1
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
2
|
Griffiths G, Brügger B, Freund C. Lipid switches in the immunological synapse. J Biol Chem 2024; 300:107428. [PMID: 38823638 PMCID: PMC11259711 DOI: 10.1016/j.jbc.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
Collapse
Affiliation(s)
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Liu X, Yam PT, Schlienger S, Cai E, Zhang J, Chen WJ, Torres Gutierrez O, Jimenez Amilburu V, Ramamurthy V, Ting AY, Branon TC, Cayouette M, Gen R, Marks T, Kong JH, Charron F, Ge X. Numb positively regulates Hedgehog signaling at the ciliary pocket. Nat Commun 2024; 15:3365. [PMID: 38664376 PMCID: PMC11045789 DOI: 10.1038/s41467-024-47244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Eva Cai
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Wei-Ju Chen
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biology, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Oscar Torres Gutierrez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | | | - Vasanth Ramamurthy
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Alice Y Ting
- Departments of Genetics, of Biology, and by courtesy, of Chemistry, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Tess C Branon
- Departments of Genetics, of Biology, and by courtesy, of Chemistry, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Interline Therapeutics, South San Francisco, CA, USA
| | - Michel Cayouette
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Tessa Marks
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer H Kong
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada.
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| | - Xuecai Ge
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA.
| |
Collapse
|
4
|
Brewer KK, Brewer KM, Terry TT, Caspary T, Vaisse C, Berbari NF. Postnatal Dynamic Ciliary ARL13B and ADCY3 Localization in the Mouse Brain. Cells 2024; 13:259. [PMID: 38334651 PMCID: PMC10854790 DOI: 10.3390/cells13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Collapse
Affiliation(s)
- Katlyn K. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Kathryn M. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Christian Vaisse
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, CA 92697, USA;
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
- Stark Neurosciences Research Institute, Indiana University-Indianapolis, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Iazzi M, St-Germain J, Acharya S, Raught B, Gupta GD. Proximity Mapping of Ciliary Proteins by BioID. Methods Mol Biol 2024; 2725:181-198. [PMID: 37856025 DOI: 10.1007/978-1-0716-3507-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The primary cilium is a highly conserved microtubule-based organelle present in most vertebrate cell types. Mutations in ciliary protein genes can lead to dysfunctional or absent cilia and are the cause of a large group of heterogeneous diseases known as ciliopathies. ARL13B is a member of the ARF family of regulatory GTPases and is highly enriched on the ciliary membrane. The absence of ARL13B disrupts cilia architecture and mutations have been linked to several diseases; yet there remain major gaps in our understanding of the role that ARL13B plays in primary cilia function. Here, we demonstrate how in cellulo proximity-dependent biotinylation (BioID) can be used to generate a comprehensive protein proximity map of ciliary proteins by performing BioID on N- and C-terminally BirA*-tagged ARL13B. This method can theoretically provide insight into any cilia protein, identifying key interactors that play a critical role in ciliary biology.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Saujanya Acharya
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Gagan D Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada.
| |
Collapse
|
6
|
Deretic J, Odabasi E, Firat-Karalar EN. The multifaceted roles of microtubule-associated proteins in the primary cilium and ciliopathies. J Cell Sci 2023; 136:jcs261148. [PMID: 38095645 DOI: 10.1242/jcs.261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.
Collapse
Affiliation(s)
- Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
- School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
7
|
Van Sciver RE, Long AB, Katz HG, Gigante ED, Caspary T. Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse. Dev Biol 2023; 500:1-9. [PMID: 37209936 PMCID: PMC10330881 DOI: 10.1016/j.ydbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| | - Alyssa B Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| | - Harrison G Katz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Department of Biology, Brown University, Providence, RI, 02912, USA.
| | - Eduardo D Gigante
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Graduate Program in Neuroscience, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Department of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Van Sciver RE, Long AB, Katz HG, Gigante ED, Caspary T. Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527739. [PMID: 36798281 PMCID: PMC9934666 DOI: 10.1101/2023.02.08.527739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.
Collapse
Affiliation(s)
- Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Harrison G. Katz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Present address: Department of Biology, Brown University, Providence, RI 02912, USA
| | - Eduardo D. Gigante
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Graduate Program in Neuroscience, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Present address: Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Chen L, Xie X, Wang T, Xu L, Zhai Z, Wu H, Deng L, Lu Q, Chen Z, Yang X, Lu H, Chen YG, Luo S. ARL13B promotes angiogenesis and glioma growth by activating VEGFA-VEGFR2 signaling. Neuro Oncol 2023; 25:871-885. [PMID: 36322624 PMCID: PMC10158193 DOI: 10.1093/neuonc/noac245] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Tumor angiogenesis is essential for solid tumor progression, invasion and metastasis. The aim of this study was to identify potential signaling pathways involved in tumor angiogenesis. METHODS Genetically engineered mouse models were used to investigate the effects of endothelial ARL13B(ADP-ribosylation factor-like GTPase 13B) over-expression and deficiency on retinal and cerebral vasculature. An intracranially transplanted glioma model and a subcutaneously implanted melanoma model were employed to examine the effects of ARL13B on tumor growth and angiogenesis. Immunohistochemistry was used to measure ARL13B in glioma tissues, and scRNA-seq was used to analyze glioma and endothelial ARL13B expression. GST-fusion protein-protein interaction and co-immunoprecipitation assays were used to determine the ARL13B-VEGFR2 interaction. Immunobloting, qPCR, dual-luciferase reporter assay and functional experiments were performed to evaluate the effects of ARL13B on VEGFR2 activation. RESULTS Endothelial ARL13B regulated vascular development of both the retina and brain in mice. Also, ARL13B in endothelial cells regulated the growth of intracranially transplanted glioma cells and subcutaneously implanted melanoma cells by controlling tumor angiogenesis. Interestingly, this effect was attributed to ARL13B interaction with VEGFR2, through which ARL13B regulated the membrane and ciliary localization of VEGFR2 and consequently activated its downstream signaling in endothelial cells. Consistent with its oncogenic role, ARL13B was highly expressed in human gliomas, which was well correlated with the poor prognosis of glioma patients. Remarkably, ARL13B, transcriptionally regulated by ZEB1, enhanced the expression of VEGFA by activating Hedgehog signaling in glioma cells. CONCLUSIONS ARL13B promotes angiogenesis and tumor growth by activating VEGFA-VEGFR2 signaling. Thus, targeting ARL13B might serve as a potential approach for developing an anti-glioma or anti-melanoma therapy.
Collapse
Affiliation(s)
- Limin Chen
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinsheng Xie
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenyu Zhai
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haibin Wu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Libin Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanchang University, Nanchang, China
| | - Quqin Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanchang University, Nanchang, China
| | - Zhengjun Chen
- Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Yang
- Genetic Laboratory of Development and Disease, Institute of Lifeomics, National Center for Protein Sciences, Beijing, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, USA
| | - Ye-Guang Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Mahajan D, Madugula V, Lu L. Rab8 and TNPO1 are ciliary transport adaptors for GTPase Arl13b by interacting with its RVEP motif-containing ciliary targeting sequence. J Biol Chem 2023; 299:104604. [PMID: 36907439 PMCID: PMC10124946 DOI: 10.1016/j.jbc.2023.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Arl13b, an ARF/Arl-family GTPase, is highly enriched in the cilium. Recent studies have established Arl13b as one of the most crucial regulators for ciliary organization, trafficking, and signaling. The ciliary localization of Arl13b is known to require the RVEP motif. However, its cognitive ciliary transport adaptor has been elusive. Here, by imaging the ciliary localization of truncation and point mutations, we defined the ciliary targeting sequence (CTS) of Arl13b as a C-terminal stretch of 17 amino acids containing the RVEP motif. We found Rab8-GDP, but not Rab8-GTP, and TNPO1 simultaneously and directly bind to the CTS of Arl13b in pull-down assays using cell lysates or purified recombinant proteins. Furthermore, Rab8-GDP substantially enhances the interaction between TNPO1 and CTS. Additionally, we determined that the RVEP motif is an essential element as its mutation abolishes the interaction of the CTS with Rab8-GDP and TNPO1 in pull-down and TurboID-based proximity ligation assays. Finally, knockdown of endogenous Rab8 or TNPO1 decreases the ciliary localization of endogenous Arl13b. Therefore, our results suggest Rab8 and TNPO1 might function together as a ciliary transport adaptor for Arl13b by interacting with its RVEP-containing CTS.
Collapse
Affiliation(s)
- Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Viswanadh Madugula
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
12
|
Habif JC, Xie C, de Celis C, Ukhanov K, Green WW, Moretta JC, Zhang L, Campbell RJ, Martens JR. The role of a ciliary GTPase in the regulation of neuronal maturation of olfactory sensory neurons. Development 2023; 150:286702. [PMID: 36661357 PMCID: PMC10110495 DOI: 10.1242/dev.201116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.
Collapse
Affiliation(s)
- Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jordan C Moretta
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- University of Florida Center for Smell and Taste, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Travis AM, Manocha S, Willer JR, Wessler TS, Skiba NP, Pearring JN. Disrupting the ciliary gradient of active Arl3 affects rod photoreceptor nuclear migration. eLife 2023; 12:80533. [PMID: 36598133 PMCID: PMC9831603 DOI: 10.7554/elife.80533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The small GTPase Arl3 is important for the enrichment of lipidated proteins to primary cilia, including the outer segment of photoreceptors. Human mutations in the small GTPase Arl3 cause both autosomal recessive and dominant inherited retinal dystrophies. We discovered that dominant mutations result in increased active G-protein-Arl3-D67V has constitutive activity and Arl3-Y90C is fast cycling-and their expression in mouse rods resulted in a displaced nuclear phenotype due to an aberrant Arl3-GTP gradient. Using multiple strategies, we go on to show that removing or restoring the Arl3-GTP gradient within the cilium is sufficient to rescue the nuclear migration defect. Together, our results reveal that an Arl3 ciliary gradient is involved in proper positioning of photoreceptor nuclei during retinal development.
Collapse
Affiliation(s)
- Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Samiya Manocha
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Timothy S Wessler
- Department of Mathematics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke UniversityDurhamUnited States
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States,Department of Cell and Developmental Biology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
14
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Cilleros-Rodriguez D, Martin-Morales R, Barbeito P, Deb Roy A, Loukil A, Sierra-Rodero B, Herranz G, Pampliega O, Redrejo-Rodriguez M, Goetz SC, Izquierdo M, Inoue T, Garcia-Gonzalo FR. Multiple ciliary localization signals control INPP5E ciliary targeting. eLife 2022; 11:e78383. [PMID: 36063381 PMCID: PMC9444247 DOI: 10.7554/elife.78383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Primary cilia are sensory membrane protrusions whose dysfunction causes ciliopathies. INPP5E is a ciliary phosphoinositide phosphatase mutated in ciliopathies like Joubert syndrome. INPP5E regulates numerous ciliary functions, but how it accumulates in cilia remains poorly understood. Herein, we show INPP5E ciliary targeting requires its folded catalytic domain and is controlled by four conserved ciliary localization signals (CLSs): LLxPIR motif (CLS1), W383 (CLS2), FDRxLYL motif (CLS3) and CaaX box (CLS4). We answer two long-standing questions in the field. First, partial CLS1-CLS4 redundancy explains why CLS4 is dispensable for ciliary targeting. Second, the essential need for CLS2 clarifies why CLS3-CLS4 are together insufficient for ciliary accumulation. Furthermore, we reveal that some Joubert syndrome mutations perturb INPP5E ciliary targeting, and clarify how each CLS works: (i) CLS4 recruits PDE6D, RPGR and ARL13B, (ii) CLS2-CLS3 regulate association to TULP3, ARL13B, and CEP164, and (iii) CLS1 and CLS4 cooperate in ATG16L1 binding. Altogether, we shed light on the mechanisms of INPP5E ciliary targeting, revealing a complexity without known parallels among ciliary cargoes.
Collapse
Affiliation(s)
- Dario Cilleros-Rodriguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Raquel Martin-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Abhijit Deb Roy
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Abdelhalim Loukil
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | - Belen Sierra-Rodero
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Gonzalo Herranz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
| | - Olatz Pampliega
- Department of Neurosciences, University of the Basque Country, Achucarro Basque Center for Neuroscience-UPV/EHULeioaSpain
| | - Modesto Redrejo-Rodriguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | - Manuel Izquierdo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Francesc R Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridSpain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAMMadridSpain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ)MadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
| |
Collapse
|
16
|
Thirugnanam K, Prabhudesai S, Van Why E, Pan A, Gupta A, Foreman K, Zennadi R, Rarick KR, Nauli SM, Palecek SP, Ramchandran R. Ciliogenesis mechanisms mediated by PAK2-ARL13B signaling in brain endothelial cells is responsible for vascular stability. Biochem Pharmacol 2022; 202:115143. [PMID: 35700757 PMCID: PMC11274820 DOI: 10.1016/j.bcp.2022.115143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
In the developing vasculature, cilia, microtubule-based organelles that project from the apical surface of endothelial cells (ECs), have been identified to function cell autonomously to promote vascular integrity and prevent hemorrhage. To date, the underlying mechanisms of endothelial cilia formation (ciliogenesis) are not fully understood. Understanding these mechanisms is likely to open new avenues for targeting EC-cilia to promote vascular stability. Here, we hypothesized that brain ECs ciliogenesis and the underlying mechanisms that control this process are critical for brain vascular stability. To investigate this hypothesis, we utilized multiple approaches including developmental zebrafish model system and primary cell culture systems. In the p21 activated kinase 2 (pak2a) zebrafish vascular stability mutant [redhead (rhd)] that shows cerebral hemorrhage, we observed significant decrease in cilia-inducing protein ADP Ribosylation Factor Like GTPase 13B (Arl13b), and a 4-fold decrease in cilia numbers. Overexpressing ARL13B-GFP fusion mRNA rescues the cilia numbers (1-2-fold) in brain vessels, and the cerebral hemorrhage phenotype. Further, this phenotypic rescue occurs at a critical time in development (24 h post fertilization), prior to initiation of blood flow to the brain vessels. Extensive biochemical mechanistic studies in primary human brain microvascular ECs implicate ligands platelet-derived growth factor-BB (PDGF-BB), and vascular endothelial growth factor-A (VEGF-A) trigger PAK2-ARL13B ciliogenesis and signal through cell surface VEGFR-2 receptor. Thus, collectively, we have implicated a critical brain ECs ciliogenesis signal that converges on PAK2-ARL13B proteins to promote vascular stability.
Collapse
Affiliation(s)
- Karthikeyan Thirugnanam
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Shubhangi Prabhudesai
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Emma Van Why
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Amy Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, CRI, Milwaukee, WI, United States
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Koji Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Rahima Zennadi
- Department of Medicine, Duke University, Durham, NC, United States
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, CRI, Milwaukee, WI, United States
| | - Surya M Nauli
- Department of Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States.
| |
Collapse
|
17
|
Zhang H, Huang Z, LV L, Xin Y, Wang Q, Li F, Dong L, Wu C, Ingham PW, Zhao Z. A transgenic zebrafish for in vivo visualization of cilia. Open Biol 2022; 12:220104. [PMID: 35946311 PMCID: PMC9364149 DOI: 10.1098/rsob.220104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cilia are organelles for cellular signalling and motility. Mutations affecting ciliary function are also associated with cilia-related disorders (ciliopathies). The identification of cilia markers is critical for studying their function at the cellular level. Due to the lack of a conserved, short ciliary localization motif, the full-length ARL13b or 5HT6 proteins are normally used for cilia labelling. Overexpression of these genes, however, can affect the function of cilia, leading to artefacts in cilia studies. Here, we show that Nephrocystin-3 (Nphp3) is highly conserved among vertebrates and demonstrate that the N-terminal truncated peptide of zebrafish Nphp3 can be used as a gratuitous cilia-specific marker. To visualize the dynamics of cilia in vivo, we generated a stable transgenic zebrafish Tg (β-actin: nphp3N-mCherry)sx1001. The cilia in multiple cell types are efficiently labelled by the encoded fusion protein from embryonic stages to adulthood, without any developmental and physiological defects. We show that the line allows live imaging of ciliary dynamics and trafficking of cilia proteins, such as Kif7 and Smo, key regulators of the Hedgehog signalling pathway. Thus, we have generated an effective new tool for in vivo cilia studies that will help shed further light on the roles of these important organelles.
Collapse
Affiliation(s)
- Hongyu Zhang
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Zhuoya Huang
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,Chemical Biology and Molecular Engineering Key Laboratory of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Liuliu LV
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Yuye Xin
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,Chemical Biology and Molecular Engineering Key Laboratory of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Qian Wang
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Feng Li
- Department of Molecular Biology, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030013, People's Republic of China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030012, People's Republic of China
| | - Changxin Wu
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Philip W. Ingham
- LKC Medicine School, Nanyang Technological University, 639798, Singapore
| | - Zhonghua Zhao
- Institute of Biomedical Sciences, 1331 Local Bio-Resources and Health Industry Collaborative Innovation Center of Shanxi Province, Key Laboratory of Biomedical Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China,School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
18
|
Hsieh CL, Jerman SJ, Sun Z. Non-cell-autonomous activation of hedgehog signaling contributes to disease progression in a mouse model of renal cystic ciliopathy. Hum Mol Genet 2022; 31:4228-4240. [PMID: 35904445 PMCID: PMC9759329 DOI: 10.1093/hmg/ddac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Polycystic kidney disease (PKD) is a ciliopathy characterized by fluid-filled epithelial cysts in the kidney. Although it is well established that the primary cilium is essential for hedgehog (HH) signaling and HH signaling is abnormally activated in multiple PKD models, the mechanism and function of HH activation in PKD pathogenesis remain incompletely understood. Here we used a transgenic HH reporter mouse line to identify the target tissue of HH signaling in Arl13f/f;Ksp-Cre mutant kidney, in which the cilia biogenesis gene Arl13b is specifically deleted in epithelial cells of the distal nephron. In addition, we used a co-culture system to dissect cross-talk between epithelial and mesenchymal cells in the absence of expanding cysts. Finally, we treated Arl13bf/f;Ksp-Cre mice with the GLI inhibitor GANT61 and analyzed its impact on PKD progression in this model. We found that deletion of Arl13b in epithelial cells in the mouse kidney, in vivo, led to non-cell-autonomous activation of the HH pathway in the interstitium. In vitro, when co-cultured with mesenchymal cells, Arl13b-/- epithelial cells produced more sonic hedgehog in comparison to cells expressing Arl13b. Reciprocally, HH signaling was activated in mesenchymal cells co-cultured with Arl13b-/- epithelial cells. Finally, whole body inhibition of the HH pathway by GANT61 reduced the number of proliferating cells, inhibited cyst progression and fibrosis and preserved kidney function in Arl13bf/f;Ksp-Cre mice. Our results reveal non-cell-autonomous activation of HH signaling in the interstitium of the Arl13bf/f;Ksp-Cre kidney and suggest that abnormal activation of the HH pathway contributes to disease progression.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Stephanie Justine Jerman
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Zhaoxia Sun
- To whom correspondence should be addressed. Tel: +1 2037853589; Fax: +1 2037857227;
| |
Collapse
|
19
|
Turn RE, Hu Y, Dewees SI, Devi N, East MP, Hardin KR, Khatib T, Linnert J, Wolfrum U, Lim MJ, Casanova JE, Caspary T, Kahn RA. The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic. Mol Biol Cell 2022; 33:ar13. [PMID: 34818063 PMCID: PMC9236152 DOI: 10.1091/mbc.e21-09-0443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/11/2022] Open
Abstract
ELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogues ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing the determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.
Collapse
Affiliation(s)
- Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305
| | - Yihan Hu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Skylar I. Dewees
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Narra Devi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael P. East
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Tala Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Joshua Linnert
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Michael J. Lim
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
20
|
Wu Y, Bai Y, McEwan DG, Bentley L, Aravani D, Cox RD. Palmitoylated small GTPase ARL15 is translocated within Golgi network during adipogenesis. Biol Open 2021; 10:273707. [PMID: 34779483 PMCID: PMC8689486 DOI: 10.1242/bio.058420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
The small GTPase ARF family member ARL15 gene locus is associated in population studies with increased risk of type 2 diabetes, lower adiponectin and higher fasting insulin levels. Previously, loss of ARL15 was shown to reduce insulin secretion in a human β-cell line and loss-of-function mutations are found in some lipodystrophy patients. We set out to understand the role of ARL15 in adipogenesis and showed that endogenous ARL15 palmitoylated and localised in the Golgi of mouse liver. Adipocyte overexpression of palmitoylation-deficient ARL15 resulted in redistribution to the cytoplasm and a mild reduction in expression of some adipogenesis-related genes. Further investigation of the localisation of ARL15 during differentiation of a human white adipocyte cell line showed that ARL15 was predominantly co-localised with a marker of the cis face of Golgi at the preadipocyte stage and then translocated to other Golgi compartments after differentiation was induced. Finally, co-immunoprecipitation and mass spectrometry identified potential interacting partners of ARL15, including the ER-localised protein ARL6IP5. Together, these results suggest a palmitoylation dependent trafficking-related role of ARL15 as a regulator of adipocyte differentiation via ARL6IP5 interaction. This article has an associated First Person interview with the first author of the paper. Summary: ARL15 (GTPase ARF family) is associated with adipose traits. ARL15 is palmitoylated, localised to Golgi in preadipocytes and translocated to other Golgi compartments during differentiation. ARL15 interacts with ER-localised ARL6IP5.
Collapse
Affiliation(s)
- Yixing Wu
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, Oxfordshire, OX11 0RD, UK
| | - Ying Bai
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, Oxfordshire, OX11 0RD, UK
| | - David G McEwan
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.,Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Liz Bentley
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, Oxfordshire, OX11 0RD, UK
| | - Dimitra Aravani
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, Oxfordshire, OX11 0RD, UK
| | - Roger D Cox
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
21
|
Quidwai T, Wang J, Hall EA, Petriman NA, Leng W, Kiesel P, Wells JN, Murphy LC, Keighren MA, Marsh JA, Lorentzen E, Pigino G, Mill P. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 2021; 10:e69786. [PMID: 34734804 PMCID: PMC8754431 DOI: 10.7554/elife.69786] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Collapse
Affiliation(s)
- Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Human TechnopoleMilanItaly
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
22
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
23
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
24
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
25
|
Tripathi P, Zhu Z, Qin H, Elsherbini A, Crivelli SM, Roush E, Wang G, Spassieva SD, Bieberich E. Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis. J Lipid Res 2021; 62:100021. [PMID: 33380429 PMCID: PMC7903138 DOI: 10.1194/jlr.ra120001190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022] Open
Abstract
Microtubules are polymers composed of αβ-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide. However, the molecular mechanism and function of this interaction are not understood. Here, we show that in human induced pluripotent stem cell-derived neurons, ceramide stabilizes microtubules, which indicates a similar function in cilia. Using proximity ligation assays, we detected complex formation of ceramide with acetylated tubulin in Chlamydomonas reinhardtii flagella and cilia of human embryonic kidney (HEK293T) cells, primary cultured mouse astrocytes, and ependymal cells. Using incorporation of palmitic azide and click chemistry-mediated addition of fluorophores, we show that a portion of acetylated tubulin is S-palmitoylated. S-palmitoylated acetylated tubulin is colocalized with ceramide-rich platforms in the ciliary membrane, and it is coimmunoprecipitated with Arl13b, a GTPase that mediates transport of proteins into cilia. Inhibition of S-palmitoylation with 2-bromo palmitic acid or inhibition of ceramide biosynthesis with fumonisin B1 reduces formation of the Arl13b-acetylated tubulin complex and its transport into cilia, concurrent with impairment of ciliogenesis. Together, these data show, for the first time, that ceramide-rich platforms mediate membrane anchoring and interaction of S-palmitoylated proteins that are critical for cilium formation, stabilization, and function.
Collapse
Affiliation(s)
- Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Haiyan Qin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Simone M Crivelli
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Veterans Affairs Medical Center, Lexington, KY, USA
| | - Emily Roush
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Guanghu Wang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Veterans Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
26
|
Okazaki M, Kobayashi T, Chiba S, Takei R, Liang L, Nakayama K, Katoh Y. Formation of the B9-domain protein complex MKS1-B9D2-B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol Biol Cell 2020; 31:2259-2268. [PMID: 32726168 PMCID: PMC7550698 DOI: 10.1091/mbc.e20-03-0208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/20/2023] Open
Abstract
Cilia are plasma membrane protrusions that act as cellular antennae and propellers in eukaryotes. To achieve their sensory and motile functions, cilia maintain protein and lipid compositions that are distinct from those of the cell body. The transition zone (TZ) is a specialized region located at the ciliary base, which functions as a barrier separating the interior and exterior of cilia. The TZ comprises a number of transmembrane and soluble proteins. Meckel syndrome (MKS)1, B9 domain (B9D)1/MKS9, and B9D2/MKS10 are soluble TZ proteins that are encoded by causative genes of MKS and have a B9D in common. We here demonstrate the interaction mode of these B9D proteins to be MKS1-B9D2-B9D1 and demonstrate their interdependent localization to the TZ. Phenotypic analyses of MKS1-knockout (KO) and B9D2-KO cells show that the B9D proteins are involved in, although not essential for, normal cilia biogenesis. Rescue experiments of these KO cells show that formation of the B9D protein complex is crucial for creating a diffusion barrier for ciliary membrane proteins.
Collapse
Affiliation(s)
- Misato Okazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Ryota Takei
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Luxiaoxue Liang
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Jászai J, Thamm K, Karbanová J, Janich P, Fargeas CA, Huttner WB, Corbeil D. Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3. J Biol Chem 2020; 295:6007-6022. [PMID: 32201384 DOI: 10.1074/jbc.ra119.011253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/18/2020] [Indexed: 01/18/2023] Open
Abstract
Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin-Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor-like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies.
Collapse
Affiliation(s)
- József Jászai
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; Institute of Anatomy, Medizinische Fakultät der Technischen Universität Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany.
| | - Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Peggy Janich
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany.
| |
Collapse
|
28
|
Gorinski N, Wojciechowski D, Guseva D, Abdel Galil D, Mueller FE, Wirth A, Thiemann S, Zeug A, Schmidt S, Zareba-Kozioł M, Wlodarczyk J, Skryabin BV, Glage S, Fischer M, Al-Samir S, Kerkenberg N, Hohoff C, Zhang W, Endeward V, Ponimaskin E. DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels. J Biol Chem 2020; 295:5970-5983. [PMID: 32184353 DOI: 10.1074/jbc.ra119.011049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7 -/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7 -/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7 -/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.
Collapse
Affiliation(s)
- Nataliya Gorinski
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dalia Abdel Galil
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Franziska E Mueller
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Wirth
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Thiemann
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Schmidt
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Zareba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Boris V Skryabin
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149 Münster, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Samer Al-Samir
- Institute of Vegetative Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Kerkenberg
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Volker Endeward
- Institute of Vegetative Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
29
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
30
|
Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Mol Brain 2020; 13:28. [PMID: 32122360 PMCID: PMC7053156 DOI: 10.1186/s13041-020-00571-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are centriole-derived sensory organelles that are present in most mammalian cells, including astrocytes and neurons. Evidence is emerging that astrocyte and neuronal primary cilia demonstrate a dichotomy in the mature mouse brain. However, it is unknown how astrocytic and neuronal primary cilia change their morphology and ciliary proteins when exposed to reactive insults including epilepsy and traumatic brain injury. We used a double transgenic mouse strain (Arl13b-mCherry; Centrin2-GFP), in which we found spontaneous seizures, and a cortical injury model to examine the morphological changes of astrocytic and neuronal primary cilia under reactive conditions. Transgenic overexpression of Arl13b drastically increases the length of astrocytic and neuronal primary cilia in the hippocampus, as well as the cilia lengths of cultured astrocytes and neurons. Spontaneous seizures shorten Arl13b-positive astrocytic cilia and AC3-positive neuronal cilia in the hippocampus. In a cortical injury model, Arl13b is not detectable in primary cilia, but Arl13b protein relocates to the cell body and has robust expression in the proximity of injured tissues. In contrast, the number of AC3-positive cilia near injured tissues remains unchanged, but their lengths become shorter. These results on astrocytic cilia implicate Arl13b in regulating astrocyte proliferation and tissue regeneration, while the shortening of AC3-positive cilia suggests adaptive changes of neuronal primary cilia under excitotoxicity.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Juan Yang
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Matthew Strobel
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Connor Pauplis
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 389 Rudman Hall, 46 College Road, Durham, NH, 03824, USA.
| |
Collapse
|
31
|
Bennett HW, Gustavsson AK, Bayas CA, Petrov PN, Mooney N, Moerner WE, Jackson PK. Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule superresolution microscopy. Mol Biol Cell 2020; 31:619-639. [PMID: 31895004 PMCID: PMC7202064 DOI: 10.1091/mbc.e19-09-0499] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cilia in many cell types contain a periaxonemal subcompartment called the inversin compartment. Four proteins have been found to assemble within the inversin compartment: INVS, ANKS6, NEK8, and NPHP3. The function of the inversin compartment is unknown, but it appears to be critical for normal development, including left–right asymmetry and renal tissue homeostasis. Here we combine superresolution imaging of human RPE1 cells, a classic model for studying primary cilia in vitro, with a genetic dissection of the protein–protein binding relationships that organize compartment assembly to develop a new structural model. We observe that INVS is the core structural determinant of a compartment composed of novel fibril-like substructures, which we identify here by three-dimensional single-molecule superresolution imaging. We find that NEK8 and ANKS6 depend on INVS for localization to these fibrillar assemblies and that ANKS6-NEK8 density within the compartment is regulated by NEK8. Together, NEK8 and ANKS6 are required downstream of INVS to localize and concentrate NPHP3 within the compartment. In the absence of these upstream components, NPHP3 is redistributed within cilia. These results provide a more detailed structure for the inversin compartment and introduce a new example of a membraneless compartment organized by protein–protein interactions.
Collapse
Affiliation(s)
- Henrietta W Bennett
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Anna-Karin Gustavsson
- Department of Chemistry, Stanford University, Stanford, CA 94305.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm SE 17177, Sweden
| | - Camille A Bayas
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Petar N Petrov
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Nancie Mooney
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
32
|
Powell L, Samarakoon YH, Ismail S, Sayer JA. ARL3, a small GTPase with a functionally conserved role in primary cilia and immune synapses. Small GTPases 2019; 12:167-176. [PMID: 31826708 DOI: 10.1080/21541248.2019.1703466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary cilium and the immunological synapse are both specialized functional plasma membrane domains that share several similarities. Signalling output of membrane domains is regulated, spatially and temporally, by segregating and focusing lipids and proteins. ARL3, a small GTPase, plays a major role in concentrating lipid-modified proteins in both the immunological synapse and the primary cilia. Here in this review we will introduce the role of ARL3 in health and disease and its role in polarizing signalling at the primary cilia and immunological synapses.
Collapse
Affiliation(s)
- Laura Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Youhani H Samarakoon
- Spatial segregation of signalling Lab, Beatson Institute for Cancer Research, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Shehab Ismail
- Spatial segregation of signalling Lab, Beatson Institute for Cancer Research, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Muñoz-Estrada J, Ferland RJ. Ahi1 promotes Arl13b ciliary recruitment, regulates Arl13b stability and is required for normal cell migration. J Cell Sci 2019; 132:jcs.230680. [PMID: 31391239 DOI: 10.1242/jcs.230680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the Abelson-helper integration site 1 (AHI1) gene are associated with neurological/neuropsychiatric disorders, and cause the neurodevelopmental ciliopathy Joubert syndrome (JBTS). Here, we show that deletion of the transition zone (TZ) protein Ahi1 in mouse embryonic fibroblasts (MEFs) has a small effect on cilia formation. However, Ahi1 loss in these cells results in: (1) reduced localization of the JBTS-associated protein Arl13b to the ciliary membrane, (2) decreased sonic hedgehog signaling, (3) and an abnormally elongated ciliary axoneme accompanied by an increase in ciliary IFT88 concentrations. While no changes in Arl13b levels are detected in crude cell membrane extracts, loss of Ahi1 significantly reduced the level of non-membrane-associated Arl13b and its stability via the proteasome pathway. Exogenous expression of Ahi1-GFP in Ahi1-/- MEFs restored ciliary length, increased ciliary recruitment of Arl13b and augmented Arl13b stability. Finally, Ahi1-/- MEFs displayed defects in cell motility and Pdgfr-α-dependent migration. Overall, our findings support molecular mechanisms underlying JBTS etiology that involve: (1) disruptions at the TZ resulting in defects of membrane- and non-membrane-associated proteins to localize to primary cilia, and (2) defective cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jesús Muñoz-Estrada
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA .,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
34
|
Roy K, Marin EP. Lipid Modifications in Cilia Biology. J Clin Med 2019; 8:jcm8070921. [PMID: 31252577 PMCID: PMC6678300 DOI: 10.3390/jcm8070921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cilia are specialized cellular structures with distinctive roles in various signaling cascades. Ciliary proteins need to be trafficked to the cilium to function properly; however, it is not completely understood how these proteins are delivered to their final localization. In this review, we will focus on how different lipid modifications are important in ciliary protein trafficking and, consequently, regulation of signaling pathways. Lipid modifications can play a variety of roles, including tethering proteins to the membrane, aiding trafficking through facilitating interactions with transporter proteins, and regulating protein stability and abundance. Future studies focusing on the role of lipid modifications of ciliary proteins will help our understanding of how cilia maintain specific protein pools strictly connected to their functions.
Collapse
Affiliation(s)
- Kasturi Roy
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA.
| | - Ethan P Marin
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA
| |
Collapse
|
35
|
Dilan TL, Moye AR, Salido EM, Saravanan T, Kolandaivelu S, Goldberg AFX, Ramamurthy V. ARL13B, a Joubert Syndrome-Associated Protein, Is Critical for Retinogenesis and Elaboration of Mouse Photoreceptor Outer Segments. J Neurosci 2019; 39:1347-1364. [PMID: 30573647 PMCID: PMC6381253 DOI: 10.1523/jneurosci.1761-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/16/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
Mutations in the Joubert syndrome-associated small GTPase ARL13B are linked to photoreceptor impairment and vision loss. To determine the role of ARL13B in the development, function, and maintenance of ciliated photoreceptors, we generated a pan-retina knock-out (Six3-Cre) and a rod photoreceptor-specific inducible conditional knock-out (Pde6g-CreERT2) of ARL13B using murine models. Embryonic deletion of ARL13B led to defects in retinal development with reduced cell proliferation. In the absence of ARL13B, photoreceptors failed to develop outer segment (OS) membranous discs and axonemes, resulting in loss of function and rapid degeneration. Additionally, the majority of photoreceptor basal bodies did not dock properly at the apical edge of the inner segments. The removal of ARL13B in adult rod photoreceptor cells after maturation of OS resulted in loss of photoresponse and vesiculation in the OS. Before changes in photoresponse, removal of ARL13B led to mislocalization of rhodopsin, prenylated phosphodiesterase-6 (PDE6), and intraflagellar transport protein-88 (IFT88). Our findings show that ARL13B is required at multiple stages of retinogenesis, including early postnatal proliferation of retinal progenitor cells, development of photoreceptor cilia, and morphogenesis of photoreceptor OS discs regardless of sex. Last, our results establish a need for ARL13B in photoreceptor maintenance and protein trafficking.SIGNIFICANCE STATEMENT The normal development of photoreceptor cilia is essential to create functional, organized outer segments with stacked membrane discs that house the phototransduction proteins necessary for sight. Our study identifies a complex role for ARL13B, a small GTPase linked to Joubert syndrome and visual impairment, at various stages of photoreceptor development. Loss of ARL13B led to defects in retinal proliferation, altered placement of basal bodies crucial for components of the cilium (transition zone) to emanate, and absence of photoreceptor-stacked discs. These defects led to extinguished visual response and dysregulated protein trafficking. Our findings show the complex role ARL13B plays in photoreceptor development, viability, and function. Our study accounts for the severe retinal impairment observed in ARL13B-linked Joubert syndrome patients.
Collapse
Affiliation(s)
- Tanya L Dilan
- Department of Ophthalmology and Neuroscience
- Department of Biochemistry
| | - Abigail R Moye
- Department of Ophthalmology and Neuroscience
- Department of Biochemistry
| | | | | | | | | | - Visvanathan Ramamurthy
- Department of Ophthalmology and Neuroscience,
- Department of Biochemistry
- WVU Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, and
| |
Collapse
|
36
|
Han S, Miyoshi K, Shikada S, Amano G, Wang Y, Yoshimura T, Katayama T. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun 2019; 509:227-234. [PMID: 30583862 DOI: 10.1016/j.bbrc.2018.12.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
The primary cilia are known as biosensors that transduce signals through the ciliary membrane proteins in vertebrate cells. The ciliary membrane contains transmembrane proteins and membrane-associated proteins. Tubby-like protein 3 (TULP3), a member of the tubby family, has been shown to interact with the intraflagellar transport-A complex (IFT-A) and to be involved in the ciliary localization of transmembrane proteins, although its role in the ciliary entry of membrane-associated proteins has remained unclear. Here, to determine whether TULP3 is required for the localization of ciliary membrane-associated proteins, we generated and analyzed TULP3-knockout (KO) hTERT RPE-1 (RPE1) cells. Immunofluorescence analysis demonstrated that ciliary formation was downregulated in TULP3-KO cells and that membrane-associated proteins, ADP-ribosylation factor-like 13B (ARL13B) and inositol polyphosphate-5-phosphatase E (INPP5E), failed to localize to primary cilia in TULP3-KO cells. These defects in the localization of ARL13B and INPP5E in TULP3-KO cells were rescued by the exogenous expression of wild-type TULP3, but not that of mutant TULP3 lacking the ability to bind IFT-A. In addition, the expression of TUB protein, another member of the tubby family whose endogenous expression is absent in RPE1 cells, also rescued the defective ciliary localization of ARL13B and INPP5E in TULP3-KO cells, suggesting that there is functional redundancy between TULP3 and TUB. Our findings indicate that TULP3 participates in ciliogenesis, and targets membrane-associated proteins to primary cilia via binding to IFT-A.
Collapse
Affiliation(s)
- Sarina Han
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ko Miyoshi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.
| | - Sho Shikada
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Genki Amano
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yinshengzhuoma Wang
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
37
|
Dilan T, Ramamurthy V. The Dynamic and Complex Role of the Joubert Syndrome-Associated Ciliary Protein, ADP-Ribosylation Factor-Like GTPase 13B (ARL13B) in Photoreceptor Development and Maintenance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:501-505. [PMID: 31884661 DOI: 10.1007/978-3-030-27378-1_82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photoreceptor neurons are modified primary cilia with an extended ciliary compartment known as the outer segment (OS). The mechanism behind the elaboration of photoreceptor cilia and OS morphogenesis remains poorly understood. In this review, we discuss the role of ADP-ribosylation factor-like GTPase 13B (ARL13B), a small GTPase in OS morphogenesis and its impact on photoreceptor health and biology.
Collapse
Affiliation(s)
- Tanya Dilan
- Departments of Ophthalmology, West Virginia University, Morgantown, WV, USA
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology, West Virginia University, Morgantown, WV, USA.
- Departments of Biochemistry, West Virginia University, Morgantown, WV, USA.
- Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
38
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
39
|
Zhang Y, Huang Y, Srivathsan A, Lim TK, Lin Q, He CY. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci 2018; 131:jcs.219071. [PMID: 30097558 PMCID: PMC6140319 DOI: 10.1242/jcs.219071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
The small GTPase Arl13b is one of the most conserved and ancient ciliary proteins. In human and animals, Arl13b is primarily associated with the ciliary membrane, where it acts as a guanine-nucleotide-exchange factor (GEF) for Arl3 and is implicated in a variety of ciliary and cellular functions. We have identified and characterized Trypanosoma brucei (Tb)Arl13, the sole Arl13b homolog in this evolutionarily divergent, protozoan parasite. TbArl13 has conserved flagellar functions and exhibits catalytic activity towards two different TbArl3 homologs. However, TbArl13 is distinctly associated with the axoneme through a dimerization/docking (D/D) domain. Replacing the D/D domain with a sequence encoding a flagellar membrane protein created a viable alternative to the wild-type TbArl13 in our RNA interference (RNAi)-based rescue assay. Therefore, flagellar enrichment is crucial for TbArl13, but mechanisms to achieve this could be flexible. Our findings thus extend the understanding of the roles of Arl13b and Arl13b–Arl3 pathway in a divergent flagellate of medical importance. This article has an associated First Person interview with the first author of the paper. Highlighted Article: All roads lead to cilia – how the essential flagellar enrichment of Arl13 is achieved in trypanosome cells using a fundamentally different strategy compared with that of animal cells.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yameng Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Amrita Srivathsan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cynthia Y He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
40
|
Polycystin-1, the product of the polycystic kidney disease gene PKD1, is post-translationally modified by palmitoylation. Mol Biol Rep 2018; 45:1515-1521. [DOI: 10.1007/s11033-018-4224-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|
41
|
Záhonová K, Petrželková R, Valach M, Yazaki E, Tikhonenkov DV, Butenko A, Janouškovec J, Hrdá Š, Klimeš V, Burger G, Inagaki Y, Keeling PJ, Hampl V, Flegontov P, Yurchenko V, Eliáš M. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep 2018; 8:5239. [PMID: 29588502 PMCID: PMC5869587 DOI: 10.1038/s41598-018-23575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Euki Yazaki
- Institute for Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Denis V Tikhonenkov
- Laboratory of Microbiology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Anzhelika Butenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Štěpánka Hrdá
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
42
|
Hanke-Gogokhia C, Wu Z, Sharif A, Yazigi H, Frederick JM, Baehr W. The guanine nucleotide exchange factor Arf-like protein 13b is essential for assembly of the mouse photoreceptor transition zone and outer segment. J Biol Chem 2017; 292:21442-21456. [PMID: 29089384 DOI: 10.1074/jbc.ra117.000141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/24/2017] [Indexed: 01/17/2023] Open
Abstract
Arf-like protein 13b (ARL13b) is a small GTPase that functions as a guanosine nucleotide exchange factor (GEF) for ARL3-GDP. ARL13b is located exclusively in photoreceptor outer segments (OS) presumably anchored to discs by palmitoylation, whereas ARL3 is an inner segment cytoplasmic protein. Hypomorphic mutations affecting the ARL13b G-domain inactivate GEF activity and lead to Joubert syndrome (JS) in humans. However, the molecular mechanisms in ARL13b mutation-induced Joubert syndrome, particularly the function of primary cilia, are still incompletely understood. Because Arl13b germline knockouts in mouse are lethal, we generated retina-specific deletions of ARL13b in which ARL3-GTP formation is impaired. In mouse retArl13b-/- central retina at postnatal day 6 (P6) and older, outer segments were absent, thereby preventing trafficking of outer segment proteins to their destination. Ultrastructure of postnatal day 10 (P10) central retArl13b-/- photoreceptors revealed docking of basal bodies to cell membranes, but mature transition zones and disc structures were absent. Deletion of ARL13b in adult mice via tamoxifen-induced Cre/loxP recombination indicated that axonemes gradually shorten and outer segments progressively degenerate. IFT88, essential for anterograde intraflagellar transport (IFT), was significantly reduced at tamArl13b-/- basal bodies, suggesting impairment of intraflagellar transport. AAV2/8 vector-mediated ARL13b expression in the retArl13b-/- retina rescued ciliogenesis.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Zhijian Wu
- NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ali Sharif
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Hussein Yazigi
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Jeanne M Frederick
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132
| | - Wolfgang Baehr
- From the Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132, .,Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah 84132, and.,Department of Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|