1
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
2
|
Carvalho GB, Payolla TB, Brandão-Lima PN, Sarti FM, Fisberg RM, Rogero MM. Association between circulating micro-ribonucleic acids and metabolic syndrome in older adults from a population-based study. Clin Nutr ESPEN 2023; 58:320-325. [PMID: 38057022 DOI: 10.1016/j.clnesp.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIMS Aging is a major factor in development of chronic non-communicable diseases (NCD). Epigenetic causes are risk factors in NCD development since studies indicate that the expression of micro-ribonucleic acids (miRs) is altered under different clinical conditions. This study aimed to analyze the expression profile of circulating miRs and investigate their association with biomarkers of cardiometabolic risk in older adults living in São Paulo municipality, Brazil. METHODS A cross-sectional study was conducted based on the analysis of data from 200 older adults, with a mean age of 69.1 (0.5) years old participating in the ISA-Nutrition. The expression profiles of 21 plasma miRs related to glycemic and lipid metabolism, adiposity, and inflammation were evaluated in relation to cardiometabolic risk. Individuals were distributed into groups according to diagnosis of metabolic syndrome (MetS). The Stata Somersd module was used to calculate confidence intervals for Kendall's tau-a to estimate the correlations among variables. RESULTS Differences in the plasma expression were observed in two of the 21 miRs evaluated according to the MetS presence in participants. Individuals with MetS showed higher expression of miR-30a and miR-122 than individuals without MetS. CONCLUSIONS Considering that miR-30, and miR-122 were altered due to MetS, these miRs may be potential biomarkers for MetS in older adults.
Collapse
Affiliation(s)
- Gabrielli B Carvalho
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Tanyara B Payolla
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Paula N Brandão-Lima
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Flávia M Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, 1000 Arlindo Bettio Avenue, ZIP Code 03828-000, São Paulo, SP, Brazil
| | - Regina M Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr Arnaldo Avenue, Pacaembu, ZIP Code 01246-904, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
4
|
Zheng Y, Yang N, Pang Y, Gong Y, Yang H, Ding W, Yang H. Mitochondria-associated regulation in adipose tissues and potential reagents for obesity intervention. Front Endocrinol (Lausanne) 2023; 14:1132342. [PMID: 37396170 PMCID: PMC10313115 DOI: 10.3389/fendo.2023.1132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction A systematic review analysis was used to assess the profile of mitochondrial involvement in adipose tissue regulation and potential reagents to intervene in obesity through the mitochondrial pathway. Methods Three databases, PubMed, Web of Science, and Embase, were searched online for literature associated with mitochondria, obesity, white adipose tissue, and brown adipose tissue published from the time of their creation until June 22, 2022, and each paper was screened. Results 568 papers were identified, of which 134 papers met the initial selection criteria, 76 were selected after full-text review, and 6 were identified after additional searches. A full-text review of the included 82 papers was performed. Conclusion Mitochondria play a key role in adipose tissue metabolism and energy homeostasis, including as potential therapeutic agents for obesity.
Collapse
Affiliation(s)
- Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongya Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
6
|
Cox AR, Masschelin PM, Saha PK, Felix JB, Sharp R, Lian Z, Xia Y, Chernis N, Bader DA, Kim KH, Li X, Yoshino J, Li X, Li G, Sun Z, Wu H, Coarfa C, Moore DD, Klein S, Sun K, Hartig SM. The rheumatoid arthritis drug auranofin lowers leptin levels and exerts antidiabetic effects in obese mice. Cell Metab 2022; 34:1932-1946.e7. [PMID: 36243005 PMCID: PMC9742315 DOI: 10.1016/j.cmet.2022.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/19/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
Low-grade, sustained inflammation in white adipose tissue (WAT) characterizes obesity and coincides with type 2 diabetes mellitus (T2DM). However, pharmacological targeting of inflammation lacks durable therapeutic effects in insulin-resistant conditions. Through a computational screen, we discovered that the FDA-approved rheumatoid arthritis drug auranofin improved insulin sensitivity and normalized obesity-associated abnormalities, including hepatic steatosis and hyperinsulinemia in mouse models of T2DM. We also discovered that auranofin accumulation in WAT depleted inflammatory responses to a high-fat diet without altering body composition in obese wild-type mice. Surprisingly, elevated leptin levels and blunted beta-adrenergic receptor activity achieved by leptin receptor deletion abolished the antidiabetic effects of auranofin. These experiments also revealed that the metabolic benefits of leptin reduction were superior to immune impacts of auranofin in WAT. Our studies uncover important metabolic properties of anti-inflammatory treatments and contribute to the notion that leptin reduction in the periphery can be accomplished to treat obesity and T2DM.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Peter M Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jessica B Felix
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zeqin Lian
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Anesthesiology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Li
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gang Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Sun
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Zhu Q, An YA, Scherer PE. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol 2021; 32:351-364. [PMID: 34810062 DOI: 10.1016/j.tcb.2021.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
The important role of mitochondria in the regulation of white adipose tissue (WAT) remodeling and energy balance is increasingly appreciated. The remarkable heterogeneity of the adipose tissue stroma provides a cellular basis to enable adipose tissue plasticity in response to various metabolic stimuli. Regulating mitochondrial function at the cellular level in adipocytes, in adipose progenitor cells (APCs), and in adipose tissue macrophages (ATMs) has a profound impact on adipose homeostasis. Moreover, mitochondria facilitate the cell-to-cell communication within WAT, as well as the crosstalk with other organs, such as the liver, the heart, and the pancreas. A better understanding of mitochondrial regulation in the diverse adipose tissue cell types allows us to develop more specific and efficient approaches to improve adipose function and achieve improvements in overall metabolic health.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Garofano L, Migliozzi S, Oh YT, D'Angelo F, Najac RD, Ko A, Frangaj B, Caruso FP, Yu K, Yuan J, Zhao W, Di Stefano AL, Bielle F, Jiang T, Sims P, Suvà ML, Tang F, Su XD, Ceccarelli M, Sanson M, Lasorella A, Iavarone A. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. NATURE CANCER 2021; 2:141-156. [PMID: 33681822 PMCID: PMC7935068 DOI: 10.1038/s43018-020-00159-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022]
Abstract
The transcriptomic classification of glioblastoma (GBM) has failed to predict survival and therapeutic vulnerabilities. A computational approach for unbiased identification of core biological traits of single cells and bulk tumors uncovered four tumor cell states and GBM subtypes distributed along neurodevelopmental and metabolic axes, classified as proliferative/progenitor, neuronal, mitochondrial and glycolytic/plurimetabolic. Each subtype was enriched with biologically coherent multiomic features. Mitochondrial GBM was associated with the most favorable clinical outcome. It relied exclusively on oxidative phosphorylation for energy production, whereas the glycolytic/plurimetabolic subtype was sustained by aerobic glycolysis and amino acid and lipid metabolism. Deletion of the glucose-proton symporter SLC45A1 was the truncal alteration most significantly associated with mitochondrial GBM, and the reintroduction of SLC45A1 in mitochondrial glioma cells induced acidification and loss of fitness. Mitochondrial, but not glycolytic/plurimetabolic, GBM exhibited marked vulnerability to inhibitors of oxidative phosphorylation. The pathway-based classification of GBM informs survival and enables precision targeting of cancer metabolism.
Collapse
Affiliation(s)
- Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Simona Migliozzi
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
- Bioinformatics Lab, BIOGEM, Ariano Irpino, Italy
| | - Ryan D Najac
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Francesca Pia Caruso
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Kai Yu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Anna Luisa Di Stefano
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Department of Neurology, Foch Hospital, Suresnes, Paris, France
| | - Franck Bielle
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neuropathologie Raymond Escourolle, Paris, France
- Brain and Spine Institute, Paris, France
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peter Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Xiao-Dong Su
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- Bioinformatics Lab, BIOGEM, Ariano Irpino, Italy
| | - Marc Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
- Onconeurotek Tumor Bank, Institut du Cerveau et de la Moelle épinère, Paris, France
- Department of Neurology 2, GH Pitié-Salpêtrière, Paris, France
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Cox AR, Chernis N, Bader DA, Saha PK, Masschelin PM, Felix JB, Sharp R, Lian Z, Putluri V, Rajapakshe K, Kim KH, Villareal DT, Armamento-Villareal R, Wu H, Coarfa C, Putluri N, Hartig SM. STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity. Diabetes 2020; 69:2630-2641. [PMID: 32994273 PMCID: PMC7679774 DOI: 10.2337/db20-0384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Obesity fosters low-grade inflammation in white adipose tissue (WAT) that may contribute to the insulin resistance that characterizes type 2 diabetes. However, the causal relationship of these events remains unclear. The established dominance of STAT1 function in the immune response suggests an obligate link between inflammation and the comorbidities of obesity. To this end, we sought to determine how STAT1 activity in white adipocytes affects insulin sensitivity. STAT1 expression in WAT inversely correlated with fasting plasma glucose in both obese mice and humans. Metabolomic and gene expression profiling established STAT1 deletion in adipocytes (STAT1 a-KO ) enhanced mitochondrial function and accelerated tricarboxylic acid cycle flux coupled with reduced fat cell size in subcutaneous WAT depots. STAT1 a-KO reduced WAT inflammation, but insulin resistance persisted in obese mice. Rather, elimination of type I cytokine interferon-γ activity enhanced insulin sensitivity in diet-induced obesity. Our findings reveal a permissive mechanism that bridges WAT inflammation to whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Natasha Chernis
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K Saha
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Peter M Masschelin
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jessica B Felix
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Robert Sharp
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Vasanta Putluri
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Sean M Hartig
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
11
|
Wang XK, Liao XW, Zhou X, Han CY, Chen ZJ, Yang CK, Huang JL, Wang JY, Liu JQ, Huang HS, Mo ST, Ye XP, Zhu GZ, Peng T. Oncogene UBE2I enhances cellular invasion, migration and proliferation abilities via autophagy-related pathway resulting in poor prognosis in hepatocellular carcinoma. Am J Cancer Res 2020; 10:4178-4197. [PMID: 33414994 PMCID: PMC7783760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide malignancy with high morbidity and mortality. In this study, ubiquitin conjugating enzyme E2I (UBE2I), a small ubiquitin-like modifier E2 enzyme reportedly expressed in tumors, was examined for its potential effects in HCC. Bioinformatics analysis was performed based on HCCDB, TIMER, and Kaplan-Meier plotter databases to explore the clinical implications in HCC. An siRNA kit was used to downregulate UBE2I, and in vitro experiments-including migration, invasion and proliferation assays-were performed to examine UBE2I expression in HCC. Western blot (WB) was used to determine whether downregulated UBE2I expression influenced the prognosis of HCC via autophagy pathways. Finally, RNA-sequencing was performed to explore candidate molecular mechanisms underlying the effect of UBE2I. Bioinformatics analysis including stratification by alcohol ingestion and hepatitis status in HCC showed that highly expressed UBE2I was not only correlated with poor prognosis, but was also associated with immune infiltrates. In vitro experiments showed that high expression of UBE2I was associated with increased migration, invasion and proliferation of HCC cells. WB results indicated that downregulated expression of UBE2I was associated with higher levels of autophagy-related proteins including LC3A/B, Beclin-1 and ATG16L1. Moreover, RNA-sequencing results suggested that UBE2I was involved in hepatocarcinogenesis, non-alcohol fatty liver disease, steatohepatitis, liver fibrosis, inflammation, hepatoblastoma, tumor angiogenesis, type 2 mellitus diabetes, biliary tract disease and other diseases. We conclude that oncogene UBE2I is associated with poor prognosis of HCC via autophagy pathways and may be involved in hepatocarcinogenesis, tumor angiogenesis, non-alcohol fatty liver disease and inflammation.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Zi-Jun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Jian-Lu Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical UniversityNanning 530031, Guangxi Province, China
| | - Jian-Yao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
- Department of General Surgery, Shenzhen Children’s HospitalShenzhen 518026, Guangdong Province, China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Hua-Sheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Shu-Tian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Xin-Ping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Province, China
| |
Collapse
|
12
|
Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, Cox AR, Bajaj M, Putluri N, Coarfa C, Hartig SM. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am J Physiol Endocrinol Metab 2020; 319:E667-E677. [PMID: 32799658 PMCID: PMC7864240 DOI: 10.1152/ajpendo.00045.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.
Collapse
Affiliation(s)
- Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jessica B Felix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mandeep Bajaj
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Chernis N, Masschelin P, Cox AR, Hartig SM. Bisphenol AF promotes inflammation in human white adipocytes. Am J Physiol Cell Physiol 2020; 318:C63-C72. [PMID: 31596606 PMCID: PMC6985838 DOI: 10.1152/ajpcell.00175.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals interact with transcription factors essential for adipocyte differentiation. Exposure to endocrine-disrupting chemicals corresponds with elevated risks of obesity, but the effects of these compounds on human cells remain largely undefined. Widespread use of bisphenol AF (BPAF) as a bisphenol A (BPA) alternative in the plastics industry presents unknown health risks. To this end, we discovered that BPAF interferes with the metabolic function of mature human adipocytes. Although 4-day exposures to BPAF accelerated adipocyte differentiation, we observed no effect on mature fat cell marker genes. Additional gene and protein expression analysis showed that BPAF treatment during human adipocyte differentiation failed to suppress the proinflammatory transcription factor STAT1. Microscopy and respirometry experiments demonstrated that BPAF impaired mitochondrial function and structure. To test the hypothesis that BPAF fosters vulnerabilities to STAT1 activation, we treated mature adipocytes previously exposed to BPAF with interferon-γ (IFNγ). BPAF increased IFNγ activation of STAT1 and exposed mitochondrial vulnerabilities that disrupt adipocyte lipid and carbohydrate metabolism. Collectively, our data establish that BPAF activates inflammatory signaling pathways that degrade metabolic activity in human adipocytes. These findings suggest how the BPA alternative BPAF contributes to metabolic changes that correspond with obesity.
Collapse
Affiliation(s)
- Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Sekar D, Johnson J, Biruntha M, Lakhmanan G, Gurunathan D, Ross K. Biological and Clinical Relevance of microRNAs in Mitochondrial Diseases/Dysfunctions. DNA Cell Biol 2019; 39:1379-1384. [PMID: 31855060 DOI: 10.1089/dna.2019.5013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction arises from an inadequate number of mitochondria, an inability to provide necessary substrates to mitochondria, or a dysfunction in their electron transport and a denosine triphosphate synthesis machinery. Occurrences of mitochondrial dysfunction are due to genetic or environmental changes in the mitochondria or in the nuclear DNA that codes mitochondrial components. Currently, drug options are available, yet no treatment exists in sight of this disease and needs a new insight into molecular and signaling pathways for this disease. microRNAs (miRNAs) are small, endogenous, and noncoding RNAs function as a master regulator of gene expression. The evolution of miRNAs in the past two decades emerged as a key regulator of gene expression that controls physiological pathological cellular differentiation processes, and metabolic homeostasis such as development and cancer. It has been known that miRNAs are a potential biomarker in both communicable and noncommunicable diseases. But, in the case of mitochondrial dysfunction in miRNAs, the number of studies and investigations are comparatively less than those on other diseases and dysfunctions. In this review, we have elaborated the roles of miRNAs in the mitochondrial diseases and dysfunctions.
Collapse
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Jayapriya Johnson
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - Ganesh Lakhmanan
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Deepa Gurunathan
- Department of Pedodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
15
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Nakano T, Topham MK, Goto K. Mice lacking DGKε show increased beige adipogenesis in visceral white adipose tissue after long-term high fat diet in a COX-2- dependent manner. Adv Biol Regul 2019; 75:100659. [PMID: 31607681 DOI: 10.1016/j.jbior.2019.100659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Adipose tissue is a central site for energy storage in the form of triglyceride (TG). Under excess energy conditions, TG is synthesized by acylation of diacylglycerol (DG), whereas TG is broken down into DG and free fatty acid, which provide energy for mitochondrial lipid oxidation when needed. In this regard, DG is not merely an intermediate metabolite for TG metabolism; it also serves as a signaling molecule. DG kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Consequently, DGK plays a pivotal role in the control of lipid metabolism and signal transduction pathway. Recently, a report has described that DGKε-knockout (KO) mice show expansion of epididymal white adipose tissue (WAT) together with the impairment of glucose clearance after short-term (40 days) high fat diet (HFD) feeding, an early presymptomatic phase of obesity in wild-type animals. Nevertheless, no report describes an investigation of their phenotype under long-term HFD feeding conditions. Remarkably, results obtained during long-term HFD feeding show that WAT mass is decreased significantly and that the blood glucose profile in response to glucose challenge is improved in DGKε-KO mice compared with wild-type, which contrast sharply against the phenotype shown for short-term HFD feeding. Morphological examination reveals that cyclooxygenase-2 (COX-2) expression and clusters of uncoupling protein 1 (UCP1)-positive multilocular brown-like ("beige") adipocyte are induced in DGKε-deficient WAT after long-term HFD feeding, suggesting that beige adipocytes facilitate energy expenditure during prolonged HFD feeding. Administration of celecoxib, a selective inhibitor of COX-2, abolishes the appearance of UCP1-positive beige adipocytes in DGKε-KO mice. These findings suggest that DGKε deficiency promotes visceral WAT remodeling in a COX-2-dependent manner under long-term HFD feeding conditions.
Collapse
Affiliation(s)
- Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan.
| | - Matthew K Topham
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata City, Yamagata, 9909585, Japan
| |
Collapse
|
17
|
Berberine Promotes Beige Adipogenic Signatures of 3T3-L1 Cells by Regulating Post-transcriptional Events. Cells 2019; 8:cells8060632. [PMID: 31234575 PMCID: PMC6627823 DOI: 10.3390/cells8060632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
Induced brown adipocytes (also referred to as beige cells) execute thermogenesis, as do the classical adipocytes by consuming stored lipids, being related to metabolic homeostasis. Treatment of phytochemicals, including berberine (BBR), was reported to induce conversion from white adipocytes to beige cells. In this study, results of microRNA (miRNA)-seq analyses revealed a decrease in miR-92a, of which the transcription is driven by the c13orf25 promoter in BBR-treated 3T3-L1 cells. BBR treatment manipulated the expressions of SP1 and MYC, in turn, reducing the activity of the c13orf25 promoter. A decrease in miR-92a led to an increase in RNA-binding motif protein 4a (RBM4a) expression, which facilitated the beige adipogenesis. Overexpression of miR-92a or depletion of RBM4a reversely interfered with the impact of BBR treatment on the beige adipogenic signatures, gene expressions, and splicing events in 3T3-L1 cells. Our findings demonstrated that BBR treatment enhanced beige adipogenesis of 3T3-L1 cells through transcription-coupled post-transcriptional regulation.
Collapse
|
18
|
Lefèvre C, Venkat P, Kumar A, Modepalli V, Nicholas KR. Comparative analysis of milk microRNA in the therian lineage highlights the evolution of lactation. Reprod Fertil Dev 2019; 31:1266-1275. [PMID: 31014447 DOI: 10.1071/rd18199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Milk is a complex secretion that has an important role in mammalian reproduction. It is only recently that sequencing technologies have allowed the identification and quantification of microRNA (miRNA) in milk of a growing number of mammalian species. This provides a novel window on the study of the evolution and functionality of milk through the comparative analysis of milk miRNA content. Here, milk miRNA sequencing data from five species (one marsupial (tammar wallaby) and four eutherians (human, mouse, cow and pig)) have been retrieved from public depositories and integrated in order to perform a comparison of milk miRNA profiles. The study shows that milk miRNA composition varies widely between species, except for a few miRNAs that are ubiquitously expressed in the milk of all mammals and indicates that milk miRNA secretion has broadly evolved during mammalian evolution. The putative functions of the most abundant milk miRNAs are also discussed.
Collapse
Affiliation(s)
- Christophe Lefèvre
- School of Medicine, Deakin University, Pigdons Road, Geelong, Vic. 3220, Australia; and Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, Vic. 3052, Australia; and Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Vic. 3010, Australia; and Peter MacCallum Cancer Centre, Melbourne, Vic. 3000, Australia
| | - Pooja Venkat
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Melbourne, Vic. 3052, Australia; and Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Vic. 3010, Australia; and Peter MacCallum Cancer Centre, Melbourne, Vic. 3000, Australia
| | - Amit Kumar
- Peter MacCallum Cancer Centre, Melbourne, Vic. 3000, Australia
| | | | - Kevin R Nicholas
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia; and Department of Drug Delivery, Disposition and Dynamics, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Vic. 3052, Australia; and Corresponding author.
| |
Collapse
|
19
|
Koh EH, Chernis N, Saha PK, Xiao L, Bader DA, Zhu B, Rajapakshe K, Hamilton MP, Liu X, Perera D, Chen X, York B, Trauner M, Coarfa C, Bajaj M, Moore DD, Deng T, McGuire SE, Hartig SM. miR-30a Remodels Subcutaneous Adipose Tissue Inflammation to Improve Insulin Sensitivity in Obesity. Diabetes 2018; 67:2541-2553. [PMID: 30002134 PMCID: PMC6245225 DOI: 10.2337/db17-1378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/03/2018] [Indexed: 01/08/2023]
Abstract
Chronic inflammation accompanies obesity and limits subcutaneous white adipose tissue (WAT) expandability, accelerating the development of insulin resistance and type 2 diabetes mellitus. MicroRNAs (miRNAs) influence expression of many metabolic genes in fat cells, but physiological roles in WAT remain poorly characterized. Here, we report that expression of the miRNA miR-30a in subcutaneous WAT corresponds with insulin sensitivity in obese mice and humans. To examine the hypothesis that restoration of miR-30a expression in WAT improves insulin sensitivity, we injected adenovirus (Adv) expressing miR-30a into the subcutaneous fat pad of diabetic mice. Exogenous miR-30a expression in the subcutaneous WAT depot of obese mice coupled improved insulin sensitivity and increased energy expenditure with decreased ectopic fat deposition in the liver and reduced WAT inflammation. High-throughput proteomic profiling and RNA-Seq suggested that miR-30a targets the transcription factor STAT1 to limit the actions of the proinflammatory cytokine interferon-γ (IFN-γ) that would otherwise restrict WAT expansion and decrease insulin sensitivity. We further demonstrated that miR-30a opposes the actions of IFN-γ, suggesting an important role for miR-30a in defending adipocytes against proinflammatory cytokines that reduce peripheral insulin sensitivity. Together, our data identify a critical molecular signaling axis, elements of which are involved in uncoupling obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Eun-Hee Koh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Natasha Chernis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Liuling Xiao
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Xia Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Mandeep Bajaj
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Tuo Deng
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
20
|
Abstract
Obesity, which has become a major global epidemic, is associated with numerous comorbidities and nearly every chronic condition. Mitochondria play a central role in this disorder, as they control cell metabolism, regulating important processes, such as ATP production, lipid β-oxidation, oxidative stress, and inflammation. MicroRNAs (miRs) have been shown to regulate many biological processes associated with obesity, comprising adipocyte differentiation, insulin action, and fat metabolism. In addition, recent studies have confirmed that miRs are important regulators of mitochondrial function by either directly modulating mitochondrial proteins or targeting mitochondrial regulators, thereby modulating metabolic process in the context of obesity. In this review, we describe the different roles of mitochondria in obesity, specifically in adipose tissue, and those miRs that are involved in mitochondrial dysfunction in this disease.
Collapse
Affiliation(s)
- Mora Murri
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| |
Collapse
|
21
|
Dumont S, Le Pennec S, Donnart A, Teusan R, Steenman M, Chevalier C, Houlgatte R, Savagner F. Transcriptional orchestration of mitochondrial homeostasis in a cellular model of PGC-1-related coactivator-dependent thyroid tumor. Oncotarget 2018; 9:15883-15894. [PMID: 29662614 PMCID: PMC5882305 DOI: 10.18632/oncotarget.24633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
The PGC-1 (Peroxisome proliferator-activated receptor Gamma Coactivator-1) family of coactivators (PGC-1α, PGC-1β, and PRC) plays a central role in the transcriptional control of mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) processes. These coactivators integrate mitochondrial energy production into cell metabolism using complementary pathways. The XTC.UC1 cell line is a mitochondria-rich model of thyroid tumors whose biogenesis is almost exclusively dependent on PRC. Here we aim to propose an integrative view of the cellular pathways regulated by PRC through integration of cDNA and miRNA microarray data and chromatin immunoprecipitation results obtained from XTC.UC1 cells invalidated for PRC. This study showes that PRC induces a complex network of cellular functions interacting with at least one to five of the studied transcription factors (Estrogen Related Receptor alpha, ERR1; Nuclear-Respiratory Factors, NRF1 and NRF2; cAMP Response Element Binding, CREB; and Ying Yang, YY1). Our data confirm that ERR1 is a key partner of PRC in the regulation of mitochondrial functions and suggest a potential role of this complex in RNA processing. PRC is also involved in transcriptional regulatory complexes targeting 12 miRNAs, five of which are involved in the control of the OXPHOS process. Our findings demonstrate that the PRC coactivator can act in complex with several transcription factors and regulate miRNA expression to control the fine regulation of main metabolic functions in the cell. Therefore, in PGC-1α/β-associated pathologies, PRC, as a metabolic sensor, may ensure mitochondrial homeostasis.
Collapse
Affiliation(s)
- Solenne Dumont
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, BP 70721, 44007 NANTES Cedex 1, France
| | | | - Audrey Donnart
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, BP 70721, 44007 NANTES Cedex 1, France
| | - Raluca Teusan
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, BP 70721, 44007 NANTES Cedex 1, France
| | - Marja Steenman
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, BP 70721, 44007 NANTES Cedex 1, France
| | | | - Rémi Houlgatte
- Inserm UMR 954, Faculté de Médecine, BP 184, 54505 VANDOEUVRE-LÈS-NANCY Cedex, France
| | | |
Collapse
|
22
|
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018; 28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health problem commonly associated with numerous metabolic disorders including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer. The burden of obesity and associated cardiometabolic diseases are believed to arise through complex interplay between genetics and epigenetics predisposition, nutrition, environment, and lifestyle. However, the molecular basis and the repertoire of obesity-affecting factors are still unknown. Emerging evidence is connecting microRNAs (miRNAs) dysregulation with adipogenesis and obesity. Alteration in miRNAs expression could result in changes in the pattern of genes controlling a range of biological processes including inflammation, lipid metabolism, insulin resistance and adipogenesis. Hence, understanding exact roles of miRNAs as well as the degree of their contribution to the regulation of adipogenesis and fat cell development in obesity would provide new therapeutic targets for the development of novel and effective anti-obesity drugs. The objective of the current review is to: (i) discuss some of the latest development on relevant miRNAs dysregulation mainly in human adipogenesis and obesity, (ii) emphasize the role of circulating miRNAs as new promising therapeutics and attractive potential biomarkers for treating obesity and associated risk factor diseases, (iii) describe how dietary factors may influence obesity through modulation of miRNAs expression, (iv) highlight some of the actual limitations to the promise of miRNAs as novel therapeutics as well as to their translation for the benefit of patients, and finally (v) provide recommendations for future research on miRNA-based therapeutics that could lead to a breakthrough in the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- M Zaiou
- Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000, Nancy, France.
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat, Morocco
| | - A Bakillah
- State University of New York, Downstate Medical Center, Department of Medicine, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| |
Collapse
|
23
|
Shen H, Xing C, Cui K, Li Y, Zhang J, Du R, Zhang X, Li Y. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death Differ 2017; 24:1253-1262. [PMID: 28475173 DOI: 10.1038/cdd.2017.63] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Frequent KRAS mutations contribute to multiple cancers including ~40% of human colorectal cancers (CRCs). Systematic screening of 1255 microRNAs (miRNAs) identified miR-30a as a synthetic lethal in KRAS-mutant CRC cells. miR-30a was downregulated in CRCs and repressed by P65. miR-30a directly targeted malic enzyme 1 (ME1) and KRAS, and inhibited anchorage-independent growth and in vivo tumorigenesis by KRAS-mutant CRC cells. ME1 was significantly upregulated in KRAS-mutant CRCs. Eliminating ME1 by short hairpin RNA (shRNA) resulted in obviously decreased NADPH production, levels of triglyceride and fatty acid, and an inhibition of tumorigenicity of KRAS-mutant CRCs. miR-30a overexpression and ME1 suppression attenuated AOM/DSS-induced colorectal tumorigenesis. The critical roles of miR-30a and ME1 in the development of KRAS-mutant CRCs indicate therapy potentials for this subtype of cancer.
Collapse
Affiliation(s)
- Hongxing Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Chuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yunxiao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Runlei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
24
|
Zhang S, Liu H, Liu Y, Zhang J, Li H, Liu W, Cao G, Xv P, Zhang J, Lv C, Song X. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2017; 18:ijms18030633. [PMID: 28294974 PMCID: PMC5372646 DOI: 10.3390/ijms18030633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/16/2023] Open
Abstract
Several recent studies have indicated that miR-30a plays critical roles in various biological processes and diseases. However, the mechanism of miR-30a participation in idiopathic pulmonary fibrosis (IPF) regulation is ambiguous. Our previous study demonstrated that miR-30a may function as a novel therapeutic target for lung fibrosis by blocking mitochondrial fission, which is dependent on dynamin-related protein1 (Drp-1). However, the regulatory mechanism between miR-30a and Drp-1 is yet to be investigated. Additionally, whether miR-30a can act as a potential therapeutic has not been verified in vivo. In this study, the miR-30a expression in IPF patients was evaluated. Computational analysis and a dual-luciferase reporter assay system were used to identify the target gene of miR-30a, and cell transfection was utilized to confirm this relationship. Ten–eleven translocation 1 (TET1) was validated as a direct target of miR-30a, and miR-30a mimic and inhibitor transfection significantly reduced and increased the TET1 protein expression, respectively. Further experimentation verified that the TET1 siRNA interference could inhibit Drp-1 promoter hydroxymethylation. Finally, miR-30a agomir was designed and applied to identify and validate the therapeutic effect of miR-30a in vivo. Our study demonstrated that miR-30a could inhibit TET1 expression through base pairing with complementary sites in the 3′untranslated region to regulate Drp-1 promoter hydroxymethylation. Furthermore, miR-30a could act as a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
- Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Taishan Medical University, Taishan 271016, China.
| | - Huizhu Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yuxia Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jie Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Weili Liu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Guohong Cao
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Pan Xv
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
25
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|