1
|
Sivakumar R, Floyd K, Erath J, Jacoby A, Kim Kim J, Bayguinov PO, Fitzpatrick JAJ, Goldfarb D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidates against Plasmodium falciparum. Malar J 2024; 23:227. [PMID: 39090669 PMCID: PMC11295857 DOI: 10.1186/s12936-024-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Roche Pharma Research & Early Development, F. Hoffmann-LaRoche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
2
|
Schwake CJ, Krueger RM, Hanada T, Chishti AH. Plasmodium falciparum Glutamic Acid-Rich Protein-Independent Polyclonal Antibodies Inhibit Malaria Parasite Growth in Human Erythrocytes. J Infect Dis 2024; 229:1565-1573. [PMID: 38298126 PMCID: PMC11095539 DOI: 10.1093/infdis/jiae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
Plasmodium falciparum glutamic acid-rich protein (PfGARP) is a recently characterized cell surface antigen encoded by Plasmodium falciparum, the causative agent of severe human malaria pathophysiology. Previously, we reported that the human erythrocyte band 3 (SLC4A1) serves as a host receptor for PfGARP. Antibodies against PfGARP did not affect parasite invasion and growth. We surmised that PfGARP may play a role in the rosetting and adhesion of malaria. Another study reported that antibodies targeting PfGARP exhibit potent inhibition of parasite growth. This inhibition occurred without the presence of any immune or complement components, suggesting the activation of an inherent density-dependent regulatory system. Here, we used polyclonal antibodies against PfGARP and a monoclonal antibody mAb7899 to demonstrate that anti-PfGARP polyclonal antibodies, but not mAb7899, exerted potent inhibition of parasite growth in infected erythrocytes independent of PfGARP. These findings suggest that an unknown malaria protein(s) is the target of growth arrest by polyclonal antibodies raised against PfGARP.
Collapse
Affiliation(s)
- Christopher J Schwake
- Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel M Krueger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Athar H Chishti
- Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Fréville A, Ressurreição M, van Ooij C. Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites. mBio 2024; 15:e0122323. [PMID: 38078758 PMCID: PMC10790765 DOI: 10.1128/mbio.01223-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE In the manuscript, the authors investigate the role of the protease Plasmepsin V in the parasite-host interaction. Whereas processing by Plasmepsin V was previously thought to target a protein for export into the host cell, the authors now show that there are proteins cleaved by this protease that are not exported but instead function at the host-parasite interface. This changes the view of this protease, which turns out to have a much broader role than anticipated. The result shows that the protease may have a function much more similar to that of related organisms. The authors also investigate the requirements for protein export by analyzing exported and non-exported proteins and find commonalities between the proteins of each set that further our understanding of the requirements for protein export.
Collapse
Affiliation(s)
- Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Lucky AB, Wang C, Shakri AR, Kalamuddin M, Chim-Ong A, Li X, Miao J. Plasmodium falciparum GCN5 plays a key role in regulating artemisinin resistance-related stress responses. Antimicrob Agents Chemother 2023; 67:e0057723. [PMID: 37702516 PMCID: PMC10583690 DOI: 10.1128/aac.00577-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum. The protein level of PfGCN5 was substantially induced under three stress conditions [heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)]. With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ~50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ~1,000 up- and down-regulated genes in the wild-type (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin. Based on the expression pattern between WT and KD parasites under three stress conditions, ~300-400 genes were identified to be involved in PfGCN5-dependent, general, and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay, we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mohammad Kalamuddin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anongruk Chim-Ong
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Davies H, Belda H, Broncel M, Dalimot J, Treeck M. PerTurboID, a targeted in situ method reveals the impact of kinase deletion on its local protein environment in the cytoadhesion complex of malaria-causing parasites. eLife 2023; 12:e86367. [PMID: 37737226 PMCID: PMC10564455 DOI: 10.7554/elife.86367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the Plasmodium falciparum-exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria-causing parasite, PfEMP1. We generated independent TurboID fusions of two proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jill Dalimot
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Cell Biology of Host-Pathogen Interaction Laboratory, Gulbenkian Institute of ScienceOeirasPortugal
| |
Collapse
|
6
|
Sivakumar R, Floyd K, Jessey E, Kim JK, Bayguinov PO, Fitzpatrick JA, Goldfrab D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidate against Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558069. [PMID: 37745508 PMCID: PMC10516022 DOI: 10.1101/2023.09.16.558069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Erath Jessey
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University; New York, New York, USA
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Missouri, USA
- Department of Neuroscience, Washington University School of Medicine; Missouri, USA
| | - James A.J. Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Missouri, USA
- Department of Neuroscience, Washington University School of Medicine; Missouri, USA
| | - Dennis Goldfrab
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University; New York, New York, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health; Baltimore, Maryland, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | | |
Collapse
|
7
|
Singh AK, Amar I, Ramadasan H, Kappagantula KS, Chavali S. Proteins with amino acid repeats constitute a rapidly evolvable and human-specific essentialome. Cell Rep 2023; 42:112811. [PMID: 37453061 DOI: 10.1016/j.celrep.2023.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Protein products of essential genes, indispensable for organismal survival, are highly conserved and bring about fundamental functions. Interestingly, proteins that contain amino acid homorepeats that tend to evolve rapidly are enriched in eukaryotic essentialomes. Why are proteins with hypermutable homorepeats enriched in conserved and functionally vital essential proteins? We solve this functional versus evolutionary paradox by demonstrating that human essential proteins with homorepeats bring about crosstalk across biological processes through high interactability and have distinct regulatory functions affecting expansive global regulation. Importantly, essential proteins with homorepeats rapidly diverge with the amino acid substitutions frequently affecting functional sites, likely facilitating rapid adaptability. Strikingly, essential proteins with homorepeats influence human-specific embryonic and brain development, implying that the presence of homorepeats could contribute to the emergence of human-specific processes. Thus, we propose that homorepeat-containing essential proteins affecting species-specific traits can be potential intervention targets across pathologies, including cancers and neurological disorders.
Collapse
Affiliation(s)
- Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ishita Amar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Harikrishnan Ramadasan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Keertana S Kappagantula
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
8
|
Lucky AB, Wang C, Shakri AR, Kalamuddin M, Chim-Ong A, Li X, Miao J. Plasmodium falciparum GCN5 plays a key role in regulating artemisinin resistance-related stress responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523703. [PMID: 36711954 PMCID: PMC9882135 DOI: 10.1101/2023.01.11.523703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum . The protein level of PfGCN5 was substantially induced under three stress conditions (heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)). With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ∼50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ∼1,000 up-and down-regulated genes in the wildtype (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin . Based on the expression pattern between WT and KD parasites under three stress conditions, ∼300-400 genes were identified to be involved in PfGCN5-dependent, general and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay (RSA), we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention. IMPORTANCE Malaria leads to about half a million deaths annually and these casualties were majorly caused by the infection of Plasmodium falciparum . This parasite strives to survive by defending against a variety of stress conditions, such as malaria cyclical fever (heat shock), starvation due to low blood sugar (glucose) levels (hypoglycemia), and drug treatment. Previous studies have revealed that P. falciparum has developed unique stress responses to different stresses including ART treatment, and ART-resistant parasites harbor elevated stress responses. In this study, we provide critical evidence on the role of PfGCN5, a histone modifier, and a chromatin coactivator, in regulating general and stress-specific responses in malaria parasites, indicating that PfGCN5 can be used as a potential target for anti-malaria intervention.
Collapse
|
9
|
Rojrung R, Kuamsab N, Putaporntip C, Jongwutiwes S. Analysis of sequence diversity in Plasmodium falciparum glutamic acid-rich protein (PfGARP), an asexual blood stage vaccine candidate. Sci Rep 2023; 13:3951. [PMID: 36894624 PMCID: PMC9996596 DOI: 10.1038/s41598-023-30975-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Glutamic acid-rich protein of Plasmodium falciparum (PfGARP) binds to erythrocyte band 3 and may enhance cytoadherence of infected erythrocytes. Naturally acquired anti-PfGARP antibodies could confer protection against high parasitemia and severe symptoms. While whole genome sequencing analysis has suggested high conservation in this locus, little is known about repeat polymorphism in this vaccine candidate antigen. Direct sequencing was performed from the PCR-amplified complete PfGARP gene of 80 clinical isolates from four malaria endemic provinces in Thailand and an isolate from a Guinean patient. Publicly available complete coding sequences of this locus were included for comparative analysis. Six complex repeat (RI-RVI) and two homopolymeric glutamic acid repeat (E1 and E2) domains were identified in PfGARP. The erythrocyte band 3-binding ligand in domain RIV and the epitope for mAB7899 antibody eliciting in vitro parasite killing property were perfectly conserved across isolates. Repeat lengths in domains RIII and E1-RVI-E2 seemed to be correlated with parasite density of the patients. Sequence variation in PfGARP exhibited genetic differentiation across most endemic areas of Thailand. Phylogenetic tree inferred from this locus has shown that most Thai isolates formed closely related lineages, suggesting local expansion/contractions of repeat-encoding regions. Positive selection was observed in non-repeat region preceding domain RII which corresponded to a helper T cell epitope predicted to be recognized by a common HLA class II among Thai population. Predicted linear B cell epitopes were identified in both repeat and non-repeat domains. Besides length variation in some repeat domains, sequence conservation in non-repeat regions and almost all predicted immunogenic epitopes have suggested that PfGARP-derived vaccine may largely elicit strain-transcending immunity.
Collapse
Affiliation(s)
- Rattanaporn Rojrung
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Community Public Health Program, Faculty of Health Science and Technology, Southern College of Technology, Nakorn Si Thammarat, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLoS Pathog 2022; 18:e1009882. [PMID: 35930605 PMCID: PMC9385048 DOI: 10.1371/journal.ppat.1009882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/17/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022] Open
Abstract
Presentation of the variant antigen, Plasmodium falciparum erythrocyte membrane protein 1 (EMP1), at knob-like protrusions on the surface of infected red blood cells, underpins the parasite’s pathogenicity. Here we describe a protein PF3D7_0301700 (PTP7), that functions at the nexus between the intermediate trafficking organelle, the Maurer’s cleft, and the infected red blood cell surface. Genetic disruption of PTP7 leads to accumulation of vesicles at the Maurer’s clefts, grossly aberrant knob morphology, and failure to deliver EMP1 to the red blood cell surface. We show that an expanded low complexity sequence in the C-terminal region of PTP7, identified only in the Laverania clade of Plasmodium, is critical for efficient virulence protein trafficking. We describe a malaria parasite protein, PTP7, involved in virulence factor trafficking that is associated with Maurer’s clefts and other trafficking compartments. Upon disruption of the PTP7 locus, the Maurer’s clefts become decorated with vesicles; the knobby protrusions on the host red blood cell surface are fewer and distorted; and trafficking of the virulence protein, EMP1, to the host red blood cell surface is ablated. We provide evidence that a region of PTP7 with low sequence complexity plays an important role in virulence protein trafficking from the Maurer’s clefts.
Collapse
|
11
|
Dumetz F, Chow EYC, Harris LM, Liew SW, Jensen A, Umar MI, Chung B, Chan TF, Merrick CJ, Kwok CK. G-quadruplex RNA motifs influence gene expression in the malaria parasite Plasmodium falciparum. Nucleic Acids Res 2021; 49:12486-12501. [PMID: 34792144 PMCID: PMC8643661 DOI: 10.1093/nar/gkab1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
G-quadruplexes are non-helical secondary structures that can fold in vivo in both DNA and RNA. In human cells, they can influence replication, transcription and telomere maintenance in DNA, or translation, transcript processing and stability of RNA. We have previously showed that G-quadruplexes are detectable in the DNA of the malaria parasite Plasmodium falciparum, despite a very highly A/T-biased genome with unusually few guanine-rich sequences. Here, we show that RNA G-quadruplexes can also form in P. falciparum RNA, using rG4-seq for transcriptome-wide structure-specific RNA probing. Many of the motifs, detected here via the rG4seeker pipeline, have non-canonical forms and would not be predicted by standard in silico algorithms. However, in vitro biophysical assays verified formation of non-canonical motifs. The G-quadruplexes in the P. falciparum transcriptome are frequently clustered in certain genes and associated with regions encoding low-complexity peptide repeats. They are overrepresented in particular classes of genes, notably those that encode PfEMP1 virulence factors, stress response genes and DNA binding proteins. In vitro translation experiments and in vivo measures of translation efficiency showed that G-quadruplexes can influence the translation of P. falciparum mRNAs. Thus, the G-quadruplex is a novel player in post-transcriptional regulation of gene expression in this major human pathogen.
Collapse
Affiliation(s)
- Franck Dumetz
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Eugene Yui-Ching Chow
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Lynne M Harris
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Anders Jensen
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mubarak I Umar
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Betty Chung
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Ting Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Catherine J Merrick
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Jonsdottir TK, Counihan NA, Modak JK, Kouskousis B, Sanders PR, Gabriela M, Bullen HE, Crabb BS, de Koning-Ward TF, Gilson PR. Characterisation of complexes formed by parasite proteins exported into the host cell compartment of Plasmodium falciparum infected red blood cells. Cell Microbiol 2021; 23:e13332. [PMID: 33774908 PMCID: PMC8365696 DOI: 10.1111/cmi.13332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
During its intraerythrocytic life cycle, the human malaria parasite Plasmodium falciparum supplements its nutritional requirements by scavenging substrates from the plasma through the new permeability pathways (NPPs) installed in the red blood cell (RBC) membrane. Parasite proteins of the RhopH complex: CLAG3, RhopH2, RhopH3, have been implicated in NPP activity. Here, we studied 13 exported proteins previously hypothesised to interact with RhopH2, to study their potential contribution to the function of NPPs. NPP activity assays revealed that the 13 proteins do not appear to be individually important for NPP function, as conditional knockdown of these proteins had no effect on sorbitol uptake. Intriguingly, reciprocal immunoprecipitation assays showed that five of the 13 proteins interact with all members of the RhopH complex, with PF3D7_1401200 showing the strongest association. Mass spectrometry‐based proteomics further identified new protein complexes; a cytoskeletal complex and a Maurer's clefts/J‐dot complex, which overall helps clarify protein–protein interactions within the infected RBC (iRBC) and is suggestive of the potential trafficking route of the RhopH complex itself to the RBC membrane.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | | | - Joyanta K Modak
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Betty Kouskousis
- Burnet Institute, Melbourne, Australia.,Monash Micro-imaging, Monash University, Melbourne, Australia
| | | | - Mikha Gabriela
- Burnet Institute, Melbourne, Australia.,School of Medicine, Deakin University, Waurn Ponds, Australia
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
13
|
Izrael R, Marton L, Nagy GN, Pálinkás HL, Kucsma N, Vértessy BG. Identification of a nuclear localization signal in the Plasmodium falciparum CTP: phosphocholine cytidylyltransferase enzyme. Sci Rep 2020; 10:19739. [PMID: 33184408 PMCID: PMC7665022 DOI: 10.1038/s41598-020-76829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipid biosynthesis of the malaria parasite, Plasmodium falciparum is a key process for its survival and its inhibition is a validated antimalarial therapeutic approach. The second and rate-limiting step of the de novo phosphatidylcholine biosynthesis is catalysed by CTP: phosphocholine cytidylyltransferase (PfCCT), which has a key regulatory function within the pathway. Here, we investigate the functional impact of the key structural differences and their respective role in the structurally unique pseudo-heterodimer PfCCT protein in a heterologous cellular context using the thermosensitive CCT-mutant CHO-MT58 cell line. We found that a Plasmodium-specific lysine-rich insertion within the catalytic domain of PfCCT acts as a nuclear localization signal and its deletion decreases the nuclear propensity of the protein in the model cell line. We further showed that the putative membrane-binding domain also affected the nuclear localization of the protein. Moreover, activation of phosphatidylcholine biosynthesis by phospholipase C treatment induces the partial nuclear-to-cytoplasmic translocation of PfCCT. We additionally investigated the cellular function of several PfCCT truncated constructs in a CHO-MT58 based rescue assay. In absence of the endogenous CCT activity we observed that truncated constructs lacking the lysine-rich insertion, or the membrane-binding domain provided similar cell survival ratio as the full length PfCCT protein.
Collapse
Affiliation(s)
- Richard Izrael
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720, Szeged, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary.
| | - Lívia Marton
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hajnalka L Pálinkás
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720, Szeged, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary.
| |
Collapse
|
14
|
Levray YS, Berhe AD, Osborne AR. Use of split-dihydrofolate reductase for the detection of protein-protein interactions and simultaneous selection of multiple plasmids in Plasmodium falciparum. Mol Biochem Parasitol 2020; 238:111292. [PMID: 32505674 DOI: 10.1016/j.molbiopara.2020.111292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
Abstract
Defining protein-protein interactions is fundamental to the understanding of gene function. Protein-fragment complementation assays have been used for the analysis of protein-protein interactions in various organisms. The split-dihydrofolate reductase (DHFR) protein-fragment complementation assay utilises two complementary fragments of the enzyme fused to a pair of potentially interacting proteins. If these proteins interact, the DHFR fragments associate, fold into their native structure, reconstitute their function and confer resistance to antifolate drugs. We show that murine DHFR fragments fused to interacting proteins reconstitute a functional enzyme and confer resistance to the antifolate drug WR99210 in Plasmodium falciparum. These data demonstrate that the split-DHFR method can be used to detect in vivo protein-protein interactions in the parasite. Additionally, we show that split-DHFR fragments can be used as selection markers, permitting simultaneous selection of two plasmids in the presence of a single antifolate drug. Taken together, these experiments show that split-DHFR represents a valuable tool for the characterisation of Plasmodium protein function and genetic manipulation of the parasite.
Collapse
Affiliation(s)
- Yvette S Levray
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Anne D Berhe
- Pomona College, 333 N. College Way, Claremont, CA 91711, United States
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom.
| |
Collapse
|
15
|
Hon C, Matuschewski K. Malaria According to GARP: A New Trail towards Anti-disease Vaccination. Trends Parasitol 2020; 36:653-655. [PMID: 32563704 DOI: 10.1016/j.pt.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Naturally acquired anti-Plasmodium falciparum immunity protects first and foremost against severe disease. Raj et al. have established a tantalizing path towards an anti-disease vaccine by identifying glutamic acid-rich protein (GARP) antibodies as signatures of protection against severe malaria in Tanzanian children and demonstrating efficacy in blood cultures and monkey trials.
Collapse
Affiliation(s)
- Calvin Hon
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany.
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| |
Collapse
|
16
|
Davies H, Belda H, Broncel M, Ye X, Bisson C, Introini V, Dorin-Semblat D, Semblat JP, Tibúrcio M, Gamain B, Kaforou M, Treeck M. An exported kinase family mediates species-specific erythrocyte remodelling and virulence in human malaria. Nat Microbiol 2020; 5:848-863. [PMID: 32284562 PMCID: PMC7116245 DOI: 10.1038/s41564-020-0702-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Xingda Ye
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Claudine Bisson
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Myrsini Kaforou
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
17
|
Pavlovic Djuranovic S, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick JAJ, Moss WN, Szczesny P, Djuranovic S. Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife 2020; 9:e57799. [PMID: 32469313 PMCID: PMC7295572 DOI: 10.7554/elife.57799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.
Collapse
Affiliation(s)
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
| | - Joyce J Chung
- Department of Biology, Washington UniversitySt LouisUnited States
| | | | - James AJ Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington UniversitySt LouisUnited States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Pawel Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Department of BioinformaticsWarsawPoland
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
18
|
Mathema VB, Nakeesathit S, White NJ, Dondorp AM, Imwong M. Genome-wide microsatellite characteristics of five human Plasmodium species, focusing on Plasmodium malariae and P. ovale curtisi. Parasite 2020; 27:34. [PMID: 32410726 PMCID: PMC7227371 DOI: 10.1051/parasite/2020034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Microsatellites can be utilized to explore genotypes, population structure, and other genomic features of eukaryotes. Systematic characterization of microsatellites has not been a focus for several species of Plasmodium, including P. malariae and P. ovale, as the majority of malaria elimination programs are focused on P. falciparum and to a lesser extent P. vivax. Here, five human malaria species (P. falciparum, P. vivax, P. malariae, P. ovale curtisi, and P. knowlesi) were investigated with the aim of conducting in-depth categorization of microsatellites for P. malariae and P. ovale curtisi. Investigation of reference genomes for microsatellites with unit motifs of 1-10 base pairs indicates high diversity among the five Plasmodium species. Plasmodium malariae, with the largest genome size, displays the second highest microsatellite density (1421 No./Mbp; 5% coverage) next to P. falciparum (3634 No./Mbp; 12% coverage). The lowest microsatellite density was observed in P. vivax (773 No./Mbp; 2% coverage). A, AT, and AAT are the most commonly repeated motifs in the Plasmodium species. For P. malariae and P. ovale curtisi, microsatellite-related sequences are observed in approximately 18-29% of coding sequences (CDS). Lysine, asparagine, and glutamic acids are most frequently coded by microsatellite-related CDS. The majority of these CDS could be related to the gene ontology terms "cell parts," "binding," "developmental processes," and "metabolic processes." The present study provides a comprehensive overview of microsatellite distribution and can assist in the planning and development of potentially useful genetic tools for further investigation of P. malariae and P. ovale curtisi epidemiology.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
| | - Supatchara Nakeesathit
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
| | - Nicholas J. White
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford OX1 2JD Oxford United Kingdom
| | - Arjen M. Dondorp
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford OX1 2JD Oxford United Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
| |
Collapse
|
19
|
Li Y, Chen X, Wu K, Pan J, Long H, Yan Y. Characterization of Simple Sequence Repeats (SSRs) in Ciliated Protists Inferred by Comparative Genomics. Microorganisms 2020; 8:microorganisms8050662. [PMID: 32370063 PMCID: PMC7285179 DOI: 10.3390/microorganisms8050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/02/2023] Open
Abstract
Simple sequence repeats (SSRs) are prevalent in the genomes of all organisms. They are widely used as genetic markers, and are insertion/deletion mutation hotspots, which directly influence genome evolution. However, little is known about such important genomic components in ciliated protists, a large group of unicellular eukaryotes with extremely long evolutionary history and genome diversity. With recent publications of multiple ciliate genomes, we start to get a chance to explore perfect SSRs with motif size 1-100 bp and at least three motif repeats in nine species of two ciliate classes, Oligohymenophorea and Spirotrichea. We found that homopolymers are the most prevalent SSRs in these A/T-rich species, with AAA (lysine, charged amino acid; also seen as an SSR with one-adenine motif repeated three times) being the codons repeated at the highest frequencies in coding SSR regions, consistent with the widespread alveolin proteins rich in lysine repeats as found in Tetrahymena. Micronuclear SSRs are universally more abundant than the macronuclear ones of the same motif-size, except for the 8-bp-motif SSRs in extensively fragmented chromosomes. Both the abundance and A/T content of SSRs decrease as motif-size increases, while the abundance is positively correlated with the A/T content of the genome. Also, smaller genomes have lower proportions of coding SSRs out of all SSRs in Paramecium species. This genome-wide and cross-species analysis reveals the high diversity of SSRs and reflects the rapid evolution of these simple repetitive elements in ciliate genomes.
Collapse
|
20
|
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum. Microbiol Mol Biol Rev 2019; 83:83/4/e00013-19. [PMID: 31484690 DOI: 10.1128/mmbr.00013-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asexual intraerythrocytic development of Plasmodium falciparum, causing the most severe form of human malaria, is marked by extensive host cell remodeling. Throughout the processes of invasion, intracellular development, and egress, the erythrocyte membrane skeleton is remodeled by the parasite as required for each specific developmental stage. The remodeling is facilitated by a plethora of exported parasite proteins, and the erythrocyte membrane skeleton is the interface of most of the observed interactions between the parasite and host cell proteins. Host cell remodeling has been extensively described and there is a vast body of information on protein export or the description of parasite-induced structures such as Maurer's clefts or knobs on the host cell surface. Here we specifically review the molecular level of each host cell-remodeling step at each stage of the intraerythrocytic development of P. falciparum We describe key events, such as invasion, knob formation, and egress, and identify the interactions between exported parasite proteins and the host cell cytoskeleton. We discuss each remodeling step with respect to time and specific requirement of the developing parasite to explain host cell remodeling in a stage-specific manner. Thus, we highlight the interaction with the host membrane skeleton as a key event in parasite survival.
Collapse
|
21
|
Kilili GK, Shakya B, Dolan PT, Wang L, Husby ML, Stahelin RV, Nakayasu ES, LaCount DJ. The Plasmodium falciparum MESA erythrocyte cytoskeleton-binding (MEC) motif binds to erythrocyte ankyrin. Mol Biochem Parasitol 2019; 231:111189. [PMID: 31125575 DOI: 10.1016/j.molbiopara.2019.111189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 01/21/2023]
Abstract
The MESA erythrocyte cytoskeleton binding (MEC) motif is a 13-amino acid sequence found in 14 exported Plasmodium falciparum proteins. First identified in the P. falciparum Mature-parasite-infected Erythrocyte Surface Antigen (MESA), the MEC motif is sufficient to target proteins to the infected red blood cell cytoskeleton. To identify host cell targets, purified MESA MEC motif was incubated with a soluble extract from uninfected erythrocytes, precipitated and subjected to mass spectrometry. The most abundant co-purifying protein was erythrocyte ankyrin (ANK1). A direct interaction between the MEC motif and ANK1 was independently verified using co-purification experiments, the split-luciferase assay, and the yeast two-hybrid assay. A systematic mutational analysis of the core MEC motif demonstrated a critical role for the conserved aspartic acid residue at the C-terminus of the MEC motif for binding to both erythrocyte inside-out vesicles and to ANK1. Using a panel of ANK1 constructs, the MEC motif binding site was localized to the ZU5C domain, which has no known function. The MEC motif had no impact on erythrocyte deformability when introduced into uninfected erythrocyte ghosts, suggesting the MEC motif's primary function is to target exported proteins to the cytoskeleton. Finally, we show that PF3D7_0402100 (PFD0095c) binds to ANK1 and band 4.1, likely through its MEC and PHIST motifs, respectively. In conclusion, we have provided multiple lines of evidence that the MEC motif binds to erythrocyte ANK1.
Collapse
Affiliation(s)
- Geoffrey Kimiti Kilili
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Patrick T Dolan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ling Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Monica L Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Bindley Bioscience Center - Discovery Park, Purdue University, West Lafayette, IN 47907, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
22
|
Mathema VB, Dondorp AM, Imwong M. OSTRFPD: Multifunctional Tool for Genome-Wide Short Tandem Repeat Analysis for DNA, Transcripts, and Amino Acid Sequences with Integrated Primer Designer. Evol Bioinform Online 2019; 15:1176934319843130. [PMID: 31040636 PMCID: PMC6482647 DOI: 10.1177/1176934319843130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
Microsatellite mining is a common outcome of the in silico approach to genomic studies. The resulting short tandemly repeated DNA could be used as molecular markers for studying polymorphism, genotyping and forensics. The omni short tandem repeat finder and primer designer (OSTRFPD) is among the few versatile, platform-independent open-source tools written in Python that enables researchers to identify and analyse genome-wide short tandem repeats in both nucleic acids and protein sequences. OSTRFPD is designed to run either in a user-friendly fully featured graphical interface or in a command line interface mode for advanced users. OSTRFPD can detect both perfect and imperfect repeats of low complexity with customisable scores. Moreover, the software has built-in architecture to simultaneously filter selection of flanking regions in DNA and generate microsatellite-targeted primers implementing the Primer3 platform. The software has built-in motif-sequence generator engines and an additional option to use the dictionary mode for custom motif searches. The software generates search results including general statistics containing motif categorisation, repeat frequencies, densities, coverage, guanine–cytosine (GC) content, and simple text-based imperfect alignment visualisation. Thus, OSTRFPD presents users with a quick single-step solution package to assist development of microsatellite markers and categorise tandemly repeated amino acids in proteome databases. Practical implementation of OSTRFPD was demonstrated using publicly available whole-genome sequences of selected Plasmodium species. OSTRFPD is freely available and open-sourced for improvement and user-specific adaptation.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mallika Imwong, Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
23
|
Human erythrocyte band 3 is a host receptor for Plasmodium falciparum glutamic acid-rich protein. Blood 2018; 133:470-480. [PMID: 30545833 DOI: 10.1182/blood-2018-07-865451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a major global threat to human health and economic development. Microvascular lesions caused by Plasmodium falciparum-infected human erythrocytes/red blood cells are hallmarks of severe pathogenesis contributing to high mortality, particularly in children from sub-Saharan Africa. In this study, we used a phage display complementary DNA library screening strategy to identify P falciparum glutamic acid-rich protein (PfGARP) as a secreted ligand that recognizes an ectodomain of human erythrocyte anion-exchanger, band 3/AE1, as a host receptor. Domain mapping of PfGARP revealed distinct nonoverlapping repeats encoding the immune response epitopes and core erythrocyte-binding activity. Synthetic peptides derived from the erythrocyte-binding repeats of PfGARP induced erythrocyte aggregation reminiscent of the rosetting phenomenon. Using peptides derived from the immunogenic repeats, a quantitative immunoassay was developed to detect a selective immune response against PfGARP in human plasma samples obtained from patients in rural Mali, suggesting the feasibility of PfGARP as a potential biomarker of disease progression. Collectively, our results suggest that PfGARP may play a functional role in enhancing the adhesive properties of human erythrocytes by engaging band 3 as a host receptor. We propose that immunological and pharmacological inhibition of PfGARP may unveil new therapeutic options for mitigating lesions in cerebral and pregnancy-associated malaria.
Collapse
|
24
|
Sironi M, Forni D, Clerici M, Cagliani R. Genetic conflicts with Plasmodium parasites and functional constraints shape the evolution of erythrocyte cytoskeletal proteins. Sci Rep 2018; 8:14682. [PMID: 30279439 PMCID: PMC6168477 DOI: 10.1038/s41598-018-33049-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites exerted a strong selective pressure on primate genomes and mutations in genes encoding erythrocyte cytoskeleton proteins (ECP) determine protective effects against Plasmodium infection/pathogenesis. We thus hypothesized that ECP-encoding genes have evolved in response to Plasmodium-driven selection. We analyzed the evolutionary history of 15 ECP-encoding genes in primates, as well as of their Plasmodium-encoded ligands (KAHRP, MESA and EMP3). Results indicated that EPB42, SLC4A1, and SPTA1 evolved under pervasive positive selection and that episodes of positive selection tended to occur more frequently in primate species that host a larger number of Plasmodium parasites. Conversely, several genes, including ANK1 and SPTB, displayed extensive signatures of purifying selection in primate phylogenies, Homininae lineages, and human populations, suggesting strong functional constraints. Analysis of Plasmodium genes indicated adaptive evolution in MESA and KAHRP; in the latter, different positively selected sites were located in the spectrin-binding domains. Because most of the positively selected sites in alpha-spectrin localized to the domains involved in the interaction with KAHRP, we suggest that the two proteins are engaged in an arms-race scenario. This observation is relevant because KAHRP is essential for the formation of “knobs”, which represent a major virulence determinant for P. falciparum.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
25
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
26
|
Abstract
Genome sequencing has greatly contributed to our understanding of parasitic protozoa. This is particularly the case for Cryptosporidium species (phylum Apicomplexa) which are difficult to propagate. Because of their polymorphic nature, simple sequence repeats have been used extensively as genotypic markers to differentiate between isolates, but no global analysis of amino acid repeats in Cryptosporidium genomes has been reported. Taking advantage of several newly sequenced Cryptosporidium genomes, a comparative analysis of single-amino-acid repeats (SAARs) in seven species was undertaken. This analysis revealed a striking difference between the SAAR profile of the gastric and intestinal species which infect mammals and one species which infects birds. In average, total SAAR length in gastric species is only 25% of the cumulative SAAR length in the genome of Cryptosporidium parvum, Cryptosporidium hominis and Cryptosporidium meleagridis, species infectious to humans. The SAAR profile in the avian parasite Cryptosporidium baileyi stands out due to the presence of long asparagine repeats. Cryptosporidium baileyi proteins with repeats ⩾20 residues are significantly enriched in regulatory functions. As postulated for the related apicomplexan species Plasmodium falciparum, these observations suggest that Cryptosporidium SAARs evolve in response to selective pressure. The putative selective mechanisms driving SAAR evolution in Cryptosporidium species are unknown.
Collapse
|
27
|
Structural analysis of P. falciparum KAHRP and PfEMP1 complexes with host erythrocyte spectrin suggests a model for cytoadherent knob protrusions. PLoS Pathog 2017; 13:e1006552. [PMID: 28806784 PMCID: PMC5570508 DOI: 10.1371/journal.ppat.1006552] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10–14 of β spectrin, proximal to the spectrin–ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture. Formation of cytoadherent knobs on the surface of P. falciparum infected erythrocytes correlates with malaria pathology. Two parasite proteins central for knob formation and cytoadherence, KAHRP and PfEMP1, have previously been shown to bind the erythrocyte cytoskeleton. Both KAHRP and PfEMP1 include large segments of protein disorder, which have previously hampered their analysis. In this study we use biophysics and structural biology tools to analyze the interactions between these proteins and host spectrin. We devise a novel computational tool to help us towards this goal that may be broadly applicable to characterizing other complexes of widespread, disordered Plasmodial proteins and host components. We derive atomistic models of KAHRP–spectrin and PfEMP1 –spectrin complexes, and integrate these into an emerging model of knob architecture.
Collapse
|