1
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Christoph Ullmer
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Sabine Grüner
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory
of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health (NIH), Bethesda MD 20892-9304, United States
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
2
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
3
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
4
|
Chicca A, Batora D, Ullmer C, Caruso A, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A highly potent, orally bioavailable pyrazole-derived cannabinoid CB2 receptor-selective full agonist for in vivo studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591311. [PMID: 38903103 PMCID: PMC11188143 DOI: 10.1101/2024.04.26.591311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein mediated efflux from the brain. 3H and 14C labelled RNB-61 showed apparent K d values < 4 nM towards human CB2R in both cell and tissue experiments. The >6000-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Batora
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christoph Ullmer
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
5
|
Cannabis sativa: A look at protozoa, helminths, insect vectors, and pests. Fitoterapia 2023; 166:105467. [PMID: 36893925 DOI: 10.1016/j.fitote.2023.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Active principles extracted from plants, such as essential oils, have been commonly described in the literature as therapeutic targets for numerous pathological conditions. Cannabis sativa, which has an ancient and peculiar history, has been used for various purposes, from recreational to compounds of pharmacotherapeutic and industrial importance, such as pesticides based on this plant. It is a plant that contains approximately 500 described cannabinoid compounds and is the target of in vitro and in vivo studies at different locations. This review clarifies the role of cannabinoid compounds in parasitic infections caused by helminths and protozoa. In addition, this study briefly presented the use of C. sativa constituents in the formulation of pesticides for vector control, as the latter topic is justified by the economic burden faced by several regions where vector-borne diseases are a troubling reality. Studies involving cannabis compounds with pesticidal potential should be encouraged, especially those that evaluate their effectiveness against the different life cycles of insects, seeking to interrupt vector proliferation after egg laying. Actions aimed at the management and cultivation of plant species with ecologically correct pharmacotherapeutic and pesticide potentials are becoming urgent.
Collapse
|
6
|
Simard M, Rakotoarivelo V, Di Marzo V, Flamand N. Expression and Functions of the CB 2 Receptor in Human Leukocytes. Front Pharmacol 2022; 13:826400. [PMID: 35273503 PMCID: PMC8902156 DOI: 10.3389/fphar.2022.826400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023] Open
Abstract
The cannabinoid CB2 receptor was cloned from the promyeloid cell line HL-60 and is notably expressed in most, if not all leukocyte types. This relatively restricted localization, combined to the absence of psychotropic effects following its activation, make it an attractive drug target for inflammatory and autoimmune diseases. Therefore, there has been an increasing interest in the past decades to identify precisely which immune cells express the CB2 receptor and what are the consequences of such activation. Herein, we provide new data on the expression of both CB1 and CB2 receptors by human blood leukocytes and discuss the impact of CB2 receptor activation in human leukocytes. While the expression of the CB2 mRNA can be detected in eosinophils, neutrophils, monocytes, B and T lymphocytes, this receptor is most abundant in human eosinophils and B lymphocytes. We also review the evidence obtained from primary human leukocytes and immortalized cell lines regarding the regulation of their functions by the CB2 receptor, which underscore the urgent need to deepen our understanding of the CB2 receptor as an immunoregulator in humans.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy.,Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation, Université Laval, Québec City, QC, Canada.,Joint International Unit Between the Consiglio Nazionale Delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Naples, Italy
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département of Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC, Canada
| |
Collapse
|
7
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
8
|
de Sousa ACC, Combrinck JM, Maepa K, Egan TJ. THC shows activity against cultured Plasmodium falciparum. Bioorg Med Chem Lett 2021; 54:128442. [PMID: 34763083 DOI: 10.1016/j.bmcl.2021.128442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The FDA approved drug Dronabinol was identified in a previous study applying virtual screening using the haemozoin crystal as a target against malaria parasites. The active ingredient of dronabinol is synthetic tetrahydrocannabinol (THC), which is one of the major cannabinoids from Cannabis sativa. Traditional use of cannabis for malaria fever was reported in the world's oldest pharmacopoeia, dating to around 5000 years ago. In this research we report that THC inhibits β-haematin (synthetic haemozoin) and malaria parasite growth. Due the psychoactivity of THC, CBD, the other major naturally occurring cannabinoid that lacks the off-target psychoactive effects of THC, was also tested and inhibited β-haematin but showed only a mild antimalarial activity. To evaluate whether THC inhibit haemozoin formation, we performed a cellular haem fractionation assay that indicated that is not the likely mechanism of action. For the first time, the cannabinoid chemical structure is raised as a new chemical class to be further studied for malaria treatment, aiming to overcome the undesirable psychoactive effects of THC and optimize the antimalarial effects.
Collapse
Affiliation(s)
| | - Jill M Combrinck
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Keletso Maepa
- University of Cape Town, Division of Pharmacology, Department of Medicine, Observatory 7925, South Africa
| | - Timothy J Egan
- University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
9
|
Karikari AA, Wruck W, Adjaye J. Transcriptome-based analysis of blood samples reveals elevation of DNA damage response, neutrophil degranulation, cancer and neurodegenerative pathways in Plasmodium falciparum patients. Malar J 2021; 20:383. [PMID: 34565410 PMCID: PMC8474955 DOI: 10.1186/s12936-021-03918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. METHODS An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. RESULTS In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. CONCLUSIONS Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.
Collapse
Affiliation(s)
- Akua A. Karikari
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Galán-Ganga M, Rodríguez-Cueto C, Merchán-Rubira J, Hernández F, Ávila J, Posada-Ayala M, Lanciego JL, Luengo E, Lopez MG, Rábano A, Fernández-Ruiz J, Lastres-Becker I. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun 2021; 9:90. [PMID: 34001284 PMCID: PMC8130522 DOI: 10.1186/s40478-021-01196-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis. By integrating gene expression analysis, immunofluorescence, genetic and adeno-associated virus expressing TAU mouse models, we found a TAU-dependent increase in CB2 receptor expression in hippocampal neurons, that occurs as an early event in the pathology and was maintained until late stages. These changes were accompanied by alterations in the endocannabinoid metabolism. Remarkably, CB2 ablation in mice protects from neurodegeneration induced by hTAUP301L overexpression, corroborated at the level of cognitive behaviour, synaptic plasticity, and aggregates of insoluble TAU. At the level of neuroinflammation, the absence of CB2 did not produce significant changes in concordance with a possible neuronal location rather than its classic glial expression in these models. These findings were corroborated in post-mortem samples of patients with Alzheimer's disease, the most common tauopathy. Our results show that neurons with accumulated TAU induce the expression of the CB2 receptor, which enhances neurodegeneration. These results are important for our understanding of disease mechanisms, providing a novel therapeutic strategy to be investigated in tauopathies.
Collapse
|
11
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Kuehlwein JM, Borsche M, Korir PJ, Risch F, Mueller A, Hübner MP, Hildner K, Hoerauf A, Dunay IR, Schumak B. Protection of Batf3-deficient mice from experimental cerebral malaria correlates with impaired cytotoxic T-cell responses and immune regulation. Immunology 2020; 159:193-204. [PMID: 31631339 PMCID: PMC6954726 DOI: 10.1111/imm.13137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/deficiency
- Basic-Leucine Zipper Transcription Factors/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/parasitology
- Brain/immunology
- Brain/metabolism
- Brain/parasitology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/parasitology
- Disease Models, Animal
- Female
- Granzymes/immunology
- Granzymes/metabolism
- Host-Parasite Interactions
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Malaria, Cerebral/immunology
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Spleen/immunology
- Spleen/metabolism
- Spleen/parasitology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/parasitology
Collapse
Affiliation(s)
- Janina M. Kuehlwein
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Max Borsche
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Patricia J. Korir
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Frederic Risch
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Ann‐Kristin Mueller
- Parasitology UnitCentre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- DZIF German Center for Infection ResearchPartner Site HeidelbergHeidelbergGermany
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Kai Hildner
- Medical Department 1University Hospital ErlangenErlangenGermany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
- DZIF German Center for Infection ResearchPartner Site Bonn‐CologneBonnGermany
| | - Ildiko Rita Dunay
- Institute of Inflammation and NeurodegenerationUniversity of MagdeburgMagdeburgGermany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
13
|
Cardinal von Widdern J, Hohmann T, Dehghani F. Abnormal Cannabidiol Affects Production of Pro-Inflammatory Mediators and Astrocyte Wound Closure in Primary Astrocytic-Microglial Cocultures. Molecules 2020; 25:E496. [PMID: 31979350 PMCID: PMC7037200 DOI: 10.3390/molecules25030496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal cannabidiol (abn-CBD) exerts neuroprotective effects in vivo and in vitro. In the present study, we investigated the impact of abn-CBD on the glial production of proinflammatory mediators and scar formation within in vitro models. Primary astrocytic-microglial cocultures and astrocytic cultures from neonatal C57BL/6 mice and CB2 receptor knockout mice were stimulated with lipopolysaccharide (LPS), and the concentrations of tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and nitrite were determined. Furthermore, we performed a live cell microscopy-based scratch-wound assay. After LPS stimulation, TNFα, IL-6 and nitrite production was more strongly increased in cocultures than in isolated astrocytes. Abn-CBD treatment attenuated the LPS-induced production of TNFα and nitrite in cocultures, while IL-6 production remained unaltered. In isolated astrocytes, only LPS-induced TNFα production was reduced by abn-CBD. Similar effects were observed after abn-CBD application in cocultures of CB2 knockout mice. Interestingly, LPS-induced TNFα and nitrite levels were far lower in CB2 knockout cultures compared to wildtypes, while IL-6 levels did not differ. In the scratch-wound assay, treatment with abn-CBD decelerated wound closure when microglial cells were present. Our data shows a differential role of abn-CBD for modulation of glial inflammation and astrocytic scar formation. These findings provide new explanations for mechanisms behind the neuroprotective potential of abn-CBD.
Collapse
Affiliation(s)
| | | | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany; (J.C.v.W.); (T.H.)
| |
Collapse
|
14
|
Gaffal E, Kemter AM, Scheu S, Leite Dantas R, Vogt J, Baune B, Tüting T, Zimmer A, Alferink J. Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. Int J Mol Sci 2020; 21:ijms21020475. [PMID: 31940843 PMCID: PMC7013892 DOI: 10.3390/ijms21020475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate DC functions and inflammatory skin responses, but their influence on the capacity of haptenized DCs to induce CHS is still unknown. We found lower CHS responses to 2,4-dinitro-1-fluorobenzene (DNFB) in wild type (WT) mice after adoptive transfer of haptenized Cnr2-/- and Cnr1-/-/Cnr2-/- bone marrow (BM) DCs as compared to transfer of WT DCs. In contrast, induction of CHS was not affected in WT recipients after transfer of Cnr1-/- DCs. In vitro stimulated Cnr2-/- DCs showed lower CCR7 and CXCR4 expression when compared to WT cells, while in vitro migration towards the chemokine ligands was not affected by CB2. Upregulation of MHC class II and co-stimulatory molecules was also reduced in Cnr2-/- DCs. This study demonstrates that CB2 modulates the maturation phenotype of DCs but not their chemotactic capacities in vitro. These findings and the fact that CHS responses mediated by Cnr2-/- DCs are reduced suggest that CB2 is a promising target for the treatment of inflammatory skin conditions.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Chemotaxis
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dermatitis, Allergic Contact/genetics
- Dermatitis, Allergic Contact/immunology
- Dinitrofluorobenzene/toxicity
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/metabolism
- Mice
- Mice, Inbred C57BL
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, CCR4/genetics
- Receptors, CCR4/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
Collapse
Affiliation(s)
- Evelyn Gaffal
- Department of Dermatology, University Hospital Magdeburg, 39104 Magdeburg, Germany; (E.G.); (T.T.)
| | - Andrea M. Kemter
- Institute of Molecular Psychiatry, University of Bonn, 53127 Bonn, Germany; (A.M.K.); (A.Z.)
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rafael Leite Dantas
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
| | - Jens Vogt
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
| | - Bernhard Baune
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
- Department of Psychiatry, The University of Melbourne, Melbourne 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
| | - Thomas Tüting
- Department of Dermatology, University Hospital Magdeburg, 39104 Magdeburg, Germany; (E.G.); (T.T.)
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, 53127 Bonn, Germany; (A.M.K.); (A.Z.)
| | - Judith Alferink
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
- Cells in Motion Interfaculty Centre, 48149 Muenster, Germany
- Correspondence:
| |
Collapse
|
15
|
Hirako IC, Assis PA, Galvão-Filho B, Luster AD, Antonelli LR, Gazzinelli RT. Monocyte-derived dendritic cells in malaria. Curr Opin Microbiol 2019; 52:139-150. [PMID: 31542508 DOI: 10.1016/j.mib.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/03/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
The pathogenesis of malaria is a multifactorial syndrome associated with a deleterious inflammatory response that is responsible for many of the clinical manifestations. While dendritic cells (DCs) play a critical role in initiating acquired immunity and host resistance to infection, they also play a pathogenic role in inflammatory diseases. In our recent studies, we found in different rodent malaria models that the monocyte-derived DCs (MO-DCs) become, transiently, a main DC population in spleens and inflamed non-lymphoid organs. These studies suggest that acute infection with Plasmodium berghei promotes the differentiation of splenic monocytes into inflammatory monocytes (iMOs) and thereafter into MO-DCs that play a pathogenic role by promoting inflammation and tissue damage. The recruitment of MO-DCs to the lungs and brain are dependent on expression of CCR4 and CCR5, respectively, and expression of respective chemokine ligands in each organ. Once they reach the target organ the MO-DCs produce the CXCR3 ligands (CXCL9 and CXCL10), recruit CD8+ T cells, and produce toxic metabolites that play an important role in the development of experimental cerebral malaria (ECM) and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Isabella C Hirako
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | - Patrícia A Assis
- University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | | | - Andrew D Luster
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lis Rv Antonelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil
| | - Ricardo T Gazzinelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States; Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Schmöle AC, Lundt R, Toporowski G, Hansen JN, Beins E, Halle A, Zimmer A. Cannabinoid Receptor 2-Deficiency Ameliorates Disease Symptoms in a Mouse Model with Alzheimer's Disease-Like Pathology. J Alzheimers Dis 2019; 64:379-392. [PMID: 29865078 DOI: 10.3233/jad-180230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is widely accepted that the endocannabinoid system (ECS) is a modulator of neuroinflammation associated with neurodegenerative disorders, including Alzheimer's disease (AD). Thus, expression of the cannabinoid receptor 2 (CB2) is induced in plaque-associated microglia and astrocytes in brain tissues from AD patients and in genetic mouse models expressing pathogenic variants of the amyloid precursor protein (APP). However, the exact mechanism of CB2 signaling in this mouse model remains elusive, because the genetic deletion of CB2 and the pharmacological activation of CB2 both reduced neuroinflammation. Here, we demonstrate that CB2 deletion also improved cognitive and learning deficits in APP/PS1*CB2-/- mice. This was accompanied by reduced neuronal loss and decreased plaque levels and coincided with increased expression of Aβ degrading enzymes. Interestingly, plaque-associated microglia in APP/PS1*CB2-/- mice showed a less activated morphology, while plaques were smaller and more condensed than in APP/PS1 mice. Taken together, these results indicate a beneficial effect of CB2-deficiency in APP transgenic mice. CB2 appears to be part of a protective system that may be detrimental when engaged continuously.
Collapse
Affiliation(s)
- Anne-Caroline Schmöle
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Bonn, Germany
| | - Ramona Lundt
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Bonn, Germany
| | - Gregor Toporowski
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Bonn, Germany
| | - Jan N Hansen
- Center of Advanced European Studies and Research (Caesar), Max Planck research group "Neuroimmunology", Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eva Beins
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Bonn, Germany
| | - Annett Halle
- Center of Advanced European Studies and Research (Caesar), Max Planck research group "Neuroimmunology", Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
17
|
Zhu M, Yu B, Bai J, Wang X, Guo X, Liu Y, Lin J, Hu S, Zhang W, Tao Y, Hu C, Yang H, Xu Y, Geng D. Cannabinoid Receptor 2 Agonist Prevents Local and Systemic Inflammatory Bone Destruction in Rheumatoid Arthritis. J Bone Miner Res 2019; 34:739-751. [PMID: 30508319 DOI: 10.1002/jbmr.3637] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Cannabinoid receptor 2 (CB2) has been implicated as an important clinical regulator of inflammation and malignant osteolysis. Here, we observed that CB2 expression was markedly higher in the collagen-induced arthritis (CIA) mice synovium and bone tissues than in the noninflamed synovium and bone tissues. The CB2 selective agonist (JWH133) but not antagonist (SR144528) suppressed CIA in mice without toxic effects, as demonstrated by the decreased synovial hyperplasia, inflammatory responses, cartilage damage, and periarticular and systemic bone destruction. JWH133 treatment decreased the infiltration of pro-inflammatory M1-like macrophages and repolarized macrophages from the M1 to M2 phenotype. Similarly, activation of CB2 increased the expression of anti-inflammatory cytokine interleukin (IL)-10 and reduced the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-1β, and IL-6. In addition, JWH133 treatment attenuated osteoclast formation and osteoclastic bone resorption, and reduced the expression of receptor activators of the nuclear factor-κB (NF-κB) ligand (RANKL), matrix metallopeptidase-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and nuclear factor of activated T-cells 1 (NFAT-1) in CIA mice and osteoclast precursors, which were obviously blocked by pretreatment with SR144528. Mechanistically, JWH133 inhibited RANKL-induced NF-κB activation in the osteoclast precursors. We found that JWH133 ameliorates pathologic bone destruction in CIA mice via the inhibition of osteoclastogenesis and modulation of inflammatory responses, thereby highlighting its potential as a treatment for human rheumatoid arthritis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binqin Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobin Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Zhang
- Orthopedics Institute, Soochow University, Suzhou, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Genetic analysis of cerebral malaria in the mouse model infected with Plasmodium berghei. Mamm Genome 2018; 29:488-506. [DOI: 10.1007/s00335-018-9752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
|
19
|
Oláh A, Szekanecz Z, Bíró T. Targeting Cannabinoid Signaling in the Immune System: "High"-ly Exciting Questions, Possibilities, and Challenges. Front Immunol 2017; 8:1487. [PMID: 29176975 PMCID: PMC5686045 DOI: 10.3389/fimmu.2017.01487] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the "phytocannabinoids" [pCBs; e.g., (-)-trans-Δ9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances ["endocannabinoids" (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and "recreational" marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.
Collapse
Affiliation(s)
- Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|