1
|
Nadaf R, Kumbar VM, Ghagane S. Unravelling the intricacies of Porphyromonas gingivalis: virulence factors, lifecycle dynamics and phytochemical interventions for periodontal disease management. APMIS 2024. [PMID: 39030947 DOI: 10.1111/apm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium recognized for its pivotal role in the pathogenesis of periodontal diseases. This review covers an overview of the virulence factors and lifecycle stages of P. gingivalis, with a specific focus on attachment and colonization, biofilm formation, growth and multiplication, dormancy survival and dissemination. Additionally, we explore the significance of inter-bacterial cross-feeding within biofilms. Furthermore, we discuss potential phytochemical-based strategies to target P. gingivalis, including the use of curcumin, apigenin, quercetin and resveratrol. Understanding the virulence factors and lifecycle stages of P. gingivalis, along with the promising phytochemical-based interventions, holds promise for advancing strategies in periodontal disease management and oral health promotion.
Collapse
Affiliation(s)
- Rubeen Nadaf
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Shridhar Ghagane
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
2
|
Cyriaque V, Ibarra-Chávez R, Kuchina A, Seelig G, Nesme J, Madsen JS. Single-cell RNA sequencing reveals plasmid constrains bacterial population heterogeneity and identifies a non-conjugating subpopulation. Nat Commun 2024; 15:5853. [PMID: 38997267 PMCID: PMC11245611 DOI: 10.1038/s41467-024-49793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Transcriptional heterogeneity in isogenic bacterial populations can play various roles in bacterial evolution, but its detection remains technically challenging. Here, we use microbial split-pool ligation transcriptomics to study the relationship between bacterial subpopulation formation and plasmid-host interactions at the single-cell level. We find that single-cell transcript abundances are influenced by bacterial growth state and plasmid carriage. Moreover, plasmid carriage constrains the formation of bacterial subpopulations. Plasmid genes, including those with core functions such as replication and maintenance, exhibit transcriptional heterogeneity associated with cell activity. Notably, we identify a cell subpopulation that does not transcribe conjugal plasmid transfer genes, which may help reduce plasmid burden on a subset of cells. Our study advances the understanding of plasmid-mediated subpopulation dynamics and provides insights into the plasmid-bacteria interplay.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, Mons, Belgium.
| | | | - Anna Kuchina
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Rothenberger CM, Yu M, Kim HM, Cheung YW, Chang YW, Davey ME. An outer membrane vesicle specific lipoprotein promotes Porphyromonas gingivalis aggregation on red blood cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100249. [PMID: 38974668 PMCID: PMC11225709 DOI: 10.1016/j.crmicr.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Porphyromonas gingivalis uses a variety of mechanisms to actively interact with and promote the hydrolysis of red blood cells (RBCs) to obtain iron in the form of heme. In this study, we investigated the function of lipoprotein PG1881 which was previously shown to be up-regulated during subsurface growth and selectively enriched on outer membrane vesicles (OMVs). Our results show that wildtype strain W83 formed large aggregates encompassing RBCs whereas the PG1881 deletion mutant remained predominately as individual cells. Using a PG1881 antibody, immunofluorescence revealed that the wildtype strain's aggregation to RBCs involves an extracellular matrix enriched with PG1881. Our findings discover that RBCs elicit cell aggregation and matrix formation by P. gingivalis and that this process is promoted by an OMV-specific lipoprotein. We propose this strategy is advantageous for nutrient acquisition as well as dissemination from the oral cavity and survival of this periodontal pathogen.
Collapse
Affiliation(s)
- Christina M. Rothenberger
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Microbiology, University of Florida College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Manda Yu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Hey-Min Kim
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Yee-Wai Cheung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ellen Davey
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Hara T, Sakanaka A, Lamont RJ, Amano A, Kuboniwa M. Interspecies metabolite transfer fuels the methionine metabolism of Fusobacterium nucleatum to stimulate volatile methyl mercaptan production. mSystems 2024; 9:e0076423. [PMID: 38289043 PMCID: PMC10878106 DOI: 10.1128/msystems.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.
Collapse
Affiliation(s)
- Takeshi Hara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
| | - Akito Sakanaka
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Atsuo Amano
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
5
|
Wang S, Fang L, Zhou H, Wang M, Zheng H, Wang Y, Weir MD, Masri R, Oates TW, Cheng L, Xu HHK, Liu F. Silica nanoparticles containing nano-silver and chlorhexidine respond to pH to suppress biofilm acids and modulate biofilms toward a non-cariogenic composition. Dent Mater 2024; 40:179-189. [PMID: 37951751 DOI: 10.1016/j.dental.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Dental caries is caused by acids from biofilms. pH-sensitive nanoparticle carriers could achieve improved targeted effectiveness. The objectives of this study were to develop novel mesoporous silica nanoparticles carrying nanosilver and chlorhexidine (nMS-nAg-Chx), and investigate the inhibition of biofilms as well as the modulation of biofilm to suppress acidogenic and promote benign species for the first time. METHODS nMS-nAg was synthesized via a modified sol-gel method. Carboxylate group functionalized nMS-nAg (COOH-nMS-nAg) was prepared and Chx was added via electrostatic interaction. Minimal inhibitory concentration (MIC), inhibition zone, and growth curves were evaluated. Streptococcus mutans (S. mutans), Streptococcus gordonii (S. gordonii), and Streptococcus sanguinis (S. sanguinis) formed multispecies biofilms. Metabolic activity, biofilm lactic acid, exopolysaccharides (EPS), and TaqMan real-time polymerase chain reaction (RT-PCR) were tested. Biofilm structures and biomass were observed by scanning electron microscopy (SEM) and live/dead bacteria staining. RESULTS nMS-nAg-Chx possessed pH-responsive properties, where Chx release increased at lower pH. nMS-nAg-Chx showed good biocompatibility. nMS-nAg-Chx exhibited a strong antibacterial function, reducing biofilm metabolic activity and lactic acid as compared to control (p < 0.05, n = 6). Moreso, biofilm biomass was dramatically suppressed in nMS-nAg-Chx groups. In control group, there was an increasing trend of S. mutans proportion in the multispecies biofilm, with S. mutans reaching 89.1% at 72 h. In sharp contrast, in nMS-nAg-Chx group of 25 μg/mL, the ratio of S. mutans dropped to 43.7% and the proportion of S. gordonii and S. sanguinis increased from 19.8% and 10.9 to 69.8% and 56.3%, correspondingly. CONCLUSION pH-sensitive nMS-nAg-Chx had potent antibacterial effects and modulated biofilm toward a non-cariogenic tendency, decreasing the cariogenic species nearly halved and increasing the benign species approximately twofold. nMS-nAg-Chx is promising for applications in mouth rinse and endodontic irrigants, and as fillers in resins to prevent caries.
Collapse
Affiliation(s)
- Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; The Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Huoxiang Zhou
- Laboratory of Microbiology and Immunology, Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Man Wang
- Laboratory of Microbiology and Immunology, Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Hao Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; The Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Robinson AV, Allen-Vercoe E. Strain specificity in fusobacterial co-aggregation with colorectal cancer-relevant species. Anaerobe 2023; 82:102758. [PMID: 37423597 DOI: 10.1016/j.anaerobe.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES The purpose of the present study was to characterize co-aggregation interactions between isolates of Fusobacterium nucleatum subsp. animalis and other colorectal cancer (CRC)-relevant species. METHODS Co-aggregation interactions were assessed by comparing optical density values following 2-h stationary strain co-incubations to strain optical density values when incubated alone. Co-aggregation was characterized between strains from a previously isolated, CRC biopsy-derived community and F. nucleatum subsp. animalis, a species linked to CRC and known to be highly aggregative. Interactions were also investigated between the fusobacterial isolates and strains sourced from alternate human gastrointestinal samples whose closest species match aligned with species in the CRC biopsy-derived community. RESULTS Co-aggregation interactions were observed to be strain-specific, varying between both F. nucleatum subsp. animalis strains and different strains of the same co-aggregation partner species. F. nucleatum subsp. animalis strains were observed to co-aggregate strongly with several taxa linked to CRC: Campylobacter concisus, Gemella spp., Hungatella hathewayi, and Parvimonas micra. CONCLUSIONS Co-aggregation interactions suggest the ability to encourage the formation of biofilms, and colonic biofilms, in turn, have been linked to promotion and/or progression of CRC. Co-aggregation between F. nucleatum subsp. animalis and CRC-linked species such as C. concisus, Gemella spp., H. hathewayi, and P. micra may contribute to both biofilm formation along CRC lesions and to disease progression.
Collapse
Affiliation(s)
- Avery V Robinson
- University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | | |
Collapse
|
7
|
Yamaguchi-Kuroda Y, Kikuchi Y, Kokubu E, Ishihara K. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J Oral Microbiol 2023; 15:2165001. [PMID: 36687169 PMCID: PMC9848294 DOI: 10.1080/20002297.2023.2165001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Periodontitis is caused by a dysbiotic shift in the dental plaque microbiome. Fusobacterium nucleatum is involved in the colonization of Porphyromonas gingivalis, which plays a key role in dysbiosis, via coaggregation and synergy with this microorganism. Aim We investigated the effect of diffusible signaling molecules from P. gingivalis ATCC 33277 on F. nucleatum TDC 100 to elucidate the synergistic mechanisms involved in dysbiosis. Methods The two species were cocultured separated with an 0.4-µm membrane in tryptic soy broth, and F. nucleatum gene expression profiles in coculture with P. gingivalis were compared with those in monoculture. Results RNA sequencing revealed 139 genes differentially expressed between the coculture and monoculture. The expression of 52 genes was upregulated, including the coaggregation ligand-coding gene. Eighty-seven genes were downregulated. Gene Ontology analysis indicated enrichment for the glycogen synthesis pathway and a decrease in de novo synthesis of purine and pyrimidine. Conclusion These results indicate that diffusible signaling molecules from P. gingivalis induce metabolic changes in F. nucleatum, including an increase in polysaccharide synthesis and reduction in de novo synthesis of purine and pyrimidine. The metabolic changes may accelerate biofilm formation by F. nucleatum with P. gingivalis. Further, the alterations may represent potential therapeutic targets for preventing dysbiosis.
Collapse
Affiliation(s)
- Yukiko Yamaguchi-Kuroda
- Department of Endodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan,CONTACT Kazuyuki Ishihara Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo101-0061, Japan
| |
Collapse
|
8
|
Description of a moderately acidotolerant and aerotolerant anaerobic bacterium Acidilutibacter cellobiosedens gen. nov., sp. nov. within the family Acidilutibacteraceae fam. nov., and proposal of Sporanaerobacteraceae fam. nov. and Tepidimicrobiaceae fam. nov. Syst Appl Microbiol 2023; 46:126376. [PMID: 36375421 DOI: 10.1016/j.syapm.2022.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
A Gram-stain positive, moderately thermophilic, acidotolerant and aerotolerant anaerobic bacterium, designated JN-28 T, was isolated from the pit mud of Chinese strong-flavor liquor. Growth was observed at 25-50 °C and pH 5.5-8.0 in the presence of 0-25 g l-1 NaCl (optimally at 45 °C, pH 6.0, without NaCl). Strain JN-28 T was heterotrophic, requiring yeast extract for growth. The major cellular fatty acids were iso-C15:0 and C14:0. The DNA G + C content of genomic DNA was 33.54 mol%. The strain was resistant to vancomycin (10 mg l-1). Genome analysis revealed the presence of genes involved in the response to mild acid stress and oxidative stress, and resistance to vancomycin. 16S rRNA gene-based phylogenetic analysis showed that strain JN-28 T shares ≤ 89.3 % sequence similarity with its closest relatives Sporanaerobacter acetigenes DSM 13106 T and other members in the order Tissierellales. Based on phenotypic and phylogenetic characteristics, Acidilutibacter cellobiosedens gen. nov., sp. nov. is proposed for the new genus and novel species with the type strain JN-28 T (=CCAM 418 T = JCM 39087 T). Further phylogenetic and phylogenomic analyses suggested strain JN-28 T represents a novel family within the order Tissierellales, for which Acidilutibacteraceae fam. nov. is proposed. In addition, the family Tissierellaceae was reclassified, Sporanaerobacteraceae fam. nov. and Tepidimicrobiaceae fam. nov. were formally proposed. Emended description of the family Tissierellaceae is also provided.
Collapse
|
9
|
陈 娇, 杜 悦, 周 学, 张 平. [Salivary Metabolic Profiling in Patients with Periodontitis]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:842-850. [PMID: 36224687 PMCID: PMC10408794 DOI: 10.12182/20220960207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 06/16/2023]
Abstract
Objective To analyze the salivary metabolic profile of patients with periodontitis through metabolomic techniques and to explore the metabolic patterns associated with periodontal diseases. Methods Liquid chromatography/mass spectrometry (LC/MS) technique in conjunction with principal component analysis (PCA) analysis and orthogonal partial least squares identification (OPLS-DA) method was used to study the metabolomics of saliva samples from gingivitis patients, periodontitis patients, and healthy controls, with 10 samples for each group. We examined the correlation between migration in metabolic profile and the progression of periodontal diseases. Results Saliva metabolite profiles of gingivitis and periodontitis patients was significantly different from those of the healthy controls. Significant differences were identified between the different groups for eight salivary metabolites, including arachidonic acid, tyramine, L-arginine, thymine, N-acetylgalactosamine sulfate, prostaglandin E2, L-phenylalanine, and 5-aminoimidazole-4-carboxamide-riboside (AICAR). In comparison with those of the health controls, the concentration of AICAR in patients with gingivitis and periodontitis was lower and the metabolic trend was down-regulated, while the other metabolites were up-regulated. Conclusion Salivary metabolic profile changes along with the progression of periodontal diseases. Abnormal metabolism of the periodontal tissue and of pathogenic microorganisms related to periodontal diseases is one of the mechanisms involved in the pathogenesis, development and prognosis of periodontal diseases.
Collapse
Affiliation(s)
- 娇 陈
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 悦 杜
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 平 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Tikhomirova A, Zilm PS, Trappetti C, Paton JC, Kidd SP. The central role of arginine in Haemophilus influenzae survival in a polymicrobial environment with Streptococcus pneumoniae and Moraxella catarrhalis. PLoS One 2022; 17:e0271912. [PMID: 35877653 PMCID: PMC9312370 DOI: 10.1371/journal.pone.0271912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis are bacterial species which frequently co-colonise the nasopharynx, but can also transit to the middle ear to cause otitis media. Chronic otitis media is often associated with a polymicrobial infection by these bacteria. However, despite being present in polymicrobial infections, the molecular interactions between these bacterial species remain poorly understood. We have previously reported competitive interactions driven by pH and growth phase between H. influenzae and S. pneumoniae. In this study, we have revealed competitive interactions between the three otopathogens, which resulted in reduction of H. influenzae viability in co-culture with S. pneumoniae and in triple-species culture. Transcriptomic analysis by mRNA sequencing identified a central role of arginine in mediating these interactions. Arginine supplementation was able to increase H. influenzae survival in a dual-species environment with S. pneumoniae, and in a triple-species environment. Arginine was used by H. influenzae for ATP production, and levels of ATP generated in dual- and triple-species co-culture at early stages of growth were significantly higher than the combined ATP levels of single-species cultures. These results indicate a central role for arginine-mediated ATP production by H. influenzae in the polymicrobial community.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Peter S. Zilm
- Department of Oral Microbiology, School of Dentistry, University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - James C. Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Stephen P. Kidd
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
11
|
Abstract
Fusobacterium nucleatum is a common constituent of the oral microbiota in both periodontal health and disease. Previously, we discovered ornithine cross-feeding between F. nucleatum and Streptococcus gordonii, where S. gordonii secretes ornithine via an arginine-ornithine antiporter (ArcD), which in turn supports the growth and biofilm development of F. nucleatum; however, broader metabolic aspects of F. nucleatum within polymicrobial communities and their impact on periodontal pathogenesis have not been addressed. Here, we show that when cocultured with S. gordonii, F. nucleatum increased amino acid availability to enhance the production of butyrate and putrescine, a polyamine produced by ornithine decarboxylation. Coculture with Veillonella parvula, another common inhabitant of the oral microbiota, also increased lysine availability, promoting cadaverine production by F. nucleatum. We confirmed that ArcD-dependent S. gordonii-excreted ornithine induces synergistic putrescine production, and mass spectrometry imaging revealed that this metabolic capability creates a putrescine-rich microenvironment on the surface of F. nucleatum biofilms. We further demonstrated that polyamines caused significant changes in the biofilm phenotype of a periodontal pathogen, Porphyromonas gingivalis, with putrescine accelerating the biofilm life cycle of maturation and dispersal. This phenomenon was also observed with putrescine derived from S. gordonii-F. nucleatum coculture. Lastly, analysis of plaque samples revealed cooccurrence of P. gingivalis with genetic modules for putrescine production by S. gordonii and F. nucleatum. Overall, our results highlight the ability of F. nucleatum to induce synergistic polyamine production within multispecies consortia and provide insight into how the trophic web in oral biofilm ecosystems can eventually shape disease-associated communities. IMPORTANCE Periodontitis is caused by a pathogenic shift in subgingival biofilm ecosystems, which is accompanied by alterations in microbiome composition and function, including changes in the metabolic activity of the biofilm, which comprises multiple commensals and pathogens. While Fusobacterium nucleatum is a common constituent of the supra- and subgingival biofilms, its metabolic integration within polymicrobial communities and the impact on periodontal pathogenesis are poorly understood. Here, we report that amino acids supplied by other commensal bacteria induce polyamine production by F. nucleatum, creating polyamine-rich microenvironments. Polyamines reportedly have diverse functions in bacterial physiology and possible involvement in periodontal pathogenesis. We show that the F. nucleatum-integrated trophic network yielding putrescine from arginine through ornithine accelerates the biofilm life cycle of Porphyromonas gingivalis, a periodontal pathogen, from the planktonic state through biofilm formation to dispersal. This work provides insight into how cooperative metabolism within oral biofilms can tip the balance toward periodontitis.
Collapse
|
12
|
Mothersole RG, Kolesnikov M, Chan ACK, Oduro E, Murphy MEP, Wolthers KR. Sequence Divergence in the Arginase Domain of Ornithine Decarboxylase/Arginase in Fusobacteriacea Leads to Loss of Function in Oral Associated Species. Biochemistry 2022; 61:1378-1391. [PMID: 35732022 DOI: 10.1021/acs.biochem.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A number of species within the Fusobacteriaceae family of Gram-negative bacteria uniquely encode for an ornithine decarboxylase/arginase (ODA) that ostensibly channels l-ornithine generated by hydrolysis of l-arginine to putrescine formation. However, two aspartate residues required for coordination to a catalytically obligatory manganese cluster of arginases are substituted for a serine and an asparagine. Curiously, these natural substitutions occur only in a clade of Fusobacterium species that inhabit the oral cavity. Herein, we expressed and isolated full-length ODA from the opportunistic oral pathogen Fusobacterium nucleatum along with the individual arginase and ornithine decarboxylase components. The crystal structure of the arginase domain reveals that it adopts the classical α/β arginase-fold, but metal ions are absent in the active site. As expected, the ureohydrolase activity with l-arginine was not detected for wild-type ODA or the isolated arginase domain. However, engineering of the complete metal coordination environment through site-directed mutagenesis restored Mn2+ binding capacity and arginase activity, although the catalytic efficiency for l-arginine was low (60-100 M-1 s-1). Full-length ODA and the isolated ODC component were able to decarboxylate both l-ornithine and l-arginine to form putrescine and agmatine, respectively, but kcat/KM of l-ornithine was ∼20-fold higher compared to l-arginine. We discuss environmental conditions that may have led to the natural selection of an inactive arginase in the oral associated species of Fusobacterium.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Emmanuella Oduro
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
13
|
Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes. Mucosal Immunol 2022; 15:1071-1084. [PMID: 35970917 DOI: 10.1038/s41385-022-00553-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that can provide insights into the molecular mechanisms at work in host-microbiome interactions and to highlight the undeveloped frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.
Collapse
|
14
|
The arginine deaminase system plays distinct roles in Borrelia burgdorferi and Borrelia hermsii. PLoS Pathog 2022; 18:e1010370. [PMID: 35286343 PMCID: PMC8947608 DOI: 10.1371/journal.ppat.1010370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Borrelia species are amino acid auxotrophs that utilize di- and tri- peptides obtained through their oligopeptide transport system to supply amino acids for replicative growth during their enzootic cycles. However, Borrelia species from both the Lyme disease (LD) and relapsing fever (RF) groups harbor an amino acid transport and catabolism system, the Arginine Deiminase System (ADI), that could potentially augment intracellular L-arginine required for growth. RF spirochetes contain a “complete”, four gene ADI (arcA, B, D, and C) while LD spirochetes harbor arcA, B, and sometimes D but lack arcC (encoding carbamate kinase). In this study, we evaluated the role of the ADI system in bacterial survival and virulence and discovered important differences in RF and LD ADIs. Both in vitro and in a murine model of infection, B. hermsii cells significantly reduced extracellular L-arginine levels and that reduction was dependent on arginine deiminase expression. Conversely, B. burgdorferi did not reduce the concentration of L-arginine during in vitro growth experiments nor during infection of the mammalian host, suggesting a fundamental difference in the ability to directly utilize L-arginine compared to B. hermsii. Further experiments using a panel of mutants generated in both B. burgdorferi and B. hermsii, identified important differences in growth characteristics and ADI transcription and protein expression. We also found that the ADI system plays a key role in blood and spleen colonization in RF spirochetes. In this study we have identified divergent metabolic strategies in two closely related human pathogens, that ultimately impacts the host-pathogen interface during infection. Reports of tick-borne diseases have been steadily increasing in the US and the number of Lyme disease cases caused by B. burgdorferi have tripled since the late 1990’s. Although less common, cases of tick-borne relapsing fever, caused by B. hermsii and B. turicatae in the US, have increased as well. While transmitted by different ticks and maintained in unique enzootic cycles, the closely related spirochetes B. burgdorferi and B. hermsii share numerous genetic features including a truncated and streamlined capacity for metabolic activity. In this study we combine genetic and biochemical assays to define the role of the ADI in the infective cycles of B. burgdorferi and B. hermsii. When we compared B. burgdorferi and B. hermsii, we identified important differences in their respective ADI’s including operon arrangement, sensitivity to L-arginine and L-ornithine levels, as well as gene and protein expression. In addition, we show that arginine deiminase is required to reduce host L-arginine levels during murine infection with B. hermsii. This study provides new insights into the metabolic activities of two medically relevant spirochetes and highlights the dynamic nature of host-pathogen interactions.
Collapse
|
15
|
Luo A, Wang F, Sun D, Liu X, Xin B. Formation, Development, and Cross-Species Interactions in Biofilms. Front Microbiol 2022; 12:757327. [PMID: 35058893 PMCID: PMC8764401 DOI: 10.3389/fmicb.2021.757327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Biofilms, which are essential vectors of bacterial survival, protect microbes from antibiotics and host immune attack and are one of the leading causes that maintain drug-resistant chronic infections. In nature, compared with monomicrobial biofilms, polymicrobial biofilms composed of multispecies bacteria predominate, which means that it is significant to explore the interactions between microorganisms from different kingdoms, species, and strains. Cross-microbial interactions exist during biofilm development, either synergistically or antagonistically. Although research into cross-species biofilms remains at an early stage, in this review, the important mechanisms that are involved in biofilm formation are delineated. Then, recent studies that investigated cross-species cooperation or synergy, competition or antagonism in biofilms, and various components that mediate those interactions will be elaborated. To determine approaches that minimize the harmful effects of biofilms, it is important to understand the interactions between microbial species. The knowledge gained from these investigations has the potential to guide studies into microbial sociality in natural settings and to help in the design of new medicines and therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Aihua Luo
- Department of Stomatology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fang Wang
- Department of Pharmacy, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Degang Sun
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xueyu Liu
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.,Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.,Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Mayumi S, Kuboniwa M, Sakanaka A, Hashino E, Ishikawa A, Ijima Y, Amano A. Potential of Prebiotic D-Tagatose for Prevention of Oral Disease. Front Cell Infect Microbiol 2021; 11:767944. [PMID: 34804997 PMCID: PMC8604381 DOI: 10.3389/fcimb.2021.767944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown phenotypic and metabolic heterogeneity in related species including Streptococcus oralis, a typical oral commensal bacterium, Streptococcus mutans, a cariogenic bacterium, and Streptococcus gordonii, which functions as an accessory pathogen in periodontopathic biofilm. In this study, metabolites characteristically contained in the saliva of individuals with good oral hygiene were determined, after which the effects of an identified prebiotic candidate, D-tagatose, on phenotype, gene expression, and metabolic profiles of those three key bacterial species were investigated. Examinations of the saliva metabolome of 18 systemically healthy volunteers identified salivary D-tagatose as associated with lower dental biofilm abundance in the oral cavity (Spearman’s correlation coefficient; r = -0.603, p = 0.008), then the effects of D-tagatose on oral streptococci were analyzed in vitro. In chemically defined medium (CDM) containing D-tagatose as the sole carbohydrate source, S. mutans and S. gordonii each showed negligible biofilm formation, whereas significant biofilms were formed in cultures of S. oralis. Furthermore, even in the presence of glucose, S. mutans and S. gordonii showed growth suppression and decreases in the final viable cell count in a D-tagatose concentration-dependent manner. In contrast, no inhibitory effects of D-tagatose on the growth of S. oralis were observed. To investigate species-specific inhibition by D-tagatose, the metabolomic profiles of D-tagatose-treated S. mutans, S. gordonii, and S. oralis cells were examined. The intracellular amounts of pyruvate-derived amino acids in S. mutans and S. gordonii, but not in S. oralis, such as branched-chain amino acids and alanine, tended to decrease in the presence of D-tagatose. This phenomenon indicates that D-tagatose inhibits growth of those bacteria by affecting glycolysis and its downstream metabolism. In conclusion, the present study provides evidence that D-tagatose is abundant in saliva of individuals with good oral health. Additionally, experimental results demonstrated that D-tagatose selectively inhibits growth of the oral pathogens S. mutans and S. gordonii. In contrast, the oral commensal S. oralis seemed to be negligibly affected, thus highlighting the potential of administration of D-tagatose as an oral prebiotic for its ability to manipulate the metabolism of those targeted oral streptococci.
Collapse
Affiliation(s)
- Shota Mayumi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ei Hashino
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Asuka Ishikawa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yura Ijima
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
17
|
Li B, Liang J, Hanfrey CC, Phillips MA, Michael AJ. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. J Biol Chem 2021; 297:101219. [PMID: 34560100 PMCID: PMC8503589 DOI: 10.1016/j.jbc.2021.101219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022] Open
Abstract
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
18
|
Millones-Gómez PA, Amaranto REB, Torres DJM, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI, Calla-Poma R. Identification of Proteins Associated with the Formation of Oral Biofilms. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Liang W, Zou G, Zhou R, Tian Y. Proteomic and Metabolomic Analyses Provide Insights into the Mechanism on Arginine Metabolism Regulated by tRNA Modification Enzymes GidA and MnmE of Streptococcus suis. Front Cell Infect Microbiol 2020; 10:597408. [PMID: 33425782 PMCID: PMC7793837 DOI: 10.3389/fcimb.2020.597408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
GidA and MnmE, two important tRNA modification enzymes, are contributed to the addition of the carboxymethylaminomethyl (cmnm) group onto wobble uridine of tRNA. GidA-MnmE modification pathway is evolutionarily conserved among Bacteria and Eukarya, which is crucial in efficient and accurate protein translation. However, its function remains poorly elucidated in zoonotic Streptococcus suis (SS). Here, a gidA and mnmE double knock-out (DKO) strain was constructed to systematically decode regulatory characteristics of GidA-MnmE pathway via proteomic. TMT labelled proteomics analysis identified that many proteins associated with cell divison and growth, fatty acid biosynthesis, virulence, especially arginine deiminase system (ADS) responsible for arginine metabolism were down-regulated in DKO mutant compared with the wild-type (WT) SC19. Accordingly, phenotypic experiments showed that the DKO strain displayed decreased in arginine consumption and ammonia production, deficient growth, and attenuated pathogenicity. Moreover, targeted metabolomic analysis identified that arginine was accumulated in DKO mutant as well. Therefore, these data provide molecular mechanisms for GidA-MnmE modification pathway in regulation of arginine metabolism, cell growth and pathogenicity of SS. Through proteomic and metabolomic analysis, we have identified arginine metabolism that is the links between a framework of protein level and the metabolic level of GidA-MnmE modification pathway perturbation.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
20
|
Shokeen B, Dinis MDB, Haghighi F, Tran NC, Lux R. Omics and interspecies interaction. Periodontol 2000 2020; 85:101-111. [PMID: 33226675 DOI: 10.1111/prd.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interspecies interactions are key determinants in biofilm behavior, ecology, and architecture. The cellular responses of microorganisms to each other at transcriptional, proteomic, and metabolomic levels ultimately determine the characteristics of biofilm and the corresponding implications for health and disease. Advances in omics technologies have revolutionized our understanding of microbial community composition and their activities as a whole. Large-scale analyses of the complex interaction between the many microbial species residing within a biofilm, however, are currently still hampered by technical and bioinformatics challenges. Thus, studies of interspecies interactions have largely focused on the transcriptional and proteomic changes that occur during the contact of a few prominent species, such as Porphyromonas gingivalis, Streptococcus mutans, Candida albicans, and a few others, with selected partner species. Expansion of available tools is necessary to grow the revealing, albeit limited, insight these studies have provided into a profound understanding of the nature of individual microbial responses to the presence of others. This will allow us to answer important questions including: Which intermicrobial interactions orchestrate the myriad of cooperative, synergistic, antagonistic, manipulative, and other types of relationships and activities in the complex biofilm environment, and what are the implications for oral health and disease?
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marcia Dalila Botelho Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Farnoosh Haghighi
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renate Lux
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Wang N, Gao J, Yuan L, Jin Y, He G. Metabolomics profiling during biofilm development of Bacillus licheniformis isolated from milk powder. Int J Food Microbiol 2020; 337:108939. [PMID: 33160113 DOI: 10.1016/j.ijfoodmicro.2020.108939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Bacillus licheniformis is a major source of microbial contamination to dairy industry, and biofilm formation by this spoilage bacterium aggravates the safety issues. Especially for milk powder manufactures, the evaporation process at temperatures between 50 °C and 70 °C before spray drying, is a critical control point against thermophilic bacteria multiplication. In our study, metabolomics analysis was performed to investigate dynamic changes of the metabolites and their roles during process of biofilm development of B. licheniformis at 55 °C for 24 h. Amino acid metabolism was quite active, with cooperation from lipid metabolism, carbohydrate metabolism and nucleotide metabolism. Amino acid biosynthesis provided significant contributions especially during early biofilm development from 8 to 12 h. Metabolites involved in specific pathways of arginine biosynthetic, galactose metabolism and sphingolipid metabolism played a crucial role in building biofilm. This work provided new insights into dynamic metabolic alternations and a comprehensive network during B. licheniformis biofilm development, which will extend the knowledge on the metabolic process of biofilm formation by B. licheniformis. The results are helpful in creating better environmental hygiene in dairy processing and new strategies for ensuring quality of dairy products.
Collapse
Affiliation(s)
- Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Gao
- College of Food Science and Technology, Hebei Agriculture University, Baoding 071000, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Alkharaan H, Lu L, Gabarrini G, Halimi A, Ateeb Z, Sobkowiak MJ, Davanian H, Fernández Moro C, Jansson L, Del Chiaro M, Özenci V, Sällberg Chen M. Circulating and Salivary Antibodies to Fusobacterium nucleatum Are Associated With Cystic Pancreatic Neoplasm Malignancy. Front Immunol 2020; 11:2003. [PMID: 32983143 PMCID: PMC7484485 DOI: 10.3389/fimmu.2020.02003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives Intraductal papillary mucinous neoplasms (IPMNs) are cystic precursor lesions to pancreatic cancer. The presence of oral microbes in pancreatic tissue or cyst fluid has been associated with high-grade dysplasia (HGD) and cancer. The present study aims at investigating if humoral immunity to pancreas-associated oral microbes reflects IPMN severity. Design Paired plasma (n = 109) and saliva (n = 65) samples were obtained from IPMN pancreatic cystic tumor cases and controls, for anti-bacterial antibody analysis and DNA quantification by enzyme-linked immunosorbent assay (ELISA) and qPCR, respectively. Tumor severity was graded by histopathology, laboratory, and clinical data. Circulating plasma and salivary antibody reactivity to a pancreas-associated oral microbe panel were measured by ELISA and correlated to tumor severity. Results The patient group with high-risk cystic tumors (HGD and/or associated invasive cancer) shows ample circulating IgG reactivity to Fusobacterium nucleatum (F. nucleatum) but not to Granulicatella adiacens (G. adiacens), which is independent of the salivary bacteria DNA levels. This group also shows higher salivary IgA reactivity to F. nucleatum, Fap2 of F. nucleatum, and Streptococcus gordonii (S. gordonii) compared to low-risk IPMN and controls. The salivary antibody reactivity to F. nucleatum and Fap2 are found to be highly correlated, and cross-competition assays further confirm that these antibodies appear cross-reactive. Conclusion Our findings indicate that humoral reactivity against pancreas-associated oral microbes may reflect IPMN severity. These findings are beneficial for biomarker development.
Collapse
Affiliation(s)
- Hassan Alkharaan
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Liyan Lu
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Asif Halimi
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Sweden
| | - Zeeshan Ateeb
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Sweden
| | | | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carlos Fernández Moro
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Huddinge, Sweden
| | - Leif Jansson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Aurora, CO, United States
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
25
|
Yang J, Yang Y, Ishii M, Nagata M, Aw W, Obana N, Tomita M, Nomura N, Fukuda S. Does the Gut Microbiota Modulate Host Physiology through Polymicrobial Biofilms? Microbes Environ 2020; 35. [PMID: 32624527 PMCID: PMC7511787 DOI: 10.1264/jsme2.me20037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microbes inhabit various environments, such as soil, water environments, plants, and animals. Humans harbor a complex commensal microbial community in the gastrointestinal tract, which is known as the gut microbiota. The gut microbiota participates not only in various metabolic processes in the human body, it also plays a critical role in host immune responses. Gut microbes that inhabit the intestinal epithelial surface form polymicrobial biofilms. In the last decade, it has been widely reported that gut microbial biofilms and gut microbiota-derived products, such as metabolites and bacterial membrane vesicles, not only directly affect the host intestinal environment, but also indirectly influence the health of the host. In this review, we discuss the most recent findings from human and animal studies on the interactions between the gut microbiota and hosts, and their associations with various disorders, including inflammatory diseases, atopic dermatitis, metabolic disorders, and psychiatric and neurological diseases. The integrated approach of metabologenomics together with biofilm imaging may provide valuable insights into the gut microbiota and suggest remedies that may lead to a healthier society.
Collapse
Affiliation(s)
- Jiayue Yang
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | | | - Manami Ishii
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | - Mayuko Nagata
- Institute for Advanced Biosciences, Keio University.,Faculty of Environment and Information Studies, Keio University
| | - Wanping Aw
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | - Nozomu Obana
- Transborder Medical Research Center, University of Tsukuba
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University.,Faculty of Environment and Information Studies, Keio University
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability, University of Tsukuba.,Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University.,Transborder Medical Research Center, University of Tsukuba.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology.,Metabologenomics, Inc
| |
Collapse
|
26
|
Kunka KS, Griffith JM, Holdener C, Bischof KM, Li H, DasSarma P, DasSarma S, Slonczewski JL. Acid Experimental Evolution of the Haloarchaeon Halobacterium sp. NRC-1 Selects Mutations Affecting Arginine Transport and Catabolism. Front Microbiol 2020; 11:535. [PMID: 32390952 PMCID: PMC7193027 DOI: 10.3389/fmicb.2020.00535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Halobacterium sp. NRC-1 (NRC-1) is an extremely halophilic archaeon that is adapted to multiple stressors such as UV, ionizing radiation and arsenic exposure; it is considered a model organism for the feasibility of microbial life in iron-rich brine on Mars. We conducted experimental evolution of NRC-1 under acid and iron stress. NRC-1 was serially cultured in CM+ medium modified by four conditions: optimal pH (pH 7.5), acid stress (pH 6.3), iron amendment (600 μM ferrous sulfate, pH 7.5), and acid plus iron (pH 6.3, with 600 μM ferrous sulfate). For each condition, four independent lineages of evolving populations were propagated. After 500 generations, 16 clones were isolated for phenotypic characterization and genomic sequencing. Genome sequences of all 16 clones revealed 378 mutations, of which 90% were haloarchaeal insertion sequences (ISH) and ISH-mediated large deletions. This proportion of ISH events in NRC-1 was five-fold greater than that reported for comparable evolution of Escherichia coli. One acid-evolved clone had increased fitness compared to the ancestral strain when cultured at low pH. Seven of eight acid-evolved clones had a mutation within or upstream of arcD, which encodes an arginine-ornithine antiporter; no non-acid adapted strains had arcD mutations. Mutations also affected the arcR regulator of arginine catabolism, which protects bacteria from acid stress by release of ammonia. Two acid-adapted strains shared a common mutation in bop, which encodes bacterio-opsin, apoprotein for the bacteriorhodopsin light-driven proton pump. Thus, in the haloarchaeon NRC-1, as in bacteria, pH adaptation was associated with genes involved in arginine catabolism and proton transport. Our study is among the first to report experimental evolution with multiple resequenced genomes of an archaeon. Haloarchaea are polyextremophiles capable of growth under environmental conditions such as concentrated NaCl and desiccation, but little is known about pH stress. Interesting parallels appear between the molecular basis of pH adaptation in NRC-1 and in bacteria, particularly the acid-responsive arginine-ornithine system found in oral streptococci.
Collapse
Affiliation(s)
- Karina S. Kunka
- Department of Biology, Kenyon College, Gambier, OH, United States
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jessie M. Griffith
- Department of Biology, Kenyon College, Gambier, OH, United States
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chase Holdener
- Department of Biology, Kenyon College, Gambier, OH, United States
| | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
27
|
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2020; 17:156-166. [PMID: 30546113 DOI: 10.1038/s41579-018-0129-6] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusobacterium nucleatum has long been found to cause opportunistic infections and has recently been implicated in colorectal cancer; however, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To address this dissonance, we explore the diversity and niches of fusobacteria and reconsider historic fusobacterial taxonomy in the context of current technology. We also undertake a critical reappraisal of fusobacteria with a focus on F. nucleatum as a mutualist, infectious agent and oncogenic microorganism. In this Review, we delve into recent insights and future directions for fusobacterial research, including the current genetic toolkit, our evolving understanding of its mechanistic role in promoting colorectal cancer and the challenges of developing diagnostics and therapeutics for F. nucleatum.
Collapse
Affiliation(s)
| | - Wendy S Garrett
- Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
28
|
Takeuchi H, Sasaki N, Yamaga S, Kuboniwa M, Matsusaki M, Amano A. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathog 2019; 15:e1008124. [PMID: 31697789 PMCID: PMC6932823 DOI: 10.1371/journal.ppat.1008124] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/26/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis pathogenicity is dysregulation of innate immunity at the gingival epithelial interface; however, the molecular basis underlying P. gingivalis–dependent abrogation of epithelial barrier function remains unknown. Gingival epithelial cells express junctional adhesion molecule (JAM1), a tight junction–associated protein, and JAM1 homodimers regulate epithelial barrier function. Here we show that Arg-specific or Lys-specific cysteine proteases (gingipains) secreted by P. gingivalis can specifically degrade JAM1 at K134 and R234 in gingival epithelial cells, resulting in permeability of the gingival epithelium to 40 kDa dextran, lipopolysaccharide (LPS), and proteoglycan (PGN). A P. gingivalis strain lacking gingipains was impaired in degradation of JAM1. Knockdown of JAM1 in monolayer cells and a three-dimensional multilayered tissue model also increased permeability to LPS, PGN, and gingipains. Inversely, overexpression of JAM1 in epithelial cells prevented penetration by these agents following P. gingivalis infection. Our findings strongly suggest that P. gingivalis gingipains disrupt barrier function of stratified squamous epithelium via degradation of JAM1, allowing bacterial virulence factors to penetrate into subepithelial tissues. Periodontal diseases, which are among the most common infections of humans, are characterized by gingival inflammation and destruction of the hard and soft tissues that support the tooth, eventually causing tooth loss. Porphyromonas gingivalis is a major pathogen in periodontal diseases. Infection of gingival epithelial cells by P. gingivalis increases epithelial permeability. However, the molecular mechanism and pathological significance of P. gingivalis–dependent barrier dysfunction in human gingival epithelium remain unknown. In this study, we developed a three-dimensional multilayered tissue model of gingival epithelium infected by P. gingivalis and used it to monitor penetration of bacterial products derived from P. gingivalis and other bacteria. We found that P. gingivalis proteases, called gingipains, have a potent and specific ability to degrade JAM1, which regulates epithelial barrier function. Mechanistically, gingipains degrade mature form of JAM1 on the plasma membrane, increasing penetration of 40 kDa dextran, lipopolysaccharide, peptidoglycan, and gingipains. Our study provides new insights into the etiological role of P. gingivalis, leading to periodontal destruction.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
- * E-mail: (HT); (AA)
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
- * E-mail: (HT); (AA)
| |
Collapse
|
29
|
Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, Zhu CM, Qian ZR. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med 2019; 5:178-187. [PMID: 31891129 PMCID: PMC6926109 DOI: 10.1016/j.cdtm.2019.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor that affects people worldwide. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue; many studies have indicated that F. nucleatum is closely related to the colorectal carcinogenesis. In this review, we provide the latest information to reveal the related molecular mechanisms. The known virulence factors of F. nucleatum promote adhesion to intestinal epithelial cells via FadA and Fap2. Besides, Fap2 also binds to immune cells causing immunosuppression. Furthermore, F. nucleatum recruits tumor-infiltrating immune cells, thus yielding a pro-inflammatory microenvironment, which promotes colorectal neoplasia progression. F. nucleatum was also found to potentiate CRC development through toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling and microRNA (miRNA)-21 expression. In addition, F. nucleatum increases CRC recurrence along with chemoresistance by mediating a molecular network of miRNA-18a*, miRNA-4802, and autophagy components. Moreover, viable F. nucleatum was detected in mouse xenografts of human primary colorectal adenocarcinomas through successive passages. These findings indicated that an increased number of F. nucleatum in the tissues is a biomarker for the diagnosis and prognosis of CRC, and the underlying molecular mechanism can probably provide a potential intervention treatment strategy for patients with F. nucleatum-associated CRC.
Collapse
Affiliation(s)
- Chun-Hui Sun
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris 75005, France.,Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bin-Bin Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bo Wang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiao-Ying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ting-Ting Li
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Bing Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Miao-Juan Qiu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Cheng Wang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
30
|
Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Duan Z, Guo R, Liang W, Hu Q, Tian Y, Zhou R. MnmE, a Central tRNA-Modifying GTPase, Is Essential for the Growth, Pathogenicity, and Arginine Metabolism of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2019; 9:173. [PMID: 31179247 PMCID: PMC6543552 DOI: 10.3389/fcimb.2019.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Streptococcus suis is an important pathogen in pigs and can also cause severe infections in humans. However, little is known about proteins associated with cell growth and pathogenicity of S. suis. In this study, a guanosine triphosphatase (GTPase) MnmE homolog was identified in a Chinese isolate (SC19) that drives a tRNA modification reaction. A mnmE deletion strain (ΔmnmE) and a complementation strain (CΔmnmE) were constructed to systematically decode the characteristics and functions of MnmE both in vitro and in vivo studies via proteomic analysis. Phenotypic analysis revealed that the ΔmnmE strain displayed deficient growth, attenuated pathogenicity, and perturbation of the arginine metabolic pathway mediated by the arginine deiminase system (ADS). Consistently, tandem mass tag -based quantitative proteomics analysis confirmed that 365 proteins were differentially expressed (174 up- and 191 down-regulated) between strains ΔmnmE and SC19. Many proteins associated with DNA replication, cell division, and virulence were down-regulated. Particularly, the core enzymes of the ADS were significantly down-regulated in strain ΔmnmE. These data also provide putative molecular mechanisms for MnmE in cell growth and survival in an acidic environment. Therefore, we propose that MnmE, by its function as a central tRNA-modifying GTPase, is essential for cell growth, pathogenicity, as well as arginine metabolism of S. suis.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| |
Collapse
|
31
|
Transcriptional profiling of coaggregation interactions between Streptococcus gordonii and Veillonella parvula by Dual RNA-Seq. Sci Rep 2019; 9:7664. [PMID: 31113978 PMCID: PMC6529473 DOI: 10.1038/s41598-019-43979-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
Collapse
|
32
|
Epigenetic findings in periodontitis in UK twins: a cross-sectional study. Clin Epigenetics 2019; 11:27. [PMID: 30760334 PMCID: PMC6375219 DOI: 10.1186/s13148-019-0614-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023] Open
Abstract
Background Genetic and environmental risk factors contribute to periodontal disease, but the underlying susceptibility pathways are not fully understood. Epigenetic mechanisms are malleable regulators of gene function that can change in response to genetic and environmental stimuli, thereby providing a potential mechanism for mediating risk effects in periodontitis. The aim of this study is to identify epigenetic changes across tissues that are associated with periodontal disease. Methods Self-reported gingival bleeding and history of gum disease, or tooth mobility, were used as indicators of periodontal disease. DNA methylation profiles were generated using the Infinium HumanMethylation450 BeadChip in whole blood, buccal, and adipose tissue samples from predominantly older female twins (mean age 58) from the TwinsUK cohort. Epigenome-wide association scans (EWAS) of gingival bleeding and tooth mobility were conducted in whole blood in 528 and 492 twins, respectively. Subsequently, targeted candidate gene analysis at 28 genomic regions was carried out testing for phenotype-methylation associations in 41 (tooth mobility) and 43 (gingival bleeding) buccal, and 501 (tooth mobility) and 556 (gingival bleeding) adipose DNA samples. Results Epigenome-wide analyses in blood identified one CpG-site (cg21245277 in ZNF804A) associated with gingival bleeding (FDR = 0.03, nominal p value = 7.17e−8) and 58 sites associated with tooth mobility (FDR < 0.05) with the top signals in IQCE and XKR6. Epigenetic variation at 28 candidate regions (247 CpG-sites) for chronic periodontitis showed an enrichment for association with periodontal traits, and signals in eight genes (VDR, IL6ST, TMCO6, IL1RN, CD44, IL1B, WHAMM, and CXCL1) were significant in both traits. The methylation-phenotype association signals validated in buccal samples, and a subset (25%) also validated in adipose tissue. Conclusions Epigenome-wide analyses in adult female twins identified specific DNA methylation changes linked to self-reported periodontal disease. Future work will explore the environmental basis and functional impact of these results to infer potential for strategic personalized treatments and prevention of chronic periodontitis. Electronic supplementary material The online version of this article (10.1186/s13148-019-0614-4) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Ferrándiz MJ, Cercenado MI, Domenech M, Tirado-Vélez JM, Escolano-Martínez MS, Yuste J, García E, de la Campa AG, Martín-Galiano AJ. An Uncharacterized Member of the Gls24 Protein Superfamily Is a Putative Sensor of Essential Amino Acid Availability in Streptococcus pneumoniae. MICROBIAL ECOLOGY 2019; 77:471-487. [PMID: 29978356 DOI: 10.1007/s00248-018-1218-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Proteins belonging to the Gls24 superfamily are involved in survival of pathogenic Gram-positive cocci under oligotrophic conditions and other types of stress, by a still unknown molecular mechanism. In Firmicutes, this superfamily includes three different valine-rich orthologal families (Gls24A, B, C) with different potential interactive partners. Whereas the Streptococcus pneumoniae Δgls24A deletion mutant experienced a general long growth delay, the Δgls24B mutant grew as the parental strain in the semisynthetic AGCH medium but failed to grow in the complex Todd-Hewitt medium. Bovine seroalbumin (BSA) was the component responsible for this phenotype. The effect of BSA on growth was concentration-dependent and was maintained when the protein was proteolyzed but not when heat-denatured, suggesting that BSA dependence was related to oligopeptide supplementation. Global transcriptional analyses of the knockout mutant revealed catabolic derepression and induction of chaperone and oligopeptide transport genes. This mutant also showed increased sensibility to cadmium and high temperature. The Δgls24B mutant behaved as a poor colonizer in the nasopharynx of mice and showed 20-fold competence impairment. Experimental data suggest that Gls24B plays a central role as a sensor of amino acid availability and its connection to sugar catabolism. This metabolic rewiring can be compensated in vitro, at the expenses of external oligopeptide supplementation, but reduce important bacteria skills prior to efficiently address systemic virulence traits. This is an example of how metabolic factors conserved in enterococci, streptococci, and staphylococci can be essential for survival in poor oligopeptide environments prior to infection progression.
Collapse
Affiliation(s)
- María J Ferrándiz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María I Cercenado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Miriam Domenech
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M Tirado-Vélez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Jose Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Adela G de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | |
Collapse
|
34
|
He J, Bao Y, Li J, Qiu Z, Liu Y, Zhang X. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface. J Dent 2019; 80:15-22. [DOI: 10.1016/j.jdent.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022] Open
|
35
|
Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS. Transcriptional responses of Streptococcus gordonii
and Fusobacterium nucleatum
to coaggregation. Mol Oral Microbiol 2018; 33:450-464. [DOI: 10.1111/omi.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Naresh V. R. Mutha
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Waleed K. Mohammed
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
- Department of Basic Science, College of Dentistry; University of Anbar; Anbar Iraq
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing; Newcastle University; Newcastle upon Tyne UK
| | - Geok Y. A. Tan
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Siew W. Choo
- Department of Biological Sciences; Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
- Suzhou Genome Centre (SGC); Health Technologies University Research Centre (HT-URC), Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
| | - Nicholas S. Jakubovics
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
36
|
Robinson J, Rostami N, Casement J, Vollmer W, Rickard A, Jakubovics N. ArcR modulates biofilm formation in the dental plaque colonizerStreptococcus gordonii. Mol Oral Microbiol 2018; 33:143-154. [DOI: 10.1111/omi.12207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- J.C. Robinson
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - N. Rostami
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - J. Casement
- Bioinformatics Support Unit; Newcastle University; Newcastle upon Tyne UK
| | - W. Vollmer
- Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne UK
| | - A.H. Rickard
- Department of Epidemiology; School of Public Health; University of Michigan; Ann Arbor MI USA
| | - N.S. Jakubovics
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
37
|
Abstract
A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.
Collapse
|
38
|
Keogh D, Tay WH, Ho YY, Dale JL, Chen S, Umashankar S, Williams RBH, Chen SL, Dunny GM, Kline KA. Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection. Cell Host Microbe 2017; 20:493-503. [PMID: 27736645 DOI: 10.1016/j.chom.2016.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
Enterococcus faecalis is frequently associated with polymicrobial infections of the urinary tract, indwelling catheters, and surgical wound sites. E. faecalis co-exists with Escherichia coli and other pathogens in wound infections, but mechanisms that govern polymicrobial colonization and pathogenesis are poorly defined. During infection, bacteria must overcome multiple host defenses, including nutrient iron limitation, to persist and cause disease. In this study, we investigated the contribution of E. faecalis to mixed-species infection when iron availability is restricted. We show that E. faecalis significantly augments E. coli biofilm growth and survival in vitro and in vivo by exporting L-ornithine. This metabolic cue facilitates E. coli biosynthesis of the enterobactin siderophore, allowing E. coli growth and biofilm formation in iron-limiting conditions that would otherwise restrict its growth. Thus, E. faecalis modulates its local environment by contributing growth-promoting cues that allow co-infecting organisms to overcome iron limitation and promotes polymicrobial infections.
Collapse
Affiliation(s)
- Damien Keogh
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yao Yong Ho
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jennifer L Dale
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Siyi Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074, Singapore
| | - Shivshankar Umashankar
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 114756, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 114756, Singapore
| | - Swaine L Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074, Singapore; GERMS and Infectious Disease Group, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | - Gary M Dunny
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
39
|
Ogawa T, Honda-Ogawa M, Ikebe K, Notomi Y, Iwamoto Y, Shirobayashi I, Hata S, Kibi M, Masayasu S, Sasaki S, Kawabata S, Maeda Y. Characterizations of oral microbiota in elderly nursing home residents with diabetes. J Oral Sci 2017; 59:549-555. [DOI: 10.2334/josnusd.16-0722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Taiji Ogawa
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry
| | - Mariko Honda-Ogawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry
| | - Yumiko Notomi
- Shitennoji-Yawaragien Welfare Facility for the Disabled
| | | | | | | | - Masahito Kibi
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry
| | | | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry
| |
Collapse
|
40
|
Ahn D, Peñaloza H, Wang Z, Wickersham M, Parker D, Patel P, Koller A, Chen EI, Bueno SM, Uhlemann AC, Prince A. Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection. JCI Insight 2016; 1:e89704. [PMID: 27777978 DOI: 10.1172/jci.insight.89704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptive changes in the genome of a locally predominant clinical isolate of the multidrug-resistant Klebsiella pneumoniae ST258 (KP35) were identified and help to explain the selection of this strain as a successful pulmonary pathogen. The acquisition of 4 new ortholog groups, including an arginine transporter, enabled KP35 to outcompete related ST258 strains lacking these genes. KP35 infection elicited a monocytic response, dominated by Ly6Chi monocytic myeloid-derived suppressor cells that lacked phagocytic capabilities, expressed IL-10, arginase, and antiinflammatory surface markers. In comparison with other K. pneumoniae strains, KP35 induced global changes in the phagocytic response identified with proteomics, including evasion of Ca2+ and calpain activation necessary for phagocytic killing, confirmed in functional studies with neutrophils. This comprehensive analysis of an ST258 K. pneumoniae isolate reveals ongoing genetic adaptation to host microenvironments and innate immune clearance mechanisms that complements its repertoire of antimicrobial resistance genes and facilitates persistence in the lung.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Hernán Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zheng Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Matthew Wickersham
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Dane Parker
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Purvi Patel
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Antonius Koller
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Emily I Chen
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
41
|
Hunter MC, Pozhitkov AE, Noble PA. Microbial signatures of oral dysbiosis, periodontitis and edentulism revealed by Gene Meter methodology. J Microbiol Methods 2016; 131:85-101. [PMID: 27717873 DOI: 10.1016/j.mimet.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Abstract
Conceptual models suggest that certain microorganisms (e.g., the "red" complex) are indicative of a specific disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of one of the following oral conditions: periodontitis, established caries, edentulism, and oral health. Our goal was to determine if the abundances of certain microorganisms reflect dysbiosis or a specific clinical condition that could be used as a 'signature' for dental research. Microbial abundances were determined by the analysis of 138,718 calibrated probes using Gene Meter methodology. Each 16S rRNA gene was targeted by an average of 194 unique probes (n=25nt). The calibration involved diluting pooled gene target samples, hybridizing each dilution to a DNA microarray, and fitting the probe intensities to adsorption models. The fit of the model to the experimental data was used to assess individual and aggregate probe behavior; good fits (R2>0.90) were retained for back-calculating microbial abundances from patient samples. The abundance of a gene was determined from the median of all calibrated individual probes or from the calibrated abundance of all aggregated probes. With the exception of genes with low abundances (<2 arbitrary units), the abundances determined by the different calibrations were highly correlated (r~1.0). Seventeen genera were classified as 'signatures of dysbiosis' because they had significantly higher abundances in patients with periodontitis and edentulism when contrasted with health. Similarly, 13 genera were classified as 'signatures of periodontitis', and 14 genera were classified as 'signatures of edentulism'. The signatures could be used, individually or in combination, to assess the clinical status of a patient (e.g., evaluating treatments such as antibiotic therapies). Comparisons of the same patient samples revealed high false negatives (45%) for next-generation-sequencing results and low false positives (7%) for Gene Meter results.
Collapse
Affiliation(s)
- M Colby Hunter
- Program in Microbiology, Alabama State University, Montgomery, AL 36101, United States.
| | - Alex E Pozhitkov
- Department of Oral Health, University of Washington, Box 3574444, Seattle, WA, United States.
| | - Peter A Noble
- Department of Periodontics, University of Washington, Box 3574444, Seattle, WA, United States.
| |
Collapse
|
42
|
Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients. mBio 2016; 7:mBio.01072-16. [PMID: 27531910 PMCID: PMC4992973 DOI: 10.1128/mbio.01072-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Significant gut microbiota heterogeneity exists among ulcerative colitis (UC) patients, though the clinical implications of this variance are unknown. We hypothesized that ethnically distinct UC patients exhibit discrete gut microbiotas with unique metabolic programming that differentially influence immune activity and clinical status. Using parallel 16S rRNA and internal transcribed spacer 2 sequencing of fecal samples (UC, 30; healthy, 13), we corroborated previous observations of UC-associated bacterial diversity depletion and demonstrated significant Saccharomycetales expansion as characteristic of UC gut dysbiosis. Furthermore, we identified four distinct microbial community states (MCSs) within our cohort, confirmed their existence in an independent UC cohort, and demonstrated their coassociation with both patient ethnicity and disease severity. Each MCS was uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of the metabolic products of these pathways. Using a novel ex vivo human dendritic cell and T-cell coculture assay, we showed that exposure to fecal water from UC patients caused significant Th2 skewing in CD4+ T-cell populations compared to that of healthy participants. In addition, fecal water from patients in whom their MCS was associated with the highest level of disease severity induced the most dramatic Th2 skewing. Combined with future investigations, these observations could lead to the identification of highly resolved UC subsets based on defined microbial gradients or discrete microbial features that may be exploited for the development of novel, more effective therapies. Despite years of research, the etiology of UC remains enigmatic. Diagnosis is difficult and the patient population heterogeneous, which represents a significant barrier to the development of more effective, tailored therapy. In this study, we demonstrate the clinical utility of the gut microbiome in stratifying UC patients by identifying the existence of four distinct interkingdom pathogenic microbiotas within the UC patient population that are compositionally and metabolically distinct, covary with clinical markers of disease severity, and drive discrete CD4+ T-cell expansions ex vivo. These findings offer new insight into the potential value of the gut microbiome as a tool for subdividing UC patients, opening avenues to the development of more personalized treatment plans and targeted therapies.
Collapse
|
43
|
Kuboniwa M, Sakanaka A, Hashino E, Bamba T, Fukusaki E, Amano A. Prediction of Periodontal Inflammation via Metabolic Profiling of Saliva. J Dent Res 2016; 95:1381-1386. [PMID: 27470067 DOI: 10.1177/0022034516661142] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontal disease is characterized by chronic inflammation in subgingival areas, where a vast array of inflammation-associated metabolites are likely produced from tissue breakdown, increased vascular permeability, and microbial metabolism and then eventually show a steady flow into saliva. Thus, prolonged periodontal inflammation is a key feature of disease activity. Although salivary metabolomics has drawn attention for its potential use in diagnosis of periodontal disease, few authors have used that to investigate periodontal inflammation detection. In this pilot study, the authors explored the use of salivary metabolites to reflect periodontal inflammation severity with a recently proposed parameter-periodontal inflamed surface area (PISA)-used to quantify the periodontal inflammatory burden of individual patients with high accuracy. Following PISA determination, whole saliva samples were collected from 19 subjects before and after removal of supragingival plaque and calculus (debridement) with an ultrasonic scaler to assess the influence of the procedure on salivary metabolic profiles. Metabolic profiling of saliva was performed with gas chromatography coupled to time-of-flight mass spectrometry, followed by multivariate regression analysis with orthogonal projections to latent structures (OPLS) to investigate the relationship between PISA and salivary metabolic profiles. Sixty-three metabolites were identified. OPLS analysis showed that postdebridement saliva provided a more refined model for prediction of PISA than did predebridement samples, which indicated that debridement may improve detection of metabolites eluted from subgingival areas in saliva, thus more accurately reflecting the pathophysiology of periodontitis. Based on the variable importance in the projection values obtained via OPLS, 8 metabolites were identified as potential indicators of periodontal inflammation, of which the combination of cadaverine, 5-oxoproline, and histidine yielded satisfactory accuracy (area under the curve = 0.881) for diagnosis of periodontitis. The authors' findings identified potential biomarkers that may be useful for reflecting the severity of periodontal inflammation as part of monitoring disease activity in periodontitis patients.
Collapse
Affiliation(s)
- M Kuboniwa
- 1 Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan.,2 AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - A Sakanaka
- 1 Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - E Hashino
- 1 Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan.,3 "Challenge to Intractable Oral Diseases" Project, Osaka University Dental Hospital, Suita, Japan
| | - T Bamba
- 4 Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Japan.,5 Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - E Fukusaki
- 2 AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,4 Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Japan
| | - A Amano
- 1 Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
44
|
Zhang J, Du G, Chen J, Fang F. Characterization of a Bacillus amyloliquefaciens strain for reduction of citrulline accumulation during soy sauce fermentation. Biotechnol Lett 2016; 38:1723-31. [DOI: 10.1007/s10529-016-2147-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
|
45
|
A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans. Appl Environ Microbiol 2016; 82:2187-201. [PMID: 26826230 DOI: 10.1128/aem.03887-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens.
Collapse
|
46
|
Sakanaka A, Takeuchi H, Kuboniwa M, Amano A. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb Pathog 2015; 94:42-7. [PMID: 26456558 DOI: 10.1016/j.micpath.2015.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 01/01/2023]
Abstract
Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|