1
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
2
|
Hebchen DM, Schröder K. Redox Signaling in Endosomes Using the Example of EGF Receptors: A Graphical Review. Antioxidants (Basel) 2024; 13:1215. [PMID: 39456468 PMCID: PMC11504029 DOI: 10.3390/antiox13101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Early endosomes represent first-line sorting compartments or even organelles for internalized molecules. They enable the transport of molecules or ligands to other compartments of the cell, such as lysosomes, for degradation or recycle them back to the membrane by various mechanisms. Moreover, early endosomes function as signaling and scaffolding platforms to initiate or prolong distinct signaling pathways. Accordingly, early endosomes have to be recognized as either part of a degradation or recycling pathway. The physical proximity of many ligand-binding receptors with other membrane-bound proteins or complexes such as NADPH oxidases may result in an interaction of second messengers, like reactive oxygen species (ROS) and early endosomes, that promote the correct recognition of individual early endosomes. In fact, redoxosomes comprise an endosomal subsection of signaling endosomes. One example of such potential interaction is epidermal growth factor receptor (EGFR) signaling. Here we summarize recent findings on EGFR signaling as a well-studied example for receptor trafficking and trans-activation and illustrate the interplay between cellular and endosomal ROS.
Collapse
Affiliation(s)
| | - Katrin Schröder
- Institute of Physiology, Medical Faculty, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
3
|
Camargo LDL, Trevelin SC, da Silva GHG, Dos Santos Dias AA, Oliveira MA, Mikhaylichenko O, Androwiki ACD, Dos Santos CX, Holbrook LM, Ceravolo GS, Denadai-Souza A, Ribeiro IMR, Sartoretto S, Laurindo FRM, Coltri PP, Antunes VR, Touyz R, Miller FJ, Shah AM, Lopes LR. Protein disulfide isomerase-mediated transcriptional upregulation of Nox1 contributes to vascular dysfunction in hypertension. J Hypertens 2024; 42:984-999. [PMID: 38690903 DOI: 10.1097/hjh.0000000000003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Livia De Lucca Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
| | - Silvia Cellone Trevelin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | - Maria Aparecida Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Olga Mikhaylichenko
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Aline C D Androwiki
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Celio Xavier Dos Santos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | | | | | - Simone Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Patricia Pereira Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Rhian Touyz
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Lucia Rossetti Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| |
Collapse
|
4
|
Gaston B, Smith LA, Davis MD, Saunders J, Daniels I, Horani A, Brody SL, Giddings O, Zhao Y, Marozkina N. Antigen stasis and airway nitrosative stress in human primary ciliary dyskinesia. Am J Physiol Lung Cell Mol Physiol 2024; 326:L468-L476. [PMID: 38318660 PMCID: PMC11281798 DOI: 10.1152/ajplung.00208.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Nasal nitric oxide (nNO) is low in most patients with primary ciliary dyskinesia (PCD). Decreased ciliary motion could lead to antigen stasis, increasing oxidant production and NO oxidation in the airways. This could both decrease gas phase NO and increase nitrosative stress. We studied primary airway epithelial cells from healthy controls (HCs) and patients with PCD with several different genotypes. We measured antigen clearance in fenestrated membranes exposed apically to the fluorescently labeled antigen Dermatophagoides pteronyssinus (Derp1-f). We immunoblotted for 3-nitrotyrosine (3-NT) and for oxidative response enzymes. We measured headspace NO above primary airway cells without and with a PCD-causing genotype. We measured nNO and exhaled breath condensate (EBC) H2O2 in vivo. Apical Derp1-f was cleared from HC better than from PCD cells. DUOX1 expression was lower in HC than in PCD cells at baseline and after 24-h Derp1-f exposure. HC cells had less 3-NT and NO3- than PCD cells. However, NO consumption by HC cells was less than that by PCD cells; NO loss was prevented by superoxide dismutase (SOD) and by apocynin. nNO was higher in HCs than in patients with PCD. EBC H2O2 was lower in HC than in patients with PCD. The PCD airway epithelium does not optimally clear antigens and is subject to oxidative and nitrosative stress. Oxidation associated with antigen stasis could represent a therapeutic target in PCD, one with convenient monitoring biomarkers.NEW & NOTEWORTHY The PCD airway epithelium does not optimally clear antigens, and antigen exposure can lead to NO oxidation and nitrosative stress. Oxidation caused by antigen stasis could represent a therapeutic target in PCD, and there are convenient monitoring biomarkers.
Collapse
Affiliation(s)
- Benjamin Gaston
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Laura A Smith
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Michael D Davis
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jessica Saunders
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ivana Daniels
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amjad Horani
- Department of Medicine, Washington University, St. Louis, Missouri, United States
| | - Steven L Brody
- Department of Medicine, Washington University, St. Louis, Missouri, United States
| | - Olivia Giddings
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Nadzeya Marozkina
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
5
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
6
|
Identification and Validation of Ferroptosis-Related DNA Methylation Signature for Predicting the Prognosis and Guiding the Treatment in Cutaneous Melanoma. Int J Mol Sci 2022; 23:ijms232415677. [PMID: 36555319 PMCID: PMC9778758 DOI: 10.3390/ijms232415677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is one of the most aggressive skin tumors with a poor prognosis. Ferroptosis is a newly discovered form of regulated cell death that is closely associated with cancer development and immunotherapy. The aim of this study was to establish and validate a ferroptosis-related gene (FRG) DNA methylation signature to predict the prognosis of CM patients using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. A reliable four-FRG DNA methylation prognostic signature was constructed via Cox regression analysis based on TCGA database. Kaplan-Meier analysis showed that patients in the high-risk group tended to have a shorter overall survival (OS) than the low-risk group in both training TCGA and validation GEO cohorts. Time-dependent receiver operating characteristic (ROC) analysis showed the areas under the curve (AUC) at 1, 3, and 5 years were 0.738, 0.730, and 0.770 in TCGA cohort and 0.773, 0.775, and 0.905 in the validation cohort, respectively. Univariate and multivariate Cox regression analyses indicated that the signature was an independent prognostic indicator of OS in patients with CM. Immunogenomic profiling showed the low-risk group of patients had a higher immunophenoscore, and most immune checkpoints were negatively associated with the risk signature. Functional enrichment analysis revealed that immune response and immune-related pathways were enriched in the low-risk group. In conclusion, we established and validated a four-FRG DNA methylation signature that independently predicts prognosis in CM patients. This signature was strongly correlated with the immune landscape, and may serve as a biomarker to guide clinicians in making more precise and personalized treatment decisions for CM patients.
Collapse
|
7
|
Tran LTT, Pham LHD, Dang NYT, Nguyen Le NT, Nguyen HB, Nguyen TK. Phytochemicals Derived from Goniothalamus elegans Ast Exhibit Anticancer Activity by Inhibiting Epidermal Growth Factor Receptor. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221138435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cancer is a major health burden and a leading cause of death worldwide, with numerous new molecules being studied and developed as therapeutic agents. In this study, the cytotoxicity of compounds derived from Goniothalamus elegans was evaluated for possible anticancer activity. It was observed that the crude methanol extract of G. elegans exerted the strongest cytotoxic activity against SW-480, AGS, and SK-LU-1 cell lines. In addition, two isolated alkaloids—namely, lysicamine and liriodenine—also showed strong inhibitory ability against similar cancer cell lines. To further investigate the compounds’ mechanism of action, a molecular docking approach was utilized to evaluate the potential of the two candidates to interact with the epidermal growth factor receptor. This assay estimated that lysicamine and liriodenine acquired protein binding affinities of −8.8 and −9.7 kcal/mol, respectively. Finally, the stabilities of the ligand–protein complexes were evaluated using molecular dynamics simulations of 100 ns each.
Collapse
Affiliation(s)
- Linh Thuy Thi Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue city, Thua Thien Hue Province, Vietnam
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nhi Yen Thi Dang
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue city, Thua Thien Hue Province, Vietnam
| | - Nguyen Thao Nguyen Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue city, Thua Thien Hue Province, Vietnam
| | - Huu Bao Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue city, Thua Thien Hue Province, Vietnam
| | - Tan Khanh Nguyen
- Institute of Applied Life Sciences, Dong A University, Da Nang city, Vietnam
- Scientific Management Department, Dong A University, Da Nang City, Vietnam
| |
Collapse
|
8
|
Shannon N, Gravelle R, Cunniff B. Mitochondrial trafficking and redox/phosphorylation signaling supporting cell migration phenotypes. Front Mol Biosci 2022; 9:925755. [PMID: 35936783 PMCID: PMC9355248 DOI: 10.3389/fmolb.2022.925755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of cell signaling cascades is critical in making sure the response is activated spatially and for a desired duration. Cell signaling cascades are spatially and temporally controlled through local protein phosphorylation events which are determined by the activation of specific kinases and/or inactivation of phosphatases to elicit a complete and thorough response. For example, A-kinase-anchoring proteins (AKAPs) contribute to the local regulated activity protein kinase A (PKA). The activity of kinases and phosphatases can also be regulated through redox-dependent cysteine modifications that mediate the activity of these proteins. A primary example of this is the activation of the epidermal growth factor receptor (EGFR) and the inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by reactive oxygen species (ROS). Therefore, the local redox environment must play a critical role in the timing and magnitude of these events. Mitochondria are a primary source of ROS and energy (ATP) that contributes to redox-dependent signaling and ATP-dependent phosphorylation events, respectively. The strategic positioning of mitochondria within cells contributes to intracellular gradients of ROS and ATP, which have been shown to correlate with changes to protein redox and phosphorylation status driving downstream cellular processes. In this review, we will discuss the relationship between subcellular mitochondrial positioning and intracellular ROS and ATP gradients that support dynamic oxidation and phosphorylation signaling and resulting cellular effects, specifically associated with cell migration signaling.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Randi Gravelle
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
- *Correspondence: Brian Cunniff,
| |
Collapse
|
9
|
Kim MJ, Ha SJ, So BR, Kim CK, Kim KM, Jung SK. NADPH Oxidase and Epidermal Growth Factor Receptor Are Promising Targets of Phytochemicals for Ultraviolet-Induced Skin Carcinogenesis. Antioxidants (Basel) 2021; 10:antiox10121909. [PMID: 34943012 PMCID: PMC8750051 DOI: 10.3390/antiox10121909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
The skin acts as the primary defense organ that protects the body from the external environment. Skin cancer is one of the most common cancers in the world. Skin carcinogenesis is usually caused by cell degeneration due to exposure to ultraviolet (UV) radiation, which causes changes in various signaling networks, disrupting the homeostasis of single skin cells. In this review, we summarize the roles of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and epidermal growth factor receptor (EGFR) in UV-induced skin carcinogenesis. Furthermore, we describe the crosstalk that exists between NOX, EGFR, and protein tyrosine phosphatase κ and its oncogenic downstream signaling pathways. Chemoprevention is the use of chemical compounds to recover the healthy status of the skin or delay cancer development. Current evidence from in vitro and in vivo studies on chemopreventive phytochemicals that target NOX, EGFR, or both, as major regulators of skin carcinogenesis will also be discussed.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
| | - Su Jeong Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea;
| | - Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
| | - Chang-Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea;
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (K.-M.K.); (S.K.J.); Tel.: +82-53-950-5711 (K.-M.K.); +82-53-950-7764 (S.K.J.)
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
- Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (K.-M.K.); (S.K.J.); Tel.: +82-53-950-5711 (K.-M.K.); +82-53-950-7764 (S.K.J.)
| |
Collapse
|
10
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
11
|
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1 -/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
|
12
|
Dustin CM, Habibovic A, Hristova M, Schiffers C, Morris CR, Lin MCJ, Bauer RA, Heppner DE, Daphtary N, Aliyeva M, van der Vliet A. Oxidation-Dependent Activation of Src Kinase Mediates Epithelial IL-33 Production and Signaling during Acute Airway Allergen Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2989-2999. [PMID: 34088769 PMCID: PMC8642476 DOI: 10.4049/jimmunol.2000995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
The respiratory epithelium forms the first line of defense against inhaled pathogens and acts as an important source of innate cytokine responses to environmental insults. One critical mediator of these responses is the IL-1 family cytokine IL-33, which is rapidly secreted upon acute epithelial injury as an alarmin and induces type 2 immune responses. Our recent work highlighted the importance of the NADPH oxidase dual oxidase 1 (DUOX1) in acute airway epithelial IL-33 secretion by various airborne allergens associated with H2O2 production and reduction-oxidation-dependent activation of Src kinases and epidermal growth factor receptor (EGFR) signaling. In this study, we show that IL-33 secretion in response to acute airway challenge with house dust mite (HDM) allergen critically depends on the activation of Src by a DUOX1-dependent oxidative mechanism. Intriguingly, HDM-induced epithelial IL-33 secretion was dramatically attenuated by small interfering RNA- or Ab-based approaches to block IL-33 signaling through its receptor IL1RL1 (ST2), indicating that HDM-induced IL-33 secretion includes a positive feed-forward mechanism involving ST2-dependent IL-33 signaling. Moreover, activation of type 2 cytokine responses by direct airway IL-33 administration was associated with ST2-dependent activation of DUOX1-mediated H2O2 production and reduction-oxidation-based activation of Src and EGFR and was attenuated in Duox1 -/- and Src +/- mice, indicating that IL-33-induced epithelial signaling and subsequent airway responses involve DUOX1/Src-dependent pathways. Collectively, our findings suggest an intricate relationship between DUOX1, Src, and IL-33 signaling in the activation of innate type 2 immune responses to allergens, involving DUOX1-dependent epithelial Src/EGFR activation in initial IL-33 secretion and in subsequent IL-33 signaling through ST2 activation.
Collapse
Affiliation(s)
- Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carolyn R Morris
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Miao-Chong Joy Lin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - David E Heppner
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY; and
| | - Nirav Daphtary
- Department of Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Minara Aliyeva
- Department of Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT;
| |
Collapse
|
13
|
van der Post S, Birchenough GMH, Held JM. NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation. Cell Rep 2021; 35:108949. [PMID: 33826887 PMCID: PMC10327654 DOI: 10.1016/j.celrep.2021.108949] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The colon epithelium is a primary point of interaction with the microbiome and is regenerated by a few rapidly cycling colonic stem cells (CSCs). CSC self-renewal and proliferation are regulated by growth factors and the presence of bacteria. However, the molecular link connecting the diverse inputs that maintain CSC homeostasis remains largely unknown. We report that CSC proliferation is mediated by redox-dependent activation of epidermal growth factor receptor (EGFR) signaling via NADPH oxidase 1 (NOX1). NOX1 expression is CSC specific and is restricted to proliferative CSCs. In the absence of NOX1, CSCs fail to generate ROS and have a reduced proliferation rate. NOX1 expression is regulated by Toll-like receptor activation in response to the microbiota and serves to link CSC proliferation with the presence of bacterial components in the crypt. The TLR-NOX1-EGFR axis is therefore a critical redox signaling node in CSCs facilitating the quiescent-proliferation transition and responds to the microbiome to maintain colon homeostasis.
Collapse
Affiliation(s)
- Sjoerd van der Post
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jason M Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
14
|
Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations. Antioxidants (Basel) 2021; 10:antiox10030499. [PMID: 33807006 PMCID: PMC8004825 DOI: 10.3390/antiox10030499] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications regulate the structure and function of proteins that can result in changes to the activity of different pathways. These include modifications altering the redox state of thiol groups on protein cysteine residues, which are sensitive to oxidative environments. While mass spectrometry has advanced the identification of protein thiol modifications and expanded our knowledge of redox-sensitive pathways, the quantitative aspect of this technique is critical for the field of redox proteomics. In this review, we describe how mass spectrometry-based redox proteomics has enabled researchers to accurately quantify the stoichiometry of reversible oxidative modifications on specific cysteine residues of proteins. We will describe advancements in the methodology that allow for the absolute quantitation of thiol modifications, as well as recent reports that have implemented this approach. We will also highlight the significance and application of such measurements and why they are informative for the field of redox biology.
Collapse
|
15
|
Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biol 2021; 41:101934. [PMID: 33765616 PMCID: PMC8022254 DOI: 10.1016/j.redox.2021.101934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The Src Family Kinases (SFKs) are pivotal regulators of cellular signal transduction and highly sought-after targets in drug discovery. Their actions within cells are controlled by alterations in protein phosphorylation that switch the SFKs from autoinhibited to active states. The SFKs are also well recognized to contain redox-active cysteine residues where oxidation of certain residues directly contribute to kinase function. To more completely understand the factors that influence cysteine oxidation within the SFKs, a review is presented of the local structural environments surrounding SFK cysteine residues compared to their quantified oxidation in vivo from the Oximouse database. Generally, cysteine local structure and degree of redox sensitivity vary with respect to sequence conservation. Cysteine residues found in conserved positions are more mildly redox-active as they are found in hydrophobic environments and not fully exposed to solvent. Non-conserved redox-active cysteines are generally the most reactive with direct solvent access and/or in hydrophilic environments. Results from this analysis motivate future efforts to conduct comprehensive proteome-wide analysis of redox-sensitivity, conservation, and local structural environments of proteins containing reactive cysteine residues.
Collapse
|
16
|
Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel) 2020; 12:E3336. [PMID: 33187272 PMCID: PMC7698080 DOI: 10.3390/cancers12113336] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
Collapse
Affiliation(s)
- Debasish Basak
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| | | | - Jake Hancock
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| |
Collapse
|
17
|
Musaogullari A, Chai YC. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci 2020; 21:ijms21218113. [PMID: 33143095 PMCID: PMC7663550 DOI: 10.3390/ijms21218113] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.
Collapse
|
18
|
Dustin CM, Heppner DE, Lin MCJ, van der Vliet A. Redox regulation of tyrosine kinase signalling: more than meets the eye. J Biochem 2020; 167:151-163. [PMID: 31599960 DOI: 10.1093/jb/mvz085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Protein kinases are essential mediators of cellular signal transduction and are often dysregulated in disease. Among these, protein tyrosine kinases (PTKs) have received specific interest due to their common roles in various diseases including cancer, and emerging observations indicating that PTK signalling pathways are susceptible to regulation by reactive oxygen species (ROS), which are also frequently implicated in disease pathology. While it is well recognized that ROS can impact on tyrosine kinase signalling by inhibiting tyrosine phosphatases, more recent studies highlight additional modes of redox-based regulation of tyrosine kinase signalling by direct redox modification of non-catalytic cysteines within tyrosine kinases or other protein components of this signalling pathway. In this review, we will present recent advancements with respect to redox-based mechanisms in regulating PTK signalling, with a specific focus on recent studies demonstrating direct redox regulation of Src-family kinases and epidermal growth factor receptor kinases. Importantly, redox-based modulation of tyrosine kinases may be relevant for many other kinases and has implications for current approaches to develop pharmacological inhibitors for these proteins.
Collapse
Affiliation(s)
- Christopher M Dustin
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Miao-Chong J Lin
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
20
|
Rambacher KM, Moniri NH. The β2-adrenergic receptor-ROS signaling axis: An overlooked component of β2AR function? Biochem Pharmacol 2019; 171:113690. [PMID: 31697929 DOI: 10.1016/j.bcp.2019.113690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
β2-Adrenergic receptor (β2AR) agonists are clinically used to elicit rapid bronchodilation for the treatment of bronchospasms in pulmonary diseases such as asthma and COPD, both of which exhibit characteristically high levels of reactive oxygen species (ROS); likely secondary to over-expression of ROS generating enzymes and chronically heightened inflammation. Interestingly, β2AR has long-been linked to ROS, yet the involvement of ROS in β2AR function has not been as vigorously studied as other aspects of β2AR signaling. Herein, we discuss the existing body of evidence linking β2AR activation to intracellular ROS generation and importantly, the role of ROS in regulating β2AR function. The reciprocal interplay of the β2AR and ROS appear to endow this receptor with the ability to self-regulate signaling efficacy and ligand binding, hereby unveiling a redox-axis that may be unfavorably altered in pathological states contributing to both disease progression and therapeutic drug responses.
Collapse
Affiliation(s)
- Kalyn M Rambacher
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
21
|
Böhmer A, Barz S, Schwab K, Kolbe U, Gabel A, Kirkpatrick J, Ohlenschläger O, Görlach M, Böhmer FD. Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation. Redox Biol 2019; 28:101325. [PMID: 31606550 PMCID: PMC6812047 DOI: 10.1016/j.redox.2019.101325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is frequently mutated in Acute Myeloid Leukemia patients, and resulting oncogenic variants of FLT3 with 'internal tandem duplications (FLT3ITD)' drive production of reactive oxygen in leukemic cells. FLT3 was moderately activated by treatment of intact cells with hydrogen peroxide. Conversely, FLT3ITD signaling was attenuated by cell treatments with agents inhibiting formation of reactive oxygen species. FLT3 and FLT3ITD incorporated DCP-Bio1, a reagent specifically reacting with sulfenic acid residues. Mutation of FLT3ITD cysteines 695 and 790 reduced DCP-Bio1 incorporation, suggesting that these sites are subject to oxidative modification. Functional characterization of individual FLT3ITD cysteine-to-serine mutants of all 8 cytoplasmic cysteines revealed phenotypes in kinase activity, signal transduction and cell transformation. Replacement of cysteines 681, 694, 695, 807, 925, and 945 attenuated signaling and blocked FLT3ITD-mediated cell transformation, whereas mutation of cysteine 790 enhanced activity of both FLT3ITD and wild-type FLT3. These effects were not related to altered FLT3ITD dimerization, but likely caused by changed intramolecular interactions. The findings identify the functional relevance of all cytoplasmic FLT3ITD cysteines, and indicate the potential for redox regulation of this clinically important oncoprotein.
Collapse
Affiliation(s)
- Annette Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Saskia Barz
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Katjana Schwab
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Ulrike Kolbe
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Anke Gabel
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | | | | | - Matthias Görlach
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany.
| |
Collapse
|
22
|
Little AC, Hristova M, van Lith L, Schiffers C, Dustin CM, Habibovic A, Danyal K, Heppner DE, Lin MCJ, van der Velden J, Janssen-Heininger YM, van der Vliet A. Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization and Pathogenicity in Lung Cancer. Sci Rep 2019; 9:4844. [PMID: 30890751 PMCID: PMC6425021 DOI: 10.1038/s41598-019-41395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers are frequently characterized by inappropriate activation of epidermal growth factor receptor (EGFR)-dependent signaling and epigenetic silencing of the NADPH oxidase (NOX) enzyme DUOX1, both potentially contributing to worse prognosis. Based on previous findings linking DUOX1 with redox-dependent EGFR activation, the present studies were designed to evaluate whether DUOX1 silencing in lung cancers may be responsible for altered EGFR regulation. In contrast to normal epithelial cells, EGF stimulation of lung cancer cell lines that lack DUOX1 promotes EGF-induced EGFR internalization and nuclear localization, associated with induction of EGFR-regulated genes and related tumorigenic outcomes. Each of these outcomes could be reversed by overexpression of DUOX1 or enhanced by shRNA-dependent DUOX1 silencing. EGF-induced nuclear EGFR localization in DUOX1-deficient lung cancer cells was associated with altered dynamics of cysteine oxidation of EGFR, and an overall reduction of EGFR cysteines. These various outcomes could also be attenuated by silencing of glutathione S-transferase P1 (GSTP1), a mediator of metabolic alterations and drug resistance in various cancers, and a regulator of cysteine oxidation. Collectively, our findings indicate DUOX1 deficiency in lung cancers promotes dysregulated EGFR signaling and enhanced GSTP1-mediated turnover of EGFR cysteine oxidation, which result in enhanced nuclear EGFR localization and tumorigenic properties.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.,Rogel Cancer Center, Department of Internal Medicine Hematology-Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Loes van Lith
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Miao-Chong J Lin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Yvonne M Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
23
|
Dodmane PR, Schulte NA, Heires AJ, Band H, Romberger DJ, Toews ML. Biphasic changes in airway epithelial cell EGF receptor binding and phosphorylation induced by components of hogbarn dust. Exp Lung Res 2019; 44:443-454. [PMID: 30862200 DOI: 10.1080/01902148.2019.1575931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Workers in enclosed hogbarns experience an increased incidence of airway inflammation and obstructive lung disease, and an aqueous hogbarn dust extract (HDE) induces multiple inflammation-related responses in cultured airway epithelial cells. Epidermal growth factor receptor (EGFR) phosphorylation and activation has been identified as one important mediator of inflammatory cytokine release from these cells. The studies here investigated both early and late phase adaptive changes in EGFR binding properties and subcellular localization induced by exposure of cells to HDE. MATERIALS AND METHODS Cell surface EGFRs were quantified as binding to intact cells on ice. EGFR phosphorylation, expression, and localization were assessed with anti-EGFR antibodies and either blotting or confocal microscopy. RESULTS In BEAS-2B and primary human bronchial epithelial cells, HDE induced decreases in cell surface EGFR binding following both 15-min and 18-h exposures. In contrast, H292 cells exhibited only the 15-min decrease, with binding near the control level at 18 hr. Confocal microscopy showed that the 15-min decrease in binding is due to EGFR endocytosis. Although total EGFR immunoreactivity decreased markedly at 18 hr in confocal microscopy with BEAS-2B cells, immunoblots showed no loss of EGFR protein. HDE stimulated EGFR phosphorylation at both 15 min and 18 hr in BEAS-2B cells and primary cells, but only at 15 min in H292 cells, indicating that the different EGFR binding changes among these cell types is likely related to their different time-dependent changes in phosphorylation. CONCLUSIONS These studies extend the evidence for EGFRs as important cellular targets for components of HDE and they reveal novel patterns of EGFR phosphorylation and binding changes that vary among airway epithelial cell types. The results provide both impetus and convenient assays for identifying the EGFR-activating components and pathways that likely contribute to hogbarn dust-induced lung disease in agricultural workers.
Collapse
Affiliation(s)
- Puttappa R Dodmane
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Nancy A Schulte
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Art J Heires
- b Veterans Affairs Nebraska-Western Iowa Health Care System , Research Service , Omaha , NE , USA.,c Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hamid Band
- d Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA
| | - Debra J Romberger
- b Veterans Affairs Nebraska-Western Iowa Health Care System , Research Service , Omaha , NE , USA.,c Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Myron L Toews
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
24
|
Price ME, Sisson JH. Redox regulation of motile cilia in airway disease. Redox Biol 2019; 27:101146. [PMID: 30833143 PMCID: PMC6859573 DOI: 10.1016/j.redox.2019.101146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Motile cilia on airway cells are necessary for clearance of mucus-trapped particles out of the lung. Ciliated airway epithelial cells are uniquely exposed to oxidants through trapping of particles, debris and pathogens in mucus and the direct exposure to inhaled oxidant gases. Dynein ATPases, the motors driving ciliary motility, are sensitive to the local redox environment within each cilium. Several redox-sensitive cilia-localized proteins modulate dynein activity and include Protein Kinase A, Protein Kinase C, and Protein Phosphatase 1. Moreover, cilia are rich in known redox regulatory proteins and thioredoxin domain-containing proteins that are critical in maintaining a balanced redox environment. Importantly, a nonsense mutation in TXNDC3, which contains a thioredoxin motif, has recently been identified as disease-causing in Primary Ciliary Dyskinesia, a hereditary motile cilia disease resulting in impaired mucociliary clearance. Here we review current understanding of the role(s) oxidant species play in modifying airway ciliary function. We focus on oxidants generated in the airways, cilia redox targets that modulate ciliary beating and imbalances in redox state that impact health and disease. Finally, we review disease models such as smoking, asthma, alcohol drinking, and infections as well as the direct application of oxidants that implicate redox balance as a modulator of cilia motility.
Collapse
Affiliation(s)
- Michael E Price
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA; University of Nebraska Medical Center, Department of Cellular & Integrative Physiology, Omaha, NE, USA.
| | - Joseph H Sisson
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA.
| |
Collapse
|
25
|
Park S, Lim JM, Park SH, Kim S, Heo S, Balla T, Jeong W, Rhee SG, Kang D. Inactivation of the PtdIns(4)P phosphatase Sac1 at the Golgi by H 2O 2 produced via Ca 2+-dependent Duox in EGF-stimulated cells. Free Radic Biol Med 2019; 131:40-49. [PMID: 30476538 DOI: 10.1016/j.freeradbiomed.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/27/2022]
Abstract
Binding of epidermal growth factor (EGF) to its cell surface receptor induces production of H2O2, which serves as an intracellular messenger. We have shown that exogenous H2O2 reversibly inactivates the phosphatidylinositol 4-phosphate [PtdIns(4)P] phosphatase Sac1 (suppressor of actin 1) at the Golgi complex of mammalian cells by oxidizing its catalytic cysteine residue and thereby increases both the amount of Golgi PtdIns(4)P and the rate of protein secretion. Here we investigated the effects of EGF on Sac1 oxidation and PtdIns(4)P abundance at the Golgi in A431 cells. EGF induced a transient increase in Golgi PtdIns(4)P as well as a transient oxidation of Sac1 in a manner dependent on elevation of the intracellular Ca2+ concentration and on H2O2. Oxidation of Sac1 occurred at the Golgi, as revealed with the use of the Golgi-confined Sac1-K2A mutant. Knockdown of Duox enzymes implicated these Ca2+-dependent members of the NADPH oxidase family as the major source of H2O2 for Sac1 oxidation. Expression of a Golgi-targeted H2O2 probe revealed transient EGF-induced H2O2 production at this organelle. Our findings have thus uncovered a previously unrecognized EGF signaling pathway that links intracellular Ca2+ mobilization to events at the Golgi including Duox activation, H2O2 production, Sac1 oxidation, and PtdIns(4)P accumulation.
Collapse
Affiliation(s)
- Sujin Park
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jung Mi Lim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon Hwa Park
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suree Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sukyeong Heo
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institutes of Health, Bethesda, MD 20892, USA
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
26
|
Dustin CM, Hristova M, Schiffers C, van der Vliet A. Proteomic Methods to Evaluate NOX-Mediated Redox Signaling. Methods Mol Biol 2019; 1982:497-515. [PMID: 31172492 DOI: 10.1007/978-1-4939-9424-3_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NADPH oxidase (NOX) family of proteins is involved in regulating many diverse cellular processes, which is largely mediated by NOX-mediated reversible oxidation of target proteins in a process known as redox signaling. Protein cysteine residues are the most prominent targets in redox signaling, and to understand the mechanisms by which NOX affect cellular pathways, specific methodology is required to detect specific oxidative cysteine modifications and to identify targeted proteins. Among the many potential redox modifications involving cysteine residues, reversible modifications most relevant to NOX are sulfenylation (P-SOH) and S-glutathionylation (P-SSG), as both can induce structural or functional alterations. Various experimental approaches have been developed to detect these specific modifications, and this chapter will detail state-of-the-art methodology to selectively evaluate these modifications in specific target proteins in relation to NOX activation. We also discuss some of the limitations of these procedures and potential complementary approaches.
Collapse
Affiliation(s)
- Christopher M Dustin
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
27
|
Park DR, Nam TS, Kim YW, Bae YS, Kim UH. Oxidative activation of type III CD38 by NADPH oxidase-derived hydrogen peroxide in Ca 2+ signaling. FASEB J 2018; 33:3404-3419. [PMID: 30452880 DOI: 10.1096/fj.201800235r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species (ROS) derived from NADPH oxidase (Nox) has been shown to activate ADP-ribosyl cyclase (ARC), which produces the Ca2+ mobilizing second messenger, cyclic ADP-ribose (cADPR). In the present study, we examined how ROS activates cluster of differentiation (CD)38, a mammalian prototype of ARC. CD38 exists in type II and III forms with opposing membrane orientation. This study showed the coexpression of type II and III CD38 in lymphokine-activated killer (LAK) cells. The catalytic site of the constitutively active type II CD38 faces the outside of the cell or the inside of early endosomes (EEs), whereas the basally inactive type III CD38 faces the cytosol. Type III CD38 interacted with Nox4/phosphorylated-p22phox (p-p22phox) in EEs of LAK cells upon IL-8 treatment. H2O2 derived from Nox4 activated type III CD38 by forming a disulfide bond between Cys164 and Cys177, resulting in increased cADPR formation. Our study identified the mechanism by which type III CD38 is activated in an immune cell (LAK), in which H2O2 generated by Nox4 oxidizes and activates type III CD38 to generate cADPR. These findings provide a novel model of cross-talk between ROS and Ca2+ signaling.-Park, D.-R., Nam, T.-S., Kim, Y.-W., Bae, Y. S., Kim, U.-H. Oxidative activation of type III CD38 by NADPH oxidase-derived hydrogen peroxide in Ca2+ signaling.
Collapse
Affiliation(s)
- Dae-Ryoung Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea
| | - Tae-Sik Nam
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea
| | - Ye-Won Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea
| | - Yun Soo Bae
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Korea; and
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Korea.,Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
28
|
Heppner DE, Dustin CM, Liao C, Hristova M, Veith C, Little AC, Ahlers BA, White SL, Deng B, Lam YW, Li J, van der Vliet A. Direct cysteine sulfenylation drives activation of the Src kinase. Nat Commun 2018; 9:4522. [PMID: 30375386 PMCID: PMC6207713 DOI: 10.1038/s41467-018-06790-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2018] [Indexed: 01/17/2023] Open
Abstract
The Src kinase controls aspects of cell biology and its activity is regulated by intramolecular structural changes induced by protein interactions and tyrosine phosphorylation. Recent studies indicate that Src is additionally regulated by redox-dependent mechanisms, involving oxidative modification(s) of cysteines within the Src protein, although the nature and molecular-level impact of Src cysteine oxidation are unknown. Using a combination of biochemical and cell-based studies, we establish the critical importance of two Src cysteine residues, Cys-185 and Cys-277, as targets for H2O2-mediated sulfenylation (Cys-SOH) in redox-dependent kinase activation in response to NADPH oxidase-dependent signaling. Molecular dynamics and metadynamics simulations reveal the structural impact of sulfenylation of these cysteines, indicating that Cys-277-SOH enables solvent exposure of Tyr-416 to promote its (auto)phosphorylation, and that Cys-185-SOH destabilizes pTyr-527 binding to the SH2 domain. These redox-dependent Src activation mechanisms offer opportunities for development of Src-selective inhibitors in treatment of diseases where Src is aberrantly activated.
Collapse
Affiliation(s)
- David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA.
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Chenyi Liao
- Department of Chemistry, College of Arts and Sciences, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Carmen Veith
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Bethany A Ahlers
- Department of Biology, College of Arts and Sciences, University of Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA
| | - Sheryl L White
- Department of Neurological Sciences, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Bin Deng
- Department of Biology, College of Arts and Sciences, University of Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA
| | - Ying-Wai Lam
- Department of Biology, College of Arts and Sciences, University of Vermont, 109 Carrigan Drive, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Chemistry, College of Arts and Sciences, University of Vermont, 82 University Place, Burlington, VT, 05405, USA.
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
29
|
Antitumor activity of BJ-1207, a 6-amino-2,4,5-trimethylpyridin-3-ol derivative, in human lung cancer. Chem Biol Interact 2018; 294:1-8. [DOI: 10.1016/j.cbi.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022]
|
30
|
Nelson KJ, Bolduc JA, Wu H, Collins JA, Burke EA, Reisz JA, Klomsiri C, Wood ST, Yammani RR, Poole LB, Furdui CM, Loeser RF. H 2O 2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J Biol Chem 2018; 293:16376-16389. [PMID: 30190325 DOI: 10.1074/jbc.ra118.004613] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS), in particular H2O2, regulate intracellular signaling through reversible oxidation of reactive protein thiols present in a number of kinases and phosphatases. H2O2 has been shown to regulate mitogen-activated protein kinase (MAPK) signaling depending on the cellular context. We report here that in human articular chondrocytes, the MAPK family member c-Jun N-terminal kinase 2 (JNK2) is activated by fibronectin fragments and low physiological levels of H2O2 and inhibited by oxidation due to elevated levels of H2O2 The kinase activity of affinity-purified, phosphorylated JNK2 from cultured chondrocytes was reversibly inhibited by 5-20 μm H2O2 Using dimedone-based chemical probes that react specifically with sulfenylated cysteines (RSOH), we identified Cys-222 in JNK2, a residue not conserved in JNK1 or JNK3, as a redox-reactive site. MS analysis of human recombinant JNK2 also detected further oxidation at Cys-222 and other cysteines to sulfinic (RSO2H) or sulfonic (RSO3H) acid. H2O2 treatment of JNK2 resulted in detectable levels of peptides containing intramolecular disulfides between Cys-222 and either Cys-213 or Cys-177, without evidence of dimer formation. Substitution of Cys-222 to alanine rendered JNK2 insensitive to H2O2 inhibition, unlike C177A and C213A variants. Two other JNK2 variants, C116A and C163A, were also resistant to oxidative inhibition. Cumulatively, these findings indicate differential regulation of JNK2 signaling dependent on H2O2 levels and point to key cysteine residues regulating JNK2 activity. As levels of intracellular H2O2 rise, a switch occurs from activation to inhibition of JNK2 activity, linking JNK2 regulation to the redox status of the cell.
Collapse
Affiliation(s)
| | - Jesalyn A Bolduc
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hanzhi Wu
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - John A Collins
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Elizabeth A Burke
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Julie A Reisz
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Chananat Klomsiri
- From the Department of Biochemistry and.,the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Scott T Wood
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Raghunatha R Yammani
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | | | - Cristina M Furdui
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
31
|
Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med 2018; 63:59-69. [PMID: 30098327 DOI: 10.1016/j.mam.2018.08.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
The lung is a delicate organ with a large surface area that is continuously exposed to the external environment, and is therefore highly vulnerable to exogenous sources of oxidative stress. In addition, each of its approximately 40 cell types can also generate reactive oxygen species (ROS), as byproducts of cellular metabolism and in a more regulated manner by NOX enzymes with functions in host defense, immune regulation, and cell proliferation or differentiation. To effectively regulate the biological actions of exogenous and endogenous ROS, various enzymatic and non-enzymatic antioxidant defense systems are present in all lung cell types to provide adequate protection against their injurious effects and to allow for appropriate ROS-mediated biological signaling. Acute and chronic lung diseases are commonly thought to be associated with increased oxidative stress, evidenced by altered cellular or extracellular redox status, increased irreversible oxidative modifications in proteins or DNA, mitochondrial dysfunction, and altered expression or activity of NOX enzymes and antioxidant enzyme systems. However, supplementation strategies with generic antioxidants have been minimally successful in prevention or treatment of lung disease, most likely due to their inability to distinguish between harmful and beneficial actions of ROS. Recent studies have attempted to identify specific redox-based mechanisms that may mediate chronic lung disease, such as allergic asthma or pulmonary fibrosis, which provide opportunities for selective redox-based therapeutic strategies that may be useful in treatment of these diseases.
Collapse
|
32
|
Breitenbach M, Rinnerthaler M, Weber M, Breitenbach-Koller H, Karl T, Cullen P, Basu S, Haskova D, Hasek J. The defense and signaling role of NADPH oxidases in eukaryotic cells : Review. Wien Med Wochenschr 2018; 168:286-299. [PMID: 30084091 PMCID: PMC6132560 DOI: 10.1007/s10354-018-0640-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023]
Abstract
This short review article summarizes what is known clinically and biochemically about the seven human NADPH oxidases. Emphasis is put on the connection between mutations in the catalytic and regulatory subunits of Nox2, the phagocyte defense enzyme, with syndromes like chronic granulomatous disease, as well as a number of chronic inflammatory diseases. These arise paradoxically from a lack of reactive oxygen species production needed as second messengers for immune regulation. Both Nox2 and the six other human NADPH oxidases display signaling functions in addition to the functions of these enzymes in specialized biochemical reactions, for instance, synthesis of the hormone thyroxine. NADPH oxidases are also needed by Saccharomyces cerevisiae cells for the regulation of the actin cytoskeleton in times of stress or developmental changes, such as pseudohyphae formation. The article shows that in certain cancer cells Nox4 is also involved in the re-structuring of the actin cytoskeleton, which is required for cell mobility and therefore for metastasis.
Collapse
Affiliation(s)
| | | | - Manuela Weber
- Department of Bioscienes, University of Salzburg, Salzburg, Austria
| | | | - Thomas Karl
- Department of Bioscienes, University of Salzburg, Salzburg, Austria
| | - Paul Cullen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, USA
| | - Sukaniya Basu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, USA
| | - Dana Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| |
Collapse
|
33
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
34
|
Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:61. [PMID: 29548337 PMCID: PMC5857086 DOI: 10.1186/s13046-018-0728-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Background The epidermal growth factor receptor (EGFR) plays important roles in cell survival, growth, differentiation, and tumorigenesis. Dysregulation of the EGFR is a common mechanism in cancer progression especially in non-small cell lung cancer (NSCLC). Main body Suppression of the EGFR-mediated signaling pathway is used in cancer treatment. Furthermore, reactive oxygen species (ROS)-induced oxidative stress from mitochondrial dysfunction or NADPH oxidase (NOX) overactivation and ectopic expression of antioxidative enzymes were also indicated to be involved in EGFR-mediated tumor progression (proliferation, differentiation, migration, and invasion) and drug resistance (EGFR tyrosine kinase inhibitor (TKI)). The products of NOX, superoxide and hydrogen peroxide, are considered to be major types of ROS. ROS are not only toxic materials to cells but also signaling regulators of tumor progression. Oxidation of both the EGFR and downstream phosphatases by ROS enhances EGFR-mediated signaling and promotes tumor progression. This review primarily focuses on the recent literature with respect to the roles of the EGFR and ROS and correlations between ROS and the EGFR in tumor progression and EGFR TKI resistance. Short conclusion The evidence discussed in this article can serve as a basis for basic and clinical research to understand how to modulate ROS levels to control the development and drug resistance of cancers.
Collapse
Affiliation(s)
- Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jer-Hwa Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
35
|
van der Vliet A, Danyal K, Heppner DE. Dual oxidase: a novel therapeutic target in allergic disease. Br J Pharmacol 2018; 175:1401-1418. [PMID: 29405261 DOI: 10.1111/bph.14158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
NADPH oxidases (NOXs) represent a family of enzymes that mediate regulated cellular production of reactive oxygen species (ROS) and play various functional roles in physiology. Among the NOX family, the dual oxidases DUOX1 and DUOX2 are prominently expressed in epithelial cell types at mucosal surfaces and have therefore been considered to have important roles in innate host defence pathways. Recent studies have revealed important insights into the host defence mechanisms of DUOX enzymes, which control innate immune response pathways in response to either microbial or allergic triggers. In this review, we discuss the current level of understanding with respect to the biological role(s) of DUOX enzymes and the unique role of DUOX1 in mediating innate immune responses to epithelial injury and allergens and in the development of allergic disease. These novel findings highlight DUOX1 as an attractive therapeutic target, and opportunities for the development of selective inhibitor strategies will be discussed.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Emanuele S, D'Anneo A, Calvaruso G, Cernigliaro C, Giuliano M, Lauricella M. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer. Chem Res Toxicol 2018. [PMID: 29513521 DOI: 10.1021/acs.chemrestox.7b00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular redox state in the cell depends on the balance between the level of reactive oxygen species (ROS) and the activity of defensive systems including antioxidant enzymes. This balance is a dynamic process that can change in relation to many factors and/or stimuli induced within the cell. ROS production is derived from physiological metabolic events. For instance, mitochondria represent the major ROS sources during oxidative phosphorylation, but other systems, such as NADPH oxidase or specific enzymes in certain metabolisms, may account for ROS production as well. Whereas high levels of ROS perturb the cell environment, causing oxidative damage to biological macromolecules, low levels of ROS can exert a functional role in the cell, influencing the activity of specific enzymes or modulating some intracellular signaling cascades. Of particular interest appears to be the role of ROS in tumor systems not only because ROS are known to be tumorigenic but also because tumor cells are able to modify their redox state, regulating ROS production to sustain tumor growth and proliferation. Overall, the scope of this review was to critically discuss the most recent findings pertaining to ROS physiological roles as well as to highlight the controversial involvement of ROS in tumor systems.
Collapse
|
37
|
Stöcker S, Van Laer K, Mijuskovic A, Dick TP. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid Redox Signal 2018; 28:558-573. [PMID: 28587525 DOI: 10.1089/ars.2017.7162] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is known to act as a messenger in signal transduction. How H2O2 leads to selective and efficient oxidation of specific thiols on specific signaling proteins remains one of the most important open questions in redox biology. Recent Advances: Increasing evidence implicates thiol peroxidases as mediators of protein thiol oxidation. Recently, this evidence has been extended to include the peroxiredoxins (Prxs). Prxs are exceptionally sensitive to H2O2, abundantly expressed and capture most of the H2O2 that is generated inside cells. CRITICAL ISSUES The overall prevalence and importance of Prx-based redox signaling relays are still unknown. The same is true for alternative mechanisms of redox signaling. FUTURE DIRECTIONS It will be important to clarify the relative contributions of Prx-mediated and direct thiol oxidation to H2O2 signaling. Many questions relating to Prx-based redox relays remain to be answered, including their mechanism, structural organization, and the potential role of adaptor proteins. Antioxid. Redox Signal. 28, 558-573.
Collapse
Affiliation(s)
- Sarah Stöcker
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Koen Van Laer
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ana Mijuskovic
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
38
|
Hill T, Rice RH. DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate. Toxicol In Vitro 2018; 46:257-264. [PMID: 29031483 PMCID: PMC5683910 DOI: 10.1016/j.tiv.2017.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/06/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
Dual oxygenases (DUOX) 1 and 2, expressed in many animal tissues, participate in host defense at mucosal surfaces and may have important signaling roles through generation of reactive oxygen. Present work addresses their expression in cultured human epidermal keratinocytes and effects of cytokines and metal/metalloid compounds. Both DUOX1 and 2 were expressed at much higher levels after confluence than in the preconfluent state. Maximal DUOX1 mRNA levels were 50 fold those of DUOX2. DUOX1 and 2 were induced ≈3 fold by interleukin 4, but only DUOX1 was induced by interferon gamma (IFNγ). In human bronchial HBE1 cells, by contrast, interleukin 4 induced only DUOX 1, and IFNγ induced only DUOX2. A survey in the keratinocytes of metal/metalloid compounds showed that arsenite, antimonite, chromate, cadmium, copper, lead and vanadate suppressed DUOX1 levels but did not prevent interleukin 4 stimulation. Effects on DUOX2 were less dramatic, except that vanadate potentiated the stimulation by IFNγ up to 7 fold. The results indicate that epithelial cell types of different tissue origins can differ in their cytokine regulation and that epidermal cells can exhibit striking alterations in response due to certain metal/metalloid exposures.
Collapse
Affiliation(s)
- Thomas Hill
- Department of Environmental Toxicology, University of California at Davis, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California at Davis, USA.
| |
Collapse
|
39
|
Schepetkin IA, Kirpotina LN, Mitchell PT, Kishkentaeva АS, Shaimerdenova ZR, Atazhanova GA, Adekenov SM, Quinn MT. The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafiatin inhibit T cell receptor (TCR) activation. PHYTOCHEMISTRY 2018; 146:36-46. [PMID: 29216473 PMCID: PMC5750123 DOI: 10.1016/j.phytochem.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 05/29/2023]
Abstract
Inhibition of the T cell receptor (TCR) pathway represents an effective strategy for the treatment of T cell-mediated inflammatory and autoimmune diseases. To identify natural compounds that could inhibit inflammatory T cell responses, we screened 13 sesquiterpene lactones, including achillin, arglabin, argolide, argracin, 3β-hydroxyarhalin, artesin, artemisinin, estafiatin, grosheimin, grossmisin, leucomisine, parthenolide, and taurine, for their ability to modulate activation-induced Ca2+ mobilization in Jurkat T cells. Five of the compounds (arglabin, grosheimin, argracin, parthenolide, and estafiatin) inhibited anti-CD3-induced mobilization of intercellular Ca2+ ([Ca2⁺]i) in Jurkat cells, with the most potent being parthenolide and argacin (IC50 = 5.6 and 6.1 μM, respectively). Likewise, phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in activated Jurkat cells was inhibited by these five compounds, with the most potent being parthenolide and estafiatin (IC50 = 13.8 and 15.4 μM, respectively). These compounds also inhibited ERK1/2 phosphorylation in primary human T cells and depleted intracellular glutathione. In contrast, none of the sesquiterpene lactones inhibited ERK1/2 phosphorylation in HL60 cells transfected with N-formyl peptide receptor 2 (FPR2) and stimulated with the FPR2 peptide agonist WKYMVM, indicating specificity for T cell activation. Estafiatin, a representative sesquiterpene lactone, was also profiled in a cell-based phosphokinase array for 43 kinase phosphorylation sites, as well as in a cell-free competition binding assay for its ability to compete with an active-site directed ligand for 95 different protein kinases. Besides inhibition of ERK1/2 phosphorylation, estafiatin also inhibited phosphorylation of p53, AMPKα1, CREB, and p27 elicited by TCR activation in Jurkat cells, but it did not bind to any of 95 kinases evaluated. These results suggest that arglabin, grosheimin, agracin, parthenolide, and estafiatin can selectively inhibit initial phases of TCR activation and may be natural compounds with previously undescribed immunotherapeutic properties.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Pete T Mitchell
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Аnarkul S Kishkentaeva
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Zhanar R Shaimerdenova
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Gayane A Atazhanova
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Sergazy M Adekenov
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
40
|
Heppner DE, Hristova M, Ida T, Mijuskovic A, Dustin CM, Bogdándi V, Fukuto JM, Dick TP, Nagy P, Li J, Akaike T, van der Vliet A. Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling? Redox Biol 2017; 14:379-385. [PMID: 29054072 PMCID: PMC5647513 DOI: 10.1016/j.redox.2017.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/08/2023] Open
Abstract
The reversible oxidation of protein cysteine residues (Cys-SH) is a key reaction in cellular redox signaling involving initial formation of sulfenic acids (Cys-SOH), which are commonly detected using selective dimedone-based probes. Here, we report that significant portions of dimedone-tagged proteins are susceptible to cleavage by DTT reflecting the presence of perthiosulfenic acid species (Cys-SSOH) due to similar oxidation of hydropersulfides (Cys-SSH), since Cys-S-dimedone adducts are stable toward DTT. Combined studies using molecular modeling, mass spectrometry, and cell-based experiments indicate that Cys-SSH are readily oxidized to Cys-SSOH, which forms stable adducts with dimedone-based probes. We additionally confirm the presence of Cys-SSH within protein tyrosine kinases such as EGFR, and their apparent oxidation to Cys-SSOH in response NADPH oxidase activation, suggesting that such Cys-SSH oxidation may represent a novel, as yet uncharacterized, event in redox-based signaling.
Collapse
Affiliation(s)
- David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner M.D., College of Medicine, University of Vermont, Burlington, VT, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner M.D., College of Medicine, University of Vermont, Burlington, VT, USA
| | - Tomoaki Ida
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ana Mijuskovic
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner M.D., College of Medicine, University of Vermont, Burlington, VT, USA
| | - Virág Bogdándi
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner M.D., College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
41
|
Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8459402. [PMID: 29118897 PMCID: PMC5651112 DOI: 10.1155/2017/8459402] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.
Collapse
|
42
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
43
|
Gautam J, Ku JM, Regmi SC, Jeong H, Wang Y, Banskota S, Park MH, Nam TG, Jeong BS, Kim JA. Dual Inhibition of NOX2 and Receptor Tyrosine Kinase by BJ-1301 Enhances Anticancer Therapy Efficacy via Suppression of Autocrine-Stimulatory Factors in Lung Cancer. Mol Cancer Ther 2017; 16:2144-2156. [PMID: 28536313 DOI: 10.1158/1535-7163.mct-16-0915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/18/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
Abstract
NADPH oxidase-derived reactive oxygen species (ROS) potentiate receptor tyrosine kinase (RTK) signaling, resulting in enhanced angiogenesis and tumor growth. In this study, we report that BJ-1301, a hybrid of pyridinol and alpha-tocopherol, exerts anticancer effects by dual inhibition of NADPH oxidase and RTK activities in endothelial and lung cancer cells. BJ-1301 suppresses ROS production by blocking translocation of NADPH oxidase cytosolic subunits to the cell membrane, thereby inhibiting activation. The potency of RTK inhibition by BJ-1301 was lower than that of sunitinib (a multi-RTK inhibitor), but the inhibition of downstream signaling pathways (e.g., ROS generation) and subsequent biological changes (e.g., NOX2 induction) by BJ-1301 was superior. Consistently, BJ-1301 inhibited cisplatin-resistant lung cancer cell proliferation more than sunitinib did. In xenograft chick or mouse tumor models, BJ-1301 inhibited lung tumor growth, to an extent greater than that of sunitinib or cisplatin. Treatments with BJ-1301 induced regression of tumor growth, potentially due to downregulation of autocrine-stimulatory ligands for RTKs, such as TGFα and stem cell factor, in tumor tissues. Taken together, the current study demonstrates that BJ-1301 is a promising anticancer drug for the treatment of lung cancer. Mol Cancer Ther; 16(10); 2144-56. ©2017 AACR.
Collapse
Affiliation(s)
- Jaya Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Mo Ku
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Republic of Korea
| | | | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Ying Wang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Suhrid Banskota
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Myo-Hyeon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
44
|
Gupta V, Yang J, Liebler DC, Carroll KS. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles. J Am Chem Soc 2017; 139:5588-5595. [PMID: 28355876 DOI: 10.1021/jacs.7b01791] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors have emerged as a powerful approach in the drug discovery pipeline. Key to this process is the identification of signaling pathways (or receptors) specific to (or overexpressed in) disease cells. In this context, fragment-based ligand discovery (FBLD) has significantly expanded our view of the ligandable proteome and affords tool compounds for biological inquiry. To date, such covalent ligand discovery has almost exclusively employed cysteine-reactive small-molecule fragments. However, functional cysteine residues in proteins are often redox-sensitive and can undergo oxidation in cells. Such reactions are particularly relevant in diseases, like cancer, which are linked to excessive production of reactive oxygen species. Once oxidized, the sulfur atom of cysteine is much less reactive toward electrophilic groups used in the traditional FBLD paradigm. To address this limitation, we recently developed a novel library of diverse carbon-based nucleophile fragments that react selectively with cysteine sulfenic acid formed in proteins via oxidation or hydrolysis reactions. Here, we report analysis of sulfenic acid-reactive C-nucleophile fragments screened against a colon cancer cell proteome. Covalent ligands were identified for >1280 S-sulfenylated cysteines present in "druggable" proteins and orphan targets, revealing disparate reactivity profiles and target preferences. Among the unique ligand-protein interactions identified was that of a pyrrolidinedione nucleophile that reacted preferentially with protein tyrosine phosphatases. Fragment-based covalent ligand discovery with C-nucleophiles affords an expansive snapshot of the ligandable "redoxome" with significant implications for covalent inhibitor pharmacology and also affords new chemical tools to investigate redox-regulation of protein function.
Collapse
Affiliation(s)
- Vinayak Gupta
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing 102206, China
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
45
|
Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med 2017; 6:E22. [PMID: 28230726 PMCID: PMC5332926 DOI: 10.3390/jcm6020022] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished.
Collapse
Affiliation(s)
- Karla Cervantes Gracia
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Daniel Llanas-Cornejo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
46
|
Heppner DE, Janssen-Heininger YMW, van der Vliet A. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 2017; 616:40-46. [PMID: 28126370 DOI: 10.1016/j.abb.2017.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
The reversible oxidation of protein cysteine residues is well recognized as an important regulatory mechanism in redox-dependent cell signaling. Cysteine oxidation is diverse in nature and involves various post-translational modifications (sulfenic acids, disulfides, etc.) and the specific functional or structural impact of these specific oxidative events is still poorly understood. The proximal product of protein cysteine oxidation by biological reactive oxygen species (ROS) is sulfenic acid (Cys-SOH), and experimental evidence is accruing for the formation of Cys-SOH as intermediate in protein cysteine oxidation in various biological settings. However, the plausibility of protein Cys-SH oxidation by ROS has often been put in question because of slow reaction kinetics compared to more favorable reactions with abundant thiol-based reductants such as peroxiredoxins (Prx) or glutathione (GSH). This commentary aims to address this controversy by highlighting the unique physical properties in cells that may restrict ROS diffusion and allow otherwise less favorable cysteine oxidation of proteins. Some limitations of analytical tools to assess Cys-SOH are also discussed. We conclude that formation of Cys-SOH in biological systems cannot always be predicted based on kinetic analyses in homogenous solution, and may be facilitated by unique structural and physical properties of Cys-containing proteins within e.g. signaling complexes.
Collapse
Affiliation(s)
- David E Heppner
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, United States
| | | | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
47
|
Habibovic A, Hristova M, Heppner DE, Danyal K, Ather JL, Janssen-Heininger YM, Irvin CG, Poynter ME, Lundblad LK, Dixon AE, Geiszt M, van der Vliet A. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 2016; 1:e88811. [PMID: 27812543 DOI: 10.1172/jci.insight.88811] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite-induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer L Ather
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Charles G Irvin
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthew E Poynter
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Lennart K Lundblad
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Anne E Dixon
- Department of Medicine, Vermont Lung Center, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Miklos Geiszt
- Department of Physiology and "Lendület" Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|