD40, cluster of differentiation 40; CCND1, Cyclin D1; CDKN1A, cyclin-dependent kinase inhibitor 1A; Cr, chromium; CTBP1, C-terminal binding protein 1; CXCL12, C-X-C motif chemokine ligand 12; DAZAP1, deleted in azoospermia associated protein 1; DEP, diesel exhaust particles; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; EVs, extracellular vesicles; FAK, focal adhesion kinase; FAS, fas cell surface death receptor; FOXO, forkhead box O; HbA1c, glycated hemoglobin; Hg, mercury; HLA-A, human leukocyte antigen A; HMGB, high-mobility group protein B; IFNAR2, interferon alpha receptor subunit 2; IL-6, interleukin-6; IRAK1, interleukin 1 receptor associated kinase 1; JAK/STAT, janus kinase/signal transducers and activators of transcription; MAPK, mitogen-activated protein kinase; miRNAs, microRNAs; MVs, microvesicles; NCDs, noncommunicable diseases; NFAT, nuclear factor of activated T cells; NFkB, nuclear factor kappa B; NRF2, nuclear factor, erythroid-derived 2; NRG3, neuregulin 3; O3, ozone; OP, organophosphorus pesticides; PAHs, polycyclic aromatic hydrocarbons; Pb, lead; PCBs, polychlorinated biphenyls; PDCD4, programmed cell death 4; PDGFB, platelet derived growth factor subunit beta; PDGFR, platelet-derived growth factor receptor; PI3K/Akt, phosphoinositide-3-kinase/protein kinase B; PKA, protein kinase A; PM, particulate matter; PRKCQ, protein kinase C theta; PTEN, phosphatase and tensin homolog; SORT1, sortilin 1; TGFβ, transforming growth factor-β; TLR, toll-like receptor; TNF, tumor necrosis factors; TRAF1, tumor necrosis factors-receptor associated factors 1; TRAP, traffic-related air pollution; TREM1, triggering receptor expressed on myeloid cells 1; TRIAP1, TP53 regulated inhibitor of apoptosis 1; VCAM-1, vascular cell adhesion molecule 1; VEGFA, vascular endothelial growth factor A; XRCC2, X-ray repair cross complementing 2; YBX2, Y-box-binding protein 2; ZEB1, zinc finger E-box-binding homeobox 1; ZEB2, zinc finger E-box-binding homeobox 2; 8-OH-dG, 8-hydroxy-guanine.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Pierpaolo Mincarone
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Carlo Giacomo Leo
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Saverio Sabina
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| |
Collapse
|
8
|
Wang J, Liu H. miR-551b is Associated with the Poor Prognosis and Malignant Development of Papillary Thyroid Cancer Through Regulating ERBB4. Horm Metab Res 2022; 54:113-118. [PMID: 35130572 DOI: 10.1055/a-1735-3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The function of miR-551b has been widely reported in various human cancers, and its dysregulation in papillary thyroid cancer (PTC) has also been disclosed, implying its potential regulator role in PTC. The aim of the study was to evaluate the function of miR-551b in PTC development and its potential mechanism. miR-551b was evaluated in PTC tissues and cells by RT-qPCR and associated with the clinicopathological features of patients. The biological effect of miR-551b on cellular processes of PTC was assessed with the CCK8 proliferation assay and the Transwell migration and invasion assay. The potential molecular mechanism was estimated with the dual-luciferase reporter assay. miR-551b was significantly upregulated in PTC, which showed a close relationship with the malignancy and development of PTC patients. miR-551b served as a prognostic biomarker negatively related to patients' survival together with the TNM stage. The overexpression of miR-551b exerted promoted effect on the development-related cellular processes of PTC, which was reversed by the overexpression of ERBB4. In conclusion, miR-551b could predict the poor prognosis of PTC patients and serve as a tumor promoter via suppressing ERBB4.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Shandong, China
| | - Haibo Liu
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Shandong, China
| |
Collapse
|
9
|
Wang J, Li J, Duan P, Dang Y, Shi T. Circ_0001588 Upregulates ERBB4 to Promote Glioma Malignant Progression Through Sponging miR-1281. Neurotox Res 2022; 40:89-102. [PMID: 34982356 DOI: 10.1007/s12640-021-00464-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Circular RNA (circRNA) plays a crucial part in glioma progression. However, the function of circ_0001588 in glioma development is still unknown. The study aims to reveal the role of circ_0001588 in glioma malignant progression and the inner molecular mechanism. The RNA expressions of circ_0001588, microRNA-1281 (miR-1281), and erb-b2 receptor tyrosine kinase 4 (ERBB4) were detected by qRT-PCR. Protein expression was checked by western blot analysis or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 and colony formation assays. Flow cytometry, transwell, and tube formation assays were used to detect cell apoptosis, cell migration, and invasion as well as angiogenesis, respectively. The binding relationship between miR-1281 and circ_0001588 or ERBB4 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. Mouse model assay was performed to confirm the effect of circ_0001588 knockdown on tumor formation in vivo. Circ_0001588 and ERBB4 expressions were significantly upregulated, while miR-1281 was downregulated in glioma tissues and cells compared with control groups. Circ_0001588 expression was closely related to tumor size and WHO grade of glioma. Decreased expression of circ_0001588 in glioma cells led to significant decreases of cell proliferation, migration, invasion, and tube formation and an increase of cell apoptosis. Additionally, downregulation of miR-1281, a target miRNA of circ_0001588, rescued circ_0001588 knockdown-mediated effects. MiR-1281 also inhibited glioma malignant progression by targeting ERBB4. Importantly, circ_0001588 regulated ERBB4 expression by interacting with miR-1281. Furthermore, circ_0001588 depletion suppressed tumor formation in vivo. Circ_0001588 acted as an oncogene in glioma malignant progression by miR-1281/ERBB4 pathway, suggesting the potential of circ_0001588 as a therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China
| | - Juan Li
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, Hubei Province, China
| | - Yanwei Dang
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China.
| | - Tao Shi
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, Hubei Province, China.
| |
Collapse
|
10
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Ke Y, Yang X, Luo D. miR-193a-3p Overexpression Inhibits Proliferation and Enhances Paclitaxel Chemosensitivity in Human Non-Small-Cell Lung Cancer Cells. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.541.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Wang WP, Bian HB, Wang XZ, Liu L, Wei D. Association of ERBB4 genetic polymorphism with the risk and prognosis of non-small cell lung cancer in Chinese Han population: A population-based case-control study. Medicine (Baltimore) 2021; 100:e25762. [PMID: 34106605 PMCID: PMC8133196 DOI: 10.1097/md.0000000000025762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/10/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to explore the association of rs1836724 single-nucleotide polymorphism (SNP) of ERBB4 with risk and prognosis of non-small cell lung cancer (NSCLC) in the Chinese Han population.The genotype of rs1836724 SNP of ERBB4 from 258 patients with NSCLC and 200 noncancer controls were detected the TaqMan-MGB probes real-time fluorescence polymerase chain reaction. The distribution of genotype and alleles between the 2 groups was compared, and the association between clinicopathological characteristic and rs1836724 SNP was analyzed. Prognosis and influencing factors were analyzed by Kaplan-Meier and Cox regression analysis.There were significant differences in the genotype and allele distribution of ERBB4 rs1836724 between the NSCLC group and control group (P < .05). And CC genotype of rs1836724 was associated with increased risk of NSCLC in the Chinese Han population. Rs1836724 SNP was associated with TNM stage and lymph nodal metastasis (P = .001, P = .007). The median follow-up was 29 months, and the progression-free survival and overall survival of 258 NSCLC patients were 27.91% and 31.39%, respectively. Patients with GG genotype of rs1836724 had poor progression-free survival and overall survival. Rs1836724 SNP was an independent prognostic marker of NSCLC patients, CC genotype had a high risk of poor prognosis (odds ratio = 1.587, 95% confidence interval: 1.079-2.335, P = .019).In Chinese Han populations, rs1836724 SNP of ERBB4 may contribute toward the increased risk and poor prognosis of NSCLC.
Collapse
|
13
|
van den Bosch MT, Yahyanejad S, Alemdehy MF, Telford BJ, de Gunst T, den Boer HC, Vos RM, Stegink M, van Pinxteren LA, Schaapveld RQ, Janicot M. Transcriptome-wide analysis reveals insight into tumor suppressor functions of 1B3, a novel synthetic miR-193a-3p mimic. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1161-1171. [PMID: 33664995 PMCID: PMC7896128 DOI: 10.1016/j.omtn.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Emerging data show that microRNA 193a-3p (miR-193a-3p) has a suppressive role in many cancers and is often downregulated in tumors, as compared to surrounding normal tissues. Therefore, mimics of miR-193a-3p could be used as an attractive therapeutic approach in oncology. To better understand and document the molecular mechanism of action of 1B3, a novel synthetic miRNA-193a-3p mimic, RNA sequencing was performed after transfection of 1B3 in six different human tumor cell lines. Genes differentially expressed (DE) in at least three cell lines were mapped by Ingenuity Pathway Analysis (IPA), and interestingly, these results strongly indicated upregulation of the tumor-suppressive phosphatase and tensin homolog (PTEN) pathway, as well as downregulation of many oncogenic growth factor signaling pathways. Importantly, although unsurprisingly, IPA identified miR-193a-3p as a strong upstream regulator of DE genes in an unbiased manner. Furthermore, biological function analysis pointed to an extensive link of 1B3 with cancer, via expected effects on tumor cell survival, proliferation, migration, and cell death. Our data strongly suggest that miR-193a-3p/1B3 is a potent tumor suppressor agent that targets various key oncogenic pathways across cancer types. Therefore, the introduction of 1B3 into tumor cells may represent a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Sanaz Yahyanejad
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | - Bryony J. Telford
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Thijs de Gunst
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Harm C. den Boer
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Rogier M. Vos
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Marieke Stegink
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | | | - Michel Janicot
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
14
|
Telford BJ, Yahyanejad S, de Gunst T, den Boer HC, Vos RM, Stegink M, van den Bosch MTJ, Alemdehy MF, van Pinxteren LAH, Schaapveld RQJ, Janicot M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget 2021; 12:422-439. [PMID: 33747358 PMCID: PMC7939530 DOI: 10.18632/oncotarget.27894] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Compelling evidence demonstrates that miR-193a-3p is a tumor suppressor microRNA in many cancer types, and its reduced expression is linked to cancer initiation and progression, metastasis, and therapy resistance. However, its mechanism of action is not consistently described between studies, and often contradicts the pleiotropic role of a microRNA in manipulating several different mRNA targets. We therefore comprehensively investigated miRNA-193a-3p's mode of action in a panel of human cancer cell lines, with a variety of genetic backgrounds, using 1B3, a synthetic microRNA mimic. Interestingly, the exact mechanism through which 1B3 reduced cell proliferation varied between cell lines. 1B3 efficiently reduced target gene expression, leading to reduced cell proliferation/survival, cell cycle arrest, induction of apoptosis, increased cell senescence, DNA damage, and inhibition of migration. SiRNA silencing of 1B3 target mRNAs further highlighted the advantage of the pleiotropic mechanism of 1B3 action, as repression of individual targets did not achieve the same robust effect on cell proliferation in all cell lines. Importantly, a novel lipid nanoparticle-based formulation of 1B3, INT-1B3, demonstrated marked anti-tumor activity as a single agent following systemic administration in tumor-bearing mice. Together, these data strongly support the development of 1B3 as a novel therapeutic agent for treatment of human cancer.
Collapse
Affiliation(s)
| | | | | | | | - Rogier M Vos
- InteRNA Technologies BV, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Mohr R, Özdirik B, Lambrecht J, Demir M, Eschrich J, Geisler L, Hellberg T, Loosen SH, Luedde T, Tacke F, Hammerich L, Roderburg C. From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:1492. [PMID: 33540837 PMCID: PMC7867354 DOI: 10.3390/ijms22031492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Collapse
Affiliation(s)
- Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Lukas Geisler
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| |
Collapse
|
16
|
Evangelista AF, Oliveira RJ, O Silva VA, D C Vieira RA, Reis RM, C Marques MM. Integrated analysis of mRNA and miRNA profiles revealed the role of miR-193 and miR-210 as potential regulatory biomarkers in different molecular subtypes of breast cancer. BMC Cancer 2021; 21:76. [PMID: 33461524 PMCID: PMC7814437 DOI: 10.1186/s12885-020-07731-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. METHODS The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. RESULTS The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. CONCLUSIONS In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.
Collapse
Affiliation(s)
- Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Renato J Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Rene A D C Vieira
- Department of Mastology and Breast Reconstruction, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Marcia M C Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Tumor Biobank, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.,Barretos School of Health Sciences, FACISB, Barretos, São Paulo, 14784-400, Brazil
| |
Collapse
|
17
|
Li N, Hou R, Yang T, Liu C, Wei J. miR-193a-3p Mediates Placenta Accreta Spectrum Development by Targeting EFNB2 via Epithelial-Mesenchymal Transition Pathway Under Decidua Defect Conditions. Front Mol Biosci 2021; 7:613802. [PMID: 33585562 PMCID: PMC7873918 DOI: 10.3389/fmolb.2020.613802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: To clarify the role of microRNA-193a-3p (miR-193a-3p) in the pathogenesis of placenta accreta spectrum. Methods: The placental tissue expression levels of miR-193a-3p and Ephrin-B2 (EFNB2) were compared between a placenta accreta spectrum group and a control group. Transwell migration and invasion assays were used to verify the effect of miR-193a-3p and EFNB2 on HTR-8/SVneo cells cultured in human endometrial stromal cell (hESC)-conditioned medium. Epithelial-mesenchymal transition (EMT)-related proteins were examined by western blotting to establish whether the EMT pathway was altered in placenta accreta spectrum. To determine whether EFNB2 is a target gene of miR-193a-3p, luciferase activity assays were performed. Results: miR-193a-3p was upregulated but EFNB2 downregulated in the placenta accreta spectrum group and EFNB2 was a direct target of miR-193a-3p. Overexpression or inhibition of miR-193a-3p revealed that miR-193a-3p promoted the migration and invasion of HTR-8/SVneo cells cultured in hESC-conditioned medium. Furthermore, EMT was induced, as shown by increased N-cadherin, vimentin, MMP2, and MMP9 and decreased E-cadherin in the placenta accreta spectrum group and in HTR-8/SVneo cells transfected with miR-193a-3p mimics or si-EFNB2. The negative effect of miR-193a-3p inhibitor was reversed by co-transfection with si-EFNB2 in function studies and in analyses of EMT-related proteins in vitro. Conclusion: miR-193a-3p which upregulated in placenta accreta spectrum group increases HTR-8/SVneo cell migration and invasion by targeting EFNB2 via the EMT pathway under decidua defect conditions to lead to placenta accreta spectrum.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Tian Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| |
Collapse
|
18
|
Wan Y, Wang H, Ji J, Kang K, Yang M, Huang Y, Su Y, Ma K, Zhu L, Deng S. Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection. Anal Chem 2020; 92:15137-15144. [PMID: 33119272 DOI: 10.1021/acs.analchem.0c03553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.
Collapse
|
19
|
Tömböl Z, Turai PI, Decmann Á, Igaz P. MicroRNAs and Adrenocortical Tumors: Where do we Stand on Primary Aldosteronism? Horm Metab Res 2020; 52:394-403. [PMID: 32168526 DOI: 10.1055/a-1116-2366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
MicroRNAs, the endogenous mediators of RNA interference, interact with the renin-angiotensin-aldosterone system, regulate aldosterone secretion and aldosterone effects. Some novel data show that the expression of some microRNAs is altered in primary aldosteronism, and some of these appear to have pathogenic relevance, as well. Differences in the circulating microRNA expression profiles between the two major forms of primary aldosteronism, unilateral aldosterone-producing adenoma and bilateral adrenal hyperplasia have also been shown. Here, we present a brief synopsis of these findings focusing on the potential relevance of microRNA in primary aldosteronism.
Collapse
Affiliation(s)
- Zsófia Tömböl
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter István Turai
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ábel Decmann
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Bharambe HS, Joshi A, Yogi K, Kazi S, Shirsat NV. Restoration of miR-193a expression is tumor-suppressive in MYC amplified Group 3 medulloblastoma. Acta Neuropathol Commun 2020; 8:70. [PMID: 32410663 PMCID: PMC7227220 DOI: 10.1186/s40478-020-00942-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma, a highly malignant pediatric brain tumor, consists of four molecular subgroups, namely WNT, SHH, Group 3, and Group 4. The expression of miR-193a, a WNT subgroup-specific microRNA, was found to be induced by MYC, an oncogenic target of the canonical WNT signaling. MiR-193a is not expressed in Group 3 medulloblastomas, despite MYC expression, as a result of promoter hypermethylation. Restoration of miR-193a expression in the MYC amplified Group 3 medulloblastoma cells resulted in inhibition of growth, tumorigenicity, and an increase in radiation sensitivity. MAX, STMN1, and DCAF7 were identified as novel targets of miR-193a. MiR-193a mediated downregulation of MAX could suppress MYC activity since it is an obligate hetero-dimerization partner of MYC. MYC induced expression of miR-193a, therefore, seems to act as a feedback inhibitor of MYC signaling. The expression of miR-193a resulted in widespread repression of gene expression that included not only several cell cycle regulators, WNT, NOTCH signaling genes, and those encoding DNA replication machinery, but also several chromatin modifiers like SWI/SNF family genes and histone-encoding genes. MiR-193a expression brought about a reduction in the global levels of H3K4me3, H3K27ac, the histone marks of active chromatin, and an increase in the levels of H3K27me3, a repressive chromatin mark. In cancer cells having high MYC expression, MYC brings about transcriptional amplification of all active genes apart from the induction of its target genes. MiR-193a, on the other hand, brought about global repression of gene expression. Therefore, miR-193a has therapeutic potential in the treatment of not only Group 3 medulloblastomas but possibly other MYC overexpressing aggressive cancers as well.
Collapse
|
21
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
22
|
Yan L, Zhang Y, Li K, Wang M, Li J, Qi Z, Wu J, Wang Z, Ling L, Liu H, Wu Y, Lu X, Xu L, Zhu Y, Zhang Y. miR-593-5p inhibit cell proliferation by targeting PLK1 in non small cell lung cancer cells. Pathol Res Pract 2020; 216:152786. [PMID: 31864714 DOI: 10.1016/j.prp.2019.152786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Worldwide, lung cancer has the highest rates of mortality and morbidity, with the majority of its pathology attributable to non-small cell lung cancer (NSCLC). MicroRNAs are pivotal in the occurrence and development of cancer. However, the role of miRNA-593-5p in the progression of NSCLC is not clear. In this study, we investigate, in vitro, whether miRNA-593-5p inhibits NSCLC cell proliferation. To clarify its specific mechanism of inhibition, we used bioinformatics to predict its target genes and identified PLK1. Luciferase reporter assay confirmed the binding of miR-593-5p to the PLK1 3'-UTR in a sequence-specific manner in NSCLC cells. Additionally, we also found through Western blot and quantitative RT-PCR that miR-593-5p down-regulates the expression of PLK1 protein. Finally, PLK1 overexpression was shown to disinhibit NSCLC cell proliferation. Taken together, this evidence suggests that miR-593-5p inhibits NSCLC cell proliferation by inhibiting PLK1 expression.
Collapse
Affiliation(s)
- Liang Yan
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yizonheng Zhang
- First Clinical College, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Kai Li
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Mengze Wang
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Jiaping Li
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zhilin Qi
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Juan Wu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zhen Wang
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Liefeng Ling
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Haijun Liu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yaohua Wu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Xinyu Lu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Lei Xu
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China.
| | - Yiping Zhu
- Department of Clinical Teaching, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, China.
| | - Yao Zhang
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, 241002, China.
| |
Collapse
|
23
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
24
|
Li Y, Wang Y, Shen X, Han X. miR-128 Functions as an OncomiR for the Downregulation of HIC1 in Breast Cancer. Front Pharmacol 2019; 10:1202. [PMID: 31680974 PMCID: PMC6811662 DOI: 10.3389/fphar.2019.01202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
Hypermethylated in cancer 1 (HIC1) is continually decreased in breast cancer. However, the underlying molecular basis of the upstream regulation of HIC1 remains elusive. Here, we showed that HIC1 was downregulated in breast cancer tissues. Bioinformatics analysis identified that miR-128 might potentially target HIC1. HIC1 was proved as the target gene of miR-128 by overexpressing or knocking down miR-128. Additionally, we observed that HIC1 suppression by miR-128 increased cell invasion, proliferation, and reduced apoptosis. Lastly, we found that miR-128 accelerated tumor growth in xenograft mice by inhibiting HIC1. Altogether, this study presents the first evidence that miR-128 suppresses the expression of HIC1 to accelerate breast cancerogenesis.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiabo Shen
- Department of Medical Oncology, Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Ren L, Chen S, Liu W, Hou P, Sun W, Yan H. Downregulation of long non-coding RNA nuclear enriched abundant transcript 1 promotes cell proliferation and inhibits cell apoptosis by targeting miR-193a in myocardial ischemia/reperfusion injury. BMC Cardiovasc Disord 2019; 19:192. [PMID: 31390999 PMCID: PMC6686403 DOI: 10.1186/s12872-019-1122-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background This study aimed to investigate the effect of long non-coding RNA nuclear enriched abundant transcript 1 (lnc-NEAT1) on cell proliferation and apoptosis in myocardial ischemia/reperfusion (I/R) injury cells, and explore its target miRNAs. Methods H9c2 cells were cultured in oxygen and glucose deprivation followed by reperfusion (OGD/R) condition to construct a myocardial I/R injury model. Blank shRNA and lnc-NEAT1 shRNA were transferred into normal H9c2 cells and I/R injury H9c2 cells as Normal&sh-NC, OGD/R&sh-NC and OGD/R&sh-NEAT1 groups. Rescue experiment was performed by transfection of NC inhibitor plasmids, miR-193a inhibitor plasmids and NEAT1 shRNA into I/R injury cardiocytes. RNA expression, cell proliferation and cell apoptosis rate were detected by qPCR, CCK-8 and AV/PI respectively. Results After OGD/R induction, H9c2 cell apoptosis was greatly increased while cell proliferation was decreased, which indicated successful establishment of myocardial I/R injury model, and lnc-NEAT1 expression was elevated as well. Cell proliferation rate was increased in OGD/R&sh-NEAT1 group at 48 h and 72 h compared to OGD/R&sh-NC group, while cell apoptosis was reduced in OGC/R&sh-NEAT1 group compared to OGD/R&sh-NC group. Target miRNAs detection indicated the negative regulation of lnc-NEAT1 on miR-193a but not miR-182 or miR-141. In rescue experiment, downregulation of lnc-NEAT1 promoted cell proliferation and inhibited cell apoptosis through targeting miR-193a in I/R injury H9c2 cells. Conclusion Lnc-NEAT1 is overexpressed in myocardial I/R injury cells compared to normal myocardial cells, and downregulation of lnc-NEAT1 enhances cell proliferation while inhibits cell apoptosis through targeting miR-193a in I/R injury H9c2 cells.
Collapse
Affiliation(s)
- Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26, Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26, Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Wei Liu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26, Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Pan Hou
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26, Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Wei Sun
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26, Shengli Street, Jiang'an District, Wuhan, 430014, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26, Shengli Street, Jiang'an District, Wuhan, 430014, China.
| |
Collapse
|
26
|
Xuan W, Yu H, Zhang X, Song D. Crosstalk between the lncRNA UCA1 and microRNAs in cancer. FEBS Lett 2019; 593:1901-1914. [PMID: 31166011 DOI: 10.1002/1873-3468.13470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a major subset of highly conserved non-coding RNAs (ncRNAs) that consist of at least 200 nucleotides and have limited protein-coding potential. Cumulative data have shown that lncRNAs are deregulated in many types of cancer and may control pathophysiological processes of cancer at various levels, including transcription, post-transcription and translation. Recently, lncRNAs have been demonstrated to interact with microRNAs (miRNAs), another major subset of ncRNAs, which regulate physiological and pathological processes by inhibiting target mRNA translation or promoting mRNA degradation. The lncRNA urothelial carcinoma-associated 1 (UCA1) has recently gained much attention as it is overexpressed in many types of cancer and is involved in carcinogenesis. Here, we review the crosstalk between UCA1 and miRNAs during the pathogenesis of cancer, with a focus on cancer-cell proliferation, invasion, drug resistance, and metabolism.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hongyu Yu
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Wilk G, Braun R. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. Nucleic Acids Res 2019; 46:1089-1101. [PMID: 29294105 PMCID: PMC5814839 DOI: 10.1093/nar/gkx1250] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous regulatory molecules that modulate gene expression post-transcriptionally. Although differential expression of miRNAs have been implicated in many diseases (including cancers), the underlying mechanisms of action remain unclear. Because each miRNA can target multiple genes, miRNAs may potentially have functional implications for the overall behavior of entire pathways. Here, we investigate the functional consequences of miRNA dysregulation through an integrative analysis of miRNA and mRNA expression data using a novel approach that incorporates pathway information a priori. By searching for miRNA-pathway associations that differ between healthy and tumor tissue, we identify specific relationships at the systems level which are disrupted in cancer. Our approach is motivated by the hypothesis that if an miRNA and pathway are associated, then the expression of the miRNA and the collective behavior of the genes in a pathway will be correlated. As such, we first obtain an expression-based summary of pathway activity using Isomap, a dimension reduction method which can articulate non-linear structure in high-dimensional data. We then search for miRNAs that exhibit differential correlations with the pathway summary between phenotypes as a means of finding aberrant miRNA-pathway coregulation in tumors. We apply our method to cancer data using gene and miRNA expression datasets from The Cancer Genome Atlas and compare ∼105 miRNA-pathway relationships between healthy and tumor samples from four tissues (breast, prostate, lung and liver). Many of the flagged pairs we identify have a biological basis for disruption in cancer.
Collapse
Affiliation(s)
- Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rosemary Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
28
|
Chen ZM, Yu Q, Chen G, Tang RX, Luo DZ, Dang YW, Wei DM. MiR-193a-3p inhibits pancreatic ductal adenocarcinoma cell proliferation by targeting CCND1. Cancer Manag Res 2019; 11:4825-4837. [PMID: 31213904 PMCID: PMC6549772 DOI: 10.2147/cmar.s199257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: MicroRNAs (miRNAs) could modulate gene expression at the posttranscriptional level by promoting mRNA degradation or blocking mRNA translation, thus affecting the occurrence and development of cancer. Methods: In this work, qRT-PCR was conducted to detect the expression of miR-193a-3p and CCND1. The ability of cell proliferation was evaluated via CCK-8 assay. Cell apoptosis and cell cycle distribution were detected by flow cytometry. Bioinformatic techniques were employed to research the regulatory relationship between miR-193a-3p and target genes. The relationship between miR-193a-3p and CCND1 was verified via dual-luciferase reporter assays. Results: MiR-193a-3p expression in pancreatic ductal adenocarcinoma (PDAC) tissue was significantly lower than in non-cancerous tissue. After overexpressing miR-193a-3p in PDAC cells, their multiplication ability was significantly inhibited, apoptosis was accelerated, and the cell cycle was blocked in the G1 and G2/M phases. CCND1 was confirmed to have a targeted relationship with miR-193a-3p. Moreover, CCND1 expression was significantly lower in PDAC cells with an overexpression of miR-193a-3p. Conclusions: MiR-193a-3p targeted CCND1 to suppress tumor growth in PDAC cells. MiR-193a-3p may function as a tumor inhibitor in PDAC development, which could offer a promising therapeutic and prognostic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiao Yu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
29
|
Wang W, Shen XB, Jia W, Huang DB, Wang Y, Pan YY. The p53/miR-193a/EGFR feedback loop function as a driving force for non-small cell lung carcinoma tumorigenesis. Ther Adv Med Oncol 2019; 11:1758835919850665. [PMID: 31205511 PMCID: PMC6535738 DOI: 10.1177/1758835919850665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is a major worldwide health threat due to its low cure rate and high lethality. Emerging evidence suggests that epidermal growth factor receptor (EGFR) plays vital roles in cancer initiation and progression, and is considered an important cancer-driving protein. However, how EGFR expression is regulated during NSCLC development remains to be fully elucidated. METHODS In NSCLC clinical samples, EGFR protein levels were measured by western blotting and qRT-PCR, respectively. Combining microRNA (miRNA) target prediction software and the pulldown assay, we predicted microRNAs (miRNAs) that targeted EGFR. Next, three NSCLC cell lines, A549 (p53 WT), H322 (p53 mutant), and H1299 (p53 null), were used to demonstrate the direct targeting of EGFR by miR-193a. In addition, we investigated the biological effects of EGFR inhibition by miR-193a in vitro using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU), transwell, and apoptosis assays. Then, using ChIP and luciferase assays, we demonstrated that miR-193a was directly activated by p53 at the transcriptional level and that p53-induced-miR-193a and EGFR form a double-negative feedback loop. RESULTS We found that EGFR mRNA and protein were upregulated in NSCLC. We predicted that EGFR was a target of miR-193a and validated that miR-193a bound directly to the 3'-UTR of the EGFR mRNA. Moreover, miR-193a inhibited NSCLC proliferation and invasion, and promotes NSCLC apoptosis by directly downregulating EGFR. Then, we demonstrated that p53 directly activated miR-193a transcription, whereas EGFR functioned as a transcriptional repressor to negatively control miR-193a expression, forming a feedback loop. The loop promoted NSCLC cell proliferation and migration and accelerated tumor growth in xenograft mice. CONCLUSIONS This study highlights a double-negative feedback loop in NSCLC. The feedback loop is crucial because overexpressing EGFR strongly accelerated tumor growth, while miR-193a restoration blocked tumor growth in vivo. Our findings are in line with the emerging opinion that miRNAs and protein regulators form regulatory networks in critical biological processes and that their dysregulation can lead to cellular dysfunction. In conclusion, this study provides important insights into the molecular mechanisms of NSCLC progression and may help inform the development of new therapeutics for managing NSCLC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Xia-Bo Shen
- Department of Medical Oncology, Anhui Provincial Hospital, Hefei, PR China
| | - Wei Jia
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Da-Bing Huang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Hefei, PR China
| | - Yue-Yin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Luyang District, Hefei 230001, Anhui Province, PR China
| |
Collapse
|
30
|
Xin H, Liu N, Xu X, Zhang J, Li Y, Ma Y, Li G, Liang J. Knockdown of lncRNA‐UCA1 inhibits cell viability and migration of human glioma cells by miR‐193a‐mediated downregulation of CDK6. J Cell Biochem 2019; 120:15157-15169. [DOI: 10.1002/jcb.28777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Haibin Xin
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| | - Nina Liu
- Department of Neurology Anqiu People's Hospital Anqiu 262100 China
| | - Xiaosheng Xu
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| | - Jinwu Zhang
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| | - Yu Li
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| | - Yongchao Ma
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| | - Guoqiang Li
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| | - Junjun Liang
- Department of Neurosurgery Anqiu People's Hospital Anqiu 262100 China
| |
Collapse
|
31
|
Sengupta D, Deb M, Kar S, Parbin S, Pradhan N, Patra SK. miR-193a targets MLL1 mRNA and drastically decreases MLL1 protein production: Ectopic expression of the miRNA aberrantly lowers H3K4me3 content of the chromatin and hampers cell proliferation and viability. Gene 2019; 705:22-35. [PMID: 31005612 DOI: 10.1016/j.gene.2019.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023]
Abstract
Mixed-lineage leukaemia 1 (MLL1) enzyme plays major role in regulating genes associated with vertebrate development. Cell physiology and homeostasis is regulated by microRNAs in diverse microenvironment. In this investigation we have identified conserved miR-193a target sites within the 3'-UTR of MLL1 gene transcript. Utilizing wild type and mutated 3'-UTR constructs and luciferase reporter assays we have clearly demonstrated that miR-193a directly targets the 3'-UTR region of the MLL1 mRNA. Ectopic expression of miR-193a modulated global H3K4 mono-, di- and tri-methylation levels and affects the expression of CAV1, a gene which is specifically modulated by H3K4me3. To determine the implications of this in vitro finding in aberrant physiological conditions we analyzed prostate cancer tissue samples. In this context miR-193a RNA was undetectable and MLL1 was highly expressed with concomitantly high levels of H3K4me, H3K4me2, and H3K4me3 enrichment in the promoters of MLL1 responsive genes. Finally, we showed that prolonged ectopic expression of miR-193a inhibits growth and cell migration, and induces apoptosis. Thus, while our study unveils amplitude of the epigenome, including miRnome it establishes that; (i) miR-193a directly target MLL1 mRNA, (ii) miR-193a impair MLL1 protein production, (iii) miR-193a reduces the overall methylation marks of the genome.
Collapse
Affiliation(s)
- Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Nibedita Pradhan
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
32
|
Lu D, Yamawaki T, Zhou H, Chou WY, Chhoa M, Lamas E, Escobar SS, Arnett HA, Ge H, Juan T, Wang S, Li CM. Limited differential expression of miRNAs and other small RNAs in LPS-stimulated human monocytes. PLoS One 2019; 14:e0214296. [PMID: 30908559 PMCID: PMC6433273 DOI: 10.1371/journal.pone.0214296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Monocytes are a distinct subset of myeloid cells with diverse functions in early inflammatory immune modulation. While previous studies have surveyed the role of miRNA regulation on different myeloid cell lines and primary cultures, the time-dependent kinetics of inflammatory stimulation on miRNA expression and the relationship between miRNA-to-target RNA expression have not been comprehensively profiled in monocytes. In this study, we use next-generation sequencing and RT-PCR assays to analyze the non-coding small RNA transcriptome of unstimulated and lipopolysaccharide (LPS)-stimulated monocytes at 6 and 24 hours. We identified a miRNA signature consisting of five mature miRNAs (hsa-mir-146a, hsa-mir-155, hsa-mir-9, hsa-mir-147b, and hsa-mir-193a) upregulated by LPS-stimulated monocytes after 6 hours and found that most miRNAs were also upregulated after 24 hours of stimulation. Only one miRNA gene was down-regulated and no other small RNAs were found dysregulated in monocytes after LPS treatment. In addition, novel tRNA-derived fragments were also discovered in monocytes although none showed significant changes upon LPS stimulation. Interrogation of validated miRNA targets by transcriptomic analysis revealed that absolute expression of most miRNA targets implicating in innate immune response decreased over time in LPS-stimulated monocytes although their expression patterns along the treatment were heterogeneous. Our findings reveal a potential role by which selective miRNA upregulation and stable expression of other small RNAs enable monocytes to develop finely tuned cellular responses during acute inflammation.
Collapse
Affiliation(s)
- Daniel Lu
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Tracy Yamawaki
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Hong Zhou
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Wen-Yu Chou
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Mark Chhoa
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Edwin Lamas
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Sabine S. Escobar
- Inflammation/Oncology TA, Amgen Research, South San Francisco, California, United States of America
| | - Heather A. Arnett
- Inflammation/Oncology TA, Amgen Research, South San Francisco, California, United States of America
| | - Huanying Ge
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Todd Juan
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Circulating miRNA Profiling of Women at High Risk for Ovarian Cancer. Transl Oncol 2019; 12:714-725. [PMID: 30856556 PMCID: PMC6411608 DOI: 10.1016/j.tranon.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Survival of epithelial ovarian cancer patients remains poor without significant change over many decades. There is a need to better identify women at high risk (HR) for ovarian cancer. We propose that miRNA dysregulation may play critical roles in the early stages of ovarian cancer development. Circulating miRNAs may represent an important biomarker in this context, and miRNA profiling of serum in women at HR compared to those at low risk (LR) may give insights in tumor initiation pathways. There is also rationale for a specific focus on regulation of the androgen and its related hypoxia pathways in tumor initiation. We hypothesized that subsets of these pathway related miRNAs may be downregulated in the HR state. Serum from four HR and five LR women were sequenced and analyzed for 2083 miRNAs. We found 137 miRNAs dysregulated between the HR and LR groups, of which 36 miRNAs were overexpressed in HR and the vast majority (101 miRNAs or 74%) downregulated in the HR, when compared to LR serum. mRNA targets for the differentially expressed miRNAs were analyzed from three different miRNA-mRNA interaction resources. Functional association analysis of hypoxia and androgen pathway mRNA targets of dysregulated miRNAs in HR serum revealed that all but one of the miRNAs that target 52 hypoxia genes were downregulated in HR compared to LR serum. Androgen pathway analysis also had a similar expression pattern where all but one of the miRNAs that target these 135 identified genes were downregulated in HR serum. Overall, there were 91 differentially expressed miRNA-mRNA pairings in the hypoxia analysis. In the androgen-related analysis, overall, there were 429 differentially expressed miRNA-mRNA pairs. Our pilot study suggests that almost all miRNAs that are conserved and/or validated are downregulated in the HR compared to LR serum. This study, which requires validation, suggests that, via miRNA dysregulation, involvement of both hypoxia and its related androgen pathways may contribute to the HR state. This pilot study is the first report to our knowledge that studies circulating miRNA profiling of HR and LR women.
Collapse
|
34
|
Wang T, Chen Y, Nie H, Huang Y, Zhao Y, Yang J. IL-27 inhibits non-small-cell lung cancer cell metastasis by miR-935 in vitro. Onco Targets Ther 2019; 12:1447-1454. [PMID: 30863112 PMCID: PMC6391126 DOI: 10.2147/ott.s173207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Non-small-cell lung cancer (NSCLC) accounts for more than half of all lung cancer cases. Cytokines play an important role in NSCLC, including IL-27. IL-27 inhibits NSCLC progression; however, the mechanism is not clear. The purpose of this study is to investigate the effects of IL-27 on NSCLC cell proliferation and metastasis. Materials and methods NSCLC cells were treated with IL-27 or transfected with miR-935, and the cell proliferation was assayed by Cell Counting Kit-8 (CCK-8) and colony formation. Cell metastasis was analyzed by Transwell chamber system and wound healing assay. IL-27 protein in the medium was analyzed by ELISA. IL-27 mRNA expression was measured by quantitative reverse transcriptase-PCR. Results We found that IL-27 played an inhibiting role in NSCLC cell proliferation and metastasis. The molecular mechanism of the suppressing role of IL-27 in NSCLC was regulated by miR-935. IL-27 expression was negatively associated with miR-935 in the clinical NSCLC samples. Conclusion The study revealed that IL-27 decreased lung cancer cell proliferation and metastasis via miR-935.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Yifei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiong Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
| |
Collapse
|
35
|
Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR-193: A new weapon against cancer. J Cell Physiol 2019; 234:16861-16872. [PMID: 30779342 DOI: 10.1002/jcp.28368] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are known as a large group of short noncoding RNAs, which structurally consist of 19-22 nucleotides in length and functionally act as one of the main regulators of gene expression in important biological and physiological contexts like cell growth, apoptosis, proliferation, differentiation, movement (cell motility), and angiogenesis as well as disease formation and progression importantly in cancer cell invasion, migration, and metastasis. Among these notable tiny molecules, many studies recently presented the important role of the miR-193 family comprising miR-193a-3p, miR-193a-5p, miR-193b-3p, and miR-193b-5p in health and disease biological processes by interaction with special targeting and signaling, which mainly contribute as a tumor suppressor. Therefore, in the present paper, we review the functional role of this miRNA family in both health and disease conditions focusing on various tumor developments, diagnoses, prognoses, and treatment.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Expressions and clinical significance of HER4 and CD44 in sinonasal mucosal malignant melanoma. Melanoma Res 2019; 28:105-110. [PMID: 29309357 DOI: 10.1097/cmr.0000000000000428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sinonasal mucosal malignant melanoma (SNMMM) is a rare disease. The aim of this study was to investigate the expressions of HER4 and CD44 in human SNMMM tissues and their relationship with the clinicopathological features and prognosis of patients. In total, 64 paraffin-embedded samples of SNMMM treated in our hospital from 29 December 1999 to 24 June 2011 were collected. HER4 and CD44 were detected in the tissues of SNMMM by immunohistochemistry. The differences in the HER4 and CD44 expressions in the tissues were evaluated and matched with clinicopathological parameters and the survival rate, respectively. The positive rates of the HER4 and CD44 expressions were 70.3 and 65.6%, respectively; the positive expression of HER4 was correlated with a positive expression of CD44 (P<0.05). The positive expression of HER4 was correlated with the prognosis of SNMMM patients (P<0.05). There was no significant correlation between a positive expression of CD44 and the prognosis of patients (P>0.05). The expressions of HER4 and CD44 were not significantly correlated with sex, age, pigment, tumor site, etc. (P>0.05). Our results further emphasize a correlation between HER4 and CD44 expressions in SNMMM tissues and point out that a positive HER4 expression might be an important factor in valuing the prognosis of patients with SNMMM.
Collapse
|
37
|
Liu X, Min S, Wu N, Liu H, Wang T, Li W, Shen Y, Zhao C, Wang H, Qian Z, Xu H, Chen Y, Wang X. miR-193a-3p inhibition of the Slug activator PAK4 suppresses non-small cell lung cancer aggressiveness via the p53/Slug/L1CAM pathway. Cancer Lett 2019; 447:56-65. [PMID: 30685413 DOI: 10.1016/j.canlet.2019.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023]
Abstract
L1 cell adhesion molecule (L1CAM) promotes invasiveness and metastasis in non-small cell lung cancer (NSCLC) cells and is upregulated by the p53-regulated transcription factor Slug. p21-activated kinase 4 (PAK4) directly phosphorylates Slug, resulting in pro-malignant Slug stabilization. We hypothesized that microRNA-based negative regulation of PAK4 would reduce L1CAM-induced NSCLC aggressiveness via destabilizing Slug. We found that elevated L1CAM expression was tightly correlated with p53 loss-of-function and reduced NSCLC patient survival. L1CAM suppression reduced NSCLC cell migration and invasiveness in vitro as well as tumor formation and distal metastasis in vivo. Mechanistically, p53 restricts L1CAM expression through the β-catenin/Slug pathway, with levels of β-catenin and Slug positively correlating with L1CAM expression in NSCLC tumors. The microRNA miR-193a-3p directly targets PAK4 and suppresses downstream p-Slug and L1CAM expression. Silencing PAK4, Slug, and L1CAM mirrored miR-193a-3p's effects upon the migration and invasiveness of NSCLC cells in vitro. Decreased miR-193a-3p levels correlated with elevated PAK4, p-Slug, and L1CAM levels in NSCLC tumors. Our findings support a model of miR-193a-3p as a suppressor of metastatic disease progression in NSCLC via modulation of the p53/Slug/L1CAM pathway.
Collapse
Affiliation(s)
- Xincheng Liu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shengping Min
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Nan Wu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongli Liu
- Department of Gynecological Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tao Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Wei Li
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yuanbing Shen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Chengling Zhao
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongtao Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Zhongqing Qian
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Yuqing Chen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China.
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui Province, China.
| |
Collapse
|
38
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Zhu Z, Du S, Yin K, Ai S, Yu M, Liu Y, Shen Y, Liu M, Jiao R, Chen X, Guan W. Knockdown long noncoding RNA nuclear paraspeckle assembly transcript 1 suppresses colorectal cancer through modulating miR-193a-3p/KRAS. Cancer Med 2018; 8:261-275. [PMID: 30575330 PMCID: PMC6346262 DOI: 10.1002/cam4.1798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (abbreviated as NEAT1), a nuclear sufficient long noncoding RNA (abbreviated as lncRNA), has aroused a rising concern in recent years. As uncovered by reports, the increase in NEAT1 is related to the deteriorated prognosis of lung cancer, breast cancer, hepatocellular cancer, and colorectal cancer (abbreviated as CRC). Thus far, the mechanism of NEAT1 has not been elucidated by the existing researches. The impact of knockdown of both NEAT1 and its predicted downstream miR‐193a‐3p in CRC cells was examined here to delve into their interactions and mechanisms. Additionally, the target of miR‐193a‐3p, Kirsten rat sarcoma viral oncogene homolog (abbreviated as KRAS), was also predicted by bioinformatics algorithms. Small interfering RNA and antisense oligonucleotides that inhibit NEAT1, as well as overexpression or knockdown of miR‐193a‐3p, were adequately drawn upon to confirm that NEAT1 serves as a miR‐193a‐3p sponge or competing endogenous RNA, to impact miR‐193a‐3p's further functions, including modulating KRAS proteins, both in vitro and in vivo. Generally, lncRNA NEAT1/hsa‐miR‐193a‐3p/KRAS axis was substantiated in CRC cells and could provide novel insight into both diagnostic and therapeutic advancement in CRC.
Collapse
Affiliation(s)
- Zhouting Zhu
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shangce Du
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Kai Yin
- Department of General Surgery, Taixing Hospital Affiliated to Yangzhou University, Taixing, China
| | - Shichao Ai
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
40
|
Yu HM, Wang C, Yuan Z, Chen GL, Ye T, Yang BW. LncRNA NEAT1 promotes the tumorigenesis of colorectal cancer by sponging miR-193a-3p. Cell Prolif 2018; 52:e12526. [PMID: 30407674 PMCID: PMC6430453 DOI: 10.1111/cpr.12526] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/06/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives LncRNA nuclear‐enriched abundant transcript 1 (NEAT1) participates in the development and progression of multiple malignancies. However, the molecular mechanism by which NEAT1 contributes to colorectal cancer (CRC) remains unclear. Methods The association between lncRNA NEAT1 expression and clinicopathological characteristics and prognosis in patients with CRC was analysed by TCGA RNA‐sequencing data. MTT, colony formation, flow cytometry, transwell assays and a xenograft tumour model were used to assess the functions of NEAT1. Bioinformatics and spearman correlation analysis were used to identify the NEAT1‐specific binding with miRNAs, and luciferase gene report and RIP assays were performed to confirm the interaction between miR‐193a‐3p (miR‐193a) and NEAT1 in CRC cells. Results Upregulation of NEAT1 expression was significantly correlated with TNM stage, poor survival and tumour recurrence in patients with CRC, and acted as an independent prognostic factor for tumour recurrence. Knockdown of NEAT1 suppressed cell proliferation, colony formation abilities and invasive potential and induced cell apoptosis, but overexpression of NEAT1 reversed these effects. Furthermore, NEAT1 was confirmed to act as a sponge of miR‐193a, and knockdown of NEAT1 attenuated miR‐193a inhibitor‐induced tumour promoting effects and L17RD expression in CRC cells. miR‐193a harboured negative correlation with NEAT1 and IL17RD expression in CRC specimens. In vivo experiment further validated the inhibitory effects of NEAT1 knockdown on xenograft tumour growth. Conclusion Our findings demonstrate that lncRNA NEAT1 acts as an oncogenic role in CRC cells by sponging miR‐193a and may represent a potential marker for CRC patients.
Collapse
Affiliation(s)
- Hong-Mei Yu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Yuan
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guang-Liang Chen
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Ye
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bi-Wei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Walker SE, Spencer GE, Necakov A, Carlone RL. Identification and Characterization of microRNAs during Retinoic Acid-Induced Regeneration of a Molluscan Central Nervous System. Int J Mol Sci 2018; 19:E2741. [PMID: 30217012 PMCID: PMC6163488 DOI: 10.3390/ijms19092741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
Retinoic acid (RA) is the biologically active metabolite of vitamin A and has become a well-established factor that induces neurite outgrowth and regeneration in both vertebrates and invertebrates. However, the underlying regulatory mechanisms that may mediate RA-induced neurite sprouting remain unclear. In the past decade, microRNAs have emerged as important regulators of nervous system development and regeneration, and have been shown to contribute to processes such as neurite sprouting. However, few studies have demonstrated the role of miRNAs in RA-induced neurite sprouting. By miRNA sequencing analysis, we identify 482 miRNAs in the regenerating central nervous system (CNS) of the mollusc Lymnaeastagnalis, 219 of which represent potentially novel miRNAs. Of the remaining conserved miRNAs, 38 show a statistically significant up- or downregulation in regenerating CNS as a result of RA treatment. We further characterized the expression of one neuronally-enriched miRNA upregulated by RA, miR-124. We demonstrate, for the first time, that miR-124 is expressed within the cell bodies and neurites of regenerating motorneurons. Moreover, we identify miR-124 expression within the growth cones of cultured ciliary motorneurons (pedal A), whereas expression in the growth cones of another class of respiratory motorneurons (right parietal A) was absent in vitro. These findings support our hypothesis that miRNAs are important regulators of retinoic acid-induced neuronal outgrowth and regeneration in regeneration-competent species.
Collapse
Affiliation(s)
- Sarah E Walker
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Robert L Carlone
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
42
|
Wang W, Chen J, Hui Y, Huang M, Yuan P. Down-regulation of miR-193a-3p promotes osteoblast differentiation through up-regulation of LGR4/ATF4 signaling. Biochem Biophys Res Commun 2018; 503:2186-2193. [DOI: 10.1016/j.bbrc.2018.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
|
43
|
Huang Y, Luo H, Li F, Yang Y, Ou G, Ye X, Li N. LINC00152 down-regulated miR-193a-3p to enhance MCL1 expression and promote gastric cancer cells proliferation. Biosci Rep 2018; 38:BSR20171607. [PMID: 29339419 PMCID: PMC5938421 DOI: 10.1042/bsr20171607] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/09/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
The present work aimed to probe into the effect of long non-coding RNA (lncRNA) LINC00152 on gastric cancer (GC) cells proliferation by regulating miR-193a-3p and its target gene MCL1 Transfected si-LINC00152 was used to down-regulate LINC00152, and cells proliferation was measured by the cell counting kit-8 (CCK-8) assay. Cell apoptosis and cell cycle were analyzed by flow cytometry (FCM). Besides, we also detected the potential functional effects of differential expression of LINC00152 in vivo using nude mouse xenograft model. We overexpressed and downexpressed miR-193a-3p to study the in vitro effect of miR-193a-3p on GC cells proliferation and vitality. And MCL1 was silenced by shRNA to investigate the effect of MCL1 on proliferation of GC cells. In this research, LINC00152 was proven to have a higher expression level in GC tissues than in the adjacent normal tissues. GC cells proliferation was inhibited after LINC00152 was down-regulated. LINC00152 inhibited the expression of miR-193a-3p, which negatively regulated MCL1 In addition, GC cells proliferation was inhibited by cell transfection with shRNA-MCL1, and enhanced by transfection with miR-193a-3p mimics. Our study suggested that LINC00152 was overexpressed in GC tissues, and it down-regulated miR-193a-3p to enhance MCL1 expression thereby promoting GC cells proliferation.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, China
| | - Hui Luo
- Anesthesia Surgery Center, Lingnan Hospital, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 51000, Guangdong, China
| | - Fang Li
- Supply Room, Lingnan Hospital, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 51000, Guangdong, China
| | - Yun'e Yang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, China
| | - Xiaolong Ye
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, China
| | - Nianchu Li
- Department of Hepatobiliary Surgery, Nanning Second People's Hospital, Nanning 530031, Guangxi, China
| |
Collapse
|
44
|
Zhang G, Zou X, Liu Q, Xie T, Huang R, Kang H, Lai C, Zhu J. MiR-193a-3p functions as a tumour suppressor in human aldosterone-producing adrenocortical adenoma by down-regulating CYP11B2. Int J Exp Pathol 2018; 99:77-86. [PMID: 29665181 DOI: 10.1111/iep.12267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
The mechanism of aldosterone-producing adrenocortical adenoma (APA) pathogenesis and the role of microRNAs (miRNAs) in APA pathogenesis have not been completely clarified. We examined the expression and function of miR-140-3p, miR-193a-3p and miR-22-3p, which have binding sites in CYP11B2. Expression of miRNAs and CYP11B2 mRNA was measured by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation was monitored by colorimetric analysis, and cell apoptosis and cell cycle progression were analysed by flow cytometry. ELISA was carried out to detect aldosterone levels in cell culture supernatants. Luciferase reporter assays, qRT-PCR and Western blotting were performed to identify CYP11B2 as a target of miR-193a-3p. Of the three miRNAs examined, miR-193a-3p exhibited a significant decrease and CYP11B2 mRNA exhibited a significant increase in expression in APA compared with adjacent normal adrenal gland tissue. Transfection of miR-193a-3p mimic into the human adrenocortical cell line H295R showed that elevated miR-193a-3p expression inhibits proliferation and aldosterone secretion, induces G1-phase arrest and promotes apoptosis in H295R cells. Furthermore, in luciferase reporter assays, overexpression of miR-193a-3p in H295R cells significantly reduced the luciferase activity of the wild-type CYP11B2 3'-UTR construct, which could be reversed by mutation of the miR-193a-3p-binding site. Moreover, miR-193a-3p overexpression downregulated CYP11B2 mRNA and protein expression. Finally, overexpression of CYP11B2 diminished the effects of miR-193a-3p on H295R cells. Taken together, our results suggest that CYP11B2 levels may be modulated by miR-193a-3p in APA, which could explain, at least partially, why downregulation of miR-193a-3p during APA formation may promote cell growth and suppress apoptosis.
Collapse
Affiliation(s)
- Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Quanliang Liu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianpeng Xie
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ruohui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huan Kang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Changfu Lai
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaxing Zhu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
45
|
Bhayadia R, Krowiorz K, Haetscher N, Jammal R, Emmrich S, Obulkasim A, Fiedler J, Schwarzer A, Rouhi A, Heuser M, Wingert S, Bothur S, Döhner K, Mätzig T, Ng M, Reinhardt D, Döhner H, Zwaan CM, van den Heuvel Eibrink M, Heckl D, Fornerod M, Thum T, Humphries RK, Rieger MA, Kuchenbauer F, Klusmann JH. Endogenous Tumor Suppressor microRNA-193b: Therapeutic and Prognostic Value in Acute Myeloid Leukemia. J Clin Oncol 2018; 36:1007-1016. [DOI: 10.1200/jco.2017.75.2204] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients. We investigated the tumor suppressive function of miR-193b in human AML blasts, patient-derived xenografts, and miR-193b knockout mice in vitro and in vivo. Results miR-193b exerted important, endogenous, tumor-suppressive functions on the hematopoietic system. miR-193b-3p was downregulated in several cytogenetically defined subgroups of pediatric and adult AML, and low expression served as an independent indicator for poor prognosis in pediatric AML (risk ratio ± standard error, −0.56 ± 0.23; P = .016). miR-193b-3p expression improved the prognostic value of the European LeukemiaNet risk-group stratification or a 17-gene leukemic stemness score. In knockout mice, loss of miR-193b cooperated with Hoxa9/Meis1 during leukemogenesis, whereas restoring miR-193b expression impaired leukemic engraftment. Similarly, expression of miR-193b in AML blasts from patients diminished leukemic growth in vitro and in mouse xenografts. Mechanistically, miR-193b induced apoptosis and a G1/S-phase block in various human AML subgroups by targeting multiple factors of the KIT-RAS-RAF-MEK-ERK (MAPK) signaling cascade and the downstream cell cycle regulator CCND1. Conclusion The tumor-suppressive function is independent of patient age or genetics; therefore, restoring miR-193b would assure high antileukemic efficacy by blocking the entire MAPK signaling cascade while preventing the emergence of resistance mechanisms.
Collapse
Affiliation(s)
- Raj Bhayadia
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Kathrin Krowiorz
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Nadine Haetscher
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Razan Jammal
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Stephan Emmrich
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Askar Obulkasim
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Jan Fiedler
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Adrian Schwarzer
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Arefeh Rouhi
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Michael Heuser
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Susanne Wingert
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Sabrina Bothur
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Konstanze Döhner
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Tobias Mätzig
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Michelle Ng
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Dirk Reinhardt
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Hartmut Döhner
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - C. Michel Zwaan
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Marry van den Heuvel Eibrink
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Dirk Heckl
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Maarten Fornerod
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Thomas Thum
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - R. Keith Humphries
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Michael A. Rieger
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Florian Kuchenbauer
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| | - Jan-Henning Klusmann
- Raj Bhayadia, Razan Jammal, Stephan Emmrich, Jan Fiedler, Adrian Schwarzer, Michael Heuser, Michelle Ng, Dirk Heckl, and Thomas Thum, Hannover Medical School, Hannover; Raj Bhayadia, Michelle Ng, and Jan-Henning Klusmann, University of Halle, Halle; Kathrin Krowiorz, Arefeh Rouhi, Konstanze Döhner, Hartmut Döhner, and Florian Kuchenbauer, University Hospital of Ulm, Ulm; Nadine Haetscher, Susanne Wingert, Sabrina Bothur, and Michael A. Rieger, Goethe University Frankfurt, Frankfurt; Sabrina Bothur and
| |
Collapse
|
46
|
Yan L, Ma J, Zhu Y, Zan J, Wang Z, Ling L, Li Q, Lv J, Qi S, Cao Y, Liu Y, Cao L, Zhang Y, Qi Z, Nie L. miR‐24‐3p promotes cell migration and proliferation in lung cancer by targeting SOX7. J Cell Biochem 2018; 119:3989-3998. [DOI: 10.1002/jcb.26553] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Yan
- School of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in AnhuiAnhui Normal UniversityWuhuAnhuiChina
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Jinzhu Ma
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Yiping Zhu
- The First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Jiawei Zan
- School of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in AnhuiAnhui Normal UniversityWuhuAnhuiChina
| | - Zhen Wang
- The First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Liefeng Ling
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Qiang Li
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Jun Lv
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Shimei Qi
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Yingya Cao
- The First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Ying Liu
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Long Cao
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Yao Zhang
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Zhilin Qi
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Liuwang Nie
- School of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in AnhuiAnhui Normal UniversityWuhuAnhuiChina
| |
Collapse
|
47
|
Moushi A, Michailidou K, Soteriou M, Cariolou M, Bashiardes E. MicroRNAs as possible biomarkers for screening of aortic aneurysms: a systematic review and validation study. Biomarkers 2018; 23:253-264. [PMID: 29297231 DOI: 10.1080/1354750x.2018.1423704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT There is an urgent need to identify non-invasive biomarkers for the early detection of aortic aneurysms, preceding a fatal event. The potential role for MicroRNAs (miRNAs) as diagnostic markers for aortic aneurysms was investigated through the present systematic review. OBJECTIVE To perform a comprehensive review on published studies examining the association of miRNAs with aortic aneurysms and further validate these results with plasma samples collected from thoracic aortic aneurysm (TAA) patients. METHODS The literature search was performed via numerous databases and articles were only included if they fulfilled the predefined eligibility criteria. The miRNAs reported three times or more with expression consistency were validated using plasma samples from TAA patients collected before and following surgery. RESULTS Twenty-four articles were selected from the literature search and 11 miRNAs were chosen for validation using our samples. The miRNAs which were further validated were found to follow the trend in the regulation pattern as with the majority of the published data. MiRNA hsa-miR-193a-5p was found to be significantly down-regulated in the plasma samples collected before the aneurysmal removal when compared with postsurgical serum samples. CONCLUSIONS Numerous miRNAs have been associated with aortic aneurysms, and specifically hsa-miR-193a-5p and hsa-miR-30b-5p; therefore they warrant further investigation as potential biomarkers. Registration: The protocol of the review was registered in Prospero Databases (ID: CRD42016039953).
Collapse
Affiliation(s)
- Areti Moushi
- a Cyprus School of Molecular Medicine , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| | - Kyriaki Michailidou
- b Department of Electron Microscopy/Molecular Pathology , The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | | | - Marios Cariolou
- a Cyprus School of Molecular Medicine , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus.,d Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| | - Evy Bashiardes
- a Cyprus School of Molecular Medicine , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus.,d Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics , The Cyprus Institute of Neurology and Genetics , Nicosia , Cyprus
| |
Collapse
|
48
|
Gao X, Tang RX, Xie QN, Lin JY, Shi HL, Chen G, Li ZY. The clinical value of miR-193a-3p in non-small cell lung cancer and its potential molecular mechanism explored in silico using RNA-sequencing and microarray data. FEBS Open Bio 2018; 8:94-109. [PMID: 29321960 PMCID: PMC5757172 DOI: 10.1002/2211-5463.12354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/21/2017] [Accepted: 11/10/2017] [Indexed: 12/01/2022] Open
Abstract
miR‐193a‐3p is a tumor‐related miRNA playing an essential role in tumorigenesis and progression of non‐small cell lung cancer (NSCLC). The objective of the present study was to investigate the relationship between miR‐193a‐3p expression and clinical value and to further explore the potential signaling of miR‐193a‐3p in the carcinogenesis of NSCLC. RNA‐sequencing and microarray data were collected from the databases GEO, ArrayExpress and The Cancer Genome Atlas (TCGA). Furthermore, in silico assessments were performed to analyze the prospective pathways and networks of the target genes of miR‐193a‐3p. In total, 453 cases of NSCLC patients and 476 normal controls were included in blood samples, while 920 cases of NSCLC patients and 406 normal controls were included in tissue samples. The pooled positive likelihood ratio, the pooled negative likelihood ratio and the pooled diagnostic odds ratio were calculated to reflect the diagnostic value of miR‐193a‐3p in blood and tissue samples. Moreover, the areas under the curve of the summary receiver operating characteristic curve of blood and tissue were 0.64 and 0.79, respectively. In addition, we found a lower level of miR‐193a in NSCLC tissues than in non‐cancerous controls based on TCGA. A gene ontology (GO) enrichment analysis demonstrated that miR‐193a‐3p could be related to key signaling pathways in NSCLC. Also, several vital pathways were illustrated by KEGG. Lower expression of miR‐193a‐3p in tissue samples of NSCLC may be associated with tumorigenesis and be a predictor of deterioration of NSCLC patients, and pathway analysis revealed crucial signaling pathways correlated with the incidence and progress of NSCLC.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Rui-Xue Tang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Qiong-Ni Xie
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jia-Ying Lin
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hong-Lan Shi
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Zu-Yun Li
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
49
|
Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:159. [PMID: 29141691 PMCID: PMC5688662 DOI: 10.1186/s13046-017-0629-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
Abstract
Background Though androgen deprivation therapy is the standard treatment for prostate cancer (PCa), most patients would inevitably progress to castration-resistant prostate cancer (CRPC) which is the main cause of PCa death. Therefore, the identification of novel molecular mechanism regulating cancer progression and achievement of new insight into target therapy would be necessary for improving the benefits of PCa patients. This study aims to study the function and regulatory mechanism of HOTAIR/EZH2/miR-193a feedback loop in PCa progression. Methods MSKCC and TCGA datasets were used to identify miR-193a expression profile in PCa. Cell Counting Kit-8 (CCK-8) assays, colony formation, invasion, migration, flow cytometry, a xenograft model and Gene Set Enrichment Analysis were used to detect and analyze the biological function of miR-193a. Then, we assessed the role of HOTAIR and EZH2 in regulation of miR-193a expression by using plasmid, lentivirus and small interfering RNA (siRNA). Luciferase reporter assays and chromatin immunoprecipitation assays were performed to detect the transcriptional activation of miR-193a by EZH2 and HOTAIR. Further, qRT-PCR and luciferase reporter assays were conducted to examine the regulatory role of miR-193a controlling the HOTAIR expression in PCa. Finally, the correlation between HOTAIR, EZH2 and miR-193a expression were analyzed using In situ hybridization and immunohistochemistry. Results We found that miR-193a was significantly downregulated in metastatic PCa through mining MSKCC and TCGA datasets. In vitro studies revealed that miR-193a inhibited PCa cell growth, suppressed migration and invasion, and promoted apoptosis; in vivo results demonstrated that overexpression of miR-193a mediated by lentivirus dramatically reduced PCa xenograft tumor growth. Importantly, we found EZH2 coupled with HOTAIR to repress miR-193a expression through trimethylation of H3K27 at miR-193a promoter in PC3 and DU145 cells. Interestingly, further evidence illustrated that miR-193a directly targets HOTAIR showing as significantly reduced HOTAIR level in miR-193a overexpressed cells and tissues. The expression level of miR-193a was inversely associated with that of HOTAIR and EZH2 in PCa. Conclusion This study firstly demonstrated that miR-193a acted as tumor suppressor in CRPC and the autoregulatory feedback loop of HOTAIR/EZH2/miR-193a served an important mechanism in PCa development. Targeting this aberrantly activated feedback loop may provide a potential therapeutic strategy. Electronic supplementary material The online version of this article (doi: 10.1186/s13046-017-0629-7) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Davis JA, Saunders SJ, Mann M, Backofen R. Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Res 2017; 45:8745-8757. [PMID: 28911111 PMCID: PMC5587804 DOI: 10.1093/nar/gkx605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA–target interactions, compiled using a machine-learning-based meta-analysis of established algorithms. Simultaneously, the inverse dataset of negative interactions not likely to occur was extracted to increase classifier performance, as measured using an expansive set of experimentally validated interactions from a variety of sources. In a second differential mode, candidate miRNAs are predicted by indicating genes to be targeted and others to be avoided to potentially increase specificity of results. As an example, we investigate the neural crest, a transient structure in vertebrate development where miRNAs play a pivotal role. Patterns of metaMIR-predicted miRNA regulation alone partially recapitulated functional relationships among genes, and separate differential analysis revealed miRNA candidates that would downregulate components implicated in cancer progression while not targeting tumour suppressors. Such an approach could aid in therapeutic application of miRNAs to reduce unintended effects. The utility is available at http://rna.informatik.uni-freiburg.de/metaMIR/.
Collapse
Affiliation(s)
- Jason A Davis
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sita J Saunders
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Martin Mann
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany.,ZBSA Centre for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, Albert-Ludwigs-University Freiburg, Germany.,Centre for non-coding RNA in Technology and Health, University of Copenhagen, Gr⊘nnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|