1
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
2
|
Dos Anjos Cordeiro JM, Santos LC, Santos BR, de Jesus Nascimento AE, Santos EO, Barbosa EM, de Macêdo IO, Mendonça LD, Sarmento-Neto JF, Pinho CS, Coura ETDS, Santos ADS, Rodrigues ME, Rebouças JS, De-Freitas-Silva G, Munhoz AD, de Lavor MSL, Silva JF. Manganese porphyrin-based treatment improves fetal-placental development and protects against oxidative damage and NLRP3 inflammasome activation in a rat maternal hypothyroidism model. Redox Biol 2024; 74:103238. [PMID: 38870780 PMCID: PMC11225907 DOI: 10.1016/j.redox.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1β, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.
Collapse
Affiliation(s)
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Emilly Oliveira Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - José Ferreira Sarmento-Neto
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Clarice Santos Pinho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Acácio de Sá Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Marciel Elio Rodrigues
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual Do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Júlio Santos Rebouças
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Gilson De-Freitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Dias Munhoz
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Mário Sérgio Lima de Lavor
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.
| |
Collapse
|
3
|
Brown GC. Bioenergetic myths of energy transduction in eukaryotic cells. Front Mol Biosci 2024; 11:1402910. [PMID: 38952719 PMCID: PMC11215017 DOI: 10.3389/fmolb.2024.1402910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 07/03/2024] Open
Abstract
The study of energy transduction in eukaryotic cells has been divided between Bioenergetics and Physiology, reflecting and contributing to a variety of Bioenergetic myths considered here: 1) ATP production = energy production, 2) energy transduction is confined to mitochondria (plus glycolysis and chloroplasts), 3) mitochondria only produce heat when required, 4) glycolysis is inefficient compared to mitochondria, and 5) mitochondria are the main source of reactive oxygen species (ROS) in cells. These myths constitute a 'mitocentric' view of the cell that is wrong or unbalanced. In reality, mitochondria are the main site of energy dissipation and heat production in cells, and this is an essential function of mitochondria in mammals. Energy transduction and ROS production occur throughout the cell, particularly the cytosol and plasma membrane, and all cell membranes act as two-dimensional energy conduits. Glycolysis is efficient, and produces less heat per ATP than mitochondria, which might explain its increased use in muscle and cancer cells.
Collapse
Affiliation(s)
- Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Meddeb M, Koleini N, Jun S, Keykhaei M, Farshidfar F, Zhao L, Kwon S, Lin B, Keceli G, Paolocci N, Hahn V, Sharma K, Pearce EL, Kass DA. ATP Citrate Lyase Supports Cardiac Function and NAD+/NADH Balance And Is Depressed in Human Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598152. [PMID: 38915649 PMCID: PMC11195057 DOI: 10.1101/2024.06.09.598152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND ATP-citrate lyase (ACLY) converts citrate into acetyl-CoA and oxaloacetate in the cytosol. It plays a prominent role in lipogenesis and fat accumulation coupled to excess glucose, and its inhibition is approved for treating hyperlipidemia. In RNAseq analysis of human failing myocardium, we found ACLY gene expression is reduced; however the impact this might have on cardiac function and/or metabolism has not been previously studied. As new ACLY inhibitors are in development for cancer and other disorders, such understanding has added importance. METHODS Cardiomyocytes, ex-vivo beating hearts, and in vivo hearts with ACLY inhibited by selective pharmacologic (BMS303141, ACLYi) or genetic suppression, were studied. Regulation of ACLY gene/protein expression, and effects of ACLYi on function, cytotoxicity, tricarboxylic acid (TCA)-cycle metabolism, and redox and NAD+/NADH balance were assessed. Mice with cardiac ACLY knockdown induced by AAV9-acly-shRNA or cardiomyocyte tamoxifen-inducible Acly knockdown were studied. RESULTS Acly gene expression was reduced more in obese patients with heart failure and preserved EF (HFpEF) than HF with reduced EF. In vivo pressure-overload and in vitro hormonal stress increased ACLY protein expression, whereas it declined upon fatty-acid exposure. Acute ACLYi (1-hr) dose-dependently induced cytotoxicity in adult and neonatal cardiomyocytes, and caused substantial reduction of systolic and diastolic function in myocytes and ex-vivo beating hearts. In the latter, ATP/ADP ratio also fell and lactate increased. U13C-glucose tracing revealed an ACLYdependent TCA-bypass circuit in myocytes, where citrate generated in mitochondria is transported to the cytosol, metabolized by ACLY and then converted to malate to re-enter mitochondria,bypassing several NADH-generating steps. ACLYi lowered NAD+/NADH ratio and restoring this balance ameliorated cardiomyocyte toxicity. Oxidative stress was undetected with ACLYi. Adult hearts following 8-weeks of reduced cardiac and/or cardiomyocyte ACLY downregulation exhibited ventricular dilation and reduced function that was prevented by NAD augmentation. Cardiac dysfunction from ACLY knockdown was worse in hearts subjected to sustained pressureoverload, supporting a role in stress responses. CONCLUSIONS ACLY supports normal cardiac function through maintenance of the NAD+/NADH balance and is upregulated by hemodynamic and hormonal stress, but depressed by lipid excess. ACLY levels are most reduced in human HFpEF with obesity potentially worsening cardio-metabolic reserve.
Collapse
|
5
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
6
|
Schraps N, Tirre M, Pyschny S, Reis A, Schlierbach H, Seidl M, Kehl HG, Schänzer A, Heger J, Jux C, Drenckhahn JD. Cardiomyocyte maturation alters molecular stress response capacities and determines cell survival upon mitochondrial dysfunction. Free Radic Biol Med 2024; 213:248-265. [PMID: 38266827 DOI: 10.1016/j.freeradbiomed.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Cardiomyocyte maturation during pre- and postnatal development requires multiple intertwined processes, including a switch in energy generation from glucose utilization in the embryonic heart towards fatty acid oxidation after birth. This is accompanied by a boost in mitochondrial mass to increase capacities for oxidative phosphorylation and ATP generation required for efficient contraction. Whether cardiomyocyte differentiation is paralleled by augmented capacities to deal with reactive oxygen species (ROS), physiological byproducts of the mitochondrial electron transport chain (ETC), is less clear. Here we show that expression of genes and proteins involved in redox homeostasis and protein quality control within mitochondria increases after birth in the mouse and human heart. Using primary embryonic, neonatal and adult mouse cardiomyocytes in vitro we investigated how excessive ROS production induced by mitochondrial dysfunction affects cell survival and stress response at different stages of maturation. Embryonic and neonatal cardiomyocytes largely tolerate inhibition of ETC complex III by antimycin A (AMA) as well as ATP synthase (complex V) by oligomycin but are susceptible to complex I inhibition by rotenone. All three inhibitors alter the intracellular distribution and ultrastructure of mitochondria in neonatal cardiomyocytes. In contrast, adult cardiomyocytes treated with AMA undergo rapid morphological changes and cellular disintegration. At the molecular level embryonic cardiomyocytes activate antioxidative defense mechanisms, the integrated stress response (ISR) and ER stress but not the mitochondrial unfolded protein response upon complex III inhibition. In contrast, adult cardiomyocytes fail to activate the ISR and antioxidative proteins following AMA treatment. In conclusion, our results identified fundamental differences in cell survival and stress response in differentiated compared to immature cardiomyocytes subjected to mitochondrial dysfunction. The high stress tolerance of immature cardiomyocytes might allow outlasting unfavorable intrauterine conditions thereby preventing fetal or perinatal heart disease and may contribute to the regenerative capacity of the embryonic and neonatal mammalian heart.
Collapse
Affiliation(s)
- Nina Schraps
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
| | - Michaela Tirre
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Simon Pyschny
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Anna Reis
- Institute of Physiology, Justus Liebig University, Gießen, Germany
| | | | - Matthias Seidl
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms University, Münster, Germany
| | - Hans-Gerd Kehl
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Gießen, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus Liebig University, Gießen, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
7
|
Oropeza-Almazán Y, Blatter LA. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules 2024; 14:144. [PMID: 38397381 PMCID: PMC10887423 DOI: 10.3390/biom14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS production is enhanced during CaT alternans, measured by fluorescence microscopy. Exogenous ROS (tert-butyl hydroperoxide) enhanced CaT alternans, whereas ROS scavengers (dithiothreitol, MnTBAP, quercetin, tempol) alleviated CaT alternans. While the inhibition of cellular NADPH oxidases had no effect on CaT alternans, interference with mitochondrial ROS (ROSm) production had profound effects: (1) the superoxide dismutase mimetic MitoTempo diminished CaT alternans and shifted the pacing threshold to higher frequencies; (2) the inhibition of cyt c peroxidase by SS-31, and inhibitors of ROSm production by complexes of the electron transport chain S1QEL1.1 and S3QEL2, decreased the severity of CaT alternans; however (3) the impairment of mitochondrial antioxidant defense by the inhibition of nicotinamide nucleotide transhydrogenase with NBD-Cl and thioredoxin reductase-2 with auranofin enhanced CaT alternans. Our results suggest that intact mitochondrial antioxidant defense provides crucial protection against pro-arrhythmic CaT alternans. Thus, modulating the mitochondrial redox state represents a potential therapeutic approach for alternans-associated arrhythmias, including AF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA;
| |
Collapse
|
8
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. Proc Natl Acad Sci U S A 2024; 121:e2307904121. [PMID: 38207075 PMCID: PMC10801874 DOI: 10.1073/pnas.2307904121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA94143
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| |
Collapse
|
9
|
Grayson C, Mailloux RJ. Coenzyme Q 10 and nicotinamide nucleotide transhydrogenase: Sentinels for mitochondrial hydrogen peroxide signaling. Free Radic Biol Med 2023; 208:260-271. [PMID: 37573896 DOI: 10.1016/j.freeradbiomed.2023.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mitochondria use hydrogen peroxide (H2O2) as a mitokine for cell communication. H2O2 output for signaling depends on its rate of production and degradation, both of which are strongly affected by the redox state of the coenzyme Q10 (CoQ) pool and NADPH availability. Here, we propose the CoQ pool and nicotinamide nucleotide transhydrogenase (NNT) have evolved to be central modalities for mitochondrial H2O2 signaling. Both factors play opposing yet equally important roles in dictating H2O2 availability because they are connected to one another by two central parameters in bioenergetics: electron supply and Δp. The CoQ pool is the central point of convergence for electrons from various dehydrogenases and the electron transport chain (ETC). The increase in Δp creates a significant amount of protonic backpressure on mitochondria to promote H2O2 genesis through CoQ pool reduction. These same factors also drive the activity of NNT, which uses electrons and the Δp to eliminate H2O2. In this way, electron supply and the magnitude of the Δp manifests as a redox connection between the two sentinels, CoQ and NNT, which serve as opposing yet equally important forces required for budgeting H2O2. Taken together, CoQ and NNT are sentinels linked through mitochondrial bioenergetics to manage H2O2 availability for interorganelle and intercellular redox signaling.
Collapse
Affiliation(s)
- Cathryn Grayson
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
10
|
Dey S, Joshi P, O'Rourke B, Estes S, DeMazumder D. Cardiac sympathetic denervation prevents sudden cardiac arrest and improves cardiac function by enhancing mitochondrial-antioxidant capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526082. [PMID: 36778270 PMCID: PMC9915471 DOI: 10.1101/2023.01.29.526082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Sudden cardiac arrest (SCA) and heart failure (HF) are leading causes of death. The underlying mechanisms are incompletely understood, limiting the design of new therapies. Whereas most autonomic modulation therapies have not shown clear benefit in HF patients, growing evidence indicates cardiac sympathetic denervation (CSD) exerts cardioprotective effects. The underlying molecular and cellular mechanisms remain unexplored. OBJECTIVE Based on the hypothesis that mitochondrial reactive oxygen species (mROS) drive the pathogenesis of HF and SCA, we investigated whether CSD prevents SCA and HF by improving mitochondrial antioxidant capacity and redox balance, to correct impaired Ca2+ handling and repolarization reserve. METHODS AND RESULTS We interrogated CSD-specific responses in pressure-overload HF models with spontaneous SCA using in vivo echocardiographic and electrocardiographic studies and in vitro biochemical and functional studies including ratiometric measures of mROS, Ca2+ and sarcomere dynamics in left ventricular myocytes. Pressure-overloaded HF reduced mitochondrial antioxidant capacity and increased mROS, which impaired β-adrenergic signaling and caused SR Ca2+ leak, reducing SR Ca2+ and increasing diastolic Ca2+, impaired myofilament contraction and further increased the sympathetic stress response. CSD improved contractile function and mitigated mROS-mediated diastolic Ca2+ overload, dispersion of repolarization, triggered activity and SCA by upregulating mitochondrial antioxidant and NADPH-producing enzymes. CONCLUSIONS Our findings support a fundamental role of sympathetic stress-induced downregulation of mROS scavenging enzymes and RyR-leak mediated diastolic Ca2+ overload in HF and SCA pathogenesis that are mitigated by CSD. This first report on the molecular and cellular mechanisms of CSD supports its evaluation in additional high-risk patient groups.
Collapse
|
11
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562276. [PMID: 37904938 PMCID: PMC10614765 DOI: 10.1101/2023.10.14.562276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Adam L. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA
| |
Collapse
|
12
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
13
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
14
|
Solhjoo S, Liu T, Sidor A, Lee DI, O'Rourke B, Steenbergen C. Oxidative stress in the mitochondrial matrix underlies ischemia/reperfusion-induced mitochondrial instability. J Biol Chem 2022; 299:102780. [PMID: 36496071 PMCID: PMC9852550 DOI: 10.1016/j.jbc.2022.102780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemia and reperfusion affect multiple elements of cardiomyocyte electrophysiology, especially within the mitochondria. We previously showed that in cardiac monolayers, upon reperfusion after coverslip-induced ischemia, mitochondrial inner membrane potential (ΔΨ) unstably oscillates between polarized and depolarized states, and ΔΨ instability corresponds with arrhythmias. Here, through confocal microscopy of compartment-specific molecular probes, we investigate the mechanisms underlying the postischemic ΔΨ oscillations, focusing on the role of Ca2+ and oxidative stress. During reperfusion, transient ΔΨ depolarizations occurred concurrently with periods of increased mitochondrial oxidative stress (5.07 ± 1.71 oscillations/15 min, N = 100). Supplementing the antioxidant system with GSH monoethyl ester suppressed ΔΨ oscillations (1.84 ± 1.07 oscillations/15 min, N = 119, t test p = 0.027) with 37% of mitochondrial clusters showing no ΔΨ oscillations (versus 4% in control, odds ratio = 14.08, Fisher's exact test p < 0.001). We found that limiting the production of reactive oxygen species using cyanide inhibited postischemic ΔΨ oscillations (N = 15, t test p < 10-5). Furthermore, ΔΨ oscillations were not associated with any discernable pattern in cell-wide oxidative stress or with the changes in cytosolic or mitochondrial Ca2+. Sustained ΔΨ depolarization followed cytosolic and mitochondrial Ca2+ increase and was associated with increased cell-wide oxidative stress. Collectively, these findings suggest that transient bouts of increased mitochondrial oxidative stress underlie postischemic ΔΨ oscillations, regardless of Ca2+ dynamics.
Collapse
Affiliation(s)
- Soroosh Solhjoo
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Ting Liu
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Agnieszka Sidor
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dong I Lee
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Serikbaeva A, Li Y, Ganesh B, Zelkha R, Kazlauskas A. Hyperglycemia Promotes Mitophagy and Thereby Mitigates Hyperglycemia-Induced Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1779-1794. [PMID: 36063899 PMCID: PMC9765315 DOI: 10.1016/j.ajpath.2022.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
The observation that diabetic retinopathy (DR) typically takes decades to develop suggests the existence of an endogenous system that protects from diabetes-induced damage. To investigate the existance of such a system, primary human retinal endothelial cells were cultured in either normal glucose (5 mmol/L) or high glucose (30 mmol/L; HG). Prolonged exposure to HG was beneficial instead of detrimental. Although tumor necrosis factor-α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 was unaffected after 1 day of HG, it waned as the exposure to HG was extended. Similarly, oxidative stress-induced death decreased with prolonged exposure to HG. Furthermore, mitochondrial functionality, which was compromised by 1 day of HG, was improved by 10 days of HG, and this change required increased clearance of damaged mitochondria (mitophagy). Finally, antagonizing mitochondrial dynamics compromised the cells' ability to endure HG: susceptibility to cell death increased, and basal barrier function and responsiveness to vascular endothelial growth factor deteriorated. These observations indicate the existence of an endogenous system that protects human retinal endothelial cells from the deleterious effects of HG. Hyperglycemia-induced mitochondrial adaptation is a plausible contributor to the mechanism responsible for the delayed onset of DR; loss of hyperglycemia-induced mitochondrial adaptation may set the stage for the development of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Yueru Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Balaji Ganesh
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Zelkha
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
16
|
Grün B, Tirre M, Pyschny S, Singh V, Kehl HG, Jux C, Drenckhahn JD. Inhibition of mitochondrial respiration has fundamentally different effects on proliferation, cell survival and stress response in immature versus differentiated cardiomyocyte cell lines. Front Cell Dev Biol 2022; 10:1011639. [PMID: 36211452 PMCID: PMC9538794 DOI: 10.3389/fcell.2022.1011639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Myocardial tissue homeostasis is critically important for heart development, growth and function throughout the life course. The loss of cardiomyocytes under pathological conditions ultimately leads to cardiovascular disease due to the limited regenerative capacity of the postnatal mammalian heart. Inhibition of electron transport along the mitochondrial respiratory chain causes cellular stress characterized by ATP depletion as well as excessive generation of reactive oxygen species. Adult cardiomyocytes are highly susceptible to mitochondrial dysfunction whereas embryonic cardiomyocytes in the mouse heart have been shown to be resistant towards mitochondrial complex III inhibition. To functionally characterize the molecular mechanisms mediating this stress tolerance, we used H9c2 cells as an in vitro model for immature cardiomyoblasts and treated them with various inhibitors of mitochondrial respiration. The complex I inhibitor rotenone rapidly induced cell cycle arrest and apoptosis whereas the complex III inhibitor antimycin A (AMA) had no effect on proliferation and only mildly increased cell death. HL-1 cells, a differentiated and contractile cardiomyocyte cell line from mouse atrium, were highly susceptible to AMA treatment evident by cell cycle arrest and death. AMA induced various stress response mechanisms in H9c2 cells, such as the mitochondrial unfolded protein response (UPRmt), integrated stress response (ISR), heat shock response (HSR) and antioxidative defense. Inhibition of the UPR, ISR and HSR by siRNA mediated knock down of key components does not impair growth of H9c2 cells upon AMA treatment. In contrast, knock down of NRF2, an important transcriptional regulator of genes involved in detoxification of reactive oxygen species, reduces growth of H9c2 cells upon AMA treatment. Various approaches to activate cell protective mechanisms and alleviate oxidative stress in HL-1 cells failed to rescue them from AMA induced growth arrest and death. In summary, these data show that the site of electron transport interruption along the mitochondrial respiratory chain determines cell fate in immature cardiomyoblasts. The study furthermore points to fundamental differences in stress tolerance and cell survival between immature and differentiated cardiomyocytes which may underlie the growth plasticity of embryonic cardiomyocytes during heart development but also highlight the obstacles of cardioprotective therapies in the adult heart.
Collapse
Affiliation(s)
- Bent Grün
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Michaela Tirre
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Simon Pyschny
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Vijay Singh
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Gießen, Germany
| | - Hans-Gerd Kehl
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
| | - Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
- *Correspondence: Jörg-Detlef Drenckhahn,
| |
Collapse
|
17
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
18
|
Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:485-504. [PMID: 35400890 PMCID: PMC8943088 DOI: 10.1007/s12298-022-01146-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/15/2023]
Abstract
In agro-ecosystem, plant pathogens hamper food quality, crop yield, and global food security. Manipulation of naturally occurring defense mechanisms in host plants is an effective and sustainable approach for plant disease management. Various natural compounds, ranging from cell wall components to metabolic enzymes have been reported to protect plants from infection by pathogens and hence provide specific resistance to hosts against pathogens, termed as induced resistance. It involves various biochemical components, that play an important role in molecular and cellular signaling events occurring either before (elicitation) or after pathogen infection. The induction of reactive oxygen species, activation of defensive machinery of plants comprising of enzymatic and non-enzymatic antioxidative components, secondary metabolites, pathogenesis-related protein expression (e.g. chitinases and glucanases), phytoalexin production, modification in cell wall composition, melatonin production, carotenoids accumulation, and altered activity of polyamines are major induced changes in host plants during pathogen infection. Hence, the altered concentration of biochemical components in host plants restricts disease development. Such biochemical or metabolic markers can be harnessed for the development of "pathogen-proof" plants. Effective utilization of the key metabolites-based metabolic markers can pave the path for candidate gene identification. This present review discusses the valuable information for understanding the biochemical response mechanism of plants to cope with pathogens and genomics-metabolomics-based sustainable development of pathogen proof cultivars along with knowledge gaps and future perspectives to enhance sustainable agricultural production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Manoj Choudhary
- ICAR-National Research Center for Integrated Pest Management, New Delhi, India
- Department of Plant Pathology, University of Florida, Gainesville, United States
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal 735225 India
| | - Anshu Sharma
- Department of FST, Dr. YS Parmar UHF Nauni, Solan, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| |
Collapse
|
19
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
20
|
So-In C, Sunthamala N. Treatment efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata extracts in Staphylococcus aureus-induced rabbit dermatitis model. Vet World 2022; 15:188-197. [PMID: 35369604 PMCID: PMC8924391 DOI: 10.14202/vetworld.2022.188-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dermatitis is a soft-tissue infection caused by Staphylococcus aureus. The recurrence of inflammatory skin is linked to clinical manifestations. Anti-inflammatory cytokines, which are essential for tissue damage, are released by bacteria through skin tissues. Oxidative stress causes inflammatory cells to necrotize and reduces their antioxidant profile, resulting in toxic damage to surrounding tissues. Although studies on the antibacterial effects of Thunbergia laurifolia Lindl., Curcuma longa L., Garcinia mangostana L., and Andrographis paniculata (Burm.). Bacterial infection of S. aureus have been conducted, most of these studies have been in vitro and were not related to the rabbit model. In addition, anti-inflammatory and antioxidant studies need to be evaluated. Thus, this study aims to compare the antibacterial, anti-inflammatory, and antioxidant properties of four local herbs with a standard antibiotic in S. aureus-induced rabbit dermatitis model. Materials and Methods: The skin of New Zealand white rabbits were artificially wounded using a sterile blade and then infected with S. aureus. The rabbits were divided into seven groups, each with three rabbits (Total 21 rabbits): The first group was the no infection group (no infection and no treatment with scarification), the second group was the no treatment group (S. aureus infection of the wound but no treatment), and the other five treated groups were T. laurifolia, C. longa, G. mangostana, A. paniculata, and bacitracin cream, all of which involved wound infection and treatments. The treatment lasted for 7 days. The antibacterial, anti-inflammatory, and antioxidant properties after treatment were measured. Results: The efficacy of T. laurifolia, C. longa, G. mangostana, and A. paniculata was similar to that of an antioxidant and free radical scavenging property. The bacterial infection process gradually reduced the activities of antioxidant systems (i.e., enzymatic levels and gene expressions) and total glutathione. However, the activities of the antioxidant system were steadily increased when treated with herbal extracts. During bacterial invasion of the skin, the concentration of thiobarbituric acid reactive molecules, the level of lipid peroxidation, and the expression of anti-inflammatory cytokine genes were increased. All these were decreased when herbal extracts were used to treat the lesion. Conclusion: It can be concluded that T. laurifolia, C. longa, G. mangostana, and A. paniculate extract have antibacterial, anti-inflammatory, and antioxidant properties and are effective antibacterial agents. G. mangostana is the most effective herbal extract for antidermatitis and has the potential to be used as an alternative topical treatment.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| |
Collapse
|
21
|
Tachycardiomyopathy entails a dysfunctional pattern of interrelated mitochondrial functions. Basic Res Cardiol 2022; 117:45. [PMID: 36068416 PMCID: PMC9448689 DOI: 10.1007/s00395-022-00949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 01/31/2023]
Abstract
Tachycardiomyopathy is characterised by reversible left ventricular dysfunction, provoked by rapid ventricular rate. While the knowledge of mitochondria advanced in most cardiomyopathies, mitochondrial functions await elucidation in tachycardiomyopathy. Pacemakers were implanted in 61 rabbits. Tachypacing was performed with 330 bpm for 10 days (n = 11, early left ventricular dysfunction) or with up to 380 bpm over 30 days (n = 24, tachycardiomyopathy, TCM). In n = 26, pacemakers remained inactive (SHAM). Left ventricular tissue was subjected to respirometry, metabolomics and acetylomics. Results were assessed for translational relevance using a human-based model: induced pluripotent stem cell derived cardiomyocytes underwent field stimulation for 7 days (TACH-iPSC-CM). TCM animals showed systolic dysfunction compared to SHAM (fractional shortening 37.8 ± 1.0% vs. 21.9 ± 1.2%, SHAM vs. TCM, p < 0.0001). Histology revealed cardiomyocyte hypertrophy (cross-sectional area 393.2 ± 14.5 µm2 vs. 538.9 ± 23.8 µm2, p < 0.001) without fibrosis. Mitochondria were shifted to the intercalated discs and enlarged. Mitochondrial membrane potential remained stable in TCM. The metabolite profiles of ELVD and TCM were characterised by profound depletion of tricarboxylic acid cycle intermediates. Redox balance was shifted towards a more oxidised state (ratio of reduced to oxidised nicotinamide adenine dinucleotide 10.5 ± 2.1 vs. 4.0 ± 0.8, p < 0.01). The mitochondrial acetylome remained largely unchanged. Neither TCM nor TACH-iPSC-CM showed relevantly increased levels of reactive oxygen species. Oxidative phosphorylation capacity of TCM decreased modestly in skinned fibres (168.9 ± 11.2 vs. 124.6 ± 11.45 pmol·O2·s-1·mg-1 tissue, p < 0.05), but it did not in isolated mitochondria. The pattern of mitochondrial dysfunctions detected in two models of tachycardiomyopathy diverges from previously published characteristic signs of other heart failure aetiologies.
Collapse
|
22
|
Drago L, Ferro D, Bakiu R, Ballarin L, Santovito G. Typical 2-Cys Peroxiredoxins as a Defense Mechanism against Metal-Induced Oxidative Stress in the Solitary Ascidian Ciona robusta. Antioxidants (Basel) 2021; 11:93. [PMID: 35052596 PMCID: PMC8772837 DOI: 10.3390/antiox11010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/02/2023] Open
Abstract
Typical 2-Cys peroxiredoxins (2-Cys Prdxs) are proteins with antioxidant properties belonging to the thioredoxin peroxidase family. With their peroxidase activity, they contribute to the homeostatic control of reactive oxygen species (ROS) and, therefore, participate in various physiological functions, such as cell proliferation, differentiation, and apoptosis. Although Prdxs have been shown to be potential biomarkers for monitoring aquatic environments, minimal scientific attention has been devoted to describing their molecular architecture and function in marine invertebrates. Our study aims to clarify the protective role against stress induced by exposure to metals (Cu, Zn, and Cd) of three Prdxs (Prdx2, Prdx3, and Prdx4) in the solitary ascidian Ciona robusta, an invertebrate chordate. Here, we report a detailed pre- and post-translational regulation of the three Prdx isoforms. Data on intestinal mRNA expression, provided by qRT-PCR analyses, show a generalized increase for Prdx2, -3, and -4, which is correlated to metal accumulation. Furthermore, the increase in tissue enzyme activity observed after Zn exposure is slower than that observed with Cu and Cd. The obtained results increase our knowledge of the evolution of anti-stress proteins in invertebrates and emphasize the importance of the synthesis of Prdxs as an efficient way to face adverse environmental conditions.
Collapse
Affiliation(s)
- Laura Drago
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Diana Ferro
- Children’s Mercy Research Institute, Hospital and Clinics, Kansas City, MO 64108, USA;
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, 1000 Tiranë, Albania;
| | - Loriano Ballarin
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | | |
Collapse
|
23
|
Close AF, Chae H, Jonas JC. The lack of functional nicotinamide nucleotide transhydrogenase only moderately contributes to the impairment of glucose tolerance and glucose-stimulated insulin secretion in C57BL/6J vs C57BL/6N mice. Diabetologia 2021; 64:2550-2561. [PMID: 34448880 DOI: 10.1007/s00125-021-05548-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Nicotinamide nucleotide transhydrogenase (NNT) is involved in mitochondrial NADPH production and its spontaneous inactivating mutation (NntTr [Tr, truncated]) is usually considered to be the main cause of the lower glucose tolerance of C57BL/6J vs C57BL/6N mice. However, the impact of this mutation on glucose tolerance remains disputed. Here, we singled out the impact of NntTr from that of other genetic variants between C57BL/6J and C57BL/6N mice on mitochondrial glutathione redox state (EGSH), glucose-stimulated insulin secretion (GSIS) and glucose tolerance. METHODS Male and female N5BL/6J mice that express wild-type Nnt (NntWT) or NntTr (N5-WT and N5-Tr mice) on the C57BL/6J genetic background were obtained by crossing N5BL/6J NntWT/Tr heterozygous mice. C57BL/6J and C57BL/6N mice were from Janvier Labs. The Nnt genotype was confirmed by PCR and the genetic background by whole genome sequencing of one mouse of each type. Glucose tolerance was assessed by IPGTT, ITT and fasting/refeeding tests. Stimulus-secretion coupling events and GSIS were measured in isolated pancreatic islets. Cytosolic and mitochondrial EGSH were measured using the fluorescent redox probe GRX1-roGFP2 (glutaredoxin 1 fused to redox-sensitive enhanced GFP). RESULTS The Nnt genotype and genetic background of each type of mouse were confirmed. As reported previously in C57BL/6N vs C57BL/6J islets, the glucose regulation of mitochondrial (but not cytosolic) EGSH and of NAD(P)H autofluorescence was markedly improved in N5-WT vs N5-Tr islets, confirming the role of NNT in mitochondrial redox regulation. However, ex vivo GSIS was only 1.2-1.4-times higher in N5-WT vs N5-Tr islets, while it was 2.4-times larger in C57BL/6N vs N5-WT islets, questioning the role of NNT in GSIS. In vivo, the ITT results did not differ between N5-WT and N5-Tr or C57BL/6N mice. However, the glucose excursion during an IPGTT was only 15-20% lower in female N5-WT mice than in N5-Tr and C57BL/6J mice and remained 3.5-times larger than in female C57BL/6N mice. Similar observations were made during a fasting/refeeding test. A slightly larger (~30%) impact of NNT on glucose tolerance was found in males. CONCLUSIONS/INTERPRETATION Although our results confirm the importance of NNT in the regulation of mitochondrial redox state by glucose, they markedly downsize the role of NNT in the alteration of GSIS and glucose tolerance in C57BL/6J vs C57BL/6N mice. Therefore, documenting an NntWT genotype in C57BL/6 mice does not provide proof that their glucose tolerance is as good as in C57BL/6N mice.
Collapse
Affiliation(s)
- Anne-Françoise Close
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
24
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021; 10:antiox10111649. [PMID: 34829520 PMCID: PMC8614768 DOI: 10.3390/antiox10111649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson's disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson's disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches.
Collapse
Affiliation(s)
- Juan A. Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| |
Collapse
|
25
|
Thai PN, Miller CV, King MT, Schaefer S, Veech RL, Chiamvimonvat N, Bers DM, Dedkova EN. Ketone Ester D-β-Hydroxybutyrate-(R)-1,3 Butanediol Prevents Decline in Cardiac Function in Type 2 Diabetic Mice. J Am Heart Assoc 2021; 10:e020729. [PMID: 34583524 PMCID: PMC8649133 DOI: 10.1161/jaha.120.020729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Heart failure is responsible for approximately 65% of deaths in patients with type 2 diabetes mellitus. However, existing therapeutics for type 2 diabetes mellitus have limited success on the prevention of diabetic cardiomyopathy. The aim of this study was to determine whether moderate elevation in D‐β‐hydroxybutyrate improves cardiac function in animals with type 2 diabetes mellitus. Methods and Results Type 2 diabetic (db/db) and their corresponding wild‐type mice were fed a control diet or a diet where carbohydrates were equicalorically replaced by D‐β‐hydroxybutyrate‐(R)‐1,3 butanediol monoester (ketone ester [KE]). After 4 weeks, echocardiography demonstrated that a KE diet improved systolic and diastolic function in db/db mice. A KE diet increased expression of mitochondrial succinyl‐CoA:3‐oxoacid‐CoA transferase and restored decreased expression of mitochondrial β‐hydroxybutyrate dehydrogenase, key enzymes in cardiac ketone metabolism. A KE diet significantly enhanced both basal and ADP‐mediated oxygen consumption in cardiac mitochondria from both wild‐type and db/db animals; however, it did not result in the increased mitochondrial respiratory control ratio. Additionally, db/db mice on a KE diet had increased resistance to oxidative and redox stress, with evidence of restoration of decreased expression of thioredoxin and glutathione peroxidase 4 and less permeability transition pore activity in mitochondria. Mitochondrial biogenesis, quality control, and elimination of dysfunctional mitochondria via mitophagy were significantly increased in cardiomyocytes from db/db mice on a KE diet. The increase in mitophagy was correlated with restoration of mitofusin 2 expression, which contributed to improved coupling between cytosolic E3 ubiquitin ligase translocation into mitochondria and microtubule‐associated protein 1 light chain 3–mediated autophagosome formation. Conclusions Moderate elevation in circulating D‐β‐hydroxybutyrate levels via KE supplementation enhances mitochondrial biogenesis, quality control, and oxygen consumption and increases resistance to oxidative/redox stress and mPTP opening, thus resulting in improvement of cardiac function in animals with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Phung N Thai
- Department of Internal Medicine Cardiovascular Medicine University of California Davis CA
| | | | - M Todd King
- Laboratory of Metabolic Control National Institute on Alcohol Abuse and AlcoholismNational Institutes of Health Rockville MD
| | - Saul Schaefer
- Department of Internal Medicine Cardiovascular Medicine University of California Davis CA.,Department of Veterans Affairs Northern California Health Care System Mather CA
| | - Richard L Veech
- Laboratory of Metabolic Control National Institute on Alcohol Abuse and AlcoholismNational Institutes of Health Rockville MD
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine Cardiovascular Medicine University of California Davis CA.,Department of Veterans Affairs Northern California Health Care System Mather CA
| | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Elena N Dedkova
- Department of Pharmacology University of California Davis CA.,Department of Molecular Biosciences University of California Davis CA
| |
Collapse
|
26
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
27
|
Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021; 171:345-364. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Heart failure is a growing health burden worldwide characterized by alterations in excitation-contraction coupling, cardiac energetic deficit and oxidative stress. While current treatments are mostly limited to antagonization of neuroendocrine activation, more recent data suggest that also targeting metabolism may provide substantial prognostic benefit. However, although in a broad spectrum of preclinical models, oxidative stress plays a causal role for the development and progression of heart failure, no treatment that targets reactive oxygen species (ROS) directly has entered the clinical arena yet. In the heart, ROS derive from various sources, such as NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase and mitochondria. While mitochondria are the primary source of ROS in the heart, communication between different ROS sources may be relevant for physiological signalling events as well as pathologically elevated ROS that deteriorate excitation-contraction coupling, induce hypertrophy and/or trigger cell death. Here, we review the sources of ROS in the heart, the modes of pathological activation of ROS formation as well as therapeutic approaches that may target ROS specifically in mitochondria.
Collapse
Affiliation(s)
- David Weissman
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
28
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
29
|
Mailloux RJ. An update on methods and approaches for interrogating mitochondrial reactive oxygen species production. Redox Biol 2021; 45:102044. [PMID: 34157640 PMCID: PMC8220584 DOI: 10.1016/j.redox.2021.102044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The chief ROS formed by mitochondria are superoxide (O2·−) and hydrogen peroxide (H2O2). Superoxide is converted rapidly to H2O2 and therefore the latter is the chief ROS emitted by mitochondria into the cell. Once considered an unavoidable by-product of aerobic respiration, H2O2 is now regarded as a central mitokine used in mitochondrial redox signaling. However, it has been postulated that O2·− can also serve as a signal in mammalian cells. Progress in understanding the role of mitochondrial H2O2 in signaling is due to significant advances in the development of methods and technologies for its detection. Unfortunately, the development of techniques to selectively measure basal O2·− changes has been met with more significant hurdles due to its short half-life and the lack of specific probes. The development of sensitive techniques for the selective and real time measure of O2·− and H2O2 has come on two fronts: development of genetically encoded fluorescent proteins and small molecule reporters. In 2015, I published a detailed comprehensive review on the state of knowledge for mitochondrial ROS production and how it is controlled, which included an in-depth discussion of the up-to-date methods utilized for the detection of both superoxide (O2·−) and H2O2. In the article, I presented the challenges associated with utilizing these probes and their significance in advancing our collective understanding of ROS signaling. Since then, many other authors in the field of Redox Biology have published articles on the challenges and developments detecting O2·− and H2O2 in various organisms [[1], [2], [3]]. There has been significant advances in this state of knowledge, including the development of novel genetically encoded fluorescent H2O2 probes, several O2·− sensors, and the establishment of a toolkit of inhibitors and substrates for the interrogation of mitochondrial H2O2 production and the antioxidant defenses utilized to maintain the cellular H2O2 steady-state. Here, I provide an update on these methods and their implementation in furthering our understanding of how mitochondria serve as cell ROS stabilizing devices for H2O2 signaling. Details on the toolkit for interrogating the 12 sites for mitochondrial ROS production. Approaches to assess mitochondrial ROS clearance. Novel genetically encoded H2O2 sensors. Small chemical probes for sensitive detection of O2·−.
Collapse
Affiliation(s)
- Ryan J Mailloux
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada.
| |
Collapse
|
30
|
Dudek J, Maack C. Grandfathe's moonlighting: Hydralazin's novel liaison with mitochondria. Cardiovasc Res 2021; 118:13-15. [PMID: 33963384 DOI: 10.1093/cvr/cvab159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Bou-Teen D, Kaludercic N, Weissman D, Turan B, Maack C, Di Lisa F, Ruiz-Meana M. Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med 2021; 167:109-124. [PMID: 33716106 DOI: 10.1016/j.freeradbiomed.2021.02.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Excessive mitochondrial ROS production has been causally linked to the pathophysiology of aging in the heart and other organs, and plays a deleterious role in several age-related cardiac pathologies, including myocardial ischemia-reperfusion injury and heart failure, the two worldwide leading causes of death and disability in the elderly. However, ROS generation is also a fundamental mitochondrial function that orchestrates several signaling pathways, some of them exerting cardioprotective effects. In cardiac myocytes, mitochondria are particularly abundant and are specialized in subcellular populations, in part determined by their relationships with other organelles and their cyclic calcium handling activity necessary for adequate myocardial contraction/relaxation and redox balance. Depending on their subcellular location, mitochondria can themselves be differentially targeted by ROS and display distinct age-dependent functional decline. Thus, precise mitochondria-targeted therapies aimed at counteracting unregulated ROS production are expected to have therapeutic benefits in certain aging-related heart conditions. However, for an adequate design of such therapies, it is necessary to unravel the complex and dynamic interactions between mitochondria and other cellular processes.
Collapse
Affiliation(s)
- Diana Bou-Teen
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR),Universitat Autonoma de Barcelona, 08035, Barcelona, Spain
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), via Ugo Bassi 58/B, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35129, Padova, Italy
| | - David Weissman
- Comprehensive Heart Failure Center, University Clinic Würzburg, 97080, Würzburg, Germany
| | - Belma Turan
- Departments of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, 97080, Würzburg, Germany
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR), via Ugo Bassi 58/B, 35131, Padova, Italy; Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR),Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red-CV, CIBER-CV, Spain.
| |
Collapse
|
32
|
Huang P, Wu SP, Wang N, Seto S, Chang D. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153532. [PMID: 33735723 DOI: 10.1016/j.phymed.2021.153532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mitochondria are key cellular organelles that are essential for cell fate decisions. Hydroxysafflor yellow A (HSYA) has displayed an impressively essential role in protection of cerebral ischemia/reperfusion (I/R). However, the mitochondrial effect of HSYA on Brain Microvascular Endothelial Cells (BMECs) under I/R remains to be largely unclear. PURPOSE To evaluate the protective effects of HSYA-mediated mitochondrial permeability transition pore (mPTP) on cerebral I/R injury and its mechanism. METHODS Cerebral I/R injury was established by the model of Middle cerebral artery occlusion (MCAO) in rats. Furthermore, to further clarify the relevant mechanism of HSYA's effects on mPTP, inhibition of extracellular regulated protein kinases (ERK) with U0126 and transfect with Cyclophilin D (CypD) SiRNA to reversely verified whether the protective effects of HSYA were exerted by regulating the Mitogen-activated protein kinase kinase (MEK)/ERK/CypD pathway. RESULTS HSYA treatment significantly increased BMECs viability, decreased the generation of ROS, opening of mPTP and translocation of cytochrome c after OGD/R. In addition to inhibited CypD, HSYA potentiated MEK and increased phosphorylation of ERK expression in BMECs, inhibited apoptosis mediated by mitochondrial. Notably, HSYA also significantly ameliorated neurological deficits and decreased the infarct volume in rats. CONCLUSION HSYA reduced the CytC export from mitochondrial by inhibited the open of mPTP via MEK/ERK/CypD pathway, contributing to the protection of I/R. Thus, our study not only revealed novel mechanisms of HSYA for its anti-I/R function, but also provided a template for the design of novel mPTP inhibitor for the treatment of various mPTP-related diseases.
Collapse
Affiliation(s)
- Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Si-Peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University; Penrith, NSW 2751, Australia
| |
Collapse
|
33
|
Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mitochondrial Ca 2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J Mol Cell Cardiol 2021; 151:113-125. [PMID: 33301801 PMCID: PMC7880885 DOI: 10.1016/j.yjmcc.2020.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na+ and Ca2+ control mechanisms during the disease progression and their consequences on mitochondrial Ca2+ homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca2+ concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics. In agreement with our hypothesis and the literature, model simulations demonstrate the possibility that the heart's redox status together with cytoplasmic Na+ concentrations act as regulators of mitochondrial Ca2+ levels in HF and of the bioenergetics response that will ultimately drive ATP supply and oxidative stress. The resulting model predictions propose future directions to study the evolution of HF as well as other types of heart disease, and to develop novel testable mechanistic hypotheses that may lead to improved therapeutics.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Dmitry B Zorov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
34
|
Garcia-Gil M, Turri B, Gabriele M, Pucci L, Agnarelli A, Lai M, Freer G, Pistello M, Vignali R, Batistoni R, Marracci S. Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells. Pharmaceuticals (Basel) 2021; 14:ph14020090. [PMID: 33530428 PMCID: PMC7912662 DOI: 10.3390/ph14020090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Benedetta Turri
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Alessandro Agnarelli
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Robert Vignali
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Renata Batistoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
35
|
The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 2021; 12:58. [PMID: 33431811 PMCID: PMC7801447 DOI: 10.1038/s41419-020-03355-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.
Collapse
|
36
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
37
|
O'Rourke B, Ashok D, Liu T. Mitochondrial Ca 2+ in heart failure: Not enough or too much? J Mol Cell Cardiol 2020; 151:126-134. [PMID: 33290770 DOI: 10.1016/j.yjmcc.2020.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.
Collapse
Affiliation(s)
- Brian O'Rourke
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA.
| | - Deepthi Ashok
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Jackson MJ. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis. Free Radic Biol Med 2020; 161:326-338. [PMID: 33099002 PMCID: PMC7754707 DOI: 10.1016/j.freeradbiomed.2020.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Responding appropriately to exercise is essential to maintenance of skeletal muscle mass and function at all ages and particularly during aging. Here, a hypothesis is presented that a key component of the inability of skeletal muscle to respond effectively to exercise in aging is a denervation-induced failure of muscle redox signalling. This novel hypothesis proposes that an initial increase in oxidation in muscle mitochondria leads to a paradoxical increase in the reductive state of specific cysteines of signalling proteins in the muscle cytosol that suppresses their ability to respond to normal oxidising redox signals during exercise. The following are presented for consideration:Transient loss of integrity of peripheral motor neurons occurs repeatedly throughout life and is normally rapidly repaired by reinnervation, but this repair process becomes less efficient with aging. Each transient loss of neuromuscular integrity leads to a rapid, large increase in mitochondrial peroxide production in the denervated muscle fibers and in neighbouring muscle fibers. This peroxide may initially act to stimulate axonal sprouting and regeneration, but also stimulates retrograde mitonuclear communication to increase expression of a range of cytoprotective proteins in an attempt to protect the fiber and neighbouring tissues against oxidative damage. The increased peroxide within mitochondria does not lead to an increased cytosolic peroxide, but the increases in adaptive cytoprotective proteins include some located to the muscle cytosol which modify the local cytosol redox environment to induce a more reductive state in key cysteines of specific signalling proteins. Key adaptations of skeletal muscle to exercise involve transient peroxiredoxin oxidation as effectors of redox signalling in the cytosol. This requires sensitive oxidation of key cysteine residues. In aging, the chronic change to a more reductive cytosolic environment prevents the transient oxidation of peroxiredoxin 2 and hence prevents essential adaptations to exercise, thus contributing to loss of muscle mass and function. Experimental approaches suitable for testing the hypothesis are also outlined.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
39
|
Plecitá-Hlavatá L, Engstová H, Holendová B, Tauber J, Špaček T, Petrásková L, Křen V, Špačková J, Gotvaldová K, Ježek J, Dlasková A, Smolková K, Ježek P. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD + Ratio. Antioxid Redox Signal 2020; 33:789-815. [PMID: 32517485 PMCID: PMC7482716 DOI: 10.1089/ars.2019.7800] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Gotvaldová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
40
|
Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, Hu J, Li J, Guo Z, Cai J, Xu X, Gao Z, Su S. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell 2020; 183:76-93.e22. [PMID: 32931733 DOI: 10.1016/j.cell.2020.08.009] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH.
Collapse
Affiliation(s)
- Qiyi Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hong Deng
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ruiying Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhiyong Guo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junchao Cai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhiliang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
41
|
Radhakrishnan S, Norley J, Wendt S, LeRoy N, Hall H, Norcross S, Doan S, Snaider J, MacVicar BA, Weake VM, Huang L, Tantama M. Neuron Activity Dependent Redox Compartmentation Revealed with a Second Generation Red-Shifted Ratiometric Sensor. ACS Chem Neurosci 2020; 11:2666-2678. [PMID: 32786310 PMCID: PMC7526680 DOI: 10.1021/acschemneuro.0c00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress is a hallmark of several aging and trauma related neurological disorders, but the precise details of how altered neuronal activity elicits subcellular redox changes have remained difficult to resolve. Current redox sensitive dyes and fluorescent proteins can quantify spatially distinct changes in reactive oxygen species levels, but multicolor probes are needed to accurately analyze compartment-specific redox dynamics in single cells that can be masked by population averaging. We previously engineered genetically encoded red-shifted redox-sensitive fluorescent protein sensors using a Förster resonance energy transfer relay strategy. Here, we developed a second-generation excitation ratiometric sensor called rogRFP2 with improved red emission for quantitative live-cell imaging. Using this sensor to measure activity-dependent redox changes in individual cultured neurons, we observed an anticorrelation in which mitochondrial oxidation was accompanied by a concurrent reduction in the cytosol. This behavior was dependent on the activity of Complex I of the mitochondrial electron transport chain and could be modulated by the presence of cocultured astrocytes. We also demonstrated that the red fluorescent rogRFP2 facilitates ratiometric one- and two-photon redox imaging in rat brain slices and Drosophila retinas. Overall, the proof-of-concept studies reported here demonstrate that this new rogRFP2 redox sensor can be a powerful tool for understanding redox biology both in vitro and in vivo across model organisms.
Collapse
Affiliation(s)
- Saranya Radhakrishnan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jacob Norley
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Stefan Wendt
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan LeRoy
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Hana Hall
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
| | - Stevie Norcross
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Sara Doan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jordan Snaider
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Brian A. MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Vikki M. Weake
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
- Purdue Center for Cancer Research, 175 South University Street, West Lafayette, IN 47907, United States
| | - Libai Huang
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Mathew Tantama
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
- Biochemistry Program, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
| |
Collapse
|
42
|
Moon SJ, Dong W, Stephanopoulos GN, Sikes HD. Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress. Bioeng Transl Med 2020; 5:e10184. [PMID: 33005744 PMCID: PMC7510474 DOI: 10.1002/btm2.10184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial NADPH protects cells against mitochondrial oxidative stress by serving as an electron donor to antioxidant defense systems. However, due to technical challenges, it still remains unknown as to the pool size of mitochondrial NADPH, its dynamics, and NADPH/NADP+ ratio. Here, we have systemically modulated production rates of H2O2 in mitochondria and assessed mitochondrial NADPH metabolism using iNap sensors, 13C glucose isotopic tracers, and a mathematical model. Using sensors, we observed decreases in mitochondrial NADPH caused by excessive generation of mitochondrial H2O2, whereas the cytosolic NADPH was maintained upon perturbation. We further quantified the extent of mitochondrial NADPH/NADP+ based on the mathematical analysis. Utilizing 13C glucose isotopic tracers, we found increased activity in the pentose phosphate pathway (PPP) accompanied small decreases in the mitochondrial NADPH pool, whereas larger decreases induced both PPP activity and glucose anaplerosis. Thus, our integrative and quantitative approach provides insight into mitochondrial NADPH metabolism during mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Sun Jin Moon
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Wentao Dong
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Hadley D. Sikes
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
43
|
Smith CD, Schmidt CA, Lin CT, Fisher-Wellman KH, Neufer PD. Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure. J Biol Chem 2020; 295:16207-16216. [PMID: 32747443 DOI: 10.1074/jbc.ra120.013899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/15/2020] [Indexed: 01/21/2023] Open
Abstract
Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through β-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through β-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within β-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.
Collapse
Affiliation(s)
- Cody D Smith
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
44
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
45
|
Caffarra Malvezzi C, Cabassi A, Miragoli M. Mitochondrial mechanosensor in cardiovascular diseases. VASCULAR BIOLOGY 2020; 2:R85-R92. [PMID: 32923977 PMCID: PMC7439846 DOI: 10.1530/vb-20-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Abstract
The role of mitochondria in cardiac tissue is of utmost importance due to the dynamic nature of the heart and its energetic demands, necessary to assure its proper beating function. Recently, other important mitochondrial roles have been discovered, namely its contribution to intracellular calcium handling in normal and pathological myocardium. Novel investigations support the fact that during the progression toward heart failure, mitochondrial calcium machinery is compromised due to its morphological, structural and biochemical modifications resulting in facilitated arrhythmogenesis and heart failure development. The interaction between mitochondria and sarcomere directly affect cardiomyocyte excitation-contraction and is also involved in mechano-transduction through the cytoskeletal proteins that tether together the mitochondria and the sarcoplasmic reticulum. The focus of this review is to briefly elucidate the role of mitochondria as (mechano) sensors in the heart.
Collapse
Affiliation(s)
| | - Aderville Cabassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Center of Excellence for Toxicological Research, Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Cardiovascular Medicine, Humanitas Clinical and Research Center - IRCCS, 20090 Rozzano, Milan, Italy
| |
Collapse
|
46
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
47
|
Tascioglu Aliyev A, LoBianco F, Krager KJ, Aykin-Burns N. Assessment of Cellular Oxidation using a Subcellular Compartment-Specific Redox-Sensitive Green Fluorescent Protein. J Vis Exp 2020. [PMID: 32628158 DOI: 10.3791/61229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Measuring the intracellular oxidation/reduction balance provides an overview of the physiological and/or pathophysiological redox status of an organism. Thiols are especially important for illuminating the redox status of cells via their reduced dithiol and oxidized disulfide ratios. Engineered cysteine-containing fluorescent proteins open a new era for redox-sensitive biosensors. One of them, redox-sensitive green fluorescent protein (roGFP), can easily be introduced into cells with adenoviral transduction, allowing the redox status of subcellular compartments to be evaluated without disrupting cellular processes. Reduced cysteines and oxidized cystines of roGFP have excitation maxima at 488 nm and 405 nm, respectively, with emission at 525 nm. Assessing the ratios of these reduced and oxidized forms allows the convenient calculation of redox balance within the cell. In this method article, immortalized human triple-negative breast cancer cells (MDA-MB-231) were used to assess redox status within the living cell. The protocol steps include MDA-MB-231 cell line transduction with adenovirus to express cytosolic roGFP, treatment with H2O2, and assessment of cysteine and cystine ratio with both flow cytometry and fluorescence microscopy.
Collapse
Affiliation(s)
- Alev Tascioglu Aliyev
- Division of Radiation Health, Pharmaceutical Sciences, University of Arkansas for Medical Sciences; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University
| | - Francesca LoBianco
- Division of Radiation Health, Pharmaceutical Sciences, University of Arkansas for Medical Sciences
| | - Kimberly J Krager
- Division of Radiation Health, Pharmaceutical Sciences, University of Arkansas for Medical Sciences
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Pharmaceutical Sciences, University of Arkansas for Medical Sciences;
| |
Collapse
|
48
|
The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence. Curr Opin Ophthalmol 2020; 31:207-214. [PMID: 32205471 DOI: 10.1097/icu.0000000000000656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to review and discuss the history, current state, and future implications of promising biomedical offerings in the field of retina. RECENT FINDINGS The technologies discussed are some of the more recent promising biomedical developments within the field of retina. There is a US Food and Drug Administration-approved gene therapy product and artificial intelligence device for retina, with many other offerings in the pipeline. SUMMARY Signaling pathway therapies, genetic therapies, mitochondrial therapies, and artificial intelligence have shaped retina care as we know it and are poised to further impact the future of retina care. Retina specialists have the privilege and responsibility of shaping this future for the visual health of current and future generations.
Collapse
|
49
|
Gautam V, Sharma P, Bakshi P, Arora S, Bhardwaj R, Paray BA, Alyemeni MN, Ahmad P. Effect of Rhododendron arboreum Leaf Extract on the Antioxidant Defense System against Chromium (VI) Stress in Vigna radiata Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E164. [PMID: 32013242 PMCID: PMC7076638 DOI: 10.3390/plants9020164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/24/2023]
Abstract
In the current investigation, we studied role of Rhododendron leaf extract in Vigna radiata grown under chromium metal stress. We observed that seed treatment with Rhododendron leaf extract resulted in the recuperation of seedling growth under chromium toxicity. Seed treatment with Rhododendron leaf extract significantly improved the contents of anthocyanin and xanthophyll pigments under stress. The antioxidative defense system triggered after Rhododendron extract treatment, resulting in the increased actions of antioxidant enzymes. Oxidative stress induced by the assembly of reactive oxygen species was reduced after Rhododendron extract treatment under chromium toxicity as indicated by the enhanced contents of non-enzymatic antioxidants, namely ascorbic acid, tocopherol, and glutathione. Furthermore, Rhododendron leaf extract treatment under chromium metal stress also encouraged the biosynthesis of organic acids, polyphenols, as well as amino acids in Vigna radiata. Statistical analysis of the data with multiple linear regression also supported that Rhododendron leaf extract can effectively ease chromium metal-induced phytotoxicity in Vigna radiata.
Collapse
Affiliation(s)
- Vandana Gautam
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (V.G.); (P.S.); (P.B.); (S.A.); (R.B.)
| | - Bilal Ahmad Paray
- Zoology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia;
- Department of Botany, S.P. College, Srinagar 190001, India
| |
Collapse
|
50
|
Morozova V, Kashparova E, Levchuk S, Bishchuk Y, Kashparov V. The progeny of Chernobyl Arabidopsis thaliana plants does not exhibit changes in morphometric parameters and cellular antioxidant defence system of shoots. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106076. [PMID: 31630854 DOI: 10.1016/j.jenvrad.2019.106076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2018] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Morphometric parameters and functional state of the cellular antioxidant defence system of shoots were studied in the progeny of Arabidopsis thaliana (L.) Heynh. (A. thaliana) plants, previously and chronically exposed in the Chernobyl Exclusion Zone (ChEZ). Changes in cellular antioxidant enzyme activities in the progeny of exposed plants were assumed because antioxidant status of cell may be altered by inherited epigenetic changes, resulting in changes in antioxidant-response genes expression. These changes can be inferred as induced expression of CAT and SOD genes was found previously for A. thaliana plants by another group of scientists. It is well-known that ionizing radiation may induce changes in hormonal-signalling net-work, shifting balance in growth factors that may cause changes in morphometric parameters of plants. Seeds from A. thaliana plants were collected in the ChEZ at different levels of the external dose rate from 0.28 ± 0.01 to 12.93 ± 0.08 μGy/h. Internal dose rate for parent plants was calculated on the basis of the activity concentration of 90Sr and 137Cs in the plants, using dose conversion coefficients for wild grass. Total dose rate, absorbed by parent plants, was calculated as the sum of the external and internal dose rate and was in a range between 2.8 ± 0.2 and 99 ± 8 μGy/h. Seeds were then grown in the standard laboratory conditions (nutrient-agar, light-dark cycle and appropriate temperature) to analyse morphometric parameters of seedlings and final germination percentage. No significant changes in the morphometric parameters (root length and rosette diameter of shoots) of the seedlings were observed. Changes in the final germination percentage of the studied seeds were found, but low correlation was observed between found changes and the dose rate, absorbed by parent plants. In contrast to the results obtained in A. thaliana plants directly sampled in the field, no effect on the functional state of the cellular antioxidant defence system of shoots in the progeny of Chernobyl A. thaliana plants was observed.
Collapse
Affiliation(s)
- Valeriia Morozova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine.
| | - Elena Kashparova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Yeugeniia Bishchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine.
| |
Collapse
|