1
|
Gupta S, Ahuja N, Kumar S, Arora R, Kumawat S, Kaushal V, Gupta P. Rev-erbα regulate neurogenesis through suppression of Sox2 in neuronal cells to regenerate dopaminergic neurons and abates MPP + induced neuroinflammation. Free Radic Biol Med 2024; 223:144-159. [PMID: 39084577 DOI: 10.1016/j.freeradbiomed.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative disease that affects the motor and non-motor circuits of the brain. Currently, there are no promising therapeutic measures for Parkinson's disease, and most strategies designed to alleviate the Parkinson's disease are palliative. The dearth of therapeutic interventions in Parkinson's disease has driven attention in the search for targets that may augment dopamine secretion, promote differentiation towards dopaminergic neuronal lineage, or aid in neuroprotection from neuronal stress and inflammation, and prevent Parkinson's disease associated motor impairment and behavioural chaos. The study first reports that Rev-erbα plays an important role in regulating the differentiation of undifferentiated neuronal cells towards dopaminergic neurons through abating Sox2 expression in human SH-SY5Y cells. Rev-erbα directly binds to the human Sox2 promoter region and represses their expression to promote differentiation towards dopaminergic neurons. We have reported a novel mechanism of Rev-erbα which effectively abrogates 1-methyl-4-phenylpyridinium induced cytotoxicity, inflammation, and oxidative stress, exerted a beneficial effect on transmembrane potential, and suppressed apoptosis in the neuronal in vitro model of Parkinson's disease. Rev-erbα ligand SR9011 was observed to ease the disease severity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mouse model of Parkinson's disease. Rev-erbα alleviates the locomotor behavioural impairment, prevents cognitive decline and promotes motor coordination in mice. Administration of Rev-erbα ligand also helps in replenishing the dopaminergic neurons and abrogating the neurotoxin mediated toxicity in an in vitro and in vivo Parkinson's disease model. We conclude that Rev-erbα emerges as a moonlighting nuclear receptor that could be targeted in the treatment and alleviation of Parkinson disease.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Nancy Ahuja
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sumit Kumar
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rashmi Arora
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saumyata Kumawat
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vipashu Kaushal
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Xu L, Ma J, Zhou C, Shen Z, Zhu K, Wu X, Chen Y, Chen T, Lin X. Identification of key hub genes in knee osteoarthritis through integrated bioinformatics analysis. Sci Rep 2024; 14:22437. [PMID: 39341952 PMCID: PMC11439059 DOI: 10.1038/s41598-024-73188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic joint disease globally. Synovial inflammation plays a pivotal role in its pathogenesis, preceding cartilage damage. Identifying biomarkers in osteoarthritic synovial tissues holds promise for early diagnosis and targeted interventions. Gene expression profiles were obtained from the Gene Expression Omnibus database. Subsequent analyses included differential expression gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) on the combined datasets. We performed functional enrichment analysis on the overlapping genes between DEGs and module genes and constructed a protein-protein interaction network. Using Cytoscape software, we identified hub genes related to the disease and conducted gene set enrichment analysis on these hub genes. The CIBERSORT algorithm was employed to evaluate the correlation between hub genes and the abundance of immune cells within tissues. Finally, Mendelian randomization analysis was utilized to assess the potential of these hub genes as biomarkers. We identified 46 differentially expressed genes (DEGs), comprising 20 upregulated and 26 downregulated genes. Using WGCNA, we constructed a gene co-expression network and selected the most relevant modules, resulting in 24 intersecting genes with the DEGs. KEGG enrichment analysis of the intersecting genes identified the IL-17 signaling pathway, associated with inflammation, as the most significant pathway. Cytoscape software was utilized to rank the candidate genes, with JUN, ATF3, FOSB, NR4A2, and IL6 emerging as the top five based on the Degree algorithm. A nomogram model incorporating these five genes, supported by ROC curve analysis, validated their diagnostic efficacy. Immune infiltration and correlation analysis revealed that macrophages were significantly associated with JUN (p < 0.01), FOSB (p < 0.01), and NR4A2 (p < 0.05). Additionally, T follicular helper cells showed significant associations with ATF3 (p < 0.05), FOSB (p < 0.05), and JUN (p < 0.05). Mendelian randomization analysis provided strong evidence linking JUN (IVW: OR = 0.910, p = 0.005) and IL6 (IVW: OR = 1.024, p = 0.026) with KOA. Through the utilization of various bioinformatics analysis methods, we have pinpointed key hub genes relevant to knee osteoarthritis. These findings hold promise for advancing pre-symptomatic diagnostic strategies and enhancing our understanding of the biological underpinnings behind knee osteoarthritis susceptibility genes.
Collapse
Affiliation(s)
- Lilei Xu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Ma
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanlong Zhou
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhe Shen
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kean Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewen Wu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Chen
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Chen
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Lu X, Xu L, Song Y, Yu X, Li Q, Liu F, Li X, Xi J, Wang S, Wang L, Wang Z. A Graphene Composite Film Based Wearable Far-Infrared Therapy Apparatus (GRAFT) for Effective Prevention of Postoperative Peritoneal Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309330. [PMID: 38526158 PMCID: PMC11165485 DOI: 10.1002/advs.202309330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Postoperative peritoneal adhesion (PPA) is the most frequent complication after abdominal surgery. Current anti-adhesion strategies largely rely on the use of physical separating barriers creating an interface blocking peritoneal adhesion, which cannot reduce inflammation and suffers from limited anti-adhesion efficacy with unwanted side effects. Here, by exploiting the alternative activated macrophages to alleviate inflammation in adhesion development, a flexible graphene-composite-film (F-GCF) generating far-infrared (FIR) irradiation that effectively modulates the macrophage phenotype toward the anti-inflammatory M2 type, resulting in reduced PPA formation, is designed. The anti-adhesion effect of the FIR generated by F-GCF is determined in the rat abdominal wall abrasion-cecum defect models, which exhibit reduced incidence and area of PPA by 67.0% and 92.1% after FIR treatment without skin damage, significantly superior to the clinically used chitosan hydrogel. Notably, within peritoneal macrophages, FIR reduces inflammation reaction and promotes tissue plasminogen activator (t-PA) level via the polarization of peritoneal macrophages through upregulating Nr4a2 expression. To facilitate clinical use, a wirelessly controlled, wearable, F-GCF-based FIR therapy apparatus (GRAFT) is further developed and its remarkable anti-adhesion ability in the porcine PPA model is revealed. Collectively, the physical, biochemical, and in vivo preclinical data provide compelling evidence demonstrating the clinical-translational value of FIR in PPA prevention.
Collapse
Affiliation(s)
- Xiaohuan Lu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Song
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiangnan Yu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Qilin Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Feng Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaoqiong Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiangbo Xi
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyWuhan430205China
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationDepartment of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
4
|
Di Martino E, Ambikan A, Ramsköld D, Umekawa T, Giatrellis S, Vacondio D, Romero AL, Galán MG, Sandberg R, Ådén U, Lauschke VM, Neogi U, Blomgren K, Kele J. Inflammatory, metabolic, and sex-dependent gene-regulatory dynamics of microglia and macrophages in neonatal hippocampus after hypoxia-ischemia. iScience 2024; 27:109346. [PMID: 38500830 PMCID: PMC10945260 DOI: 10.1016/j.isci.2024.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Anoop Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Takashi Umekawa
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sarantis Giatrellis
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Davide Vacondio
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Marta Gómez Galán
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Klas Blomgren
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden
- Team Neurovascular Biology and Health, Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| |
Collapse
|
5
|
Zhao S, Wang X, Huang F, Zhou Y, Meng D, Zhao D, Wang J, Zhang H, Wu L, Zhang Y, Zhao L, Zhang L, Song Y, Wang Q. A role of NR4A2 in Graves' disease: regulation of Th17/Treg. Endocrine 2024; 83:432-441. [PMID: 37651006 DOI: 10.1007/s12020-023-03490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE This study aimed to explore the molecular pathogenesis of Graves' disease (GD). METHODS The gene expression profile in CD4+ T cells from GD patients and healthy controls were analyzed through mRNA-sequencing. The expression of NR4A2 was determined by quantitative real-time PCR and western blot. The levels of Th17 and Treg were determined by flow cytometry. ELISA was employed to detect the levels of IL-10, IL-17A, IL-17F and IL-22. RESULTS In the CD4+ T cells from GD patients, there were 128 up-regulated and 510 down-regulated genes. Subsequently, we focused on the role of nuclear receptor 4 group A member 2 (NR4A2) in GD. NR4A2 was lowly expressed in the CD4+ T cells from GD patients. Its expression was negatively correlated with free triiodothyronine and tetraiodothyronine, but positively correlated with thyroid stimulating hormone. NR4A2 knockdown decreased the percentage of Treg cells, with a decreased IL-10 level. While its over-expression augmented the Treg differentiation, with an elevated IL-10 level. In addition, knockdown or over-expression of NR4A2 showed no significant influence on Th17 differentiation. CONCLUSION These results indicate that the low level of NR4A2 in GD patients may suppress Treg differentiation, but have no influence on Th17 differentiation, leading to the imbalance of Th17/Treg and contributing to the development of GD. Revealing the role of NR4A2 in GD provides a novel insight for the treatment of GD.
Collapse
Affiliation(s)
- Shuiying Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xinyu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fengjiao Huang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yingying Zhou
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dongdong Meng
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Di Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiao Wang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haohao Zhang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lina Wu
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ying Zhang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lin Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lixia Zhang
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi Song
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingzhu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
6
|
Ban M, Bredikhin D, Huang Y, Bonder MJ, Katarzyna K, Oliver AJ, Wilson NK, Coupland P, Hadfield J, Göttgens B, Madissoon E, Stegle O, Sawcer S. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain 2024; 147:554-565. [PMID: 38038362 PMCID: PMC10834244 DOI: 10.1093/brain/awad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kania Katarzyna
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - James Hadfield
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Elo Madissoon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
7
|
Tsukamoto S, Suzuki T, Wakui H, Uehara T, Ichikawa J, Okuda H, Haruhara K, Azushima K, Abe E, Tanaka S, Taguchi S, Hirota K, Kinguchi S, Yamashita A, Tamura T, Tamura K. Angiotensin II type 1 receptor-associated protein in immune cells: a possible key factor in the pathogenesis of visceral obesity. Metabolism 2023; 149:155706. [PMID: 37856903 DOI: 10.1016/j.metabol.2023.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND AND AIM Dysregulation of angiotensin II type 1 receptor-associated protein (ATRAP) expression in cardiovascular, kidney, and adipose tissues is involved in the pathology of hypertension, cardiac hypertrophy, atherosclerosis, kidney injury, and metabolic disorders. Furthermore, ATRAP is highly expressed in bone marrow-derived immune cells; however, the functional role of immune cell ATRAP in obesity-related pathology remains unclear. Thus, we sought to identify the pathophysiological significance of immune cell ATRAP in the development of visceral obesity and obesity-related metabolic disorders using a mouse model of diet-induced obesity. METHODS Initially, we examined the effect of high-fat diet (HFD)-induced obesity on the expression of immune cell ATRAP in wild-type mice. Subsequently, we conducted bone marrow transplantation to generate two types of chimeric mice: bone marrow wild-type chimeric (BM-WT) and bone marrow ATRAP knockout chimeric (BM-KO) mice. These chimeric mice were provided an HFD to induce visceral obesity, and then the effects of immune cell ATRAP deficiency on physiological parameters and adipose tissue in the chimeric mice were investigated. RESULTS In wild-type mice, body weight increase by HFD was associated with increased expression of immune cell ATRAP. In the bone marrow transplantation experiments, BM-KO mice exhibited amelioration of HFD-induced weight gain and visceral fat expansion with small adipocytes compared BM-WT mice. In addition, BM-KO mice on the HFD showed significant improvements in white adipose tissue metabolism, inflammation, glucose tolerance, and insulin resistance, compared with BM-WT mice on the HFD. Detailed analysis of white adipose tissue revealed significant suppression of HFD-induced activation of transforming growth factor-beta signaling, a key contributor to visceral obesity, via amelioration of CD206+ macrophage accumulation in the adipose tissue of BM-KO mice. This finding suggests a relevant mechanism for the anti-obesity phenotype in BM-KO mice on the HFD. Finally, transcriptome analysis of monocytes indicated the possibility of genetic changes, such as the enhancement of interferon-γ response at the monocyte level, affecting macrophage differentiation in BM-KO mice. CONCLUSION Collectively, our results indicate that ATRAP in bone marrow-derived immune cells plays a role in the pathogenesis of visceral obesity. The regulation of ATRAP expression in immune cells may be a key factor against visceral adipose obesity with metabolic disorders.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Tatsuki Uehara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Juri Ichikawa
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroshi Okuda
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keigo Hirota
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Investigative Medicine Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Advanced Medical Research Center, Yokohama City University, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Li B, Yang Z, Mao F, Gong W, Su Q, Yang J, Liu B, Song Y, Jin J, Lu Y. Downregulation of microRNA-145a-5p promotes steatosis-to-NASH progression through upregulation of Nr4a2. J Hepatol 2023; 79:1096-1109. [PMID: 37463623 DOI: 10.1016/j.jhep.2023.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND & AIMS The molecular mechanisms underlying the progression of simple steatosis to non-alcoholic steatohepatitis (NASH) remain incompletely understood, though the potential role of epigenetic regulation by microRNA (miRNAs) is an area of increasing interest. In the present study, we aimed to investigate the role of miRNAs during steatosis-to-NASH progression, as well as underlying mechanisms. METHODS miR-145a-5p was identified as an important checkpoint in steatosis-to-NASH progression. In vivo loss-of-function and gain-of-function studies were performed to explore the role of miR-145a-5p and Nr4a2 in NASH progression. RNA-sequencing and bioinformatic analysis were used to investigate the targets of miR-145a-5p. RESULTS Suppression of miR-145a-5p in the liver aggravated lipid accumulation and activated hepatic inflammation, liver injury and fibrosis in steatotic mice, whereas its restoration markedly attenuated diet-induced NASH pathogenesis. Mechanistically, miR-145a-5p was able to downregulate the nuclear receptor Nr4a2 and thus inhibit the expression of NASH-associated genes. Similarly, Nr4a2 overexpression promoted steatosis-to-NASH progression while liver-specific Nr4a2 knockout mice were protected from diet-induced NASH. This role of the miR-145a-5p/Nr4a2 regulatory axis was also confirmed in primary human hepatocytes. Furthermore, the expression of miR-145a-5p was reduced and the expression of Nr4a2 was increased in the livers of patients with NASH, while their expression levels significantly negatively and positively correlated with features of liver pathology, respectively. CONCLUSIONS Our findings highlight the role of the miR-145a-5p/Nr4a2 regulatory axis in steatosis-to-NASH progression, suggesting that either supplementation of miR-145a-5p or pharmacological inhibition of Nr4a2 in hepatocytes may provide a promising therapeutic approach for the treatment of NASH. IMPACT AND IMPLICATIONS Non-alcoholic fatty liver disease (NAFLD) is a dynamic spectrum of chronic liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Unfortunately, there are currently no approved drugs for NASH. Our current study identified miR-145a-5p as a novel regulator that inhibits steatosis-to-NASH progression. We found that miR-145a-5p was able to downregulate the nuclear receptor Nr4a2 to suppress the expression of NASH-associated genes. The differential expression of miR-145a-5p and Nr4a2 was further confirmed in patients with NASH, raising the possibility that supplementation of miR-145a-5p or suppression of Nr4a2 in hepatocytes might provide novel strategies for treating NASH.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Fei Mao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 230032, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuping Song
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201100, China.
| | - Jie Jin
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China.
| |
Collapse
|
9
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Wang Y, Wang Y, Liu B, Gao X, Li Y, Li F, Zhou H. Mapping the tumor microenvironment in clear cell renal carcinoma by single-cell transcriptome analysis. Front Genet 2023; 14:1207233. [PMID: 37533434 PMCID: PMC10392130 DOI: 10.3389/fgene.2023.1207233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Clear cell renal cell carcinoma (ccRCC) is associated with unfavorable clinical outcomes. To identify viable therapeutic targets, a comprehensive understanding of intratumoral heterogeneity is crucial. In this study, we conducted bioinformatic analysis to scrutinize single-cell RNA sequencing data of ccRCC tumor and para-tumor samples, aiming to elucidate the intratumoral heterogeneity in the ccRCC tumor microenvironment (TME). Methods: A total of 51,780 single cells from seven ccRCC tumors and five para-tumor samples were identified and grouped into 11 cell lineages using bioinformatic analysis. These lineages included tumor cells, myeloid cells, T-cells, fibroblasts, and endothelial cells, indicating a high degree of heterogeneity in the TME. Copy number variation (CNV) analysis was performed to compare CNV frequencies between tumor and normal cells. The myeloid cell population was further re-clustered into three major subgroups: monocytes, macrophages, and dendritic cells. Differential expression analysis, gene ontology, and gene set enrichment analysis were employed to assess inter-cluster and intra-cluster functional heterogeneity within the ccRCC TME. Results: Our findings revealed that immune cells in the TME predominantly adopted an inflammatory suppression state, promoting tumor cell growth and immune evasion. Additionally, tumor cells exhibited higher CNV frequencies compared to normal cells. The myeloid cell subgroups demonstrated distinct functional properties, with monocytes, macrophages, and dendritic cells displaying diverse roles in the TME. Certain immune cells exhibited pro-tumor and immunosuppressive effects, while others demonstrated antitumor and immunostimulatory properties. Conclusion: This study contributes to the understanding of intratumoral heterogeneity in the ccRCC TME and provides potential therapeutic targets for ccRCC treatment. The findings emphasize the importance of considering the diverse functional roles of immune cells in the TME for effective therapeutic interventions.
Collapse
Affiliation(s)
- Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Jilin, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
11
|
Kim GS, Harmon E, Gutierrez M, Stephenson J, Chauhan A, Banerjee A, Wise Z, Doan A, Wu T, Lee J, Jung JE, McCullough L, Wythe J, Marrelli S. Single-cell analysis identifies Ifi27l2a as a novel gene regulator of microglial inflammation in the context of aging and stroke. RESEARCH SQUARE 2023:rs.3.rs-2557290. [PMID: 36824976 PMCID: PMC9949241 DOI: 10.21203/rs.3.rs-2557290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microglia are key mediators of inflammatory responses within the brain, as they regulate pro-inflammatory responses while also limiting neuroinflammation via reparative phagocytosis. Thus, identifying genes that modulate microglial function may reveal novel therapeutic interventions for promoting better outcomes in diseases featuring extensive inflammation, such as stroke. To facilitate identification of potential mediators of inflammation, we performed single-cell RNA sequencing of aged mouse brains following stroke and found that Ifi27l2a was significantly up-regulated, particularly in microglia. The increased Ifi27l2a expression was further validated in microglial culture, stroke models with microglial depletion, and human autopsy samples. Ifi27l2a is known to be induced by interferons for viral host defense, however the role of Ifi27l2a in neurodegeneration is unknown. In vitro studies in cultured microglia demonstrated that Ifi27l2a overexpression causes neuroinflammation via reactive oxygen species. Interestingly, hemizygous deletion of Ifi27l2a significantly reduced gliosis in the thalamus following stroke, while also reducing neuroinflammation, indicating Ifi27l2a gene dosage is a critical mediator of neuroinflammation in ischemic stroke. Collectively, this study demonstrates that a novel gene, Ifi27l2a, regulates microglial function and neuroinflammation in the aged brain and following stroke. These findings suggest that Ifi27l2a may be a novel target for conferring cerebral protection post-stroke.
Collapse
Affiliation(s)
- Gab Seok Kim
- The University of Texas Health Science Center at Houston
| | | | | | | | | | | | - Zachary Wise
- The University of Texas Health Science Center at Houston
| | - Andrea Doan
- The University of Texas Health Science Center at Houston
| | - Ting Wu
- The University of Texas Health Science Center at Houston
| | - Juneyoung Lee
- The University of Texas Health Science Center at Houston
| | | | - Louise McCullough
- McGovern Medical School/University of Texas Health Science Center at Houston
| | | | - Sean Marrelli
- The University of Texas McGovern Medical School at Houston, 77030, TX
| |
Collapse
|
12
|
Servaas NH, Hiddingh S, Chouri E, Wichers CGK, Affandi AJ, Ottria A, Bekker CPJ, Cossu M, Silva-Cardoso SC, van der Kroef M, Hinrichs AC, Carvalheiro T, Vazirpanah N, Beretta L, Rossato M, Bonte-Mineur F, Radstake TRDJ, Kuiper JJW, Boes M, Pandit A. Nuclear Receptor Subfamily 4A Signaling as a Key Disease Pathway of CD1c+ Dendritic Cell Dysregulation in Systemic Sclerosis. Arthritis Rheumatol 2023; 75:279-292. [PMID: 36482877 PMCID: PMC10108054 DOI: 10.1002/art.42319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc). METHODS Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays. RESULTS We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation. CONCLUSION NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.
Collapse
Affiliation(s)
- Nila H Servaas
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sanne Hiddingh
- Center for Translational Immunology and Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleni Chouri
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Catharina G K Wichers
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alsya J Affandi
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andrea Ottria
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis P J Bekker
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cossu
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandra C Silva-Cardoso
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maarten van der Kroef
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anneline C Hinrichs
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nadia Vazirpanah
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Femke Bonte-Mineur
- Department of Rheumatology and Clinical Immunology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Center for Translational Immunology and Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
The lncRNA LUCAT1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc Natl Acad Sci U S A 2023; 120:e2213715120. [PMID: 36577072 PMCID: PMC9910463 DOI: 10.1073/pnas.2213715120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nuclear long non-coding RNA LUCAT1 has previously been identified as a negative feedback regulator of type I interferon and inflammatory cytokine expression in human myeloid cells. Here, we define the mechanistic basis for the suppression of inflammatory gene expression by LUCAT1. Using comprehensive identification of RNA-binding proteins by mass spectrometry as well as RNA immunoprecipitation, we identified proteins important in processing and alternative splicing of mRNAs as LUCAT1-binding proteins. These included heterogeneous nuclear ribonucleoprotein C, M, and A2B1. Consistent with this finding, cells lacking LUCAT1 have altered splicing of selected immune genes. In particular, upon lipopolysaccharide stimulation, the splicing of the nuclear receptor 4A2 (NR4A2) gene was particularly affected. As a consequence, expression of NR4A2 was reduced and delayed in cells lacking LUCAT1. NR4A2-deficient cells had elevated expression of immune genes. These observations suggest that LUCAT1 is induced to control the splicing and stability of NR4A2, which is in part responsible for the anti-inflammatory effect of LUCAT1. Furthermore, we analyzed a large cohort of patients with inflammatory bowel disease as well as asthma and chronic obstructive pulmonary disease. In these patients, LUCAT1 levels were elevated and in both diseases, positively correlated with disease severity. Collectively, these studies define a key molecular mechanism of LUCAT1-dependent immune regulation through post-transcriptional regulation of mRNAs highlighting its role in the regulation of inflammatory disease.
Collapse
|
14
|
Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol 2022; 18:384-397. [PMID: 35672464 DOI: 10.1038/s41584-022-00790-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Synovial tissue macrophages (STMs) were principally recognized as having a pro-inflammatory role in rheumatoid arthritis (RA), serving as the main producers of pathogenic tumour necrosis factor (TNF). Recent advances in single-cell omics have facilitated the discovery of distinct STM populations, providing an atlas of discrete phenotypic clusters in the context of healthy and inflamed joints. Interrogation of the functions of distinct STM populations, via ex vivo and experimental mouse models, has re-defined our understanding of STM biology, opening up new opportunities to better understand the pathology of the arthritic joint. These works have identified STM subpopulations that form a protective lining barrier within the synovial membrane and actively participate in the remission of RA. We discuss how distinct functions of STM clusters shape the synovial tissue environment in health, during inflammation and in disease remission, as well as how an increased understanding of STM heterogeneity might aid the prediction of clinical outcomes and inform novel treatments for RA.
Collapse
Affiliation(s)
- Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK.
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK.
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Immunology Research Core Facility, Gemelli Science and Technology Park (GSTeP), Rome, Italy.
| |
Collapse
|
15
|
Ballester-Servera C, Cañes L, Alonso J, Puertas L, Taurón M, Rodríguez C, Martínez-González J. Nuclear receptor NOR-1 (Neuron-derived Orphan Receptor-1) in pathological vascular remodelling and vascular remodelling. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2022; 34:229-243. [PMID: 35581107 DOI: 10.1016/j.arteri.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
Vascular cells and their interaction with inflammatory cells and the immune system play a key role in pathological vascular remodeling. A large number of genes and proteins regulated in a coordinated manner by a small number of transcription factors are involved in this process. In recent years, research on a small subfamily of transcription factors, the NR4A subfamily, has had a major impact on our understanding of vascular biology. The NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (NOR-1) receptors are products of early response genes whose expression is induced by multiple pathophysiological and physical stimuli. Their wide distribution in different tissues and cells places them in the control of numerous processes such as cell differentiation, proliferation, survival and apoptosis, as well as inflammation and the metabolism of lipids and carbohydrates. This review analyzes the role of these receptors, particularly NOR-1, in pathological vascular remodeling associated with atherosclerosis, abdominal aortic aneurysm and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España
| | - Lidia Puertas
- Instituto de Investigación Biomédica Sant Pau, Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España
| | - Manel Taurón
- Servicio de Cirugía Cardiovascular, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, España; CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, España; Instituto de Investigación Biomédica Sant Pau, Barcelona, España.
| |
Collapse
|
16
|
Simmons JD, Dill-McFarland KA, Stein CM, Van PT, Chihota V, Ntshiqa T, Maenetje P, Peterson GJ, Benchek P, Nsereko M, Velen K, Fielding KL, Grant AD, Gottardo R, Mayanja-Kizza H, Wallis RS, Churchyard G, Boom WH, Hawn TR. Monocyte Transcriptional Responses to Mycobacterium tuberculosis Associate with Resistance to Tuberculin Skin Test and Interferon Gamma Release Assay Conversion. mSphere 2022; 7:e0015922. [PMID: 35695527 PMCID: PMC9241521 DOI: 10.1128/msphere.00159-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Heavy exposure to Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) and among the top infectious killers worldwide, results in infection that is cleared, contained, or progresses to disease. Some heavily exposed tuberculosis contacts show no evidence of infection using the tuberculin skin test (TST) and interferon gamma release assay (IGRA); yet the mechanisms underlying this "resister" (RSTR) phenotype are unclear. To identify transcriptional responses that distinguish RSTR monocytes, we performed transcriptome sequencing (RNA-seq) on monocytes isolated from heavily exposed household contacts in Uganda and gold miners in South Africa after ex vivo M. tuberculosis infection. Gene set enrichment analysis (GSEA) revealed several gene pathways that were consistently enriched in response to M. tuberculosis among RSTR subjects compared to controls with positive TST/IGRA testing (latent TB infection [LTBI]) across Uganda and South Africa. The most significantly enriched gene set in which expression was increased in RSTR relative to LTBI M. tuberculosis-infected monocytes was the tumor necrosis factor alpha (TNF-α) signaling pathway whose core enrichment (leading edge) substantially overlapped across RSTR populations. These leading-edge genes included candidate resistance genes (ABCA1 and DUSP2) with significantly increased expression among Uganda RSTRs (false-discovery rate [FDR], <0.1). The distinct monocyte transcriptional response to M. tuberculosis among RSTR subjects, including increased expression of the TNF signaling pathway, highlights genes and inflammatory pathways that may mediate resistance to TST/IGRA conversion and provides therapeutic targets to enhance host restriction of M. tuberculosis intracellular infection. IMPORTANCE After heavy M. tuberculosis exposure, the events that determine why some individuals resist TST/IGRA conversion are poorly defined. Enrichment of the TNF signaling gene set among RSTR monocytes from multiple distinct cohorts suggests an important role for the monocyte TNF response in determining this alternative immune outcome. These TNF responses to M. tuberculosis among RSTRs may contribute to antimicrobial programs that result in early clearance or the priming of alternative (gamma interferon-independent) cellular responses.
Collapse
Affiliation(s)
- Jason D. Simmons
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kimberly A. Dill-McFarland
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phu T. Van
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Violet Chihota
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- The Aurum Institute, Parktown, South Africa
| | | | | | - Glenna J. Peterson
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary Nsereko
- Uganda-CWRU Research Collaboration, Kampala, Uganda
| | | | - Katherine L. Fielding
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Alison D. Grant
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Africa Health Research Institute, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Gavin Churchyard
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
- The Aurum Institute, Parktown, South Africa
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R. Hawn
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Tiwari D, Ahuja N, Kumar S, Kalra R, Nanduri R, Gupta S, Khare AK, Bhagyaraj E, Arora R, Gupta P. Nuclear receptor Nr1d1 alleviates asthma by abating GATA3 gene expression and Th2 cell differentiation. Cell Mol Life Sci 2022; 79:308. [PMID: 35596832 PMCID: PMC11073070 DOI: 10.1007/s00018-022-04323-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
Nuclear receptors are a unique family of transcription factors that play cardinal roles in physiology and plethora of human diseases. The adopted orphan nuclear receptor Nr1d1 is a constitutive transcriptional repressor known to modulate several biological processes. In this study, we found that Nr1d1 plays a decisive role in T helper (Th)-cell polarization and transcriptionally impedes the formation of Th2 cells by directly binding to the promoter region of GATA binding protein 3 (GATA3) gene. Nr1d1 interacts with its cellular companion, the nuclear receptor corepressor and histone deacetylase 3 to form a stable repression complex on the GATA3 promoter. The presence of Nr1d1 also imparts protection against associated inflammatory responses in murine model of asthma and its ligand SR9011 eased disease severity by suppressing Th2 responses. Moreover, Chip-seq profiling uncovered Nr1d1 interactions with other gene subsets that impedes Th2-linked pathways and regulates metabolism, immunity and brain functions, therefore, providing empirical evidence regarding the genetic link between asthma and other comorbid conditions. Thus, Nr1d1 emerges as a molecular switch that could be targeted to subdue asthma.
Collapse
Affiliation(s)
- Drishti Tiwari
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| | - Nancy Ahuja
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sumit Kumar
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rashi Kalra
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ravikanth Nanduri
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Shalini Gupta
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Asheesh Kumar Khare
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Ella Bhagyaraj
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA
| | - Rashmi Arora
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Pawan Gupta
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
18
|
Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines 2022; 10:biomedicines10051190. [PMID: 35625926 PMCID: PMC9138494 DOI: 10.3390/biomedicines10051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The oxidative stress phenomenon is a result of anticancer therapy. The aim of this study was the assessment of gene expression profile changes, and to determine the miRNAs regulating genes’ transcriptional activity in an Ishikawa endometrial cancer culture exposed to cisplatin or salinomycin, compared to a control culture. The molecular analysis comprised the microarray technique (mRNAs and micro RNA (miRNA), the real-time quantitative reverse transcription reaction (RTqPCR), enzyme-linked immunosorbent assay (ELISA) reactions, and Western blot. NR4A2, MAP3K8, ICAM1, IL21, CXCL8, CCL7, and SLC7A11 were statistically significantly differentiated depending not only on time, but also on the drug used in the experiment. The conducted assessment indicated that the strongest links were between NR4A2 and hsa-miR-30a-5p and has-miR-302e, MAP3K8 and hsa-miR-144-3p, CXCL8 and hsa-miR-140-3p, and SLC7A11 and hsa-miR-144-3p. The obtained results suggest that four mRNAs—NR4A2, MAP3K8, CXCL8 and SLC7A11—and four miRNAs—hsa-miR-30a-5p, hsa-miR-302e, hsa-miR-144-3p and hsa-miR-140-3—changed their expressions regardless of the chemotherapeutic agent used, which suggests the possibility of their use in monitoring the severity of oxidative stress in endometrial cancer. However, considering the results at both the mRNA and the protein level, it is most likely that the expressions of NR4A2, MAP3K8, CXCL8 and SLC7A11 are regulated by miRNA molecules as well as other epigenetic mechanisms.
Collapse
|
19
|
Miao H, Li X, Zhou C, Liang Y, Li D, Ji Q. NR4A2 alleviates cardiomyocyte loss and myocardial injury in rats by transcriptionally suppressing CCR5 and inducing M2 polarization of macrophages. Microvasc Res 2022; 140:104279. [PMID: 34774582 DOI: 10.1016/j.mvr.2021.104279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CC chemokine receptor 5 (CCR5) has been demonstrated to be correlated to activation of pro-inflammatory immune cells and tissue injury. This study focused on the role of CCR5 in myocardial injury in rats with diabetic cardiomyopathy (DCM) and the mechanism of action. METHODS A rat model of DCM was induced by streptozotocin (STZ). CCR5 was knocked down in rats to determine its role in myocardial injury and immune cell infiltration. The upstream regulators of CCR5 were bioinformatically predicted and the binding between nuclear receptor subfamily 4 group A member 2 (NR4A2) and CCR5 was validated. The portion of M1 and M2 macrophages in tissues was determined by flow cytometry or double-labeling immunofluorescence. Rat bone marrow mononuclear cells (BMMCs) were treated with granulocyte/macrophage colony stimulating factor (GM-CSF/M-CSF) and co-cultured with H9C2 cells for in vitro experiments. RESULTS STZ-treated rats had impaired cardiac function and increased levels of creatine kinase-MB, cardiac troponin I and lactate dehydrogenase. CCR5 inhibition significantly alleviated myocardial injury in rats and reduced the portion of M1 macrophages in rat cardiac tissues. NR4A2, which could suppress CCR5 transcription, was poorly expressed in rats with DCM. NR4A2 overexpression played a similar myocardium-protective role in rats. In vitro, overexpression of NR4A2 induced M2 polarization of macrophages, which protected the co-cultured H9C2 cells from high glucose-induced damage, but the protective role was blocked after CCR5 overexpression. CONCLUSION This study demonstrated that NR4A2 suppresses CCR5 expression and promotes M2 polarization of macrophages to alleviate cardiomyocyte loss and myocardial injury.
Collapse
MESH Headings
- Animals
- Male
- Cell Line
- Coculture Techniques
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/immunology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Disease Models, Animal
- Down-Regulation
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phenotype
- Rats, Sprague-Dawley
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Signal Transduction
- Transcription, Genetic
- Rats
Collapse
Affiliation(s)
- Huangtai Miao
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xiaoying Li
- Department of Health Care for Cadres, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Can Zhou
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ying Liang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Deshun Li
- Department of Cardiology, Huanghua Traditional Chinese Medicine Hospital of Hebei Province, Huanghua 061100, Hebei, PR China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
20
|
Role of NR4A family members in myeloid cells and leukemia. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:23-36. [PMID: 35496823 PMCID: PMC9040138 DOI: 10.1016/j.crimmu.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia. NR4A1-3 have important roles in the different cells of the myeloid compartment. These orphan receptors homeostasis, differentiation, and activation. NR4A family is important in suppressing the development of myeloid leukemias. NR4As have been linked to several diseases and could be pharmacological targets.
Collapse
|
21
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Palaga T. The chemotherapeutic drug carboplatin affects macrophage responses to LPS and LPS tolerance via epigenetic modifications. Sci Rep 2021; 11:21574. [PMID: 34732786 PMCID: PMC8566489 DOI: 10.1038/s41598-021-00955-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Following re-exposure to lipopolysaccharide (LPS), macrophages exhibit an immunosuppressive state known as LPS tolerance, which is characterized by repressed proinflammatory cytokine production. LPS-induced tolerance in macrophages is mediated in part by epigenetic changes. Carboplatin, an anticancer chemotherapeutic drug, exerts its effect by inhibiting DNA replication and transcription, as well as through epigenetic modifications. Through an unbiased screen, we found that carboplatin rescued TNF-α and IL-6 production in LPS-tolerant macrophages. Transcriptomic analysis and gene set enrichment analyses revealed that p53 was one of the most significantly upregulated hallmarks in both LPS-primed and LPS-tolerant macrophages in the presence of carboplatin, while E2F and G2/M were the most negatively regulated hallmarks. Heterochromatin protein 1 (HP1-α), which is associated with gene silencing, was significantly reduced in carboplatin-treated LPS-tolerant macrophages at the mRNA and protein levels. Dynamic changes in the mRNA level of genes encoding H3K9me3 methyltransferases, setdb2, kdm4d, and suv39h1 were induced in the presence of carboplatin in LPS-tolerant macrophages. Taken together, we provide evidence that carboplatin treatment interferes with proinflammatory cytokine production during the acute LPS response and LPS tolerance in macrophages, possibly via H3K9me3 modification.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Inter-Disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
22
|
Martínez-González J, Cañes L, Alonso J, Ballester-Servera C, Rodríguez-Sinovas A, Corrales I, Rodríguez C. NR4A3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling, and Beyond. Int J Mol Sci 2021; 22:ijms222111371. [PMID: 34768801 PMCID: PMC8583700 DOI: 10.3390/ijms222111371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.
Collapse
Affiliation(s)
- José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (L.C.); (J.A.); (C.B.-S.)
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Irene Corrales
- Laboratorio de Coagulopatías Congénitas, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain;
- Medicina Transfusional, Vall d’Hebron Institut de Recerca-Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Correspondence: (J.M.-G.); (C.R.); Tel.: +34-93-5565896 (J.M.-G.); +34-93-5565897 (C.R.)
| |
Collapse
|
23
|
Comparative Transcriptome Analysis in Monocyte-Derived Macrophages of Asymptomatic GBA Mutation Carriers and Patients with GBA-Associated Parkinson's Disease. Genes (Basel) 2021; 12:genes12101545. [PMID: 34680941 PMCID: PMC8535749 DOI: 10.3390/genes12101545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations of the GBA gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are the greatest genetic risk factor for Parkinson’s disease (PD) with frequency between 5% and 20% across the world. N370S and L444P are the two most common mutations in the GBA gene. PD carriers of severe mutation L444P in the GBA gene is characterized by the earlier age at onset compared to N370S. Not every carrier of GBA mutations develop PD during one’s lifetime. In the current study we aimed to find common gene expression signatures in PD associated with mutation in the GBA gene (GBA-PD) using RNA-seq. We compared transcriptome of monocyte-derived macrophages of 5 patients with GBA-PD (4 L444P/N, 1 N370S/N) and 4 asymptomatic GBA mutation carriers (GBA-carriers) (3 L444P/N, 1 N370S/N) and 4 controls. We also conducted comparative transcriptome analysis for L444P/N only GBA-PD patients and GBA-carriers. Revealed deregulated genes in GBA-PD independently of GBA mutations (L444P or N370S) were involved in immune response, neuronal function. We found upregulated pathway associated with zinc metabolism in L444P/N GBA-PD patients. The potential important role of DUSP1 in the pathogenesis of GBA-PD was suggested.
Collapse
|
24
|
Wu R, Li J, Li J, Zhang N, Zhou W, Ren L, Chen Q, Li Y. Construction of Competing Endogenous RNA Networks Incorporating Transcription Factors to Reveal Differences in Granulosa Cells from Patients with Endometriosis. Genet Test Mol Biomarkers 2021; 25:453-462. [PMID: 34280006 DOI: 10.1089/gtmb.2020.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aimed to reveal the molecular differences in granulosa cells (GCs) from patients with endometriosis (EM). Methods: RNA sequencing was performed on GCs from patients with EM-related infertility (n = 3) and controls (n = 3). Differentially expressed long noncoding RNAs [differentially expressed lncRNAs (DELs), |log2 FC|>4, false discovery rate (FDR) <0.05] and genes [differentially expressed genes (DEGs), |log2 FC|>1.4, FDR <0.05] in patients with EM-related infertility and controls were screened. Protein-protein interaction (PPI) networks of the DEGs were constructed. Then, mRNA-miRNA-lncRNA pairs based on DEGs and DELs were constructed by comprehensive bioinformatics analyses. In addition, overlapping genes identified from both the PPI and mRNA-miRNA-lncRNA pairs were selected. Finally, a competing endogenous RNA (ceRNA) network incorporating transcription factors (TFs) was constructed. Results: A total of 25,806 lncRNAs and 19,684 mRNAs were detected, and 7 DELs and 46 DEGs were identified. Five hub genes from the PPI network were also identified. A single overlapping gene, NR4A2, from both the PPI network and mRNA-miRNA-lncRNA pairs was identified. Finally, a ceRNA network incorporating TFs, including one mRNA (NR4A2), one miRNA (hsa-miR-217), three lncRNAs (XIST, MCM3AP-AS1, and C17orf51), and five TFs (SRF, POLR2A, NRF1, MNT, and TCF7L2), was successfully constructed. Conclusions: The proposed ceRNA network and the prediction of TFs in GCs from EM-related infertility revealed differences in GCs from patients with EM. Importantly, the novel TFs, lncRNAs, miRNAs, and mRNAs involved in the ceRNA network might provide new insights into the underlying molecular mechanisms of EM-related infertility.
Collapse
Affiliation(s)
- Rongfeng Wu
- Reproductive Medical Center, and The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| | - Junzui Li
- The Key Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen and Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| | - Jingjing Li
- School of Life Sciences, Xiamen University, Fujian, P.R. China
| | - Ningqing Zhang
- The Key Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen and Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| | - Weidong Zhou
- Reproductive Medical Center, and The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| | - Lulu Ren
- Reproductive Medical Center, and The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| | - Qionghua Chen
- The Key Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen and Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| | - Youzhu Li
- Reproductive Medical Center, and The First Affiliated Hospital, School of Medicine, Xiamen University, Fujian, P.R. China
| |
Collapse
|
25
|
Phelan DE, Shigemura M, Aldhafiri S, Mota C, Hall TJ, Sznajder JI, Murphy EP, Crean D, Cummins EP. Transcriptional Profiling of Monocytes Deficient in Nuclear Orphan Receptors NR4A2 and NR4A3 Reveals Distinct Signalling Roles Related to Antigen Presentation and Viral Response. Front Immunol 2021; 12:676644. [PMID: 34248958 PMCID: PMC8267906 DOI: 10.3389/fimmu.2021.676644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
The nuclear receptor sub-family 4 group A (NR4A) family are early response genes that encode proteins that are activated in several tissues/cells in response to a variety of stressors. The NR4A family comprises NR4A1, NR4A2 and NR4A3 of which NR4A2 and NR4A3 are under researched and less understood, particularly in the context of immune cells. NR4A expression is associated with multiple diseases e.g. arthritis and atherosclerosis and the development of NR4A-targetting molecules as therapeutics is a current focus in this research field. Here, we use a combination of RNA-sequencing coupled with strategic bioinformatic analysis to investigate the down-stream effects of NR4A2 and NR4A3 in monocytes and dissect their common and distinct signalling roles. Our data reveals that NR4A2 and NR4A3 depletion has a robust and broad-reaching effect on transcription in both the unstimulated state and in the presence of LPS. Interestingly, many of the genes affected were present in both the unstimulated and stimulated states revealing a previously unappreciated role for the NR4As in unstimulated cells. Strategic clustering and bioinformatic analysis identified both distinct and common transcriptional roles for NR4A2 and NR4A3 in monocytes. NR4A2 notably was linked by both bioinformatic clustering analysis and transcription factor interactome analysis to pathways associated with antigen presentation and regulation of MHC genes. NR4A3 in contrast was more closely linked to pathways associated with viral response. Functional studies further support our data analysis pointing towards preferential/selective roles for NR4A2 in the regulation of antigen processing with common roles for NR4A2 and NR4A3 evident with respect to cell migration. Taken together this study provides novel mechanistic insights into the role of the enigmatic nuclear receptors NR4A2 and NR4A3 in monocytes.
Collapse
Affiliation(s)
- David E Phelan
- School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah Aldhafiri
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,Animal Genomics Laboratory, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Catarina Mota
- School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Thomas J Hall
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Evelyn P Murphy
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Daniel Crean
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,Animal Genomics Laboratory, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Ismaiel M, Murphy B, Aldhafiri S, Giffney HE, Thornton K, Mukhopadhya A, Keogh CE, Fattah S, Mohan HM, Cummins EP, Murphy EP, Winter DC, Crean D. The NR4A agonist, Cytosporone B, attenuates pro-inflammatory mediators in human colorectal cancer tissue ex vivo. Biochem Biophys Res Commun 2021; 554:179-185. [PMID: 33798945 DOI: 10.1016/j.bbrc.2021.03.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is a pivotal pathological factor in colorectal cancer (CRC) initiation and progression, and modulating this inflammatory state has the potential to ameliorate disease progression. NR4A receptors have emerged as key regulators of inflammatory pathways that are important in CRC. Here, we have examined the effect of NR4A agonist, Cytosporone B (CsnB), on colorectal tissue integrity and its effect on the inflammatory profile in CRC tissue ex vivo. Here, we demonstrate concentrations up 100 μM CsnB did not adversely affect tissue integrity as measured using transepithelial electrical resistance, histology and crypt height. Subsequently, we reveal through the use of a cytokine/chemokine array, ELISA and qRT-PCR analysis that multiple pro-inflammatory mediators were significantly increased in CRC tissue compared to control tissue, which were then attenuated with the addition of CsnB (such as IL-1β, IL-8 and TNFα). Lastly, stratification of the data revealed that CsnB especially alters the inflammatory profile of tumours derived from males who had not undergone chemoradiotherapy. Thus, this study demonstrates that NR4A agonist CsnB does not adversely affect colon tissue structure or functionality and can attenuate the pro-inflammatory state of human CRC tissue ex vivo.
Collapse
Affiliation(s)
- Mohamed Ismaiel
- School of Medicine, University College Dublin, Dublin, Ireland; Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Brenda Murphy
- School of Medicine, University College Dublin, Dublin, Ireland; Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Sarah Aldhafiri
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Hugh E Giffney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kevin Thornton
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Sarinj Fattah
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Helen M Mohan
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Evelyn P Murphy
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Des C Winter
- School of Medicine, University College Dublin, Dublin, Ireland; Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland.
| | - Daniel Crean
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Gong FH, Long L, Yang YS, Shen DH, Zhang YS, Wang XS, Zhang XP, Xiao XQ. Attenuated macrophage activation mediated by microRNA-183 knockdown through targeting NR4A2. Exp Ther Med 2021; 21:300. [PMID: 33717243 DOI: 10.3892/etm.2021.9731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is considered a chronic inflammatory disease, and macrophages function as important mediators in the development of atherogenesis. MicroRNA (miR)-183 is a small non-coding RNA that acts as a novel tumor suppressor and has recently been proposed to affect cardiac hypertrophy. However, the exact role and underlying mechanism of miR-183 in macrophage activation remain unknown. In the present study, miR-183 showed upregulated expression in atheromatous plaques and in bone marrow-derived macrophages (BMDMs) subjected to stimulation with oxidized low-density lipoproteins. Using a miR-183 loss-of-function strategy, it was demonstrated that miR-183 knockdown significantly increased resolving M2 macrophage marker expression but decreased proinflammatory M1 macrophage marker expression, as well as attenuated NF-κB activation. Moreover, decreased foam-cell formation accompanied by upregulation of genes involved in cholesterol efflux and downregulation of genes implicated in cholesterol influx was found in BMDMs transfected with a miR-183 inhibitor. Mechanistically, macrophage activation mediated by miR-183 silencing was partially attributed to direct upregulation of NR4A2 expression in BMDMs. Thus, the present study suggests that neutralizing miR-183 may be a potential therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Li Long
- Department of Clinical Laboratory, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Yong-Sheng Yang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - De-Hong Shen
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Yu-Song Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xue-Sheng Wang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xue-Ping Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xiao-Qiang Xiao
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| |
Collapse
|
28
|
Activation of MC1R with BMS-470539 attenuates neuroinflammation via cAMP/PKA/Nurr1 pathway after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation 2021; 18:26. [PMID: 33468172 PMCID: PMC7814630 DOI: 10.1186/s12974-021-02078-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of hypoxic-ischemic (HI)-induced brain injury. Activation of melanocortin-1 receptor (MC1R) has been shown to exert anti-inflammatory and neuroprotective effects in several neurological diseases. In the present study, we have explored the role of MC1R activation on neuroinflammation and the potential underlying mechanisms after neonatal hypoxic-ischemic brain injury in rats. Methods A total of 169 post-natal day 10 unsexed rat pups were used. HI was induced by right common carotid artery ligation followed by 2.5 h of hypoxia. BMS-470539, a specific selective MC1R agonist, was administered intranasally at 1 h after HI induction. To elucidate the potential underlying mechanism, MC1R CRISPR KO plasmid or Nurr1 CRISPR KO plasmid was administered via intracerebroventricular injection at 48 h before HI induction. Percent brain infarct area, short- and long-term neurobehavioral tests, Nissl staining, immunofluorescence staining, and Western blot were conducted. Results The expression levels of MC1R and Nurr1 increased over time post-HI. MC1R and Nurr1 were expressed on microglia at 48 h post-HI. Activation of MC1R with BMS-470539 significantly reduced the percent infarct area, brain atrophy, and inflammation, and improved short- and long-term neurological deficits at 48 h and 28 days post-HI. MC1R activation increased the expression of CD206 (a microglial M2 marker) and reduced the expression of MPO. Moreover, activation of MC1R with BMS-470539 significantly increased the expression levels of MC1R, cAMP, p-PKA, and Nurr1, while downregulating the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1β) at 48 h post-HI. However, knockout of MC1R or Nurr1 by specific CRISPR reversed the neuroprotective effects of MC1R activation post-HI. Conclusions Our study demonstrated that activation of MC1R with BMS-470539 attenuated neuroinflammation, and improved neurological deficits after neonatal hypoxic-ischemic brain injury in rats. Such anti-inflammatory and neuroprotective effects were mediated, at least in part, via the cAMP/PKA/Nurr1 signaling pathway. Therefore, MC1R activation might be a promising therapeutic target for infants with hypoxic-ischemic encephalopathy (HIE). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02078-2.
Collapse
|
29
|
Lamorte S, Shinde R, McGaha TL. Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Mol Aspects Med 2021; 78:100942. [PMID: 33451803 DOI: 10.1016/j.mam.2021.100942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are key regulators of innate immune responses and tissue homeostasis. Evidence indicates that NRs significantly impact steady-state immune regulation, uptake and processing of apoptotic cells, tolerance induction, and control of inflammatory immunity. In this review, we describe our current understanding of the NR activity for balancing inflammation and tolerance, the signaling cascade inducing the NR activation and functional responses, and different mechanisms of the NR-driven immune effects in the context of autoimmune diseases. We further describe the ligand-activated transcription factor the aryl hydrocarbon receptor (AhR) that exhibits analogous functionality. Moreover, we will discuss the putative role of NRs and AhR in immune regulation and disease pathogenesis providing a rationale for therapeutic targeting as a unique opportunities in the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Sara Lamorte
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Tracy L McGaha
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; The Department of Immunology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Mimouna S, Rollins DA, Shibu G, Tharmalingam B, Deochand DK, Chen X, Oliver D, Chinenov Y, Rogatsky I. Transcription cofactor GRIP1 differentially affects myeloid cell-driven neuroinflammation and response to IFN-β therapy. J Exp Med 2021; 218:e20192386. [PMID: 33045064 PMCID: PMC7555412 DOI: 10.1084/jem.20192386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Macrophages (MФ) and microglia (MG) are critical in the pathogenesis of multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Glucocorticoids (GCs) and interferon β (IFN-β) are frontline treatments for MS, and disrupting each pathway in mice aggravates EAE. Glucocorticoid receptor-interacting protein 1 (GRIP1) facilitates both GR and type I IFN transcriptional actions; hence, we evaluated the role of GRIP1 in neuroinflammation. Surprisingly, myeloid cell-specific loss of GRIP1 dramatically reduced EAE severity, immune cell infiltration of the CNS, and MG activation and demyelination specifically during the neuroinflammatory phase of the disease, yet also blunted therapeutic properties of IFN-β. MФ/MG transcriptome analyses at the bulk and single-cell levels revealed that GRIP1 deletion attenuated nuclear receptor, inflammatory and, interestingly, type I IFN pathways and promoted the persistence of a homeostatic MG signature. Together, these results uncover the multifaceted function of type I IFN in MS/EAE pathogenesis and therapy, and an unexpectedly permissive role of myeloid cell GRIP1 in neuroinflammation.
Collapse
Affiliation(s)
- Sanda Mimouna
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - David A. Rollins
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Gayathri Shibu
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Bowranigan Tharmalingam
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Dinesh K. Deochand
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Xi Chen
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - David Oliver
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Yurii Chinenov
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
| | - Inez Rogatsky
- The David Z. Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
31
|
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front Pharmacol 2020; 11:587457. [PMID: 33328994 PMCID: PMC7728612 DOI: 10.3389/fphar.2020.587457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptors are important members of the nuclear receptor family and may regulate cell proliferation, metabolism, differentiation, and apoptosis. NR4As, a subfamily of orphan nuclear receptors, have been reported to play key roles in carbohydrate and lipid metabolism and energy homeostasis. Popularity of obesity has resulted in a series of metabolic diseases such as diabetes and its complications. While imbalance of energy intake and expenditure is the main cause of obesity, the concrete mechanism of obesity has not been fully understood. It has been reported that NR4As have significant regulatory effects on energy homeostasis and diabetes and are expected to become new targets for discovering drugs for metabolic syndrome. A number of studies have demonstrated that abnormalities in metabolism induced by altered levels of NR4As may contribute to numerous diseases, such as chronic inflammation, tumorigenesis, diabetes and its complications, atherosclerosis, and other cardiovascular diseases. However, systematic reviews focusing on the roles of NR4As in mediating energy homeostasis and diabetes remain limited. Therefore, this article reviews the structure and regulation of NR4As and their critical function in energy homeostasis and diabetes, as well as small molecules that may regulate NR4As. Our work is aimed at providing valuable support for the research and development of drugs targeting NR4As for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
33
|
Role of Nurr1 in Carcinogenesis and Tumor Immunology: A State of the Art Review. Cancers (Basel) 2020; 12:cancers12103044. [PMID: 33086676 PMCID: PMC7590204 DOI: 10.3390/cancers12103044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nuclear receptor related-1 protein (Nurr1) emerges as a therapeutic target in multiple malignancies and immunotherapies. Previous studies have highlighted its association with clinicopathological parameters, tumorigenesis and therapeutic resistance in cancers. In addition, recent studies unraveled its contribution to the suppression of antitumor immunity, suggesting that inhibition of Nurr1 is a potential method to repress cancer aggressiveness and disrupt tumor immune tolerance. In line with this evidence, the present review provides the roles of Nurr1 in tumor progression and the associated underlying molecular mechanisms. Moreover, the significance of Nurr1 in promoting immune tolerance and potential strategies for Nurr1 inhibition are highlighted. Abstract Nuclear receptor related-1 protein (Nurr1), coded by an early response gene, is involved in multiple cellular and physiological functions, including proliferation, survival, and self-renewal. Dysregulation of Nurr1 has been frequently observed in many cancers and is attributed to multiple transcriptional and post-transcriptional mechanisms. Besides, Nurr1 exhibits extensive crosstalk with many oncogenic and tumor suppressor molecules, which contribute to its potential pro-malignant behaviors. Furthermore, Nurr1 is a key player in attenuating antitumor immune responses. It not only potentiates immunosuppressive functions of regulatory T cells but also dampens the activity of cytotoxic T cells. The selective accessibility of chromatin by Nurr1 in T cells is closely associated with cell exhaustion and poor efficacy of cancer immunotherapy. In this review, we summarize the reported findings of Nurr1 in different malignancies, the mechanisms that regulate Nurr1 expression, and the downstream signaling pathways that Nurr1 employs to promote a wide range of malignant phenotypes. We also give an overview of the association between Nurr1 and antitumor immunity and discuss the inhibition of Nurr1 as a potential immunotherapeutic strategy.
Collapse
|
34
|
Kumar S, Nanduri R, Bhagyaraj E, Kalra R, Ahuja N, Chacko AP, Tiwari D, Sethi K, Saini A, Chandra V, Jain M, Gupta S, Bhatt D, Gupta P. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 2020; 17:2273-2289. [DOI: 10.1080/15548627.2020.1822088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sumit Kumar
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ravikanth Nanduri
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ella Bhagyaraj
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rashi Kalra
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nancy Ahuja
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anuja P. Chacko
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Drishti Tiwari
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kanupriya Sethi
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ankita Saini
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Vemika Chandra
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Monika Jain
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shalini Gupta
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Bhatt
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pawan Gupta
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
35
|
Alivernini S, MacDonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR, Petricca L, Di Mario C, Bui L, Perniola S, Attar M, Gessi M, Fedele AL, Chilaka S, Somma D, Sansom SN, Filer A, McSharry C, Millar NL, Kirschner K, Nerviani A, Lewis MJ, Pitzalis C, Clark AR, Ferraccioli G, Udalova I, Buckley CD, Gremese E, McInnes IB, Otto TD, Kurowska-Stolarska M. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med 2020; 26:1295-1306. [PMID: 32601335 DOI: 10.1038/s41591-020-0939-8] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
Immune-regulatory mechanisms of drug-free remission in rheumatoid arthritis (RA) are unknown. We hypothesized that synovial tissue macrophages (STM), which persist in remission, contribute to joint homeostasis. We used single-cell transcriptomics to profile 32,000 STMs and identified phenotypic changes in patients with early/active RA, treatment-refractory/active RA and RA in sustained remission. Each clinical state was characterized by different frequencies of nine discrete phenotypic clusters within four distinct STM subpopulations with diverse homeostatic, regulatory and inflammatory functions. This cellular atlas, combined with deep-phenotypic, spatial and functional analyses of synovial biopsy fluorescent activated cell sorted STMs, revealed two STM subpopulations (MerTKposTREM2high and MerTKposLYVE1pos) with unique remission transcriptomic signatures enriched in negative regulators of inflammation. These STMs were potent producers of inflammation-resolving lipid mediators and induced the repair response of synovial fibroblasts in vitro. A low proportion of MerTKpos STMs in remission was associated with increased risk of disease flare after treatment cessation. Therapeutic modulation of MerTKpos STM subpopulations could therefore be a potential treatment strategy for RA.
Collapse
MESH Headings
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biopsy
- Cell Lineage/genetics
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Joints/immunology
- Joints/metabolism
- Joints/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
- Synovial Membrane
Collapse
Affiliation(s)
- Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), .
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Aziza Elmesmari
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Samuel Finlay
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Clara Di Mario
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Bui
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Perniola
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Moustafa Attar
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Marco Gessi
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Laura Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sabarinadh Chilaka
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Domenico Somma
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Stephen N Sansom
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Filer
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Charles McSharry
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Neal L Millar
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrew R Clark
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Irina Udalova
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Iain B McInnes
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Thomas D Otto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), .
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), .
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Zhang J, Wang M, Ye J, Liu J, Xu Y, Wang Z, Ye D, Zhao M, Wan J. The Anti-inflammatory Mediator Resolvin E1 Protects Mice Against Lipopolysaccharide-Induced Heart Injury. Front Pharmacol 2020; 11:203. [PMID: 32256344 PMCID: PMC7094758 DOI: 10.3389/fphar.2020.00203] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) is a common severe complication of sepsis that contributes to mortality. SIC is closely associated with excessive inflammatory responses, failed inflammation resolution, and apoptotic damage. Resolvin E1 (RvE1), an omega-3 polyunsaturated fatty acid (PUFA)-derived metabolite, has been reported to exert anti-inflammatory or proresolving activity in multiple animal models of inflammatory disease. However, the therapeutic potential of RvE1 in SIC remains undetermined, which was, therefore, the aim of the present study. Methods C57BL/6J mice were randomly divided into three groups: control, lipopolysaccharide (LPS), and LPS + RvE1. Echocardiography, Western blotting (WB), quantitative real-time (QRT)-PCR, histological analyses, and flow cytometry were used to evaluate cardiac function, myocardial inflammation, and the underlying mechanisms. Results The RvE1-injected group showed improved left ventricular (LV) function and reduced serum lactate dehydrogenase (LDH) and creatine kinase myocardial bound (CK-MB) levels. Compared to LPS treatment alone, RvE1 treatment inhibited the infiltration of neutrophils and macrophages into the heart and spleen and suppressed the secretion of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, in the heart. We also observed that the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB signaling pathways was blocked by RvE1 treatment, and this inhibition contributed to the improvement in the inflammatory response induced by LPS. RvE1 inhibited LPS-induced M1 macrophage polarization and promoted macrophage polarization toward the M2-like phenotype in both the heart and spleen. In addition, LPS administration dysregulated cyclooxygenase (COX) and lipoxygenase (LOX) in the heart, which were rectified by RvE1 treatment. RvE1 also reduced myocardial apoptosis rate in response to LPS-induced heart injury. Conclusion RvE1 protects the heart against SIC possibly through the inhibition of the MAPK and NF-κB inflammatory signaling pathways, modulation of macrophage polarization, and reduction in myocardial apoptosis. RvE1 may be a novel lipid mediator for the treatment of SIC.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
37
|
Kaur D, Patiyal S, Sharma N, Usmani SS, Raghava GPS. PRRDB 2.0: a comprehensive database of pattern-recognition receptors and their ligands. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5523871. [PMID: 31250014 PMCID: PMC6597477 DOI: 10.1093/database/baz076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
PRRDB 2.0 is an updated version of PRRDB that maintains comprehensive information about pattern-recognition receptors (PRRs) and their ligands. The current version of the database has ~2700 entries, which are nearly five times of the previous version. It contains extensive information about 467 unique PRRs and 827 pathogens-associated molecular patterns (PAMPs), manually extracted from ~600 research articles. It possesses information about PRRs and PAMPs that has been extracted manually from research articles and public databases. Each entry provides comprehensive details about PRRs and PAMPs that includes their name, sequence, origin, source, type, etc. We have provided internal and external links to various databases/resources (like Swiss-Prot, PubChem) to obtain further information about PRRs and their ligands. This database also provides links to ~4500 experimentally determined structures in the protein data bank of various PRRs and their complexes. In addition, 110 PRRs with unknown structures have also been predicted, which are important in order to understand the structure-function relationship between receptors and their ligands. Numerous web-based tools have been integrated into PRRDB 2.0 to facilitate users to perform different tasks like (i) extensive searching of the database; (ii) browsing or categorization of data based on receptors, ligands, source, etc. and (iii) similarity search using BLAST and Smith-Waterman algorithm.
Collapse
Affiliation(s)
- Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi 110020, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi 110020, India
| | - Salman Sadullah Usmani
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi 110020, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, Chandigarh 160036, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, New Delhi 110020, India
| |
Collapse
|
38
|
MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther 2019; 10:345. [PMID: 31771622 PMCID: PMC6878630 DOI: 10.1186/s13287-019-1447-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND An uncontrolled inflammatory response is a critical pathophysiological feature of sepsis. Mesenchymal stem cells (MSCs) induce macrophage phenotype polarization and reduce inflammation in sepsis. MSC-secreted transforming growth factor beta (TGF-β) participated in the immune modulatory function of MSCs. However, the underlying mechanism of MSC-secreted TGF-β was not fully elucidated in regulation macrophage M2-like polarization. METHODS The paracrine effects of MSCs on macrophage polarization were studied using a co-culture protocol with LPS-stimulated RAW264.7 cells/mouse peritoneal macrophages and MSCs. The effect of TGF-β in the co-culture system was blocked by the TGF-β receptor inhibitor. To determine the role of MSC-secreted TGF-β, we used recombinant TGF-β to culture with LPS-stimulated RAW264.7 cells. In addition, we employed antibody microarray analysis to determine the mechanisms of MSC secreted TGF-β on LPS-stimulated RAW264.7 cell/mouse peritoneal macrophage M2-like polarization. Furthermore, we used an Akt inhibitor and a FoxO1 inhibitor to inhibit the Akt/FoxO1 pathway. The nuclear translocation of FoxO1 was detected by Western blot. RESULTS MSCs induced LPS-stimulated RAW264.7 cell/mouse peritoneal macrophage polarization towards the M2-like phenotype and significantly reduced pro-inflammatory cytokine levels via paracrine, which was inhibited by TGF-β receptor inhibitor. Furthermore, we found that MSC-secreted TGF-β enhanced the macrophage phagocytic ability. The antibody microarray analysis and Western blot verified that TGF-β treatment activated the Akt/FoxO1 pathway in LPS-stimulated macrophages, TGF-β-induced FoxO1 nuclear translocation and obviously expressed in the cytoplasm, the effects of TGF-β regulatory effects on LPS-stimulated macrophage were inhibited by pre-treatment with Akt inhibitor and FoxO1 inhibitor. CONCLUSIONS TGF-β secreted by MSCs could skew LPS-stimulated macrophage polarization towards the M2-like phenotype, reduce inflammatory reactions, and improve the phagocytic ability via the Akt/FoxO1 pathway, providing potential therapeutic strategies for sepsis.
Collapse
|
39
|
Grabarek BO, Wcisło-Dziadecka D, Sanakiewicz A, Kruszniewska-Rajs C, Gola J. Evaluation of changes in expression pattern of oxidative stress genes under the influence of adalimumab. Dermatol Ther 2019; 32:e13141. [PMID: 31664747 DOI: 10.1111/dth.13141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
The psoriasis therapy consists of the inhibition of cytokines involved in inducing and development of this disease. The aim of the study was to evaluate the changes in the expression of genes related to the oxidative stress phenomenon in the culture of normal human dermal fibroblasts of Normal Human Dermal Fibroblasts (NHDF) exposed to adalimumab. NHDF culture was exposed to adalimumab for 2-, 8-, and 24-hr periods. The control consisted of the same cells not exposed to adalimumab. The oligonucleotide microarrays HG-U133A 2.0 were used to analyze the changes in gene expression in NHDF culture. Analysis showed that there are 3,881 ID mRNA involved in the induction and development of oxidative stress, the expression of which changes significantly due to the exposure of NHDF cells to adalimumab (p < .05) among 1,369 ID mRNA of them. These include genes associated with apoptosis, the p38 MAPK pathway and the PDGF pathway, and above all with pathways not yet classified. Studies have shown that two genes: NR4A2 and IL1RN, whose expression has changed the most, expressed as Fold Change (FC) seem to be the most promising molecular markers to monitor therapy and loss of cell sensitivity to treatment.
Collapse
Affiliation(s)
- Beniamin Oskar Grabarek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Warsaw, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Zabrze, Poland.,Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Dominika Wcisło-Dziadecka
- Department of Cosmetology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Adrianna Sanakiewicz
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
40
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
41
|
Nanduri R, Kalra R, Bhagyaraj E, Chacko AP, Ahuja N, Tiwari D, Kumar S, Jain M, Parkesh R, Gupta P. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy 2019; 15:1280-1295. [PMID: 30669929 DOI: 10.1080/15548627.2019.1571717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Macroautophagy/autophagy is a complex self-degradative mechanism responsible for clearance of non functional organelles and proteins. A range of factors influences the autophagic process, and disruptions in autophagy-related mechanisms lead to disease states, and further exacerbation of disease. Despite in-depth research into autophagy and its role in pathophysiological processes, the resources available to use it for therapeutic purposes are currently lacking. Herein we report the Autophagy Small Molecule Database (AutophagySMDB; http://www.autophagysmdb.org/ ) of small molecules and their cognate protein targets that modulate autophagy. Presently, AutophagySMDB enlists ~10,000 small molecules which regulate 71 target proteins. All entries are comprised of information such as EC50 (half maximal effective concentration), IC50 (half maximal inhibitory concentration), Kd (dissociation constant) and Ki (inhibition constant), IUPAC name, canonical SMILE, structure, molecular weight, QSAR (quantitative structure activity relationship) properties such as hydrogen donor and acceptor count, aromatic rings and XlogP. AutophagySMDB is an exhaustive, cross-platform, manually curated database, where either the cognate targets for small molecule or small molecules for a target can be searched. This database is provided with different search options including text search, advanced search and structure search. Various computational tools such as tree tool, cataloging tools, and clustering tools have also been implemented for advanced analysis. Data and the tools provided in this database helps to identify common or unique scaffolds for designing novel drugs or to improve the existing ones for autophagy small molecule therapeutics. The approach to multitarget drug discovery by identifying common scaffolds has been illustrated with experimental validation. Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; AutophagySMDB: autophagy small molecule database; BCL2: BCL2, apoptosis regulator; BECN1: beclin 1; CAPN: calpain; MTOR: mechanistic target of rapamycin kinase; PPARG: peroxisome proliferator activated receptor gamma; SMILES: simplified molecular input line entry system; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Ella Bhagyaraj
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Anuja P Chacko
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Nancy Ahuja
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Drishti Tiwari
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sumit Kumar
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Monika Jain
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Raman Parkesh
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
42
|
Peel MT, Ho Y, Liebhaber SA. Transcriptome Analyses of Female Somatotropes and Lactotropes Reveal Novel Regulators of Cell Identity in the Pituitary. Endocrinology 2018; 159:3965-3980. [PMID: 30247555 PMCID: PMC6260062 DOI: 10.1210/en.2018-00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
The differentiation of the hormone-producing cell lineages of the anterior pituitary represents an informative model of mammalian cell fate determination. The generation and maintenance of two of these lineages, the GH-producing somatotropes and prolactin (PRL)-producing lactotropes, are dependent on the pituitary-specific transcription factor POU1F1. Whereas POU1F1 is expressed in both cell types, and plays a direct role in the activation of both the Gh and Prl genes, GH expression is restricted to somatotropes and PRL expression is restricted to lactotropes. These observations imply the existence of additional, cell type-enriched factors that contribute to the somatotrope and lactotrope cell identities. In this study, we use transgenic mouse models to facilitate sorting of somatotrope and lactotrope populations based on the expression of fluorescent markers expressed under Gh and Prl gene transcriptional controls. The transcriptomic analyses reveal a concordance of gene expression profiles in the two populations. The limited number of divergent mRNAs between the two populations includes a set of transcription factors that may have roles in pituitary lineage divergence and/or in regulating expression of cell type-specific genes after differentiation. Four of these factors were validated for lineage enrichment at the level of protein expression, two somatotrope enriched and two lactotrope enriched. Three of these four factors were shown to have corresponding activities in appropriate enhancement or repression of landmark genes in a cell culture model system. These studies identify novel regulators of the somatotropes and lactotropes, and they establish a useful database for further study of these lineages in the anterior pituitary.
Collapse
Affiliation(s)
- Michael T Peel
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yugong Ho
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence: Stephen A. Liebhaber, MD, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104. E-mail:
| |
Collapse
|
43
|
AIRE promotes androgen-independent prostate cancer by directly regulating IL-6 and modulating tumor microenvironment. Oncogenesis 2018; 7:43. [PMID: 29795364 PMCID: PMC5968032 DOI: 10.1038/s41389-018-0053-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
Early stage prostate cancers are dependent on androgens for their growth and survival and androgen withdrawal causes them to regress. Progressive prostate cancers eventually acquire androgen independence rendering anti-androgen therapy ineffective. However, the factors leading to this have not been adequately addressed. This study shows that AIRE finds differential expression in androgen-dependent and -independent prostate cancer cells. AIRE expression is more in androgen-independent cells due to its regulation by transcription factor Elk-1. These enhanced levels of AIRE modulate the prostate tumor microenvironment by transcriptionally activating a malignancy gene IL-6 in androgen-independent cells. Additionally, AIRE prevents the cancer cells from anticancer drug-induced death and enhances their invasiveness. Moreover, AIRE by modulating the cytokine milieu skews the tumor-associated macrophage polarization towards M2 phenotype with increased CD206 and CD163 expression. Subcutaneous mouse model of prostate cancer revealed AIRE+/+ mice forming a palpable tumor and presents lymphadenopathy however, only a small benign tumor is observed in AIRE−/− mice and lymph nodes appear normal in size. In conclusion, our findings suggest AIRE as a probable factor in promoting prostate cancer progression.
Collapse
|
44
|
Ahmed A, Dolasia K, Mukhopadhyay S. Mycobacterium tuberculosisPPE18 Protein Reduces Inflammation and Increases Survival in Animal Model of Sepsis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3587-3598. [DOI: 10.4049/jimmunol.1602065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
45
|
Bhagyaraj E, Tiwari D, Ahuja N, Nanduri R, Saini A, Kalra R, Kumar S, Janmeja AK, Gupta P. A human xenobiotic nuclear receptor contributes to nonresponsiveness of Mycobacterium tuberculosis to the antituberculosis drug rifampicin. J Biol Chem 2018; 293:3747-3757. [PMID: 29358328 DOI: 10.1074/jbc.m117.818377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB). It acquires phenotypic drug resistance inside macrophages, and this resistance mainly arises from host-induced stress. However, whether cellular drug-efflux mechanisms in macrophages contribute to nonresponsiveness of M. tuberculosis to anti-TB drugs is unclear. Here, we report that xenobiotic nuclear receptors mediate TB drug nonresponsiveness by modulating drug-efflux transporters in macrophages. This was evident from expression analysis of drug-efflux transporters in macrophages isolated from TB patients. Among patients harboring rifampicin-susceptible M. tuberculosis, we observed increased intracellular survival of M. tuberculosis upon rifampicin treatment of macrophages isolated from patients not responding to anti-TB drugs compared with macrophages from patients who did respond. Of note, M. tuberculosis infection and rifampicin exposure synergistically modulated macrophage drug-efflux transporters in vitro We also found that the xenobiotic nuclear receptor pregnane X receptor (PXR) modulates macrophage drug-efflux transporter expression and activity, which compromised the anti-TB efficacy of rifampicin. We further validated this finding in a TB mouse model in which use of the PXR antagonist ketoconazole rescued rifampicin anti-TB activity. We conclude that PXR activation in macrophages compromises the efficacy of the anti-TB drug rifampicin. Alternative therapeutic strategies, such as use of the rifampicin derivatives rifapentine and rifabutin, which do not activate PXR, or of a PXR antagonist, may be effective for tackling drug nonresponsiveness of M. tuberculosis that arises from drug-efflux systems of the host.
Collapse
Affiliation(s)
- Ella Bhagyaraj
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Drishti Tiwari
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Nancy Ahuja
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Ravikanth Nanduri
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Ankita Saini
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Rashi Kalra
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | - Sumit Kumar
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| | | | - Pawan Gupta
- From the Department of Molecular Biology, CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036 and
| |
Collapse
|
46
|
Komiya T, Yamamoto S, Roy A, McDonald P, Perez RP. Drug screening to target nuclear orphan receptor NR4A2 for cancer therapeutics. Transl Lung Cancer Res 2017; 6:600-610. [PMID: 29114475 DOI: 10.21037/tlcr.2017.07.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Our previous study suggested NR4A2, a subfamily member of orphan nuclear receptors, is essential for survival of human cancer cells such as mucoepidermoid carcinoma (MEC). Methods We conducted high throughput drug screening for NR4A2 inhibitors as a novel therapeutic modality. Positive screening was performed using a luciferase reporter vector containing NR4A2 binding sequence, and a CRE-reporter control vector was used to eliminate false positives. In vitro assays for positive hits were conducted. Results A total of 23 Food and Drug Administration (FDA) and 43 Life Science Library compounds were identified, including several epidermal growth factor inhibitors and Src inhibitors. Subsequent in vitro assays confirmed that identified compounds were preferentially active in NR4A2+ cancer cells. Several candidate compounds appeared to suppress NR4A2 via inhibition of p-ERK, whereas a novel compound KU0171309 may act as a more direct inhibitor. Conclusions Further research should focus on homologue selectivity, in vivo activity, and definitively deciphering the mechanism of action of KU0171309.
Collapse
Affiliation(s)
- Takefumi Komiya
- Division of Medical Oncology, University of Kansas Medical Center, Fairway, KS, USA.,Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Satomi Yamamoto
- Division of Medical Oncology, University of Kansas Medical Center, Fairway, KS, USA
| | - Anuradha Roy
- High Throughput Screening Facility, University of Kansas School of Pharmacy, Lawrence, KS, USA
| | - Peter McDonald
- High Throughput Screening Facility, University of Kansas School of Pharmacy, Lawrence, KS, USA
| | - Raymond P Perez
- Division of Medical Oncology, University of Kansas Medical Center, Fairway, KS, USA
| |
Collapse
|
47
|
Li GL, Qian H. Transcriptome using Illumina sequencing reveals the traits of spermatogenesis and developing testes in Eriocheir sinensis. PLoS One 2017; 12:e0172478. [PMID: 28212420 PMCID: PMC5315355 DOI: 10.1371/journal.pone.0172478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/05/2017] [Indexed: 11/19/2022] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) has the spermatozoa with typical aflagellate, decondensed chromatin, cup-shaped nuclei, and radial arms. However, the mechanism of spermatogenesis during which the specific spermatozoa are generated in this species is yet unclear. Here, the transcriptome of developing testis in E. sinensis was analyzed using the ways of RNA-seq and bioinformatics analysis to identify candidate genes potentially involved in development of testis and spermatogenesis. The Illumina HiSeq2500 sequencing of three replicons of samples produced a total of 145.19 M clean reads representing with a total of 21.34 Gb bases and 45.48% GC content. 56.30% clean reads were mapped to the draft genome of E. sinensis. The assembly of the transcriptome yielded contigs of 5691802 sequences and unigenes of 406527 sequences. Total 24246 and 40793 transcripts were annotated using Swissprot and Nr database, respectively. There were 48213 (70.31%) and 7858 (46.25%) transcripts with identity of more than 99 matching to mature testis unigenes in the databases of Nr and EST, respectively. The analytic results of KOG, GO and KEGG showed wide potential molecular functions of transcripts in the developing testes. KEGG analysis of unigenes yielded total 9422 predicted genes. Those predicted genes were involved in total 216 KEGG pathways related to the physiological activities of developing testis. 1975 predicted genes were involved in cellular and subcellular structural alteration of male germ cells. There were important roles of some pathways in the processes of morphological and structural biogenesis pertaining to testis development and spermatogenesis. Other 583 unigenes encoding the genetic and epigenetic factors also be found, which might contribute to the decondensation and stability of decondensed nuclei in the spermatozoa. These predicted events provide a view of the potential molecular mechanisms of development of testis and spermatogenesis in E. sinensis.
Collapse
Affiliation(s)
- Gen-Liang Li
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Hui Qian
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
48
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
49
|
Pérez-Matute P, Iñiguez M, Recio-Fernández E, Oteo JA. Deciphering the molecular mechanisms involved in HIV-associated lipoatrophy by transcriptomics: a pilot study. J Physiol Biochem 2017; 73:431-443. [PMID: 28074419 DOI: 10.1007/s13105-016-0547-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/26/2016] [Indexed: 01/11/2023]
Abstract
HIV-associated lipoatrophy (LA) has considerable implications for risk of metabolic diseases, quality of life, and adherence to treatments. Although it has decreased in high-income countries, it is still very common in resource-limited countries. Understanding the pathophysiological mechanisms of LA can open the possibility to explore new ways to treat or prevent this condition. To identify new markers for an accurate and quick diagnosis will be also of interest. Thus, we aimed to examine functional classes of genes implicated in LA and to identify potential new markers for an accurate/quick diagnosis of LA and future complications. Eighteen participants were recruited: seven healthy volunteers, five non-LA-HIV patients, and six LA-HIV subjects. Clinical lipoatrophy was considered when changes in fat volume in the cheeks next to the nose, lateral aspect of the face, legs, arms, and buttocks were observed by the physicians. mRNA was isolated from peripheral blood mononuclear cells (PBMCs) to perform a transcriptomic and Gene Ontology analysis. To confirm RNA sequencing results, qPCRs were developed. A total of 55 genes were differentially expressed between LA and non-LA patients. Thirty-seven genes were overexpressed, whereas 18 genes were repressed. Functional analysis showed that overexpressed genes were involved in lymphocyte/neutrophil activation, inflammation, and atherogenesis. Several lymphoma markers and members of the lipocalin and aquaporin families were also found more expressed in LA patients. In contrast, most of the genes found less expressed in LA subjects were involved in angiogenesis and protection against myocardial infarction. Our results demonstrated a distinct transcriptomic signature in PBMCs of LA patients in comparison with non-LA-HIV subjects and, therefore, provided novel insights to the pathogenesis of HIV-associated lipoatrophy. Our study also highlights the potential usage of some of these genes as early markers of future complications.
Collapse
Affiliation(s)
- Patricia Pérez-Matute
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR)-Hospital San Pedro, Piqueras 98, 26006, Logroño, Spain.
| | - María Iñiguez
- Genomics Core Facility, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006, Logroño, Spain
| | - Emma Recio-Fernández
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR)-Hospital San Pedro, Piqueras 98, 26006, Logroño, Spain
| | - José-Antonio Oteo
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR)-Hospital San Pedro, Piqueras 98, 26006, Logroño, Spain
| |
Collapse
|
50
|
Bux AS, Lindsey ML, Vasquez HG, Taegtmeyer H, Harmancey R. Glucose regulates the intrinsic inflammatory response of the heart to surgically induced hypothermic ischemic arrest and reperfusion. Physiol Genomics 2016; 49:37-52. [PMID: 27940566 DOI: 10.1152/physiolgenomics.00102.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
We investigated the isolated working rat heart as a model to study early transcriptional remodeling induced in the setting of open heart surgery and stress hyperglycemia. Hearts of male Sprague Dawley rats were cold-arrested in Krebs-Henseleit buffer and subjected to 60 min normothermic reperfusion in the working mode with buffer supplemented with noncarbohydrate substrates plus glucose (25 mM) or mannitol (25 mM; osmotic control). Gene expression profiles were determined by microarray analysis and compared with those of nonperfused hearts. Perfused hearts displayed a transcriptional signature independent from the presence of glucose showing a more than twofold increase in expression of 71 genes connected to inflammation, cell proliferation, and apoptosis. These transcriptional alterations were very similar to the ones taking place in the hearts of open heart surgery patients. Prominent among those alterations was the upregulation of the three master regulators of metabolic reprogramming, MYC, NR4A1, and NR4A2. Targeted pathway analysis revealed an upregulation of metabolic processes associated with the proliferation and activation of macrophages and fibroblasts. Glucose potentiated the upregulation of a subset of genes associated with polarization of tissue reparative M2-like macrophages, an effect that was lost in perfused hearts from rats rendered insulin resistant by high-sucrose feeding. The results expose the heart as a significant source of proinflammatory mediators released in response to stress associated with cardiac surgery with cardiopulmonary bypass, and suggest a major role for glucose as a signal in the determination of resident cardiac macrophage polarization.
Collapse
Affiliation(s)
- Ahmed S Bux
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Hernan G Vasquez
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Romain Harmancey
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|