1
|
Jin L, Zhu W, Hu X, Ye L, Lou S, Zhang Q, Wang M, Ye B, Min J, Wang Y, Huang L, Luo W, Liang G. USP25 directly interacts with and deubiquitinates PPARα to increase PPARα stability in hepatocytes and attenuate high-fat diet-induced MASLD in mice. Cell Death Differ 2025:10.1038/s41418-025-01444-4. [PMID: 39827322 DOI: 10.1038/s41418-025-01444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Recent studies have implicated altered ubiquitination/de-ubiquitination pathway in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we investigated the potential role of a deubiquitinase, ubiquitin-specific peptidase 25 (USP25), in MASLD. Analysis of mRNA profiling data showed that both human and mouse MASLD are associated with reduced expression of USP25 in hepatocytes. Usp25 deficiency exacerbated HFD-induced liver lipid accumulation and MASLD in mice. Rescue experiments with USP25 induction in hepatocytes protected mice against HFD-induced MASLD. Through comprehensive transcriptome sequence and pulldown-LC-MS/MS analysis, we identified that peroxisome proliferator-activated receptor α (PPARα) is involved in USP25's protective actions and may be the substrate protein of USP25. Cell-based experiments show that USP25 interacts with PPARα directly via its USP domain and the histidine at position 608 of USP25 exerts deubiquitination to increase protein stability by removing the K48 ubiquitin chain at PPARα's lysine at position 429. USP25 reduces palmitate (PA)-induced lipid accumulation in hepatocytes via increasing PPARα. Finally, we show that the protective effects of Usp25 induction are nullified in Ppara-deficient mice with HFD. In summary, this study presents a new USP25-PPARα axis in hepatocytes and highlights a novel function of USP25 in MASLD, suggesting that it may be targeted to combat the disease.
Collapse
Affiliation(s)
- Leiming Jin
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weiwei Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianhui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Julian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Yi Wang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Xiangshan, Zhejiang, 315799, China
- School of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Xiangshan, Zhejiang, 315799, China.
| | - Wu Luo
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
2
|
Park CS, Kim B, Jung J, Rhee T, Lee HJ, Lee H, Park J, Kim Y, Han K, Kim H. Association of Fibrate use with clinical expression of hypertrophic cardiomyopathy. ESC Heart Fail 2024; 11:3972-3981. [PMID: 39054783 PMCID: PMC11631236 DOI: 10.1002/ehf2.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS An association between obesity, metabolic abnormalities and clinical hypertrophic cardiomyopathy (HCM) expression has been reported. We investigated whether managing dyslipidaemia with fibrates could affect the clinical expression of HCM. METHODS We screened patients who used fibrates between 2010 and 2017 from a nationwide database. After excluding patients with a history of HCM, we identified fibrate-user group (n = 412 823). We then constructed a 1:1 matched cohort of fibrate-naïve participants (n = 412 823). After a 1 year lag period, we identified the incident HCM cases for the following 5 years. RESULTS During a median follow-up period of 3.96 years, we identified 454 incident clinical HCM cases. After adjusting for covariates, fibrate use was associated with a lower risk of clinical HCM expression [hazard ratio (HR) 95% confidence interval (CI): 0.763 (0.630-0.924)]. In subgroup analyses, fibrate use was associated with a reduced risk of clinical HCM expression in patients with a body mass index ≥25 kg/m2 and those with abdominal obesity [HR (95% CI): 0.719 (0.553-0.934) and 0.655 (0.492-0.872)], but not in those without obesity. Fibrate use was also associated with lower risks of incident clinical HCM in patients with triglyceride levels ≥150 mg/dL and those with metabolic syndrome [HR (95% CI): 0.741 (0.591-0.929) and 0.750 (0.609-0.923)], but not in their counterparts. Regarding lifestyle behaviours, fibrate use appeared to provide more prognostic benefits in patients who currently smoked, consumed alcohol or did not engage in regular physical activities. CONCLUSION The use of fibrates is associated with a lower incidence of clinical HCM expression. This association was also more prominent in those with obesity, unhealthy metabolic profiles and poor lifestyle behaviours.
Collapse
Affiliation(s)
- Chan Soon Park
- Cardiovascular CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Jin‐Hyung Jung
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Tae‐Min Rhee
- Cardiovascular CenterSeoul National University Hospital Healthcare System Gangnam CenterSeoulRepublic of Korea
| | - Hyun Jung Lee
- Cardiovascular CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Hee‐Sun Lee
- Cardiovascular CenterSeoul National University Hospital Healthcare System Gangnam CenterSeoulRepublic of Korea
| | - Jun‐Bean Park
- Cardiovascular CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Yong‐Jin Kim
- Cardiovascular CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Hyung‐Kwan Kim
- Cardiovascular CenterSeoul National University HospitalSeoulRepublic of Korea
| |
Collapse
|
3
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
4
|
García A, Vila L, Duplan I, Schiel MA, Enriz RD, Hennuyer N, Staels B, Cabedo N, Cortes D. Benzopyran hydrazones with dual PPARα/γ or PPARα/δ agonism and an anti-inflammatory effect on human THP-1 macrophages. Eur J Med Chem 2024; 265:116125. [PMID: 38185055 DOI: 10.1016/j.ejmech.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) play a major role in regulating inflammatory processes, and dual or pan-PPAR agonists with PPARγ partial activation have been recognised to be useful to manage both metabolic syndrome and metabolic dysfunction-associated fatty liver disease (MAFLD). Previous works have demonstrated the capacity of 2-prenylated benzopyrans as PPAR ligands. Herein, we have replaced the isoprenoid bond by hydrazone, a highly attractive functional group in medicinal chemistry. In an attempt to discover novel and safety PPAR activators, we efficiently prepared benzopyran hydrazone/hydrazine derivatives containing benzothiazole (series 1) or 5-chloro-3-(trifluoromethyl)-2-pyridine moiety (series 2) with a 3- or 7-carbon side chain at the 2-position of the benzopyran nucleus. Benzopyran hydrazones 4 and 5 showed dual hPPARα/γ agonism, while hydrazone 14 exerted dual hPPARα/δ agonism. These three hydrazones greatly attenuated inflammatory markers such as IL-6 and MCP-1 on the THP-1 macrophages via NF-κB activation. Therefore, we have discovered novel hits (4, 5 and 14), containing a hydrazone framework with dual PPARα/γ or PPARα/δ partial agonism, depending on the length of the side chain. Benzopyran hydrazones emerge as potential lead compounds which could be useful for treating metabolic diseases.
Collapse
Affiliation(s)
- Ainhoa García
- Department of Pharmacology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000, Lille, France
| | - María Ayelén Schiel
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco, 917-5700, San Luis, Argentina
| | - Ricardo D Enriz
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco, 917-5700, San Luis, Argentina
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000, Lille, France
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain.
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Du X, Yi X, Zou X, Chen Y, Tai Y, Ren X, He X. PCDH1, a poor prognostic biomarker and potential target for pancreatic adenocarcinoma metastatic therapy. BMC Cancer 2023; 23:1102. [PMID: 37957639 PMCID: PMC10642060 DOI: 10.1186/s12885-023-11474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.
Collapse
Affiliation(s)
- Xingyi Du
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaoyu Yi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaocui Zou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Yanhong Tai
- Department of Pathology, No.307 Hospital of PLA, Beijing, 100071, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Nanhu Laboratory, Jiaxing, 314002, China.
| |
Collapse
|
6
|
Kitamura S, Murao N, Yokota S, Shimizu M, Ono T, Seino Y, Suzuki A, Maejima Y, Shimomura K. Effect of fenofibrate and selective PPARα modulator (SPPARMα), pemafibrate on KATP channel activity and insulin secretion. BMC Res Notes 2023; 16:202. [PMID: 37697384 PMCID: PMC10494450 DOI: 10.1186/s13104-023-06489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE Insulin secretion is regulated by ATP-sensitive potassium (KATP) channels in pancreatic beta-cells. Peroxisome proliferator-activated receptors (PPAR) α ligands are clinically used to treat dyslipidemia. A PPARα ligand, fenofibrate, and PPARγ ligands troglitazone and 15-deoxy-∆12,14-prostaglandin J2 are known to close KATP channels and induce insulin secretion. The recently developed PPARα ligand, pemafibrate, became a new entry for treating dyslipidemia. Because pemafibrate is reported to improve glucose intolerance in mice treated with a high fat diet and a novel selective PPARα modulator, it may affect KATP channels or insulin secretion. RESULTS The effect of fenofibrate (100 µM) and pemafibrate (100 µM) on insulin secretion from MIN6 cells was measured by using batch incubation for 10 and 60 min in low (2 mM) and high (10 mM) glucose conditions. The application of fenofibrate for 10 min significantly increased insulin secretion in low glucose conditions. Pemafibrate failed to increase insulin secretion in all of the conditions experimented in this study. The KATP channel activity was measured by using whole-cell patch clamp technique. Although fenofibrate (100 µM) reduced the KATP channel current, the same concentration of pemafibrate had no effect. Both fenofibrate and pemafibrate had no effect on insulin mRNA expression.
Collapse
Affiliation(s)
- Shigeki Kitamura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
- Department of Neurology, Matsumura General Hospital, Iwaki, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| |
Collapse
|
7
|
Abstract
Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA;
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| |
Collapse
|
8
|
Tricò D, Galderisi A, Van Name MA, Caprio S, Samuels S, Li Z, Galuppo BT, Savoye M, Mari A, Feldstein AE, Santoro N. A low n-6 to n-3 polyunsaturated fatty acid ratio diet improves hyperinsulinaemia by restoring insulin clearance in obese youth. Diabetes Obes Metab 2022; 24:1267-1276. [PMID: 35297549 PMCID: PMC9177628 DOI: 10.1111/dom.14695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
AIM To examine the determinants and metabolic impact of the reduction in fasting and postload insulin levels after a low n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio diet in obese youth. MATERIALS AND METHODS Insulin secretion and clearance were assessed by measuring and modelling plasma insulin and C-peptide in 17 obese youth who underwent a nine-point, 180-minute oral glucose tolerance test (OGTT) before and after a 12-week, eucaloric low n-6:n-3 polyunsaturated fatty acid (PUFA) ratio diet. Hepatic fat content was assessed by repeated abdominal magnetic resonance imaging. RESULTS Insulin clearance at fasting and during the OGTT was significantly increased after the diet, while body weight, glucose levels, absolute and glucose-dependent insulin secretion, and model-derived variables of β-cell function were not affected. Dietary-induced changes in insulin clearance positively correlated with changes in whole-body insulin sensitivity and β-cell glucose sensitivity, but not with changes in hepatic fat. Subjects with greater increases in insulin clearance showed a worse metabolic profile at enrolment, characterized by impaired insulin clearance, β-cell glucose sensitivity, and glucose tolerance, and benefitted the most from the diet, achieving greater improvements in glucose-stimulated hyperinsulinaemia, insulin resistance, and β-cell function. CONCLUSIONS We showed that a 12-week low n-6:n-3 PUFA ratio diet improves hyperinsulinaemia by increasing fasting and postload insulin clearance in obese youth, independently of weight loss, glucose concentrations, and insulin secretion.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of PisaPisa
| | | | - Michelle A. Van Name
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Sonia Caprio
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Stephanie Samuels
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Zhongyao Li
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Brittany T. Galuppo
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Mary Savoye
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Andrea Mari
- Institute of Neuroscience, National Research CouncilPaduaItaly
| | - Ariel E. Feldstein
- Department of PediatricsUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Nicola Santoro
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
- Department of Medicine and Health Sciences, “V.Tiberio” University of MoliseCampobassoItaly
| |
Collapse
|
9
|
Lee H, An J, Kim J, Choi D, Song Y, Lee CK, Kong H, Kim SB, Kim K. A Novel Bacterium, Butyricimonas virosa, Preventing HFD-Induced Diabetes and Metabolic Disorders in Mice via GLP-1 Receptor. Front Microbiol 2022; 13:858192. [PMID: 35655996 PMCID: PMC9152154 DOI: 10.3389/fmicb.2022.858192] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Knowledge of the impact of the gut microbiota on human health has increased, and modulation of the bacterial community is now considered a therapeutic target for various diseases. Certain novel bacterial species have probiotic properties associated with improvement in obesity and related metabolic disorders. The relative abundance of Butyricimonas spp. is correlated with metabolic parameters; however, the physiological role of Butyricimonas in metabolic improvement is unclear. In this study, live and heat-killed Butyricimonas virosa were administered to mice with high-fat diet (HFD)-induced obesity. Both live and heat-killed B. virosa ameliorated HFD-impaired body weight, serum glucose level, insulin resistance, and liver steatosis. Moreover, activation of the glucagon-like peptide-1 receptor (GLP-1R) and peroxisome proliferator-activated receptor α (PPARα) was observed in the liver, and the expression levels of insulin receptor substrate (IRS)-1, IRS-2, Toll-like receptor 5 (TLR5), and zonula occludens-1 (ZO-1) were upregulated in the ileum. Finally, we demonstrated that the effect of B. virosa treatment on glucose regulation may be linked to the upregulation of GLP-1R in the liver and is not a result of colonization of the gut by B. virosa or B. virosa-produced butyrate. Our results provide a rationale for the development of Butyricimonas spp.-based therapeutics and prophylactics for hyperglycemia.
Collapse
Affiliation(s)
- Heetae Lee
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Jinho An
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Jiyeon Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Dohyun Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Hyunseok Kong
- College of Animal Biotechnology and Resource, Sahmyook University, Seoul, South Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Kyungjae Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| |
Collapse
|
10
|
Ye H, He Y, Zheng C, Wang F, Yang M, Lin J, Xu R, Zhang D. Type 2 Diabetes Complicated With Heart Failure: Research on Therapeutic Mechanism and Potential Drug Development Based on Insulin Signaling Pathway. Front Pharmacol 2022; 13:816588. [PMID: 35308248 PMCID: PMC8927800 DOI: 10.3389/fphar.2022.816588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are diseases characterized by high morbidity and mortality. They often occur simultaneously and increase the risk of each other. T2DM complicated with HF, as one of the most dangerous disease combinations in modern medicine, is more common in middle-aged and elderly people, making the treatment more difficult. At present, the combination of blood glucose control and anti-heart failure is a common therapy for patients with T2DM complicated with HF, but their effect is not ideal, and many hypoglycemic drugs have the risk of heart failure. Abnormal insulin signaling pathway, as a common pathogenic mechanism in T2DM and HF, could lead to pathological features such as insulin resistance (IR), myocardial energy metabolism disorders, and vascular endothelial disorders. The therapy based on the insulin signaling pathway may become a specific therapeutic target for T2DM patients with HF. Here, we reviewed the mechanisms and potential drugs of insulin signaling pathway in the treatment of T2DM complicated with HF, with a view to opening up a new perspective for the treatment of T2DM patients with HF and the research and development of new drugs.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Dimitri P. Treatment of Acquired Hypothalamic Obesity: Now and the Future. Front Endocrinol (Lausanne) 2022; 13:846880. [PMID: 35464063 PMCID: PMC9019363 DOI: 10.3389/fendo.2022.846880] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus is the centre of neuroendocrine regulation of energy homeostasis and appetite. Maldevelopment of, or damage to, the key hypothalamic nuclei disrupts the coordinated balance between energy intake and expenditure leading, to rapid and excessive weight gain. Hypothalamic obesity is compounded by a disruption of the hypothalamic-pituitary axis, sleep disruption, visual compromise, and neurological and vascular sequalae. Amongst suprasellar tumors, craniopharyngioma is the most common cause of acquired hypothalamic obesity, either directly or following surgical or radiotherapeutic intervention. At present, therapy is limited to strategies to manage obesity but with a modest and variable impact. Current approaches include optimizing pituitary hormone replacement, calorie restriction, increased energy expenditure through physical activity, behavioral interventions, pharmacotherapy and bariatric surgery. Current pharmacotherapeutic approaches include stimulants that increase energy consumption, anti-diabetic agents, hypothalamic-pituitary substitution therapy, octreotide, and methionine aminopeptidase 2 (MetAP2) inhibitors. Some pharmacological studies of hypothalamic obesity report weight loss or stabilization but reported intervention periods are short, and others report no effect. The impact of bariatric surgery on weight loss in hypothalamic obesity again is variable. Novel or combined approaches to manage hypothalamic obesity are thus required to achieve credible and sustained weight loss. Identifying etiological factors contributing hypothalamic obesity may lead to multi-faceted interventions targeting hyperphagia, insulin resistance, decreased energy expenditure, sleep disturbance, hypopituitarism and psychosocial morbidity. Placebo-controlled trials using current single, or combination therapies are required to determine the impact of therapeutic agents. A well-defined approach to defining the location of hypothalamic damage may support the use of future targeted therapies. Intranasal oxytocin is currently being investigated as an anorexogenic agent. Novel agents including those targeting pro-opimelanocortin-C and AgRP/NPY expressing neurons and the MC4 receptor may result in better outcomes. This article discusses the current challenges in the management of hypothalamic obesity in children and young people and future therapeutic approaches to increasing weight loss and quality of life in these patients.
Collapse
Affiliation(s)
- Paul Dimitri
- The Department of Paediatric Endocrinology, Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
- College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, United Kingdom
- *Correspondence: Paul Dimitri,
| |
Collapse
|
12
|
Nahle A, Joseph YD, Pereira S, Mori Y, Poon F, Ghadieh HE, Ivovic A, Desai T, Ghanem SS, Asalla S, Muturi HT, Jentz EM, Joseph JW, Najjar SM, Giacca A. Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. Int J Mol Sci 2021; 22:ijms222413224. [PMID: 34948019 PMCID: PMC8709165 DOI: 10.3390/ijms222413224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NAD-dependent deacetylase SIRT1 improves β cell function. Accordingly, nicotinamide mononucleotide (NMN), the product of the rate-limiting step in NAD synthesis, prevents β cell dysfunction and glucose intolerance in mice fed a high-fat diet. The current study was performed to assess the effects of NMN on β cell dysfunction and glucose intolerance that are caused specifically by increased circulating free fatty acids (FFAs). NMN was intravenously infused, with or without oleate, in C57BL/6J mice over a 48-h-period to elevate intracellular NAD levels and consequently increase SIRT1 activity. Administration of NMN in the context of elevated plasma FFA levels considerably improved glucose tolerance. This was due not only to partial protection from FFA-induced β cell dysfunction but also, unexpectedly, to a significant decrease in insulin clearance. However, in conditions of normal FFA levels, NMN impaired glucose tolerance due to decreased β cell function. The presence of this dual action of NMN suggests caution in its proposed therapeutic use in humans.
Collapse
Affiliation(s)
- Ashraf Nahle
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Yemisi Deborah Joseph
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
- Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo 142-0064, Japan
| | - Frankie Poon
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Aleksandar Ivovic
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Tejas Desai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Emelien M. Jentz
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; (E.M.J.); (J.W.J.)
| | - Jamie W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; (E.M.J.); (J.W.J.)
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
13
|
Insulin Sensitivity Is Retained in Mice with Endothelial Loss of Carcinoembryonic Antigen Cell Adhesion Molecule 1. Cells 2021; 10:cells10082093. [PMID: 34440862 PMCID: PMC8394790 DOI: 10.3390/cells10082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.
Collapse
|
14
|
Luo Y, Hu CT, Qiao F, Wang XD, Qin JG, Du ZY, Chen LQ. Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-α activation. Gen Comp Endocrinol 2020; 296:113537. [PMID: 32540489 DOI: 10.1016/j.ygcen.2020.113537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
High carbohydrate diet (HCD) can induce lipid metabolism disorder, characterized by excessive lipid in farmed fish. Peroxisome proliferator activated receptor-α (PPARα) plays an important role in lipid homeostasis. In this study, we hypothesize that PPARα can improve lipid metabolism in fish fed HCD. Fish (3.03 ± 0.11 g) were fed with three diets: control (30% carbohydrate), HCD (45% carbohydrate) and HCG (HCD supplemented with 200 mg/kg gemfibrozil, an agonist of PPARα) for eight weeks. The fish fed HCG had higher growth rate and protein effiency than those fed the HCD diet, whereas the opposite trend was observed in feed conversion ratio, hepatosomatic index and mesenteric fat index. Additionally, fish fed HCG significantly decreased lipid accumulation in the whole body, liver and adipose tissues compared to those fed the HCD diet. Furthermore, fish in the HCG group significantly increased the mRNA and protein expression and protein dephosphorylation of PPARα. The HCG group also significantly increased the mRNA level of the downstream target genes of PPARα, whereas the opposite trend occured in the mRNA level of lipolysis-related genes compared to the HCD group. Besides, fish in the HCG group remarkably decreased the contents of alanine aminotransferase, aspartate aminotransferase and malondialdehyde, whereas the opposite occured in the activities of antioxidative enzymes and anti-inflammatory cytokine genes compared to the HCD group. This study indicates that gemfibrozil can improve lipid metabolism and maintain high antioxidant and anti-inflammatory capacity through activating PPARα in Nile tilapia fed a high carbohydrate diet.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Chun-Ting Hu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Xiao-Dan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China.
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China.
| |
Collapse
|
15
|
Zubrzycki A, Wrońska A, Kotulak-Chrząszcz A, Wierzbicki PM, Kmieć Z. Fenofibrate impairs liver function and structure more pronounced in old than young rats. Arch Gerontol Geriatr 2020; 91:104244. [PMID: 32927318 DOI: 10.1016/j.archger.2020.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Since old animals are known to accumulate lipids in some organs, we compared effects of fenofibrate (FN) on systemic lipid metabolism, activity of liver marker enzymes and structure in young and old rats. MATERIAL AND METHODS Young and old rats were fed chow supplemented with 0.1 % or 0.5 % FN. After 30 days, intraperitoneal glucose tolerance test (IPGTT) was performed, and blood and liver samples were collected. RESULTS In young rats, 0.1 % FN, but not 0.5 % FN, decreased serum Chol by 74 %, and did not affect TG levels at either doses. In old rats, 0.5 % FN, but not 0.1 % FN, decreased Chol and TG level by 56 % and 49 %, respectively. In young rats, 0.1 % and 0.5 % FN increased serum activity of ALP by 227 % and 260 %, respectively, and did not affect AST and ALT activities. In old rats, only 0.5 % FN increased serum ALP activity by 150 %, respectively. In old rats, neither dose of FN affected serum AST activity, and only 0.5 % FN increased serum ALT activity by 200 %. The histological examination of liver structure revealed that both doses of FN impaired lobular architecture, expansion of bile canaliculi, and degeneration of parenchymal cells with the presence of cells containing fat droplets; administration of FN increased area occupied by collagen fibers. CONCLUSIONS Although 0.5 % FN decreased serum Chol concentration, it increased serum ALP activity and impaired liver structure in both in both age groups of rats. Thus, FN treatment should be under the control of liver function, especially in older patients.
Collapse
Affiliation(s)
- Adrian Zubrzycki
- Department of Histology, Medical University of Gdansk, Gdansk, Poland.
| | - Agata Wrońska
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Stec DE, Gordon DM, Hipp JA, Hong S, Mitchell ZL, Franco NR, Robison JW, Anderson CD, Stec DF, Hinds TD. Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2019; 317:R733-R745. [PMID: 31483154 DOI: 10.1152/ajpregu.00153.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Agonists for PPARα are used clinically to reduce triglycerides and improve high-density lipoprotein (HDL) cholesterol levels in patients with hyperlipidemia. Whether the mechanism of PPARα activation to lower serum lipids occurs in the liver or other tissues is unknown. To determine the function of hepatic PPARα on lipid profiles in diet-induced obese mice, we placed hepatocyte-specific peroxisome proliferator-activated receptor-α (PPARα) knockout (PparaHepKO) and wild-type (Pparafl/fl) mice on high-fat diet (HFD) or normal fat diet (NFD) for 12 wk. There was no significant difference in weight gain, percent body fat mass, or percent body lean mass between the groups of mice in response to HFD or NFD. Interestingly, the PparaHepKO mice on HFD had worsened hepatic inflammation and a significant shift in the proinflammatory M1 macrophage population. These changes were associated with higher hepatic fat mass and decreased hepatic lean mass in the PparαHepKO on HFD but not in NFD as measured by Oil Red O and noninvasive EchoMRI analysis (31.1 ± 2.8 vs. 20.2 ± 1.5, 66.6 ± 2.5 vs. 76.4 ± 1.5%, P < 0.05). We did find that this was related to significantly reduced peroxisomal gene function and lower plasma β-hydroxybutyrate in the PparaHepKO on HFD, indicative of reduced metabolism of fats in the liver. Together, these provoked higher plasma triglyceride and apolipoprotein B100 levels in the PparaHepKO mice compared with Pparafl/fl on HFD. These data indicate that hepatic PPARα functions to control inflammation and liver triglyceride accumulation that prevent hyperlipidemia.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Darren M Gordon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Jennifer A Hipp
- Department of Pathology, University of Toledo College of Medicine, Toledo, Ohio
| | - Stephen Hong
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Zachary L Mitchell
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalia R Franco
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - J Walker Robison
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery and Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
17
|
Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc 2019; 3:1727-1747. [PMID: 31528832 PMCID: PMC6735759 DOI: 10.1210/js.2019-00065] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia is strongly associated with type 2 diabetes. Racial and ethnic minority populations are disproportionately affected by diabetes and obesity-related complications. This mini-review provides an overview of the genetic and environmental factors associated with hyperinsulinemia with a focus on racial and ethnic differences and its metabolic consequences. The data used in this narrative review were collected through research in PubMed and reference review of relevant retrieved articles. Insulin secretion and clearance are regulated processes that influence the development and progression of hyperinsulinemia. Environmental, genetic, and dietary factors are associated with hyperinsulinemia. Certain pharmacotherapies for obesity and bariatric surgery are effective at mitigating hyperinsulinemia and are associated with improved metabolic health. Hyperinsulinemia is associated with many environmental and genetic factors that interact with a wide network of hormones. Recent studies have advanced our understanding of the factors affecting insulin secretion and clearance. Further basic and translational work on hyperinsulinemia may allow for earlier and more personalized treatments for obesity and metabolic diseases.
Collapse
Affiliation(s)
- Dylan D Thomas
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barbara E Corkey
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Nawfal W Istfan
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Caroline M Apovian
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
18
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
19
|
Ghadieh HE, Russo L, Muturi HT, Ghanem SS, Manaserh IH, Noh HL, Suk S, Kim JK, Hill JW, Najjar SM. Hyperinsulinemia drives hepatic insulin resistance in male mice with liver-specific Ceacam1 deletion independently of lipolysis. Metabolism 2019; 93:33-43. [PMID: 30664851 PMCID: PMC6401268 DOI: 10.1016/j.metabol.2019.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND CEACAM1 regulates insulin sensitivity by promoting insulin clearance. Accordingly, global C57BL/6J.Cc1-/- null mice display hyperinsulinemia due to impaired insulin clearance at 2 months of age, followed by insulin resistance, steatohepatitis, visceral obesity and leptin resistance at 6 months. The study aimed at investigating the primary role of hepatic CEACAM1 in insulin and lipid homeostasis independently of its metabolic effect in extra-hepatic tissues. METHODS Liver-specific C57BL/6J.AlbCre+Cc1fl/fl mice were generated and their metabolic phenotype was characterized by comparison to that of their littermate controls at 2-9 months of age, using hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry. The effect of hyperphagia on insulin resistance was assessed by pair-feeding experiments. RESULTS Liver-specific AlbCre+Cc1fl/fl mutants exhibited impaired insulin clearance and hyperinsulinemia at 2 months, followed by hepatic insulin resistance (assessed by hyperinsulinemic-euglycemic clamp analysis) and steatohepatitis at ~ 7 months of age, at which point visceral obesity and hyperphagia developed, in parallel to hyperleptinemia and blunted hypothalamic STAT3 phosphorylation in response to an intraperitoneal injection of leptin. Hyperinsulinemia caused hypothalamic insulin resistance, followed by increased fatty acid synthase activity, which together with defective hypothalamic leptin signaling contributed to hyperphagia and reduced physical activity. Pair-feeding experiment showed that hyperphagia caused systemic insulin resistance, including blunted insulin signaling in white adipose tissue and lipolysis, at 8-9 months of age. CONCLUSION AlbCre+Cc1fl/fl mutants provide an in vivo demonstration of the key role of impaired hepatic insulin clearance and hyperinsulinemia in the pathogenesis of secondary hepatic insulin resistance independently of lipolysis. They also reveal an important role for the liver-hypothalamic axis in the regulation of energy balance and subsequently, systemic insulin sensitivity.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Iyad H Manaserh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer W Hill
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
20
|
Russo L, Muturi HT, Ghadieh HE, Ghanem SS, Bowman TA, Noh HL, Dagdeviren S, Dogbey GY, Kim JK, Heinrich G, Najjar SM. Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia 2017; 60:2463-2474. [PMID: 28913658 PMCID: PMC5788286 DOI: 10.1007/s00125-017-4432-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Mice with global null mutation (Cc1 -/-) or with liver-specific inactivation (L-SACC1) of Cc1 (also known as Ceacam1) gene display hyperinsulinaemia resulting from impaired insulin clearance, insulin resistance, steatohepatitis and obesity. Because increased lipolysis contributes to the metabolic phenotype caused by transgenic inactivation of CEACAM1 in the liver, we aimed to further investigate the primary role of hepatic CEACAM1-dependent insulin clearance in insulin and lipid homeostasis. To this end, we examined whether transgenic reconstitution of CEACAM1 in the liver of global Cc1 -/- mutant mice reverses their abnormal metabolic phenotype. METHODS Insulin response was assessed by hyperinsulinaemic-euglycaemic clamp analysis and energy balance was analysed by indirect calorimetry. Mice were overnight-fasted and refed for 7 h to assess fatty acid synthase activity in the liver and the hypothalamus in response to insulin release during refeeding. RESULTS Liver-based rescuing of CEACAM1 restored insulin clearance, plasma insulin level, insulin sensitivity and steatohepatitis caused by global deletion of Cc1. It also reversed the gain in body weight and total fat mass observed with Cc1 deletion, in parallel to normalising energy balance. Mechanistically, reversal of hyperphagia appeared to result from reducing fatty acid synthase activity and restoring insulin signalling in the hypothalamus. CONCLUSIONS/INTERPRETATION Despite the potential confounding effects of deleting Cc1 from extrahepatic tissues, liver-based rescuing of CEACAM1 resulted in full normalisation of the metabolic phenotype, underscoring the key role that CEACAM1-dependent hepatic insulin clearance pathways play in regulating systemic insulin sensitivity, lipid homeostasis and energy balance.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Godwin Y Dogbey
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Jason K Kim
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
21
|
Ghadieh HE, Muturi HT, Russo L, Marino CC, Ghanem SS, Khuder SS, Hanna JC, Jash S, Puri V, Heinrich G, Gatto-Weis C, Lee KY, Najjar SM. Exenatide induces carcinoembryonic antigen-related cell adhesion molecule 1 expression to prevent hepatic steatosis. Hepatol Commun 2017; 2:35-47. [PMID: 29404511 PMCID: PMC5776867 DOI: 10.1002/hep4.1117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Exenatide, a glucagon-like peptide-1 receptor agonist, induces insulin secretion. Its role in insulin clearance has not been adequately examined. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance to maintain insulin sensitivity. Feeding C57BL/6J mice a high-fat diet down-regulates hepatic Ceacam1 transcription to cause hyperinsulinemia, insulin resistance, and hepatic steatosis, as in Ceacam1 null mice (Cc1-/- ). Thus, we tested whether exenatide regulates Ceacam1 expression in high-fat diet-fed mice and whether this contributes to its insulin sensitizing effect. Exenatide (100 nM) induced the transcriptional activity of wild-type Ceacam1 promoter but not the constructs harboring block mutations of peroxisome proliferator-activated receptor response element and retinoid X receptor alpha, individually or collectively, in HepG2 human hepatoma cells. Chromatin immunoprecipitation analysis demonstrated binding of peroxisome proliferator-activated receptor gamma to Ceacam1 promoter in response to rosiglitazone and exenatide. Consistently, exenatide induced Ceacam1 messenger RNA expression within 12 hours in the absence but not in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9-39. Exenatide (20 ng/g body weight once daily intraperitoneal injection in the last 30 days of feeding) restored hepatic Ceacam1 expression and insulin clearance to curb diet-induced metabolic abnormalities and steatohepatitis in wild-type but not Cc1-/- mice fed a high-fat diet for 2 months. Conclusion: Exenatide promotes insulin clearance in parallel with insulin secretion to prevent chronic hyperinsulinemia and the resulting hepatic steatosis, and this contributes to its insulin sensitizing effect. Our data further highlight the relevance of physiologic insulin metabolism in maintaining insulin sensitivity and normal lipid metabolism. (Hepatology Communications 2018;2:35-47).
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Christopher C Marino
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Saja S Khuder
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Julie C Hanna
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Sukanta Jash
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH.,Department of Pathology, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| |
Collapse
|
22
|
Ghanem SS, Muturi HT, DeAngelis AM, Hu J, Kulkarni RN, Heinrich G, Najjar SM. Age-dependent insulin resistance in male mice with null deletion of the carcinoembryonic antigen-related cell adhesion molecule 2 gene. Diabetologia 2017; 60:1751-1760. [PMID: 28567513 PMCID: PMC5709176 DOI: 10.1007/s00125-017-4307-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Cc2 -/- mice lacking the gene encoding the carcinoembryonic-antigen-related cell adhesion molecule 2 (Cc2 [also known as Ceacam2]) exhibit hyperphagia that leads to obesity and insulin resistance. This starts at 2 months of age in female mice. Male mutants maintain normal body weight and insulin sensitivity until the last age previously examined (7-8 months), owing to increased sympathetic tone to white adipose tissue and energy expenditure. The current study investigates whether insulin resistance develops in mutant male mice at a later age and whether this is accompanied by changes in insulin homeostasis. METHODS Insulin response was assessed by insulin and glucose tolerance tests. Energy balance was analysed by indirect calorimetry. RESULTS Male Cc2 -/- mice developed overt metabolic abnormalities at about 9 months of age. These include elevated global fat mass, hyperinsulinaemia and insulin resistance (as determined by glucose and insulin intolerance, fed hyperglycaemia and decreased insulin signalling pathways). Pair-feeding experiments showed that insulin resistance resulted from hyperphagia. Indirect calorimetry demonstrated that older mutant male mice had compromised energy expenditure. Despite increased insulin secretion caused by Cc2 deletion, chronic hyperinsulinaemia did not develop in mutant male mice until about 9 months of age, at which point insulin clearance began to decline substantially. This was probably mediated by a marked decrease in hepatic CEACAM1 expression. CONCLUSIONS/INTERPRETATION The data demonstrate that at about 9 months of age, Cc2 -/- male mice develop a reduction in energy expenditure and energy imbalance which, combined with a progressive decrease in CEACAM1-dependent hepatic insulin clearance, causes chronic hyperinsulinaemia and sustained age-dependent insulin resistance. This represents a novel mechanistic underpinning of age-related impairment of hepatic insulin clearance.
Collapse
Affiliation(s)
- Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Anthony M DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701-2979, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701-2979, USA.
| |
Collapse
|
23
|
Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest 2017; 127:1202-1214. [PMID: 28368286 DOI: 10.1172/jci88894] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) regulate energy metabolism and hence are therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by differential actions on lipid and glucose homeostasis. In this Review we discuss the complementary and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and molecular mechanisms, as well as the synthetic PPAR ligands that are used in the clinic or under development. We highlight the potential of new PPAR ligands with improved efficacy and safety profiles in the treatment of complex metabolic disorders.
Collapse
|
24
|
Heinrich G, Muturi HT, Rezaei K, Al-Share QY, DeAngelis AM, Bowman TA, Ghadieh HE, Ghanem SS, Zhang D, Garofalo RS, Yin L, Najjar SM. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity. Front Endocrinol (Lausanne) 2017; 8:54. [PMID: 28396653 PMCID: PMC5366977 DOI: 10.3389/fendo.2017.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
25
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
26
|
Russo L, Ghadieh HE, Ghanem SS, Al-Share QY, Smiley ZN, Gatto-Weis C, Esakov EL, McInerney MF, Heinrich G, Tong X, Yin L, Najjar SM. Role for hepatic CEACAM1 in regulating fatty acid metabolism along the adipocyte-hepatocyte axis. J Lipid Res 2016; 57:2163-2175. [PMID: 27777319 DOI: 10.1194/jlr.m072066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Zachary N Smiley
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Emily L Esakov
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Marcia F McInerney
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614 .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|