1
|
Duffy BC, King KM, Nepal B, Nonnemacher MR, Kortagere S. Acute Administration of HIV-1 Tat Protein Drives Glutamatergic Alterations in a Rodent Model of HIV-Associated Neurocognitive Disorders. Mol Neurobiol 2024; 61:8467-8480. [PMID: 38514527 DOI: 10.1007/s12035-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.
Collapse
Affiliation(s)
- Brenna C Duffy
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kirsten M King
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Yi DY, Xu QY, He Y, Zheng XQ, Yang TC, Lin Y. Treponema pallidum protein Tp47 induced prostaglandin E2 to inhibit the phagocytosis in human macrophages. J Eur Acad Dermatol Venereol 2024; 38:1166-1178. [PMID: 38258964 DOI: 10.1111/jdv.19809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND During Treponema pallidum (T. pallidum) infection, the host's immune system actively engages in pursuit and elimination of T. pallidum, while T. pallidum skillfully employs various mechanisms to evade immune recognition. Macrophages exhibit incomplete clearance of T. pallidum in vitro and the underlying mechanism of how T. pallidum resists the attack of macrophage remains unclear. OBJECTIVES To investigate the effect of T. pallidum membrane protein Tp47 on the phagocytosis of macrophages. METHODS THP-1-derived macrophages were used to investigate the role of Tp47 in the secretion of Prostaglandin E2 (PGE2) in macrophages and the mechanism by which Tp47 induced the production of PGE2, as well as the impact of PGE2 on the macrophage's phagocytosis. RESULTS Tp47 (1-10 μg/mL) significantly inhibited the phagocytosis of latex beads and T. pallidum in macrophages (p ≤ 0.05). PGE2 production by macrophages could be induced by Tp47, and the phagocytic function of macrophages could be restored using PGE2 antibody. Tp47 produced PGE2 by activating the PERK/NF-κB/COX-2 pathway in macrophages. Inhibitors targeting PERK, NF-κB and COX-2, respectively, reduced the level of PGE2 and restored the phagocytic function of macrophages. CONCLUSION Tp47-induced PGE2 production via the PERK/NF-κB/COX-2 pathway contributed to macrophage phagocytosis inhibition, which potentially contributes to immune evasion during the T. pallidum infection.
Collapse
Affiliation(s)
- D-Y Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Q-Y Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y He
- Department of Medical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - X-Q Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Y Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
4
|
Akay-Espinoza C, Newton SEB, Dombroski BA, Kallianpur A, Bharti A, Franklin DR, Schellenberg GD, Heaton RK, Grant I, Ellis RJ, Letendre SL, Jordan-Sciutto KL. Genetic Variations in EIF2AK3 are Associated with Neurocognitive Impairment in People Living with HIV. J Neuroimmune Pharmacol 2024; 19:25. [PMID: 38789639 PMCID: PMC11126443 DOI: 10.1007/s11481-024-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Based on emerging evidence on the role for specific single-nucleotide variants (SNVs) in EIF2AK3 encoding the integrated stress response kinase PERK, in neurodegeneration, we assessed the association of EIF2AK3 SNVs with neurocognitive performance in people with HIV (PWH) using a candidate gene approach. This retrospective study included the CHARTER cohort participants, excluding those with severe neuropsychiatric comorbidities. Genome-wide data previously obtained for 1047 participants and targeted sequencing of 992 participants with available genomic DNA were utilized to interrogate the association of three noncoding and three coding EIF2AK3 SNVs with the continuous global deficit score (GDS) and global neurocognitive impairment (NCI; GDS ≥ 0.5) using univariable and multivariable methods, with demographic, disease-associated, and treatment characteristics as covariates. The cohort characteristics were as follows: median age, 43.1 years; females, 22.8%; European ancestry, 41%; median CD4 + T cell counts, 175/µL (nadir) and 428/µL (current). At first assessment, 70.5% used ART and 68.3% of these had plasma HIV RNA levels ≤ 200 copies/mL. All three noncoding EIF2AK3 SNVs were associated with GDS and NCI (all p < 0.05). Additionally, 30.9%, 30.9%, and 41.2% of participants had at least one risk allele for the coding SNVs rs1805165 (G), rs867529 (G), and rs13045 (A), respectively. Homozygosity for all three coding SNVs was associated with significantly worse GDS (p < 0.001) and more NCI (p < 0.001). By multivariable analysis, the rs13045 A risk allele, current ART use, and Beck Depression Inventory-II value > 13 were independently associated with GDS and NCI (p < 0.001) whereas the other two coding SNVs did not significantly correlate with GDS or NCI after including rs13045 in the model. The coding EIF2AK3 SNVs were associated with worse performance in executive functioning, motor functioning, learning, and verbal fluency. Coding and non-coding SNVs of EIF2AK3 were associated with global NC and domain-specific performance. The effects were small-to-medium in size but present in multivariable analyses, raising the possibility of specific SNVs in EIF2AK3 as an important component of genetic vulnerability to neurocognitive complications in PWH.
Collapse
Affiliation(s)
- Cagla Akay-Espinoza
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Sarah E B Newton
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Asha Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ajay Bharti
- Departments of Medicine, University of California, San Diego, CA, USA
| | - Donald R Franklin
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Calado M, Ferreira R, Pires D, Santos-Costa Q, Anes E, Brites D, Azevedo-Pereira JM. Unravelling the triad of neuroinvasion, neurodissemination, and neuroinflammation of human immunodeficiency virus type 1 in the central nervous system. Rev Med Virol 2024; 34:e2534. [PMID: 38588024 DOI: 10.1002/rmv.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, Rio de Mouro, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
7
|
Obare LM, Priest S, Ismael A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Vue Z, Neikirk K, Beasley H, Gabriel C, Temu T, Gianella S, Mallal S, Koethe JR, Hinton A, Bailin S, Wanjalla CN. Cytokine and Chemokine Receptor Profiles in Adipose Tissue Vasculature Unravel Endothelial Cell Responses in HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584280. [PMID: 38559150 PMCID: PMC10979923 DOI: 10.1101/2024.03.10.584280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anas Ismael
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, MA, USA
| | - Sara Gianella
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Simon Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Sun Y, Cai M, Liang Y, Zhang Y. Disruption of blood-brain barrier: effects of HIV Tat on brain microvascular endothelial cells and tight junction proteins. J Neurovirol 2023; 29:658-668. [PMID: 37899420 DOI: 10.1007/s13365-023-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Although the widespread use of antiretroviral therapy (ART) has prolonged the life span of people living with HIV (PLWH), the incidence of HIV-associated neurocognitive disorders (HAND) in PLWH is also gradually increasing, seriously affecting the quality of life for PLWH. However, the pathogenesis of HAND has not been elucidated, which leaves HAND without effective treatment. HIV protein transactivator of transcription (Tat), as an important regulatory protein, is crucial in the pathogenesis of HAND, and its mechanism of HAND has received widespread attention. The blood-brain barrier (BBB) and its cellular component brain microvascular endothelial cells (BMVECs) play a necessary role in protecting the central nervous system (CNS), and their damage associated with Tat is a potential therapeutic target of HAND. In this review, we will study the Tat-mediated damage mechanism of the BBB and present multiple lines of evidence related to BMVEC damage caused by Tat.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Haddadi S, Jordan-Sciutto KL, Akay-Espinoza C, Grelotti D, Letendre SL, Tang B, Ellis RJ. PKR-like ER kinase (PERK) Haplotypes Are Associated with Depressive Symptoms in People with HIV. JOURNAL OF NEUROLOGY AND PSYCHOLOGY 2023; 10:07. [PMID: 37206541 PMCID: PMC10194542 DOI: 10.13188/2332-3469.1000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Depression is a debilitating and difficult-to-treat condition in people with HIV (PWH) despite viral suppression on antiretroviral therapy (ART). Depression is associated with activation of the PKR-like ER kinase (PERK) pathway, which regulates protein synthesis in response to metabolic stress. We evaluated common PERK haplotypes that influence PERK expression in relation to depressed mood in PWH. Methods PWH from 6 research centers were enrolled in the study. Genotyping was conducted using targeted sequencing with TaqMan. The major PERK haplotypes A, B, and D were identified. Depressive symptom severity was assessed using the Beck Depression Inventory-II (BDI-II). Covariates including genetically-defined ancestry, demographics, HIV disease/treatment parameters and antidepressant treatments were assessed. Data were analyzed using multivariable regression models. Results A total of 287 PWH with a mean (SD) age of 57.1±7.8 years were enrolled. Although the largest ethnic group was non-Hispanic white (n=129, 45.3%), African-American (n=124, 43.5%) and Hispanic (n=30, 10.5%) made up over half the sample. 20.3% were female and 96.5% were virally suppressed. Mean BDI-II was 9.6±9.5, and 28.9% scored above the cutoff for mild depression (BDI-II>13). PERK haplotype frequencies were AA57.8%, AB25.8%, AD 10.1%, and BB4.88%. PERK haplotypes were differentially represented according to genetic ancestry (p=6.84e-6). BDI-II scores were significantly higher in participants with the AB haplotype (F=4.45, p=0.0007).This finding was robust to consideration of potential confounds. Conclusion PERK haplotypes were associated with depressed mood in PWH.Consequently, pharmacological targeting of PERK-related pathways might amelioratedepression in PWH.
Collapse
Affiliation(s)
- S Haddadi
- Warren College, University of California, San Diego, La Jolla, CA 92093, USA
| | - K L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C Akay-Espinoza
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D Grelotti
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - S L Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - B Tang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - R J Ellis
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Wang S, Yang K, Li C, Liu W, Gao T, Yuan F, Guo R, Liu Z, Tan Y, Hu X, Tian Y, Zhou D. 4-Phenyl-butyric Acid Inhibits Japanese Encephalitis Virus Replication via Inhibiting Endoplasmic Reticulum Stress Response. Viruses 2023; 15:v15020534. [PMID: 36851748 PMCID: PMC9962822 DOI: 10.3390/v15020534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Japanese encephalitis virus (JEV) infection causes host endoplasmic reticulum stress (ERS) reaction, and then induces cell apoptosis through the UPR pathway, invading the central nervous system and causing an inflammation storm. The endoplasmic reticulum stress inhibitor, 4-phenyl-butyric acid (4-PBA), has an inhibitory effect on the replication of flavivirus. Here, we studied the effect of 4-PBA on JEV infection both in vitro and vivo. The results showed that 4-PBA treatment could significantly decrease the titer of JEV, inhibit the expression of the JEV NS3 protein (in vitro, p < 0.01) and reduce the positive rate of the JEV E protein (in vivo, p < 0.001). Compared to the control group, 4-PBA treatment can restore the weight of JEV-infected mice, decrease the level of IL-1β in serum and alleviate the abnormalities in brain tissue structure. Endoplasmic reticulum stress test found that the expression level of GRP78 was much lower and activation levels of PERK and IRE1 pathways were reduced in the 4-PBA treatment group. Furthermore, 4-PBA inhibited the UPR pathway activated by NS3, NS4b and NS5 RdRp. The above results indicated that 4-PBA could block JEV replication and inhibit ER stress caused by JEV. Interestingly, 4-PBA could reduce the expression of NS5 by inhibiting transcription (p < 0.001), but had no effect on the expression of NS3 and NS4b. This result may indicate that 4-PBA has antiviral activity independent of the UPR pathway. In summary, the effect of 4-PBA on JEV infection is related to the inhibition of ER stress, and it may be a promising drug for the treatment of Japanese encephalitis.
Collapse
|
11
|
Wilson KM, He JJ. HIV Nef Expression Down-modulated GFAP Expression and Altered Glutamate Uptake and Release and Proliferation in Astrocytes. Aging Dis 2023; 14:152-169. [PMID: 36818564 PMCID: PMC9937695 DOI: 10.14336/ad.2022.0712] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection of astrocytes leads to restricted gene expression and replication but abundant expression of HIV early genes Tat, Nef and Rev. A great deal of neuroHIV research has so far been focused on Tat protein, its effects on astrocytes, and its roles in neuroHIV. In the current study, we aimed to determine effects of Nef expression on astrocytes and their function. Using transfection or infection of VSVG-pseudotyped HIV viruses, we showed that Nef expression down-modulated glial fibrillary acidic protein (GFAP) expression. We then showed that Nef expression also led to decreased GFAP mRNA expression. The transcriptional regulation was further confirmed using a GFAP promoter-driven reporter gene assay. We performed transcription factor profiling array to compare the expression of transcription factors between Nef-intact and Nef-deficient HIV-infected cells and identified eight transcription factors with expression changes of 1.5-fold or higher: three up-regulated by Nef (Stat1, Stat5, and TFIID), and five down-regulated by Nef (AR, GAS/ISRE, HIF, Sp1, and p53). We then demonstrated that removal of the Sp1 binding sites from the GFAP promoter resulted in a much lower level of the promoter activity and reversal of Nef effects on the GFAP promoter, confirming important roles of Sp1 in the GFAP promoter activity and for Nef-induced GFAP expression. Lastly, we showed that Nef expression led to increased glutamate uptake and decreased glutamate release by astrocytes and increased astrocyte proliferation. Taken together, these results indicate that Nef leads to down-modulation of GFAP expression and alteration of glutamate metabolism in astrocytes, and astrocyte proliferation and could be an important contributor to neuroHIV.
Collapse
Affiliation(s)
- Kelly M Wilson
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| |
Collapse
|
12
|
Ellis RJ, Fan Y, Grelotti D, Tang B, Letendre S, He JJ. Astrocyte Activation is A Potential Mechanism Underlying Depressed Mood and Apathy in People with HIV. JOURNAL OF NEUROLOGY AND PSYCHOLOGY 2022; 9:05. [PMID: 37205974 PMCID: PMC10194432 DOI: 10.13188/2332-3469.1000048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Astrocytes become activated with certain infections, and this might alter the brain to trigger or worsen depressed mood. Indeed, astrocytes are chronically activated in people with HIV infection (PWH), who are much more frequently depressed than people without HIV (PWoH). A particularly disabling component of depression in PWH is apathy, a loss of interest, motivation, emotion, and goal-directed behavior. We tested the hypothesis that depression and apathy in PWH would be associated with higher levels of a biomarker of astrocyte activation, glial fibrillary acidic protein (GFAP), in cerebrospinal fluid (CSF). Methods We evaluated PWH in a prospective observational study using the Beck Depression Inventory-II (BDI-II) and additional standardized assessments, including lumbar puncture. We measured GFAP in CSF with a customized direct sandwich ELISA method. Data were analyzed using ANOVA and multivariable regression. Results Participants were 212 PWH, mean (SD) age 40.9±9.14 years, median (IQR) nadir and current CD4 199 (57, 326) and 411 (259, 579), 65.1% on ART, 67.3% virally suppressed. Higher CSF GFAP correlated with worse total BDI-II total scores (Pearson correlation r=0.158, p-value=0.0211), and with worse apathy scores (r=0.205, p=0.0027). The correlation between apathy/depression and GFAP was not in fluenced by other factors such as age or HIV suppression status. Conclusions Astrocyte activation, reflected in higher levels of CSF GFAP, was associated with worse depression and apathy in PWH. Interventions to reduce astrocyte activation -- for example, using a peptide-1 receptor (GLP-1R) agonist -- might be studied to evaluate their impact on disabling depression in PWH.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, CA, United States
| | - Yan Fan
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas TX, United States
| | - David Grelotti
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Bin Tang
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Scott Letendre
- Departments of Medicine and Psychiatry, University of California, San Diego, CA, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Chicago Medical School Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
13
|
Periyasamy P, Thangaraj A, Kannan M, Oladapo A, Buch S. The Epigenetic Role of miR-124 in HIV-1 Tat- and Cocaine-Mediated Microglial Activation. Int J Mol Sci 2022; 23:ijms232315017. [PMID: 36499350 PMCID: PMC9738975 DOI: 10.3390/ijms232315017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 μM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.
Collapse
|
14
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Ganne A, Balasubramaniam M, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Glial Fibrillary Acidic Protein: A Biomarker and Drug Target for Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071354. [PMID: 35890250 PMCID: PMC9322874 DOI: 10.3390/pharmaceutics14071354] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament structural protein involved in cytoskeleton assembly and integrity, expressed in high abundance in activated glial cells. GFAP is neuroprotective, as knockout mice are hypersensitive to traumatic brain injury. GFAP in cerebrospinal fluid is a biomarker of Alzheimer’s disease (AD), dementia with Lewy bodies, and frontotemporal dementia (FTD). Here, we present novel evidence that GFAP is markedly overexpressed and differentially phosphorylated in AD hippocampus, especially in AD with the apolipoprotein E [ε4, ε4] genotype, relative to age-matched controls (AMCs). Kinases that phosphorylate GFAP are upregulated in AD relative to AMC. A knockdown of these kinases in SH-SY5Y-APPSw human neuroblastoma cells reduced amyloid accrual and lowered protein aggregation and associated behavioral traits in C. elegans models of polyglutamine aggregation (as observed in Huntington’s disease) and of Alzheimer’s-like amyloid formation. In silico screening of the ChemBridge structural library identified a small molecule, MSR1, with stable and specific binding to GFAP. Both MSR1 exposure and GF AP-specific RNAi knockdown reduce aggregation with remarkably high concordance of aggregate proteins depleted. These data imply that GFAP and its phosphorylation play key roles in neuropathic aggregate accrual and provide valuable new biomarkers, as well as novel therapeutic targets to alleviate, delay, or prevent AD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - W. Sue T. Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| |
Collapse
|
16
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
17
|
West Nile Virus Neuroinfection in Humans: Peripheral Biomarkers of Neuroinflammation and Neuronal Damage. Viruses 2022; 14:v14040756. [PMID: 35458486 PMCID: PMC9027124 DOI: 10.3390/v14040756] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
Among emerging arthropod-borne viruses (arbovirus), West Nile virus (WNV) is a flavivirus that can be associated with severe neuroinvasive infections in humans. In 2018, the European WNV epidemic resulted in over 2000 cases, representing the most important arboviral epidemic in the European continent. Characterization of inflammation and neuronal biomarkers released during WNV infection, especially in the context of neuronal impairments, could provide insight into the development of predictive tools that could be beneficial for patient outcomes. We first analyzed the inflammatory signature in the serum of WNV-infected mice and found increased concentrations of several inflammatory cytokines. We next analyzed serum and cerebrospinal-fluid (CSF) samples from a cohort of patients infected by WNV between 2018 and 2019 in Hungary to quantify a large panel of inflammatory cytokines and neurological factors. We found higher levels of inflammatory cytokines (e.g., IL4, IL6, and IL10) and neuronal factors (e.g., BDNF, GFAP, MIF, TDP-43) in the sera of WNV-infected patients with neuroinvasive disease. Furthermore, the serum inflammatory profile of these patients persisted for several weeks after initial infection, potentially leading to long-term sequelae and having a deleterious effect on brain neurovasculature. This work suggests that early signs of increased serum concentrations of inflammatory cytokines and neuronal factors could be a signature underlying the development of severe neurological impairments. Biomarkers could play an important role in patient monitoring to improve care and prevent undesirable outcomes.
Collapse
|
18
|
Proulx J, Park IW, Borgmann K. Cal'MAM'ity at the Endoplasmic Reticulum-Mitochondrial Interface: A Potential Therapeutic Target for Neurodegeneration and Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Front Neurosci 2021; 15:715945. [PMID: 34744606 PMCID: PMC8566765 DOI: 10.3389/fnins.2021.715945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle and serves as the primary site for intracellular calcium storage, lipid biogenesis, protein synthesis, and quality control. Mitochondria are responsible for producing the majority of cellular energy required for cell survival and function and are integral for many metabolic and signaling processes. Mitochondria-associated ER membranes (MAMs) are direct contact sites between the ER and mitochondria that serve as platforms to coordinate fundamental cellular processes such as mitochondrial dynamics and bioenergetics, calcium and lipid homeostasis, autophagy, apoptosis, inflammation, and intracellular stress responses. Given the importance of MAM-mediated mechanisms in regulating cellular fate and function, MAMs are now known as key molecular and cellular hubs underlying disease pathology. Notably, neurons are uniquely susceptible to mitochondrial dysfunction and intracellular stress, which highlights the importance of MAMs as potential targets to manipulate MAM-associated mechanisms. However, whether altered MAM communication and connectivity are causative agents or compensatory mechanisms in disease development and progression remains elusive. Regardless, exploration is warranted to determine if MAMs are therapeutically targetable to combat neurodegeneration. Here, we review key MAM interactions and proteins both in vitro and in vivo models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We further discuss implications of MAMs in HIV-associated neurocognitive disorders (HAND), as MAMs have not yet been explored in this neuropathology. These perspectives specifically focus on mitochondrial dysfunction, calcium dysregulation and ER stress as notable MAM-mediated mechanisms underlying HAND pathology. Finally, we discuss potential targets to manipulate MAM function as a therapeutic intervention against neurodegeneration. Future investigations are warranted to better understand the interplay and therapeutic application of MAMs in glial dysfunction and neurotoxicity.
Collapse
Affiliation(s)
| | | | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center (HSC), Fort Worth, TX, United States
| |
Collapse
|
19
|
Sims SG, Cisney RN, Lipscomb MM, Meares GP. The role of endoplasmic reticulum stress in astrocytes. Glia 2021; 70:5-19. [PMID: 34462963 PMCID: PMC9292588 DOI: 10.1002/glia.24082] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes are glial cells that support neurological function in the central nervous system (CNS), in part, by providing structural support for neuronal synapses and blood vessels, participating in electrical and chemical transmission, and providing trophic support via soluble factors. Dysregulation of astrocyte function contributes to neurological decline in CNS diseases. Neurological diseases are highly heterogeneous but share common features of cellular stress including the accumulation of misfolded proteins. Endoplasmic reticulum (ER) stress has been reported in nearly all neurological and neurodegenerative diseases. ER stress occurs when there is an accumulation of misfolded proteins in the ER lumen and the protein folding demand of the ER is overwhelmed. ER stress initiates the unfolded protein response (UPR) to restore homeostasis by abating protein translation and, if the cell is irreparably damaged, initiating apoptosis. Although protein aggregation and misfolding in neurological disease has been well described, cell-specific contributions of ER stress and the UPR in physiological and disease states are poorly understood. Recent work has revealed a role for active UPR signaling that may drive astrocytes toward a maladaptive phenotype in various model systems. In response to ER stress, astrocytes produce inflammatory mediators, have reduced trophic support, and can transmit ER stress to other cells. This review will discuss the current known contributions and consequences of activated UPR signaling in astrocytes.
Collapse
Affiliation(s)
- Savannah G Sims
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Rylee N Cisney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marissa M Lipscomb
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA
| |
Collapse
|
20
|
Zhao X, Wilson K, Uteshev V, He JJ. Activation of α7 nicotinic acetylcholine receptor ameliorates HIV-associated neurology and neuropathology. Brain 2021; 144:3355-3370. [PMID: 34196664 PMCID: PMC8677536 DOI: 10.1093/brain/awab251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/28/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy are primarily manifested as impaired behaviours, glial activation/neuroinflammation and compromised neuronal integrity, for which there are no effective treatments currently available. In the current study, we used doxycycline-inducible astrocyte-specific HIV Tat transgenic mice (iTat), a surrogate HAND model, and determined effects of PNU-125096, a positive allosteric modulator of α7 nicotinic acetylcholine receptor (α7 nAChR) on Tat-induced behavioural impairments and neuropathologies. We showed that PNU-125096 treatment significantly improved locomotor, learning and memory deficits of iTat mice while inhibited glial activation and increased PSD-95 expression in the cortex and hippocampus of iTat mice. Using α7 nAChR knockout mice, we showed that α7 nAChR knockout eliminated the protective effects of PNU-125096 on iTat mice. In addition, we showed that inhibition of p38 phosphorylation by SB239063, a p38 MAPK-specific inhibitor exacerbated Tat neurotoxicity in iTat mice. Last, we used primary mouse cortical individual cultures and neuron-astrocytes co-cultures and in vivo staining of iTat mouse brain tissues and showed that glial activation was directly involved in the interplay among Tat neurotoxicity, α7 nAChR activation and the p38 MAPK signalling pathway. Taken together, these findings demonstrated for the first time that α7 nAChR activation led to protection against HAND and suggested that α7 nAChR modulator PNU-125096 holds significant promise for development of therapeutics for HAND.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Kelly Wilson
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Victor Uteshev
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences of University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
21
|
Yarandi SS, Duggan MR, Sariyer IK. Emerging Role of Nef in the Development of HIV Associated Neurological Disorders. J Neuroimmune Pharmacol 2021; 16:238-250. [PMID: 33123948 PMCID: PMC8081738 DOI: 10.1007/s11481-020-09964-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Despite adherence to treatment, individuals living with HIV have an increased risk for developing cognitive impairments, referred to as HIV-associated neurological disorders (HAND). Due to continued growth in the HIV population, particularly amongst the aging cohort, the neurobiological mechanisms of HAND are increasingly relevant. Similar to other viral proteins (e.g. Tat, Gp120, Vpr), the Negative Factor (Nef) is associated with numerous adverse effects in the CNS as well as cognitive impairments. In particular, emerging data indicate the consequences of Nef may be facilitated by the modulation of cellular autophagy as well as its inclusion into extracellular vesicles (EVs). The present review examines evidence for the molecular mechanisms by which Nef might contribute to neuronal dysfunction underlying HAND, with a specific focus on autophagy and EVs. Based on the these data, we propose an integrated model by which Nef may contribute to underlying neuronal dysfunction in HAND and highlight potentially novel therapeutic targets for HAND. Graphical abstract.
Collapse
Affiliation(s)
- Shadan S Yarandi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael R Duggan
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. BIOLOGY 2021; 10:108. [PMID: 33546230 PMCID: PMC7913335 DOI: 10.3390/biology10020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Multiorgan failure may not be completely resolved among people living with HIV despite HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer. Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5(CCR5)into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH). HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic stellate cells, they become activated, leading to the release of both inflammatory and profibrotic cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and ameliorate alcohol's effects on acinar cells.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
| | - Murali Ganesan
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raghubendra Singh Dagur
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
24
|
Li Z, Shen Y, Song Y, Zhang Y, Zhang C, Ma Y, Zhang F, Chen L. ER stress-related molecules induced by Hantaan virus infection in differentiated THP-1 cells. Cell Stress Chaperones 2021; 26:41-50. [PMID: 32870480 PMCID: PMC7736395 DOI: 10.1007/s12192-020-01150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum stress (ER stress) can be induced by virus infection. In this part, we explored whether Hantaan virus (HTNV) infection could induce ER stress in differentiated THP-1 (dTHP-1) cells. It showed that the mRNA and protein levels of ER stress-related 78 kDa glucose-regulated protein (GRP78, HSPA5) and mRNA levels of X box-binding protein 1 (XBP-1), activating transcription factor 6(ATF6) and PKR-like ER kinase (PERK) after HTNV infection, were significantly higher than that in uninfected control group. However, the mRNA levels of C/EBP homologous protein (CHOP), glucose-regulated protein 94 (GRP94, HSPC4), and inositol-requiring enzyme1 (IRE1) were not significantly different between the infected group and the untreated group in 2 h after virus infection. It is unusual in activating GRP78 but not GRP94. Meanwhile, dTHP-1 cells infected with HTNV at 12 h did not show obvious apoptosis. These results indicated that the HTNV infection could induce the unfolded protein response (UPR) in dTHP-1 cells, without directly leading to cell apoptosis during 12 h after virus infection.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an, Shaanxi, China
| | - Yuting Shen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yun Song
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
25
|
Joshi CR, Stacy S, Sumien N, Ghorpade A, Borgmann K. Astrocyte HIV-1 Tat Differentially Modulates Behavior and Brain MMP/TIMP Balance During Short and Prolonged Induction in Transgenic Mice. Front Neurol 2020; 11:593188. [PMID: 33384653 PMCID: PMC7769877 DOI: 10.3389/fneur.2020.593188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), mild forms of HIV-associated neurocognitive disorders (HAND) continue to afflict approximately half of all people living with HIV (PLWH). As PLWH age, HIV-associated inflammation perturbs the balance between brain matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs), likely contributing to neuropathogenesis. The MMP/TIMP balance is associated with cognition, learning, and memory, with TIMPs eliciting neuroprotective effects. Dysregulation of the MMP/TIMP balance was evident in the brains of PLWH where levels of TIMP-1, the inducible family member, were significantly lower than non-infected controls, and MMPs were elevated. Here, we evaluated the MMP/TIMP levels in the doxycycline (DOX)-induced glial fibrillary acidic protein promoter-driven HIV-1 transactivator of transcription (Tat) transgenic mouse model. The HIV-1 protein Tat is constitutively expressed by most infected cells, even during ART suppression of viral replication. Many studies have demonstrated indirect and direct mechanisms of short-term Tat-associated neurodegeneration, including gliosis, blood-brain barrier disruption, elevated inflammatory mediators and neurotoxicity. However, the effects of acute vs. prolonged exposure on Tat-induced dysregulation remain to be seen. This is especially relevant for TIMP-1 as expression was previously shown to be differentially regulated in human astrocytes during acute vs. chronic inflammation. In this context, acute Tat expression was induced with DOX intraperitoneal injections over 3 weeks, while DOX-containing diet was used to achieve long-term Tat expression over 6 months. First, a series of behavior tests evaluating arousal, ambulation, anxiety, and cognition was performed to examine impairments analogous to those observed in HAND. Next, gene expression of components of the MMP/TIMP axis and known HAND-relevant inflammatory mediators were assessed. Altered anxiety-like, motor and/or cognitive behaviors were observed in Tat-induced (iTat) mice. Gene expression of MMPs and TIMPs was altered depending on the duration of Tat expression, which was independent of the HIV-associated neuroinflammation typically implicated in MMP/TIMP regulation. Collectively, we infer that HIV-1 Tat-mediated dysregulation of MMP/TIMP axis and behavioral changes are dependent on duration of exposure. Further, prolonged Tat expression demonstrates a phenotype comparable to asymptomatic to mild HAND manifestation in patients.
Collapse
Affiliation(s)
- Chaitanya R Joshi
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
26
|
Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, Kesari KK, Bhardwaj S, Shukla SD, Tambuwala MM, Ruokolainen J, Dua K, Singh SK. Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biol 2020; 10:200286. [PMID: 33352062 PMCID: PMC7776571 DOI: 10.1098/rsob.200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research (SBSR), Sharda University, Greater Noida, UP 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, Greater Noida, CCS University, UP, India
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Sandeep Kumar Singh
- Department of Biomedical Research, Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, UP, India
- Biological Science, Indian Scientific Education and Technology Foundation, Lucknow 226002, UP, India
| |
Collapse
|
27
|
Marino J, Maubert ME, Mele AR, Spector C, Wigdahl B, Nonnemacher MR. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 2020; 77:5079-5099. [PMID: 32577796 PMCID: PMC7674201 DOI: 10.1007/s00018-020-03561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Torkzaban B, Mohseni Ahooyi T, Duggan M, Amini S, Khalili K. Cross-talk between lipid homeostasis and endoplasmic reticulum stress in neurodegeneration: Insights for HIV-1 associated neurocognitive disorders (HAND). Neurochem Int 2020; 141:104880. [PMID: 33065212 PMCID: PMC8208232 DOI: 10.1016/j.neuint.2020.104880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The dysregulation of lipid homeostasis is emerging as a hallmark of many CNS diseases. As aberrant protein regulation is suggested to be a shared pathological feature amongst many neurodegenerative conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), disruptions in neuronal lipid processing may contribute to disease progression in the CNS. Specifically, given the endoplasmic reticulum (ER) dual role in lipid homeostasis as well as protein quality control (PQC) via unfolded protein response (UPR), lipid dysregulation in the CNS may converge on ER functioning and constitute a crucial mechanism underlying aberrant protein aggregation. In the current review, we discuss the diverse roles of lipid species as essential components of the CNS. Moreover, given the importance of both lipid dysregulation and protein aggregation in pathology of CNS diseases, we attempt to assess the potential downstream cross-talk between lipid dysregulation and ER dependent PQC mechanisms, with special focus on HIV-associated neurodegenerative disorders (HAND).
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Michael Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
30
|
Chen X, Zhang T, Zhang Y. Endoplasmic reticulum stress and autophagy in HIV-1-associated neurocognitive disorders. J Neurovirol 2020; 26:824-833. [PMID: 32918163 DOI: 10.1007/s13365-020-00906-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Although antiretroviral therapy (ART) affects virologic suppression and prolongs life expectancies among HIV-positive patients; HIV-1-associated neurocognitive disorders (HAND) continue to be diagnosed in patients with HIV-1 undergoing treatment. The extensive clinical manifestations of HAND include behavioral, cognitive, and motor dysfunctions that severely affect the patients' quality of life. The pathogenesis of HAND has received increasing attention as a potential avenue by which to improve the treatment of the condition. Many studies have shown that endoplasmic reticulum (ER) stress, autophagy, and their interaction play important roles in the onset and development of neurodegenerative diseases. While the accumulation of misfolded proteins can induce ER stress, autophagy can effectively remove accumulated toxic proteins, reduce ER stress, and thus inhibit the development of neuropathy. Through the in-depth study of ER stress and autophagy, both have been recognized as promising targets for pharmacotherapeutic intervention in the treatment of HAND. This review will highlight the effects of ER stress, autophagy, and their interaction in the context of HAND, thereby helping to inform the future development of targeted treatments for patients with HAND.
Collapse
Affiliation(s)
- Xue Chen
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
31
|
Vallejo-Gracia A, Chen IP, Perrone R, Besnard E, Boehm D, Battivelli E, Tezil T, Krey K, Raymond KA, Hull PA, Walter M, Habrylo I, Cruz A, Deeks S, Pillai S, Verdin E, Ott M. FOXO1 promotes HIV latency by suppressing ER stress in T cells. Nat Microbiol 2020; 5:1144-1157. [PMID: 32541947 PMCID: PMC7483895 DOI: 10.1038/s41564-020-0742-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
Quiescence is a hallmark of CD4+ T cells latently infected with human immunodeficiency virus 1 (HIV-1). While reversing this quiescence is an effective approach to reactivate latent HIV from T cells in culture, it can cause deleterious cytokine dysregulation in patients. As a key regulator of T-cell quiescence, FOXO1 promotes latency and suppresses productive HIV infection. We report that, in resting T cells, FOXO1 inhibition impaired autophagy and induced endoplasmic reticulum (ER) stress, thereby activating two associated transcription factors: activating transcription factor 4 (ATF4) and nuclear factor of activated T cells (NFAT). Both factors associate with HIV chromatin and are necessary for HIV reactivation. Indeed, inhibition of protein kinase R-like ER kinase, an ER stress sensor that can mediate the induction of ATF4, and calcineurin, a calcium-dependent regulator of NFAT, synergistically suppressed HIV reactivation induced by FOXO1 inhibition. Thus, our studies uncover a link of FOXO1, ER stress and HIV infection that could be therapeutically exploited to selectively reverse T-cell quiescence and reduce the size of the latent viral reservoir.
Collapse
Affiliation(s)
- Albert Vallejo-Gracia
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Irene P Chen
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | | | - Emilie Besnard
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Daniela Boehm
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | | | - Tugsan Tezil
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Karsten Krey
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- Ludwig Maximilian University, Munich, Germany
| | | | - Philip A Hull
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Marius Walter
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Ireneusz Habrylo
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Andrew Cruz
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Steven Deeks
- University of California San Francisco, San Francisco, CA, USA
| | - Satish Pillai
- University of California San Francisco, San Francisco, CA, USA
- Vitalant Research Institute, San Francisco, CA, USA
| | - Eric Verdin
- University of California San Francisco, San Francisco, CA, USA
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Andhavarapu S, Katuri A, Bryant J, Patel V, Gupta U, Asemu G, Makar TK. Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J Neurovirol 2020; 26:664-675. [PMID: 32804309 DOI: 10.1007/s13365-020-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023]
Abstract
HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research. Recent research has revealed the role disrupted calcium homeostasis in HIV-mediated neurotoxicity. Calcium plays a well-established role in the crosstalk between the mitochondrion and ER as well as in regulating autophagy, and ER stress, mitochondrial dysfunction, and impaired autophagic activity are considered hallmarks in several neurodegenerative and neurocognitive disorders. Therefore, it is paramount that the intricate inter-organelle signaling in relation to calcium homeostasis during HIV infection and the development of HAND is elucidated. This review consolidates current knowledge regarding the neuropathology of neurocognitive disorders and HIV infection with a focus on the underlying role of calcium during ER stress, mitochondrial dysfunction, and autophagy associated with the progression of HAND. The details of this intricate crosstalk during HAND remain relatively unknown; further research in this field can potentially aid in the development of improved therapy for patients suffering from HAND.
Collapse
Affiliation(s)
- Sanketh Andhavarapu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Akhil Katuri
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Vivek Patel
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Girma Asemu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Tapas K Makar
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA. .,VA Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
33
|
Heme attenuates beta-endorphin levels in leukocytes of HIV positive individuals with chronic widespread pain. Redox Biol 2020; 36:101684. [PMID: 32828015 PMCID: PMC7451624 DOI: 10.1016/j.redox.2020.101684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
The prevalence of chronic widespread pain (CWP) in people with HIV is high, yet the underlying mechanisms are elusive. Leukocytes synthesize the endogenous opioid, β-endorphin, within their endoplasmic reticulum (ER). When released into plasma, β-endorphin dampens nociception by binding to opioid receptors on sensory neurons. We hypothesized that the heme-dependent redox signaling induces ER stress, which attenuates leukocyte β-endorphins levels/release, thereby increasing pain sensitivity in people with HIV. Results demonstrated that HIV positive individuals with CWP had increased plasma methemoglobin, erythrocytes membrane oxidation, hemolysis, and low plasma heme scavenging enzyme, hemopexin, compared to people with HIV without CWP and HIV-negative individuals with or without pain. In addition, the leukocytes from people with HIV with CWP had attenuated levels of the heme metabolizing enzyme, heme oxygenase-1, which metabolizes free heme to carbon-monoxide and biliverdin. These individuals also had elevated ER stress, and low β-endorphin in leukocytes. In vitro, heme exposure or heme oxygenase-1 deletion, decreased β-endorphins in murine monocytes/macrophages. Treating cells with a carbon-monoxide donor or an ER stress inhibitor, increased β-endorphins. To mimic hemolytic effects in a preclinical model, C57BL/6 mice were injected with phenylhydrazine hydrochloride (PHZ). PHZ increased cell-free heme and ER stress, decreased leukocyte β-endorphin levels and hindpaw mechanical sensitivity thresholds. Treatment of PHZ-injected mice with hemopexin blocked these effects, suggesting that heme-induced ER stress and a subsequent decrease in leukocyte β-endorphin is responsible for hypersensitivity in people with HIV.
Collapse
|
34
|
Marino J, Wigdahl B, Nonnemacher MR. Extracellular HIV-1 Tat Mediates Increased Glutamate in the CNS Leading to Onset of Senescence and Progression of HAND. Front Aging Neurosci 2020; 12:168. [PMID: 32581774 PMCID: PMC7295946 DOI: 10.3389/fnagi.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)- associated neurocognitive disorders (HAND) is a disease of neurologic impairment that involves mechanisms of damage similar to other degenerative neurologic diseases such as Alzheimer’s disease (AD). In the current era of antiretroviral therapy (ART), HIV-1 replication is well-suppressed, and yet, HIV-1-infected patients still have high levels of chronic inflammation, indicating that factors other than viral replication are contributing to the development of neurocognitive impairment in these patients. The underlying mechanisms of HAND are still unknown, but the HIV-1 protein, Tat, has been highlighted as a potential viral product that contributes to the development of cognitive impairment. In AD, the presence of senescent cells in the CNS has been discussed as a contributing factor to the progression of cognitive decline and may be a mechanism also involved in the development of HAND. This mini-review discusses the viral protein HIV-1 Tat, and its potential to induce senescence in the CNS, contributing to the development of HAND.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Kodidela S, Gerth K, Sinha N, Kumar A, Kumar P, Kumar S. Circulatory Astrocyte and Neuronal EVs as Potential Biomarkers of Neurological Dysfunction in HIV-Infected Subjects and Alcohol/Tobacco Users. Diagnostics (Basel) 2020; 10:diagnostics10060349. [PMID: 32481515 PMCID: PMC7345258 DOI: 10.3390/diagnostics10060349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The diagnosis of neurocognitive disorders associated with HIV infection, alcohol, and tobacco using CSF or neuroimaging are invasive or expensive methods, respectively. Therefore, extracellular vesicles (EVs) can serve as reliable noninvasive markers due to their bidirectional transport of cargo from the brain to the systemic circulation. Hence, our objective was to investigate the expression of astrocytic (GFAP) and neuronal (L1CAM) specific proteins in EVs circulated in the plasma of HIV subjects, with and without a history of alcohol consumption and tobacco smoking. The protein expression of GFAP (p < 0.01) was significantly enhanced in plasma EVs obtained from HIV-positive subjects and alcohol users compared to healthy subjects, suggesting enhanced activation of astrocytes in those subjects. The L1CAM expression was found to be significantly elevated in cigarette smokers (p < 0.05). However, its expression was not found to be significant in HIV subjects and alcohol users. Both GFAP and L1CAM levels were not further elevated in HIV-positive alcohol or tobacco users compared to HIV-positive nonsubstance users. Taken together, our data demonstrate that the astrocytic and neuronal-specific markers (GFAP and L1CAM) can be packaged in EVs and circulate in plasma, which is further elevated in the presence of HIV infection, alcohol, and/or tobacco. Thus, the astroglial marker GFAP and neuronal marker L1CAM may represent potential biomarkers targeting neurological dysfunction upon HIV infection and/or alcohol/tobacco consumption.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Kelli Gerth
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Namita Sinha
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Asit Kumar
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA;
| | - Santosh Kumar
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
- Correspondence: ; Tel.: +1-901-448-7157
| |
Collapse
|
36
|
Ganesan D, Ramaian Santhaseela A, Rajasekaran S, Selvam S, Jayavelu T. Astroglial biotin deprivation under endoplasmic reticulum stress uncouples BCAA‐mTORC1 role in lipid synthesis to prolong autophagy inhibition in the aging brain. J Neurochem 2020; 154:562-575. [DOI: 10.1111/jnc.14979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
|
37
|
Zhao X, Fan Y, Vann PH, Wong JM, Sumien N, He JJ. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging. Aging Dis 2020; 11:93-107. [PMID: 32010484 PMCID: PMC6961778 DOI: 10.14336/ad.2019.0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.
Collapse
Affiliation(s)
- Xiaojie Zhao
- 1Department of Microbiology, Immunology & Genetics and
| | - Yan Fan
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Philip H Vann
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jessica M Wong
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Nathalie Sumien
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Johnny J He
- 1Department of Microbiology, Immunology & Genetics and
| |
Collapse
|
38
|
Kakraba S, Ayyadevara S, Penthala NR, Balasubramaniam M, Ganne A, Liu L, Alla R, Bommagani SB, Barger SW, Griffin WST, Crooks PA, Shmookler Reis RJ. A Novel Microtubule-Binding Drug Attenuates and Reverses Protein Aggregation in Animal Models of Alzheimer's Disease. Front Mol Neurosci 2020; 12:310. [PMID: 31920540 PMCID: PMC6920216 DOI: 10.3389/fnmol.2019.00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/29/2019] [Indexed: 11/14/2022] Open
Abstract
Age-progressive neurodegenerative pathologies, including Alzheimer’s disease (AD), are distinguished and diagnosed by disease-specific components of intra- or extra-cellular aggregates. Increasing evidence suggests that neuroinflammation promotes protein aggregation, and is involved in the etiology of neurological diseases. We synthesized and tested analogs of the naturally occurring tubulin-binding compound, combretastatin A-4. One such analog, PNR502, markedly reduced the quantity of Alzheimer-associated amyloid aggregates in the BRI-Aβ1–42 mouse model of AD, while blunting the ability of the pro-inflammatory cytokine IL-1β to raise levels of amyloid plaque and its protein precursors in a neuronal cell-culture model. In transgenic Caenorhabditis elegans (C. elegans) strains that express human Aβ1–42 in muscle or neurons, PNR502 rescued Aβ-induced disruption of motility (3.8-fold, P < 0.0001) or chemotaxis (1.8-fold, P < 0.05), respectively. Moreover, in C. elegans with neuronal expression of Aβ1–42, a single day of PNR502 exposure reverses the chemotaxis deficit by 54% (P < 0.01), actually exceeding the protection from longer exposure. Moreover, continuous PNR502 treatment extends nematode lifespan 23% (P ≤ 0.001). Given that PNR502 can slow, prevent, or reverse Alzheimer-like protein aggregation in human-cell-culture and animal models, and that its principal predicted and observed binding targets are proteins previously implicated in Alzheimer’s, we propose that PNR502 has therapeutic potential to inhibit cerebral Aβ1–42 aggregation and prevent or reverse neurodegeneration.
Collapse
Affiliation(s)
- Samuel Kakraba
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Akshatha Ganne
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ramani Alla
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shoban Babu Bommagani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven W Barger
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Robert J Shmookler Reis
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States.,Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
39
|
Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:285-325. [DOI: 10.1016/bs.ircmb.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
HIV-1 Tat protein attenuates the clinical course of experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2019; 78:105943. [PMID: 31830622 DOI: 10.1016/j.intimp.2019.105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
Abstract
A growing body of evidence has shown that the human immunodeficiency virus (HIV) infection is associated with a significantly decreased risk of developing multiple sclerosis (MS) in patients with acquired immunodeficiency virus (AIDS). It is thought that two mechanisms are in charge of protection against MS, which include immunosuppression induced by chronic HIV infection (depletion of CD4 + T cells) and antiretroviral medications. HIV-1 encodes several regulatory (Tat and Rev) and accessory (Vpr, Vif, Vpu, and Nef) proteins that have immunosuppressive and immunomodulatory properties. HIV-1 Tat protein is a strongly immunosuppressive agent and can cross the blood-brain barrier (BBB). In this study, we examined the effect of HIV-1 Tat, which is classified into clade B and C, on inflammation, gliosis, apoptosis, and behavioral function in a murine model of MS called experimental autoimmune encephalomyelitis (EAE). For this aim, mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), followed by pertussis toxin to induce paralysis in EAE mice. After the induction of EAE in mice, the animals intraperitoneally received serial doses of HIV-1 Tat clade B and C (5, 10, and 20 µg/kg body weight) when the early clinical manifestations of EAE were initiated. The results showed that the administration of both clades of the Tat protein led to a marked decrease in the clinical score of EAE mice, as well as improvement in motor-neuron functions. In line with this, Tat considerably reduced the number of apoptotic cells in the sacral region of the spinal cord through the upregulation expression of the Bcl-2 protein. Besides, proinflammatory cytokines such as, IFN-γ, TNF-α, IL-6, and IL-17 were significantly diminished in the serum and spinal cord of EAE mice receiving HIV-1 Tat clade B and C. Conversely, anti-inflammatory cytokines, including IL-10 and IL-4 were elevated in the serum and spinal cord of EAE mice receiving HIV Tat clade B and C when compared with the control group. The immunohistochemical analysis indicated that HIV-1 Tat clade B and C mitigated microgliosis and astrogliosis. The flow cytometry analysis demonstrated that the number of Th1 and Th17cells was significantly decreased in response to TAT administration while the frequency of Th2 cells was markedly increased in the peripheral blood of mice with EAE without influencing the number of T regulatory cells (CD4 + CD25 + forkhead box protein 3 + ). It seems that HIV-1 Tat could be a bona fide therapeutic protein for the alleviation of MS since it has beneficial roles in the suppression of neuroinflammation in MS pathology.
Collapse
|
41
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
42
|
Alvarez-Carbonell D, Ye F, Ramanath N, Garcia-Mesa Y, Knapp PE, Hauser KF, Karn J. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 2019; 15:e1008249. [PMID: 31887215 PMCID: PMC6953890 DOI: 10.1371/journal.ppat.1008249] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/10/2020] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort) and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged neurons induce HIV expression in latently infected microglial cells. After 48-72 h co-culture, low levels of HIV expression appear to damage neurons, which further enhances HIV expression. There was a marked reduction in intact dendrites staining for microtubule associated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicating extensive dendritic pruning. To model neurotoxicity induced by methamphetamine (METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected patients. This combination of agents potently induced HIV expression, with the METH effect mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the combination of METH and poly(I:C) induced HIV expression and dendritic damage beyond levels seen using either agent alone, Thus, our results demonstrate that the cross-talk between healthy neurons and microglia modulates HIV expression, while HIV expression impairs this intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pamela E. Knapp
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
43
|
Cotto B, Natarajanseenivasan K, Langford D. HIV-1 infection alters energy metabolism in the brain: Contributions to HIV-associated neurocognitive disorders. Prog Neurobiol 2019; 181:101616. [PMID: 31108127 PMCID: PMC6742565 DOI: 10.1016/j.pneurobio.2019.101616] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
The brain is particularly sensitive to changes in energy supply. Defects in glucose utilization and mitochondrial dysfunction are hallmarks of nearly all neurodegenerative diseases and are also associated with the cognitive decline that occurs as the brain ages. Chronic neuroinflammation driven by glial activation is commonly implicated as a contributing factor to neurodegeneration and cognitive impairment. Human immunodeficiency virus-1 (HIV-1) disrupts normal brain homeostasis and leads to a spectrum of HIV-associated neurocognitive disorders (HAND). HIV-1 activates stress responses in the brain and triggers a state of chronic neuroinflammation. Growing evidence suggests that inflammatory processes and bioenergetics are interconnected in the propagation of neuronal dysfunction. Clinical studies of people living with HIV and basic research support the notion that HIV-1 creates an environment in the CNS that interrupts normal metabolic processes at the cellular level to collectively alter whole brain metabolism. In this review, we highlight reports of abnormal brain metabolism from clinical studies and animal models of HIV-1. We also describe diverse CNS cell-specific changes in bioenergetics associated with HIV-1. Moreover, we propose that attention should be given to adjunctive therapies that combat sources of metabolic dysfunction as a mean to improve and/or prevent neurocognitive impairments.
Collapse
Affiliation(s)
- Bianca Cotto
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Kalimuthusamy Natarajanseenivasan
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| | - Dianne Langford
- Lewis Katz School of Medicine at Temple University, Department of Neuroscience and Center for Neurovirology, Philadelphia, PA, 19140, USA.
| |
Collapse
|
44
|
Liu Y, Niu Y, Li L, Timani KA, He VL, Sanburns C, Xie J, He JJ. Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. J Neurovirol 2019; 25:508-519. [PMID: 31020497 PMCID: PMC6750972 DOI: 10.1007/s13365-019-00751-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are susceptible to HIV infection and potential latent HIV reservoirs. Tat is one of three abundantly expressed HIV early genes in HIV-infected astrocytes and has been shown to be a major pathogenic factor for HIV/neuroAIDS. In this study, we sought to determine if and how Tat expression would affect HIV infection and latency in astrocytes. Using the glycoprotein from vesicular stomatitis virus-pseudotyped red-green HIV (RGH) reporter viruses, we showed that HIV infection was capable of establishing HIV latency in astrocytes. We also found that Tat expression decreased the generation of latent HIV-infected cells. Activation of latent HIV-infected astrocytes showed that treatment of GSK126, a selective inhibitor of methyltransferase enhancer of zeste homolog 2 (Ezh2) that is specifically responsible for tri-methylation of histone 3 lysine 27 (H3K27me3), led to activation of significantly more latent HIV-infected Tat-expressing astrocytes. Molecular analysis showed that H3K27me3, Ezh2, MeCP2, and Tat all exhibited a similar bimodal expression kinetics in the course of HIV infection and latency in astrocytes, although H3K27me3, Ezh2, and MeCP2 were expressed higher in Tat-expressing astrocytes and their expression were peaked immediately preceding Tat expression. Subsequent studies showed that Tat expression alone was sufficient to induce H3K27me3 expression, likely through its regulation of Ezh2 and MeCP2 expression. Taken together, these results showed for the first time that Tat expression induced H3K27me3 expression and contributed to HIV latency in astrocytes and suggest a new role and novel mechanism for Tat in HIV latency.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Yinghua Niu
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Lu Li
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Khalid A Timani
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Victor L He
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Chris Sanburns
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Jiafeng Xie
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | | |
Collapse
|
45
|
Pandey HS, Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J Mol Neurosci 2019; 69:286-297. [PMID: 31236774 DOI: 10.1007/s12031-019-01357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes play a wide variety of roles in the central nervous system (CNS). Various facets of astrocyte-neuron interplay, investigated for the past few decades, have placed these most abundant and important glial cell types to be of supreme importance for the maintenance of the healthy CNS. Interestingly, glial dysfunctions have proven to be the major contributor to neuronal loss in several CNS disorders and pathologies. Specifically, in the field of neuroAIDS, glial dysfunction-mediated neuronal stress is a major factor contributing to the HIV-1 neuropathogenesis. As there is increasing evidence that astrocytes harbor HIV-1 and serve as "safe haven" for the dormant virus in the brain, the indirect pathway of neuronal damage has taken over the direct neuronal damage in its contribution to HIV-1 neuropathogenesis. In this review, we provide a brief insight into the astrocyte functions and dysfunctions in different CNS conditions with an elaborated insight into neuroAIDS. Detailed understanding of the role of astrocytes in neuroAIDS will help in the better therapeutic management of the neurological problems associated with HIV-1 patients.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
46
|
Bozzelli PL, Yin T, Avdoshina V, Mocchetti I, Conant KE, Maguire-Zeiss KA. HIV-1 Tat promotes astrocytic release of CCL2 through MMP/PAR-1 signaling. Glia 2019; 67:1719-1729. [PMID: 31124192 DOI: 10.1002/glia.23642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.
Collapse
Affiliation(s)
- P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Tao Yin
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
47
|
Zhou F, Liu X, Gao L, Zhou X, Cao Q, Niu L, Wang J, Zuo D, Li X, Yang Y, Hu M, Yu Y, Tang R, Lee BH, Choi BW, Wang Y, Izumiya Y, Xue M, Zheng K, Gao D. HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. J Neuroinflammation 2019; 16:71. [PMID: 30947729 PMCID: PMC6449963 DOI: 10.1186/s12974-019-1466-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HANDs) afflict more than half of HIV-1-positive individuals. The transactivator of transcription (Tat) produced by HIV virus elicits inflammatory process and is a major neurotoxic mediator that induce neuron damage during HAND pathogenesis. Activated astrocytes are important cells involved in neuroinflammation and neuronal damage. Purinergic receptors expressed in astrocytes participate in a positive feedback loop in virus-induced neurotoxicity. Here, we investigated that whether P2Y4R, a P2Y receptor subtype, that expressed in astrocyte participates in Tat-induced neuronal death in vitro and in vivo. METHODS Soluble Tat protein was performed to determine the expression of P2Y4R and proinflammatory cytokines in astrocytes using siRNA technique via real-time PCR, Western blot, and immunofluorescence assays. Cytometric bead array was used to measure proinflammatory cytokine release. The TUNEL staining and MTT cell viability assay were analyzed for HT22 cell apoptosis and viability, and the ApopTag® peroxidase in situ apoptosis detection kit and cresyl violet staining for apoptosis and death of hippocampal neuron in vivo. RESULTS We found that Tat challenge increased the expression of P2Y4R in astrocytes. P2Y4R signaling in astrocytes was involved in Tat-induced inflammatory cytokine production via PI3K/Akt- and ERK1/2-dependent pathways. Knockdown of P2Y4R expression significantly reduced inflammatory cytokine production and relieved Tat-mediated neuronal apoptosis in vitro. Furthermore, in vivo challenged with Tat, P2Y4R knockdown mice showed decreased inflammation and neuronal damage, especially in hippocampal CA1 region. CONCLUSIONS Our data provide novel insights into astrocyte-mediated neuron damage during HIV-1 infection and suggest a potential therapeutic target for HANDs.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/pathology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/pathology
- Oncogene Protein v-akt
- Phosphatidylinositol 3-Kinases
- RNA, Messenger/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transduction, Genetic
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Feng Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Lin Gao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xinxin Zhou
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Qianwen Cao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Liping Niu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Jing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dongjiao Zuo
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Byoung Wook Choi
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, Sacramento, CA USA
| | - Min Xue
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
48
|
Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, Shao Y, Xing H. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci 2019; 13:44. [PMID: 30778283 PMCID: PMC6369160 DOI: 10.3389/fnins.2019.00044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/17/2019] [Indexed: 11/23/2022] Open
Abstract
There are numerous types of pathological changes in human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND), including apoptosis of neurons. HIV-1 transactivator of transcription (Tat) protein, which is encoded by HIV-1, may promote apoptosis in HAND. Forkhead box O3 (FOXO3) is a multispecific transcription factor that has roles in many biological processes, including cellular apoptosis. The aim of this study was to determine whether FOXO3 is activated by HIV-1 Tat and to investigate its role in neuronal apoptosis in HAND. We employed tissue staining and related molecular biological experimental methods to confirm our hypothesis. The in vivo experimental results demonstrated that the expression of nuclear FOXO3 increased in the apoptotic neurons of the cerebral cortexes of rhesus macaques infected with simian human immunodeficiency virus (SHIV). The in vitro investigation showed that HIV-1 Tat activated FOXO3, causing it to move from the cytoplasm to the nucleus via the c-Jun N-terminal kinase (JNK) signaling pathway in SH-SY5Y cells. Moreover, FOXO3 down-regulated expression of the anti-apoptosis gene B-cell lymphoma 2 (Bcl-2) and up-regulated the expression of the pro-apoptosis gene Bcl-2-like 11 (Bim) after entering the nucleus, eventually causing cellular apoptosis. Finally, reduction of nuclear FOXO3 reversed cellular apoptosis. Our results suggest that HIV-1 Tat induces FOXO3 to translocate from the cytoplasm to the nucleus via the JNK signaling pathway, leading to neuronal apoptosis. Agents targeting FOXO3 may provide approaches for restoring neuronal function in HAND.
Collapse
Affiliation(s)
- Huaqian Dong
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Ye
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Li Zhong
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhong Xu
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhua Qiu
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Wang
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huiqin Xing
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
49
|
Mg-supplementation attenuated lipogenic and oxidative/nitrosative gene expression caused by Combination Antiretroviral Therapy (cART) in HIV-1-transgenic rats. PLoS One 2019; 14:e0210107. [PMID: 30668566 PMCID: PMC6342322 DOI: 10.1371/journal.pone.0210107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
We determined if HIV-1 expression in transgenic (HIV-1-Tg) rats enhanced hepatic genomic changes related to oxidative/nitrosative stress and lipogenesis during cART-treatment, and assessed effects of Mg-supplementation. A clinically used cART (atazanavir-ritonavir+Truvada) was given orally to control and HIV-1-Tg rats (18 weeks) with normal or 6-fold dietary-Mg. Oxidative/nitrosative and lipogenic genes were determined by real-time RT-PCR. cART induced a 4-fold upregulation of sterol regulatory element-binding protein-1 (SREBP-1) in HIV-1-Tg-rats, but not in controls; Tg rats displayed a 2.5-fold higher expression. Both were completely prevented by Mg-supplementation. Nrf2 (Nuclear erythroid-derived factor 2), a master transcription factor controlling redox homeostasis, was down-regulated 50% in HIV-Tg rats, and reduced further to 25% in Tg+cART-rats. Two downstream antioxidant genes, heme oxygenase-1(HmOX1) and Glutathione-S-transferase(GST), were elevated in HIV-Tg alone but were suppressed by cART treatment. Decreased Nrf2 in Tg±cART were normalized by Mg-supplementation along with the reversal of altered HmOX1 and GST expression. Concomitantly, iNOS (inducible nitric oxide synthase) was upregulated 2-fold in Tg+cART rats, which was reversed by Mg-supplementation. In parallel, cART-treatment led to substantial increases in plasma 8-isoprostane, nitrotyrosine, and RBC-GSSG (oxidized glutathione) levels in HIV-1-Tg rats; all indices of oxidative/nitrosative stress were suppressed by Mg-supplementation. Both plasma triglyceride and cholesterol levels were elevated in Tg+cART rats, but were lowered by Mg-supplementation. Thus, the synergistic effects of cART and HIV-1 expression on lipogenic and oxidative/nitrosative effects were revealed at the genomic and biochemical levels. Down-regulation of Nrf2 in the Tg+cART rats suggested their antioxidant response was severely compromised; these abnormal metabolic and oxidative stress effects were effectively attenuated by Mg-supplementation at the genomic level.
Collapse
|
50
|
Campestrini J, Silveira DB, Pinto AR. HIV-1 Tat-induced bystander apoptosis in Jurkat cells involves unfolded protein responses. Cell Biochem Funct 2018; 36:377-386. [DOI: 10.1002/cbf.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jéssica Campestrini
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Douglas Bardini Silveira
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Aguinaldo Roberto Pinto
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| |
Collapse
|